NNPDF4.0: Towards a new generation of PDFs using ML

Roy Stegeman

University of Milan and INFN Milan

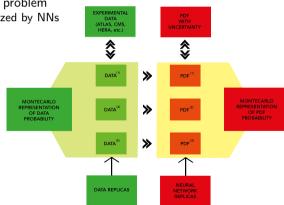
ML4Jets 2021, 6 July 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006.

PDFs as an ML problem: the NNPDF approach

Why use machine learning for PDF determination?

- Unknown functional form which needs to be inferred from data
- Well defined input and output
- \Rightarrow Supervised learning problem
 - PDFs parametrized by NNs



PDF challenges

Key points of the technology used in NNPDF3.1:

- Genetic algorithm for optimization
- Implemented in in-house c++ code
- Manual tuning of fit parameters

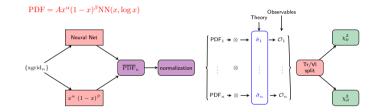
Challenges:

- Can we increase the fit speed?
 - $\bullet \ \ \mathsf{Faster} \ \mathsf{fits} \Rightarrow \mathsf{Speed-up} \ \mathsf{of} \ \mathsf{research}$
- Can we learn the methodology?
 - Systematically determine the best model hyperparameters for our data and theory
- \Rightarrow Use technologies from the deep learning community

	Faster fits ●O	Learning the methodology	Open problems 000	
L				

NNPDF4.0 model

For more information see EPJ C79 (2019) 676



Main changes:

- Python codebase
 - Easier and faster development
- Freedom to use external libraries (default: TensorFlow)
- $\bullet\,$ Modularity \Rightarrow ability to vary all aspects of the methodology

Performance benefit - time per replica

	NNPDF3.1	NNPDF4.0 (CPU)	NNPDF4.0 (GPU)
Fit timing per replica	15.2 h	38 min	6.6 min
Speed up factor	1	24	140
RAM use	1.5 GB	6.1 GB	NA

 \Rightarrow More fits in less time

Finding the best methodology: hyperoptimization

Scan over thousands of hyperparameter combinations and select the best one

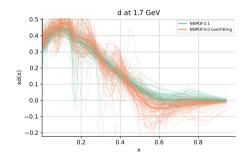


• **Optimize** figure of merit: validation χ^2

	Learning the methodology 0●000	Open problems 000	

Overfitting

Using the validation set χ^2 as figure of merit leads to overfitting:

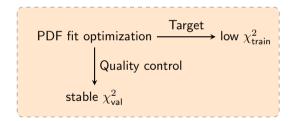


- NNPDF3.1: wiggles are a finite size effect that vanishes as $N_{\rm rep}$ grows
- NNPDF4.0: genuine overfitting with $\chi^2_{\rm train} \ll \chi^2_{\rm val}$

	Learning the methodology 00●00	Open problems 000	
-			

What happened?

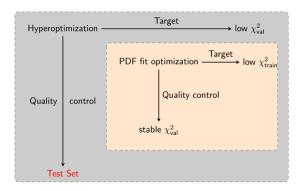
Correlations between training and validation data



 \Rightarrow Define a proper quality control criterion

Removing overfitting: the test set

Define an uncorrelated test set to test generalization power on unseen data



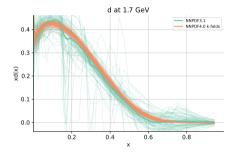
How to choose the test set?

Removing overfitting: k-fold cross-validation

We avoid choosing a test set

The basic idea of **k-fold cross-validation**:

- Divide the data into k representative subsets
- ${\small \textcircled{\sc 0}}$ Optimize the average $\chi^2_{\rm test}$ of the k test sets



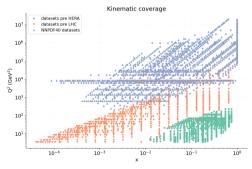
- No overfitting
- Compared to NNPDF3.1:
 - Increased stability
 - Reduced uncertainties

Trusting uncertainties outside the data region

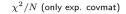
- The improved methodology and extended dataset result in a reduction of the PDF uncertainties
- 'Closure test' to validate uncertainty in the data region: arxiv:1410.8849
- Can we trust the uncertainties in the extrapolation region?

Idea:

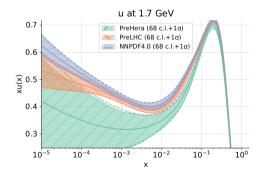
- Take a historic dataset e.g. pre-HERA or pre-LHC
- Perform fit
- Ompare predictions to "future" data

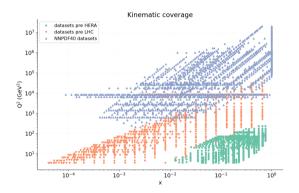


Future tests



(dataset)	NNPDF4.0	pre-LHC	pre-Hera
pre-HERA	1.09	1.01	0.90
pre-LHC	1.21	1.20	23.1
NNPDF4.0	1.29	3.30	23.1

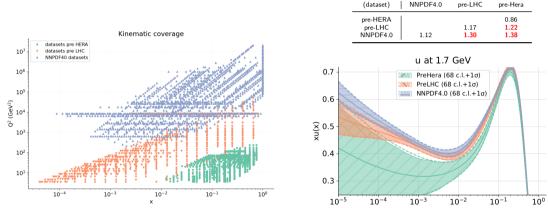




Future tests

For more information see arxiv:2103.08606

 χ^2/N (exp. and PDF covmat)



The total uncertainty increases, and accommodates for difference between predictions and new data.

	Learning the methodology	Open problems ●00	

Open problems

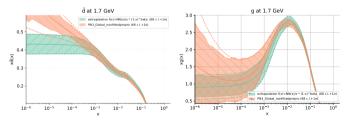
	Learning the methodology	Open problems O●O	

Preprocessing

In future test, extrapolation based on preprocessing: $\mathrm{PDF} = x^{\alpha}(1-x)^{\beta}\mathrm{NN}(x,\log x)$

 $\alpha,\,\beta$ randomly varied with uniform distribution

If preprocessing is removed, we observe saturation at small-x:

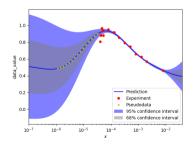


- Modify input scaling
- Model the extrapolation behaviour

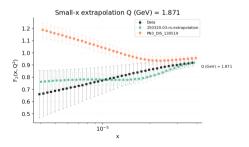
The extrapolation region

Idea:

- Use Gaussian Process to model DIS observables
- Propagate a Gaussian prior into the extrapolation region
- Generate Gaussian pseudodata and include in in a fit



- No preprocessing needed
- x, log x replaced by a single scaled input



	Learning the methodology 00000	Open problems 000	Conclusions •
,			

Summary

- Faster and more stable results
- Possibility to learn the methodology
- Faithful reduction of uncertainties in the extrapolation region
- NNPDF code will be made publicly available with documentation

	Learning the methodology 00000	Open problems 000	Conclusions •

Summary

- Faster and more stable results
- Possibility to learn the methodology
- Faithful reduction of uncertainties in the extrapolation region
- NNPDF code will be made publicly available with documentation

Thank you!

Backup

The χ^2 loss function

The fitting strategy is based on the minimization of χ^2 :

$$\chi^2 = \frac{1}{N} \sum_i (\mathcal{O}^i - \mathcal{D}^i) \sigma_{ij}^{-1} (\mathcal{P}^i - \mathcal{D}^i), \qquad (1$$

- N: number of datapoints,
- \mathcal{D}^i : experimental data point,
- \mathcal{O}^i : theoretical prediction,
- σ_{ij} : covariance matrix.

K-folding

