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UNIVERSITÀ DI MILANO & INFN

VBS TRAINING SCHOOL MILANO BICOCCA, SEPT. 3, 2021



SUMMARY

� INTRODUCTION: AI VS. ML

� ML IN HEP: SOME EXAMPLES

– GAN EVENT UNWEIGHTING

– ML CLASSIFIERS FOR OPTIMAL EFT SENSITIVITY

– MAPPING ML ONTO HUMAN LEARNING

� A CASE STUDY: PDFS AS A ML PROBLEM

– PDFS AND NNPDFS

– NEURAL NETWORKS

– MINIMIZATION: STOCHASTIC AND DETERMINISTIC

– UNDER- AND OVER-LEARNING

– CROSS-VALIDATION

– HYPEROPTIMIZATION

– K-FOLDING

– GAN COMPRESSION



AI VS. ML



FROM AI TO ML



SHIFTING OF PARADIGMS

“KNOWLEDGE BASED” AI

� LEARN AND IMPLEMENT A SET OF RULES

� GOOD FOR CHESS, BAD FOR REAL LIFE

MACHINE LEARNING
� “INTUITIVE”

REPRESENTATION

� THE AI AGENT

BUILID UP

ITS OWN KNOWLEDGE



MACHINE LEARNING ALGORITHMS

EXTRACT AND OPTIMIZE

DATA FEATURES

OPTIMIZE A PROPERTY

LEARNING FROM DATA

LEARN FROM DATA

THE LEARNING STRATEGY



ML IN HEP
RECENT EXAMPLES



GANS FOR EVENT UNWEIGHTING
(Backes, Butter, Plehn, Winterhalder, 2021)

� A CLASSIC PROBLEM: DETERMINE WEIGHTS FOR INTEGRATION:
σ =

∫
dxw(x) =

∫
dyw̃(y), w̃(y) ≈ CONST.

� STANDARD SOLUTION: IMPORTANCE SAMPLING ⇒ RESCALE BASED ON SAMPLING (VEGAS)

� GAN: USE EVENTS TO TRAIN GAN

� PRODUCE UNWEIGHTED EVENTS WITH GAN

MUON pT DISTRIBUTION IN W− PRODUCTION
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� FASTER EVENT GENERATION

� REILIABILITY?



NEURAL NETWORK CLASSSIFIER FOR EFT BOUNDS
(Chen, Glioti, Panico, Wulzer, 2020)

� EFT CROSS SECTION dσ0(x; c) = dσ1(x)[(1 + cα(x))2 + (cβ(x))2]:
x kin. variables; SM ⇒ c = 0; α, β coefficient functions for single operator

� TRAIN NEURAL NETWORKS TO REPRODUCE α(x) β(x)
⇔ GENERATE MC SAMPLES WITH SEVERAL VALUES OF c & c = 0

� OBTAIN RATIO dσ0(x; c)/dσ1(x) FOR ALL c, x

� HYPEROPTIMIZE NEURAL NETWORK PARAMETERS

FULLY LEPTONIC ZW
HYPEROPT
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Matrix
Element vs NN Quadratic Classfifer

& Binned Analysis

� STUDY WITH TOTAL INTEGRATED HL-LHC LUMI

� COMPARISON TO MATRIX ELEMENT METHOD BASED ON ANALYTIC APPROX
& BINNED ANALYSIS IN PpZT BASED ON THE SAME MC SIMULATIONS

� NO DETERIORATION AT NLO



ML INSIGHTS ON HUMAN CLASSIFICATION (Faucett, Thaler, Witeson, 2021)
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� CLASSIFICATION PROBLEM: IS EVENT SIGNAL OR BACKGROUND
EXAMPLE: W → qq̄ SIGNAL: QUARK JETS

� START WITH SET OF HL OBSERVABLES & COMPARE TO BLACK-BOX NN CLASSIFIER
EXAMPLE OF HL: JET MASS, ENERGY CORRELATION FUNCTIONS...

� SELECT HL1 OBSERVABLE WITH HIGHEST AGREEMENT,
LOOK AT EVENTS WITH HIGHEST DISAGREEMENT

� SELECT HL2 OBSERVABLE WITH HIGHEST AGREEMENT & TRAIN NN ON HL1 AND HL2

� ITERATE UNTIL OPTIMAL SET OF HLi DETERMINED

CLASSIFICATION PERFORMANCE
VS. NUMBER OF ADDED HLi

VS. COMPUTING TIME

� MORE PERFORMANT THAN TRUTH-GUIDED, SLIGHTLY LESS THAN BRUTE-FORCE

� COMPUTATIONALLY AS EFFICIENT AS TRUTH-GUIDED, MUCH MORE THAN BRUTE FORCE

� PROVIDES INSIGHT ON HL OBSERVABLES



A CASE STUDY:
PDFS AS A ML PROBLEM



PDF DETERMINATION

� LHC CROSS SECTION:
– σ =

∑
ij σ̂ij ⊗ f

(1)
i f

(2)
j

– σ̂ij PARTONIC CROSS SECTION FOR
WITH INCOMING PARTONS i, j

– f
(j)
i (x,Q2) PDF FOR PARTON OF

SPECIES i IN j-TH INCOMING PROTON
– ⊗ CONVOLUTION OVER x

– PDF DEPENDS ON Q2 AND x, OTHER
KINEMATIC VARIABLES IN σ̂

� PARTONIC CROSS SECTION COMPUTED
PERTURBATIVELY

� PDFS DETERMINED COMPARING σ TO DATA

the nnpdf4.0 dataset
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Black edge: new in NNPDF4.0



PROTON STRUCTURE AS AN AI PROBLEM:
NNPDF



AI FOR PDFS: THE NNPDF APPROACH
THE FUNCTIONAL MONTE CARLO

REPLICA SAMPLE OF FUNCTIONS ⇔ PROBABILITY DENSITY IN FUNCTION SPACE
KNOWLEDGE OF LIKELIHHOD SHAPE (FUNCTIONAL FORM) NOT NECESSARY

FINAL PDF SET: f (a)
i (x, µ);

i =up, antiup, down, antidown, strange, antistrange, charm, gluon; j = 1, 2, . . . Nrep



THE PDFS
UP
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MC REPLICAS ⇔ PROBABILITY DISTRIBUTION



NEURAL NETWORKS
ARCHITECTURE

x ln x

xg(x, Q0) xΣ(x, Q0) xV(x, Q0) xV3(x, Q0) xT3(x, Q0) xT15(x, Q0)xT8(x, Q0)xV8(x, Q0)

xg(x, Q0) xu(x, Q0) xū(x, Q0) xd(x, Q0) xs(x, Q0) xc+(x, Q0)xs̄(x, Q0)xd̄(x, Q0)

n(4) = 8

n(3) = 20

n(2) = 25

n(1) = 2

� UNIVERSAL INTERPOLANT
� CAN REPRODUCSE

ANY FUNCTIONAL
FORM

� COMPLEXITY GROWS
DURAING TRAINING

ACTIVATION FUNCTIOM

F
(i)
out(~xin) = F

(∑
j

ωijx
j
in − θi

)

PARAMETERS

� WEIGHTS ωij

� THRESHOLDS θi

TRAINING: MINIMIZE LOSS FUNCION (E.G. χ2)



GENETIC ALGORITHMS
BASIC IDEA

� RANDOM MUTATION OF THE NN PARAMETER

� SELECTION OF THE FITTEST

FEATURES

� SLOW, COMPUTATIONALLY EXPENSIVE

� AVOIDS LOCAL MINIMA

CHOICES
� NUMBER OF MUTANTS

� MUTATION RATES

� NODAL VS LOCAL MUTATION

� . . .



GRADIENT DESCENT
BASIC IDEA

� COMPUTE GRADIENT OF LOSS WR TO PARAMETERS

� STEEPEST DESCENT PATH

FEATURES

� LARGE MEMORY FOOTPRINT

� FAST

CHOICES
� GRADIENT SAMPLING AND BATCHES

� MOMENTUM (MEMORY OF PREVIOUS GRADIENT)
� ADAPTIVE PER-PARAMETER RATE

� . . .



NNPDF4.0 PDF LEARNING:
AN ANIMATION



NEURAL NETWORK TRAINING
SOME FEATURES: GRADIENT DESCENT OPTIMIZATION SHOWN (NADAM)

� STRUCTURE BUILDS UP

� OUTLIERS BROUGHT UNDER CONTROL

� FEWER RANDOM FLUCTUATIONS

� UNCERTAINTIES SHRINK



NEURAL LEARNING
� COMPLEXITY INCREASES AS THE FITTING PROCEEDS

� UNTIL LEARNING NOISE

� WHEN SHOULD ONE STOP?

UNDERLEARNING



NEURAL LEARNING
� COMPLEXITY INCREASES AS THE FITTING PROCEEDS

� UNTIL LEARNING NOISE

� WHEN SHOULD ONE STOP?

PROPER LEARNING



NEURAL LEARNING
� COMPLEXITY INCREASES AS THE FITTING PROCEEDS

� UNTIL LEARNING NOISE

� WHEN SHOULD ONE STOP?

OVERLEARNING



OPTIMAL FIT: CROSS-VALIDATION
� DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

� MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

� AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

� WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT



OPTIMAL FIT: CROSS-VALIDATION
� DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

� MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

� AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

� WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT

GO!



OPTIMAL FIT: CROSS-VALIDATION
� DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

� MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

� AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

� WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT

STOP!



OPTIMAL FIT: CROSS-VALIDATION
� DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

� MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

� AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

� WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT

TOO LATE!



HYPEROPTIMIZATION
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optimizer

1

2

3

4

5

Lo
ss

10 3 10 2 10 1

learning rate
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initializer
10000 20000 30000 40000

epochs
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stopping patience
1.00 1.05 1.10

positivity multiplier
1 2 3 4

number of layers
sigmoid tanh

activation function

HYPEROPT PARAMETERS

NEURAL NETWORK FIT OPTIONS
NUMBER OF LAYERS (*) OPTIMIZER (*)
SIZE OF EACH LAYER INITIAL LEARNING RATE (*)

DROPOUT MAXIMUM NUMBER OF EPOCHS (*)
ACTIVATION FUNCTIONS (*) STOPPING PATIENCE (*)

INITIALIZATION FUNCTIONS (*) POSITIVITY MULTIPLIER (*)

� SCAN PARAMETER SPACE

� OPTIMIZE FIGURE OF MERIT: VALIDATION χ2

� BAYESIAN UPDATING



HYPEROPTIMIZATION: OVERFITTING
DOWN QUARK: HYPEROPTIMIZED VS. HAND-PICKED

� NOT HYPEROPTIMIZED: WIGGLES: FINITE SIZE ⇒ WILL GO AWAY AS Nrep GROWS

� N3FIT: WIGGLY PDFS ⇔ OVERFITTING ⇒ WILL NOT GO AWAY (χ2
train � χ2

valid !!)



WHAT HAPPENED?

OPTIMIZATION

CROSS-VALIDATION SELECTS THE OPTIMAL MINIMUM



WHAT HAPPENED?

HYPEROPTIMIZATION

WE ARE MISSING A SELECTION CRITERION



HYPEROPTIMIZATION: OVERFITTING
DOWN QUARK: HYPEROPTIMIZED VS. HANDPICKED

� HANDPICKED: WIGGLES: FINITE SIZE ⇒ WILL GO AWAY AS Nrep GROWS

� N3FIT: WIGGLY PDFS ⇔ OVERFITTING ⇒ WILL NOT GO AWAY (χ2
train � χ2

valid !!)

� CORRELATIONS BETWEEN TRAINING AND VALIDATION DATA



THE SOLUTION

TUNED HYPEROPTIMIZATION

COMPARE TO A A TEST SET (NEW SET OF DATA PREVIOUSLY NOT USED AT AL)
TESTS GENERALIZATION POWER



THE TEST SET METHOD
� COMPLETELY UNCORRELATED TEST SET

� OPTIMIZE ON WEIGHTED AVERAGE OF VALIDATION AND TEST
⇒ NO OVERLEARNING

HYPEROPTIMIZED PDFS
DOWN QUARK

OVERFIT VS HANDPICKED HYPEROPT VS HANDPICKED

� NO OVERFITTING

� COMPARED TO HANDPICKED
– MUCH GREATER STABILITY ⇒ FEWER REPLICAS FOR EQUAL ACCURACY
– UNCERTAINTIES SOMEWHAT REDUCED



K-FOLDING
THE BASIC IDEA:

� DIVIDE THE DATA INTO n REPRESENTATIVE SUBSETS
EACH CONTAINING PROCESS TYPES, KINEMATIC RANGE OF FULL SET

� FIT n− 1 SETS AND USE n-TH SET AS TEST
⇒ n VALUES OF χ2

test, i

� HYPEROPTIMIZE ON NON FITTED χ2
test, i

→ GOOD & STABLE GENERALIZATION

FOLDED PDFS
DOWN QUARK

TEST-SET HYPER VS HANDPICKED K-FOLD HYPER VS. TEST-SEY HYPER



K-FOLDING IMPLEMENTATION

� EACH FOLD REPRODUCES FEATURES OF FULL DATASET

� DIFFERENT CHOICES POSSIBLE FOR LOSS (NON-FITTED)
– BEST WORST
– BEST AVERAGE

� RESULTS STABLE

NO K-FOLDING
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MONTECARLO COMPRESSION
CAN WE REDUCE THE NUMBER OF REPLICAS?

� START WITH LARGE REPLICA SAMPLE

� SELECT BY GENETIC ALGORITHM SUBSET OF REPLICAS ⇒ STATISTICAL FEATURES OPTIMIZED
TO PRIOR

� MINIMIZE LOSS: DIFFEREMCE OF MOMENTS, KL DIVERGENCE, . . .

� 50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY



GAN ENHANCEMENT
CAN WE FURTHER REDUCE THE NUMBER OF COMPRESSED REPLICAS WITHOUT LOSS OF

INFORMATION? GENERATIVE ADVERSARIAL NETWORKS

� TRAIN A NETWORK TO SIMULATE THE TRUE DISTRIBUTION (GENERATOR)

� TRAIN A NETWORK TO DISCRIMINATE TRUTH FROM SIMULATION (DISCRIMINATOR)
� TRAIN THE GENERATOR TO TRICK THE DISCRIMINATOR



GAN ENHANCEMENT
� ENHANCE THE STARTING PDF SET BY ADDING GAN-PDFS TO IT

� PERFORM COMPRESSION OF THE ENHANCED SET

PERFORMANCE
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ENHANCED: NUMBER OF REPLICAS CUT IN HALF FOR SAME TARGET ACCURACY



IN LIEU OF A CONCLUSION


