Towards NNPDF4.0: The Structure of the Proton to One-Percent Accuracy

PDF4LHC meeting

Emanuele R. Nocera School of Physics and Astronomy, The University of Edinburgh on behalf of the NNPDF Collaboration

March 22, 2021

From NNPDF3.1 to NNPDF4.0

Collaborative progress towards extending data, theory and methodology

06/2017	NNPDF3.1	EPJ C77 (2017) 663
10/2017	NNPDF3.1sx: PDFs with small- x resummation	EPJ C78 (2018) 321
12/2017	NNPDF3.1luxQED: consistent photon PDF à la luxQED	SciPost Phys. 5 (2018) 008
02/2018	NNPDF3.1+ATLASphoton: inclusion of direct photon data	EPJ C78 (2018) 470
12/2018	NNPDF3.1alphas: α_s from a correlated-replica method	EPJ C78 (2018) 408
12/2018	NNPDF3.1nuc: heavy ion nuclear uncertainties in a fit	EPJ C79 (2019) 282
05/2019	NNPDF3.1th: missing higher-order uncertainties in a fit	[EPJ C79 (2019) 838; ibid. 931]
07/2019	Gradient descent and hyperoptimisation in PDF fits	EPJ C79 (2019) 676
12/2019	NNPDF3.1singletop: inclusion of single top <i>t</i> -channel data	[JHEP 05 (2020) 067]
05/2020	NNPDF3.1dijets: comparative study of single- and di-jets	EPJ C80 (2020) 797
06/2020	Positivity of $\overline{\mathrm{MS}}$ PDFs	[JHEP 11 (2020) 129]
08/2020	PineAPPL: fast evaluation of EW \times QCD corrections	[JHEP 12 (2020) 108
08/2020	NNPDF3.1strangeness: assessment of strange-sensitive data	EPJ C80 (2020) 1168
11/2020	NNPDF3.1deu: deuteron uncertainties in a fit	EPJ C81 (2021) 37
03/2021	Future tests	arXiv:2103.08606
2021	NNPDF4.0	to appear

NNPDF4.0: data set extension

Kinematic coverage

 $\mathcal{O}(50)$ data sets investigated; $\mathcal{O}(400)$ data points more in NNPDF4.0 than in NNPDF3.1

Emanuele R. Nocera

New data sets in NNPDF4.0

Process	Experiment	Description	Reference
DIS	HERA	Combined reduced c and b cross sections	EPJ C78 (2018) 473
	NOMAD*	$\mathcal{R}_{\mu\mu}(E) = \sigma_{\mu\mu}(E) / \sigma_{\rm CC}(E)$	[NPB 876 (2013) 339]
DY	ATLAS	W, Z central/forward rapidity distr., 7 TeV	[EPJ C77 (2017) 367]
	ATLAS	$\{m_{\ell\ell}, y_{\ell\ell} \}$ high-mass distribution, 8 TeV	[JHEP 08 (2016) 009]
	ATLAS	W and Z total cross section, 13 TeV	PLB 759 (2016) 601
	LHCb	$y_{Z_{a}}$ distribution, $2e$ and 2μ , 13 TeV	JHEP 09 (2016) 136
W+c	ATLAS [↑]	$ \eta^{\ell} $ distribution 7 TeV	[JHEP 05 (2014) 068
	CMS†	$ \eta^{\mu} $ distribution 13 TeV	[EPJ C79 (2019) 269]
single-jet	ATLAS	$\{p_T, y \}$ distribution, 8 TeV	[JHEP 09 (2017) 020]
$t\overline{t}$	ATLAS	normalised $y_{t\bar{t}}$ distribution, 2ℓ , 8 TeV	PRD 94 (2016) 092003
	CMS	total inclusive cross section, 5 TeV	[JHEP 03 (2018) 115
	CMS	normalised $\{m_{tar{t}}, y_t\}$ distribution, 8 TeV	[EPJ C77 (2017) 459]
	CMS	normalised y_t distribution (dilepton), 13 TeV	[JHEP 02 (2019) 149]
	CMS	normalised y_t distribution (lepton+jet), 13 TeV	[PRD 97 (2018) 112003]
single top	ATLAS	R_t 7, 8, 13 TeV	JHEP 04 (2017) 086
	ATLAS	normalised y_t and $y_{ar{t}}$ distributions, 7, 8 TeV	PRD 90 (2014) 112006; EPJ C77 (2017) 531
	CMS	$t+ar{t}$ cross section, 7 TeV	[JHEP 12 (2012) 035]
	CMS	R_t 8, 13 TeV	[JHEP 06 (2014) 090; PLB 772 (2017) 752]
W+jet	ATLAS	p_T distribution, 8 TeV	[JHEP 05 (2018) 077
isolated photon	ATLAS	$\{E_T^{\gamma}, \eta^{\gamma} \}$ distribution, 13 TeV	PLB 770 (2017) 473
di-jets	ATLAS	$\{m_{12}, y^*\}$ distribution 7 TeV	[JHEP 05 (2014) 059
	CMS	$\{m_{12}, y_{\max} \}$ distribution 7 TeV	[PRD 87 (2013) 112002]
	CMS	$\{p_{T,avg}, y_b, y^*\}$ distribution 8 TeV	[EPJ C77 (2017) 746]
DIS+jets	H1*	Single- and di-jet differential distributions	EPJ C75 (2015) 65; C77 (2017) 215

* Not in baseline fit; studied via reweighting Processes highlighted in red correspond to processes NOT in [†]Only NLO fit

Processes highlighted in red correspond to processes NOT in NNPDF3.1

Selection of data sets based on weighted fits (see Z. Kassabov)

Emanuele R. Nocera

Towards NNPDF4.0

NNPDF4.0: theoretical and methodological features

Mostly covered in the previous NNPDF talk; here I summarise the main points

• <u>Refined</u> theoretical framework

- \rightarrow nuclear uncertainties for both deuteron and heavy nuclei included by default
- \rightarrow NNLO charm-quark massive corrections implemented (a bug in the NLO corrected)
- \rightarrow EW corrections not included to ensure consistency with data, but carefully checked
- \rightarrow charm PDF parametrised on the same footing as other PDFs
- Improved implementation of PDF properties
 - \rightarrow extended positivity constraints for light quark/antiquark and gluon PDFs
 - \rightarrow extended integrability constraints of non-singlet light quark PDF combinations
- <u>New</u> PDF parametrisation and optimisation
 - \rightarrow single neural network to parametrise eight independent PDF combinations
 - \rightarrow check of the independence of the results from the chosen parametrisation basis
 - \rightarrow new optimisation strategy based on gradient descent rather than genetic algorithms
 - \rightarrow scan of the hyperparameter space to find the optimal minimisation settings
- Complete statistical validation of PDF uncertainties
 - \rightarrow (multi-)closure tests to validate PDF uncertainties in the data region
 - \rightarrow future tests to check the sensibleness of PDF uncertainties in extrapolation regions
- More efficient compression tool for PDF set delivery

NNPDF4.0: Fit quality - NNLO

			Overall good description of the data sets
Data set	N_{dat}	$\chi^2/N_{\rm dat}$	Overall good description of the data sets
Fixed-target DIS	1881	1.10	Two exceptions:
HERA	1208	1.21	HERA σ_c and ATLAS top pair
σ_c	37	2.11	
σ_{b}	26	1.48	vveighted fits analysis:
Fixed-target Drell-Yan	189	1.00	in case of HERA σ_c :
CDF	28	1.31	la als af annall is manimum stime
D0	37	1.00	lack of small- x resummation
ATLAS	621	1.18	in case of ATLAS top pair:
Drell-Yan, 7, 8, 13 TeV	153	1.32	
W+jet, 8 TeV	32	1.15	slight tension with (di-jet) data sets
single top, 7, 8, 13 TeV	14	0.36	poor fit if all distributions are included
di-jets, 7 TeV	90	1.93	, normalized register distributions retained
jets, 8 TeV	171	0.61	normalised rapidity distributions retained
top pair, 7, 8, 13 TeV	16	2.30	although their $\chi^2/N_{ m dat}$ of order 3
Zp_T , 8 TeV	92	0.86	CMS top pair data almost inconsitive to all this
direct photon, 13 TeV	53	0.72	Civid top pair data annost insensitive to an trus
CMS	411	1.40	General remark:
Drell-Yan, 7, 8 TeV	154	1.34	
single top, 7, 8, 13 TeV	3	0.43	as statistical uncertainties become smaller
di-jets, 7 TeV	54	1.67	a good control of systematic uncertainties
di-jets, 8 TeV	122	1.50	
top pair, 5, 7, 8 TeV	29	0.84	and their correlations becomes fundamental
top pair, 13 TeV	21	0.67	to interpret the sensibleness of the fit
Zp_T , 8 TeV	28	1.42	·
LHCb	116	1.53	
Total	4491	1.17	All results in the sequel are obtained at NNLO

From NNPDF3.1 to NNPDF4.0

Consistency between PDF sets

NNPDF4.0 more precise (combination of data set and methodology)

NNPDF4.0 <u>more accurate</u> (superiority of the NNPDF4.0 methodology)

From NNPDF3.1 to NNPDF4.0

Consistency between PDF sets

NNPDF4.0 more precise (combination of data set and methodology)

NNPDF4.0 <u>more accurate</u> (superiority of the NNPDF4.0 methodology)

The gluon PDF: impact of data

Hierarchical impact of different data sets in the fit

jet measurements have the largest pull: suppression for $0.01 \lesssim x \lesssim 0.1$, enhancement otherwise $t\bar{t}$ and Zp_T measurements have a comparatively small pull, which is consistent with the global fit direct photon measurements have an almost immaterial pull

data set fit	ATLAS jets	CMS jets	ATLAS top	CMS top	ATLAS ${\cal Z} p_T$	$CMS\; Zp_T$	ATLAS dir. phot.	total
NNPDF4.0	1.06	1.55	2.30	0.77	0.86	1.41	0.71	1.17
(no jets)	[1.71]	[3.70]	1.54	1.00	0.86	1.35	0.72	1.14
(no top)	1.08	1.57	[3.51]	[0.91]	0.86	1.43	0.74	1.18
(no Zp_T)	1.08	1.57	2.30	0.76	[0.99]	[1.81]	0.69	1.14
(no dir. phot.)	1.06	1.55	2.30	0.77	0.86	1.42	[0.71]	1.18
Emanuele R. Nocera			Toward	s NNPDF4	.0		March 22, 2021	9/3

The gluon PDF: single-inclusive jet vs di-jet data

Inclusion of di-jet measurements is preferred over single-inclusive jet measurements given their greater theoretical accuracy and the avoidance of decorrelation models based on an extensive study in the framework of the NNPDF3.1 methodology [EPJC80 (2020) 8]

Similar relative effect of single-inclusive vs di-jet data in NNPDF3.1 and NNPDF4.0

ties
1

data set fit	ATLAS 2j	CMS 2j	ATLAS 1j (7 TeV)	ATLAS 1j (8 TeV)	CMS 1j	$Z p_T$	top	total	
NNPDF4.0 (single-jets instead of di-jets)	1.93 [2.41]	1.56 [2.68]	[1.28] [3.42]* 1.23 [3.36]*	0.61 [2.82]* 0.85 [3.10]*	[1.31] 1.07	0.99 0.99	1.17 1.19	1.17 1.14	
*No decorrelation model									
Emanuele R. Nocera		T	owards NNPDF4.0		Marc	h 22, 20	021	10 / 1	Ē

Quark flavour decomposition: impact of data $$_{\mbox{Quarks}}$$

The bulk of the constraint on u and d comes from inclusive fixed-target and collider DIS LHCb data sets affect the d PDF at large x (as in NNPDF3.1)

Effect of single top (not shown) is immaterial, see [JHEP 05 (2020) 067]

data set fit	FT DIS	HERA	FT DY	Tevatron	ATLAS W, Z	$CMS\ W, Z$	LHCb	single top	total
NNPDF4.0	1.10	1.21	1.00	1.14	1.28	1.33	1.54	0.37	1.17
(no LHCb)	1.08	1.21	0.97	1.27	1.34	1.35	[2.60]	0.34	1.16
(no ATLAS/CMS W, Z)	1.05	1.20	0.85	1.02	[2.14]	[1.36]	1.39	0.37	1.11
DIS-only	1.03	1.21	[1.40]	[1.22]	[4.15]	[3.83]	[2.96]	[0.33]	1.10

Towards NNPDF4.0

March 22, 2021

11/17

Emanuele R. Nocera

Quark flavour decomposition: impact of data Antiquarks

ATLAS and CMS DY data sets have a pull of about 2σ for $x \sim 0.02$ on both \bar{u} and dThe pull is not encompassed by a corresponding increase of PDF uncertainties Genuine effect of data, detected thanks to the new methodology and data set

data set fit	FT DIS	HERA	FT DY	Tevatron	ATLAS W, Z	$CMS\ W, Z$	LHCb	single top	total
NNPDF4.0	1.10	1.21	1.00	1.14	1.28	1.33	1.54	0.37	1.17
(no LHCb)	1.08	1.21	0.97	1.27	1.34	1.35	[2.60]	0.34	1.16
(no ATLAS/CMS W, Z)	1.05	1.20	0.85	1.02	[2.14]	[1.36]	1.39	0.37	1.11
DIS-only	1.03	1.21	[1.40]	[1.22]	[4.15]	[3.83]	[2.96]	[0.33]	1.10

Emanuele R. Nocera

Towards NNPDF4.0

Quark flavour separation: nuclear uncertainties

Effect of nuclear uncertainties relevant at large x to reconcile FT DIS with LHC DY data $\chi^2_{\rm tot} = 1.17 \rightarrow \chi^2_{\rm tot} = 1.26$ (no nucl. uncs.) $\chi^2_{\rm LHCb} = 1.54 \rightarrow \chi^2_{\rm tot} = 1.76$ (no nucl. uncs.)

The bulk of the effect is due to nuclear uncertainties for heavy nuclei deuteron uncertainties have a comparatively smaller effect at inermediate values of x

The strange PDF: impact of data

Enhanced s and \bar{s} PDFs w.r.t. NNPDF3.1 effect of ATLAS W, Z and W+jet data

Good consistency with NNPDF3.1str no nuclear uncertainties in NNPDF3.1str no NOMAD nor W + c data in NNPDF4.0

Good consistency of $K_{\boldsymbol{s}}$ across PDF sets

$$K_s(Q^2) = \frac{\int_0^1 dx [s(x,Q^2) + \bar{s}(x,Q^2)]}{\int_0^1 dx [\bar{u}(x,Q^2) + \bar{d}(x,Q^2)]}$$

See also [EPJ C80 (2020) 1168]

Impact of theory: perturbative vs fitted charm

10-2

x

 10^{-1}

Striking evidence of intrinsic charm even w/o EMC $F_2^c\ {\rm data}$

Perturbative charm alters the flavour decomposition and deteriorates the fit

 $\chi^2_{\rm fitted\; charm} = 1.17 \rightarrow \chi^2_{\rm pert.\; charm} = 1.19$

mainly due to a worsening of the LHC W, Z and top pair data sets

 10^{-3}

NNPDE4 0 (68 c l +1a

0.90

0.85

0.80

10-

 10^{0}

NNPDF4.0: parton luminosities

Emanuele R. Nocera

NNPDF4.0: parton luminosities

Emanuele R. Nocera

NNPDF4.0: implications for LHC phenomenology

Plots by courtesy of C. Schwan

Emanuele R. Nocera

March 22, 2021 16 / 17

Conclusions

NNPDF4.0 is the next generation parton set of the NNPDF family.

It achieves 1% accuracy in an unprecedentedly broad kinematic range by consistently improving the previous NNPDF3.1 parton set.

This result builds upon an extensive LHC data set combined with deep-learning optimisation models.

Its faithfulness in representing PDF uncertainties is completely validated by closure tests.

1% PDF uncertainties challenge the accuracy of theoretical predictions and demand an increasing effort towards the systematic inclusion in the fit of theoretical uncertainties (nuclear, higher orders, physical parameters, ...) and higher-order QCD and EW corrections.

The **NNPDF code** used to produce the NNPDF4.0 parton set **will be made publicly available** with its documentation.

Conclusions

NNPDF4.0 is the next generation parton set of the NNPDF family.

It achieves 1% accuracy in an unprecedentedly broad kinematic range by consistently improving the previous NNPDF3.1 parton set.

This result builds upon an extensive LHC data set combined with deep-learning optimisation models.

Its faithfulness in representing PDF uncertainties is completely validated by closure tests.

1% PDF uncertainties challenge the accuracy of theoretical predictions and demand an increasing effort towards the systematic inclusion in the fit of theoretical uncertainties (nuclear, higher orders, physical parameters, ...) and higher-order QCD and EW corrections.

The **NNPDF code** used to produce the NNPDF4.0 parton set **will be made publicly available** with its documentation.

Thank you