

MACHINE LEARNING IN HIGH-ENERGY PHYSICS

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

MILANO BICOCCA, SEPT. 3, 2021

VBS TRAINING SCHOOL

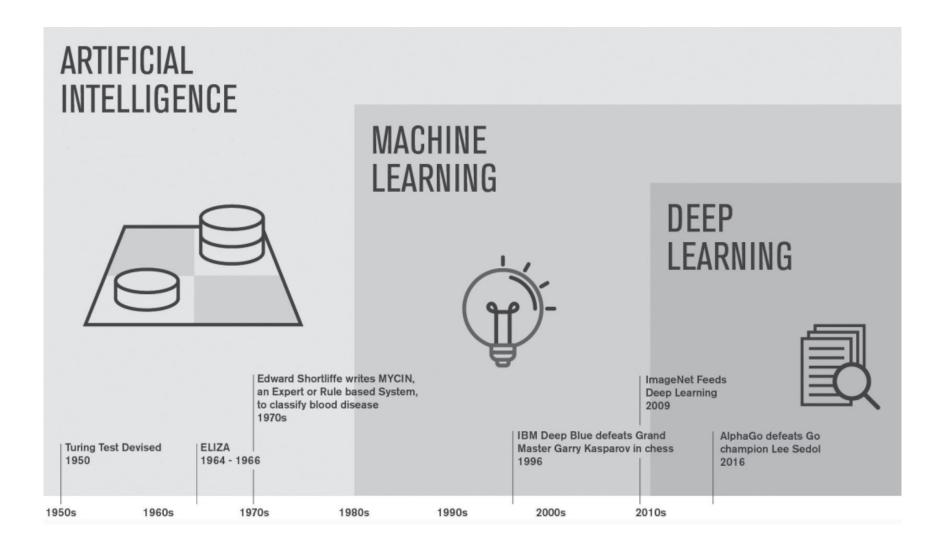
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

SUMMARY

- INTRODUCTION: AI vs. ML
- ML IN HEP: SOME EXAMPLES
 - GAN EVENT UNWEIGHTING
 - ML classifiers for optimal EFT sensitivity
 - MAPPING ML ONTO HUMAN LEARNING
- A CASE STUDY: PDFs AS A ML PROBLEM
 - PDFS AND NNPDFS
 - NEURAL NETWORKS
 - MINIMIZATION: STOCHASTIC AND DETERMINISTIC
 - UNDER- AND OVER-LEARNING
 - CROSS-VALIDATION
 - HYPEROPTIMIZATION
 - K-folding
 - GAN COMPRESSION

AI vs. ML

FROM AI TO ML



SHIFTING OF PARADIGMS

"KNOWLEDGE BASED" AI

- LEARN AND IMPLEMENT A SET OF RULES
- GOOD FOR CHESS, **BAD** FOR REAL LIFE

0	0	0	Ô	0	0	0	0	o	٥	0	0	0	0	0	0
í	ı	١	١	١	1	1	1	/	1	١	1	1	۱	1	1
2	2	2	2	a	2	2	2	ዲ	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	З	3	З	З	3	3	з	З
ч	4	۴	ч	4	4	4	ч	¥	4	4	4	9	٩	4	4
5	5	5	5	5	s	5	5	5	5	5	6	5	5	5	5
6	G	6	6	6	6	6	6	ь	6	4	6	6	6	6	6
£	7	7	7	7	7	η	7	2	η	7	2	7	7	7	7
8	T	8	8	8	8	8	8	8		8	8	8	8	8	8
9	٩	9	9	9	9	٦	9	٩	η	٩	9	9	9	9	9

MACHINE LEARNING • "INTUITIVE"

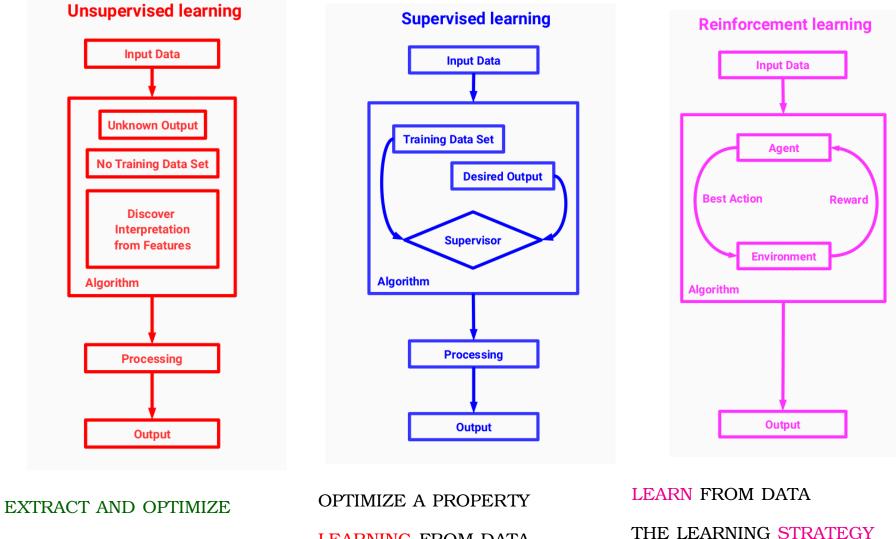
REPRESENTATION

• THE AI AGENT

BUILID UP

ITS OWN KNOWLEDGE

MACHINE LEARNING ALGORITHMS



DATA FEATURES

LEARNING FROM DATA

ML IN HEP RECENT EXAMPLES

GANS FOR EVENT UNWEIGHTING (Backes, Butter, Plehn, Winterhalder, 2021)

- A CLASSIC PROBLEM: DETERMINE WEIGHTS FOR INTEGRATION: $\sigma = \int dx w(x) = \int dy \tilde{w}(y), \ \tilde{w}(y) \approx \text{CONST.}$
- STANDARD SOLUTION: IMPORTANCE SAMPLING \Rightarrow RESCALE BASED ON SAMPLING (VEGAS)
- GAN: USE EVENTS TO TRAIN GAN
- PRODUCE UNWEIGHTED EVENTS WITH GAN

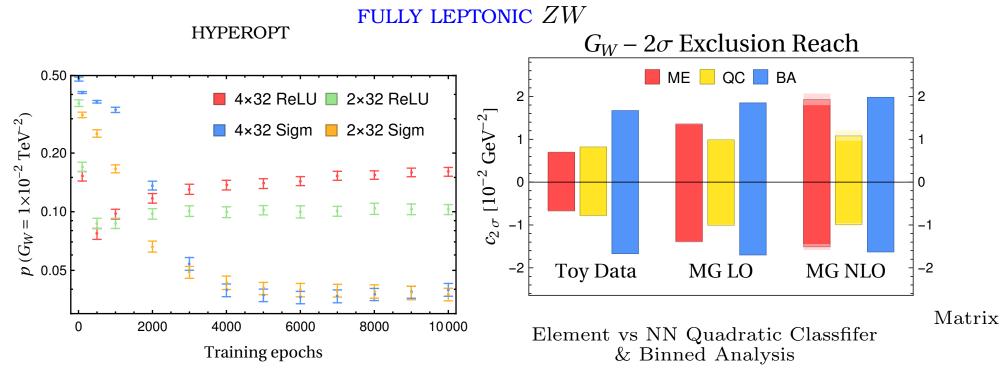
 10^{-1} Train Unweighted 10^{-2} uwGAN 10^{-3} $\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}p_{T,\mu^-}}$ 10^{-4} 10^{-5} 10^{-6} 2.0 $\frac{X}{Truth}$ 1.51.0 0.5 $\overline{25}$ 75100 125150175200 500 p_{T,μ^-} [GeV]

MUON p_T DISTRIBUTION IN W^- PRODUCTION

- 500K training, 1k standard unweighted, 30M uwGAN events
- FASTER EVENT GENERATION
- REILIABILITY?

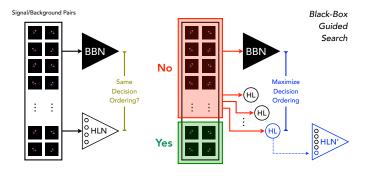
NEURAL NETWORK CLASSSIFIER FOR EFT BOUNDS (Chen, Glioti, Panico, Wulzer, 2020)

- EFT CROSS SECTION $d\sigma_0(x;c) = d\sigma_1(x)[(1+c\alpha(x))^2 + (c\beta(x))^2]$: x kin. variables; SM $\Rightarrow c = 0; \alpha, \beta$ coefficient functions for single operator
- TRAIN NEURAL NETWORKS TO REPRODUCE $\alpha(x) \beta(x)$ \Leftrightarrow GENERATE MC SAMPLES WITH SEVERAL VALUES OF c & c = 0
- OBTAIN RATIO $d\sigma_0(x;c)/d\sigma_1(x)$ for all c, x
- HYPEROPTIMIZE NEURAL NETWORK PARAMETERS

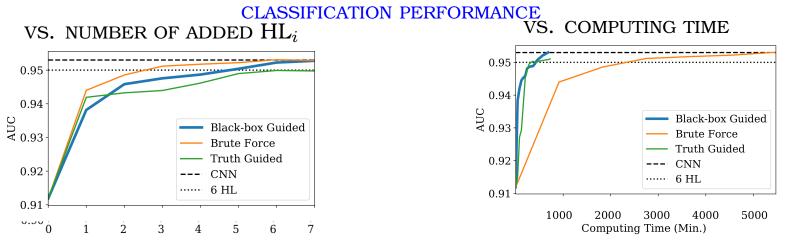


- STUDY WITH TOTAL INTEGRATED HL-LHC LUMI
- COMPARISON TO MATRIX ELEMENT METHOD BASED ON ANALYTIC APPROX & BINNED ANALYSIS IN Pp_T^Z based on the same $\rm MC$ simulations
- NO DETERIORATION AT NLO

ML INSIGHTS ON HUMAN CLASSIFICATION (Faucett, Thaler, Witeson, 2021)



- CLASSIFICATION PROBLEM: IS EVENT SIGNAL OR BACKGROUND EXAMPLE: $W \to q\bar{q}$ SIGNAL: QUARK JETS
- START WITH SET OF HL OBSERVABLES & COMPARE TO BLACK-BOX NN CLASSIFIER EXAMPLE OF HL: JET MASS, ENERGY CORRELATION FUNCTIONS...
- SELECT HL₁ OBSERVABLE WITH HIGHEST AGREEMENT, LOOK AT EVENTS WITH HIGHEST DISAGREEMENT
- SELECT HL_2 OBSERVABLE WITH HIGHEST AGREEMENT & TRAIN NN ON HL_1 AND HL_2
- ITERATE UNTIL OPTIMAL SET OF HL_i DETERMINED



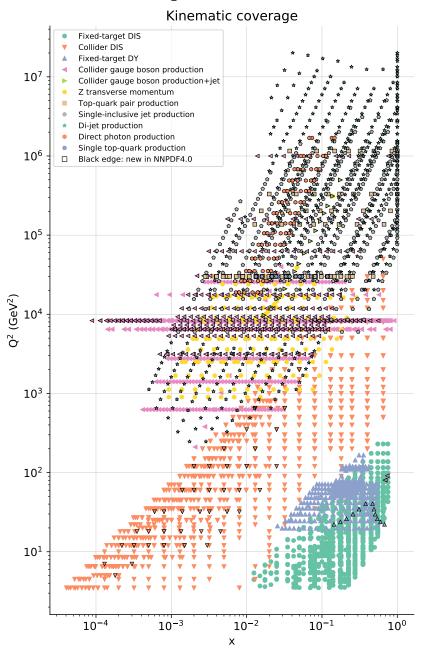
- MORE PERFORMANT THAN TRUTH-GUIDED, SLIGHTLY LESS THAN BRUTE-FORCE
- COMPUTATIONALLY AS EFFICIENT AS TRUTH-GUIDED, MUCH MORE THAN BRUTE FORCE
- PROVIDES INSIGHT ON HL OBSERVARIES

A CASE STUDY: PDFS AS A ML PROBLEM

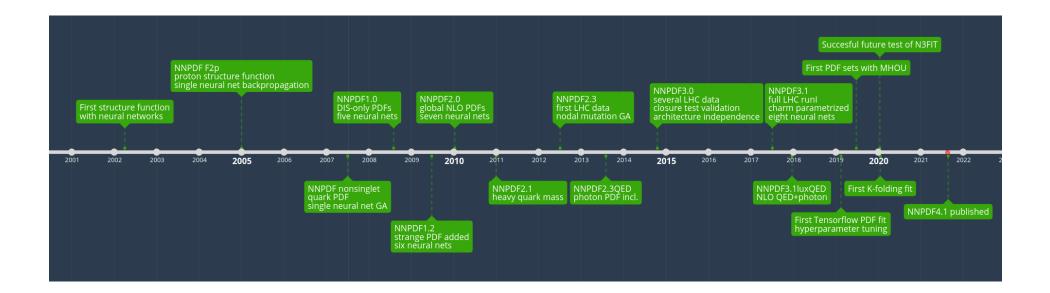
PDF DETERMINATION

the nnpdf4.0 dataset

- LHC CROSS SECTION:
 - $\sigma = \sum_{ij} \hat{\sigma}_{ij} \otimes f_i^{(1)} f_j^{(2)}$
 - $\hat{\sigma}_{ij}$ partonic cross section for with incoming partons i, j
 - $f_i^{(j)}(x,Q^2)$ PDF for parton of species *i* in *j*-th incoming proton
 - \otimes convolution over x
 - PDF depends on Q^2 and x, other kinematic variables in $\hat{\sigma}$
- PARTONIC CROSS SECTION COMPUTED PERTURBATIVELY
- PDFs determined comparing σ to data

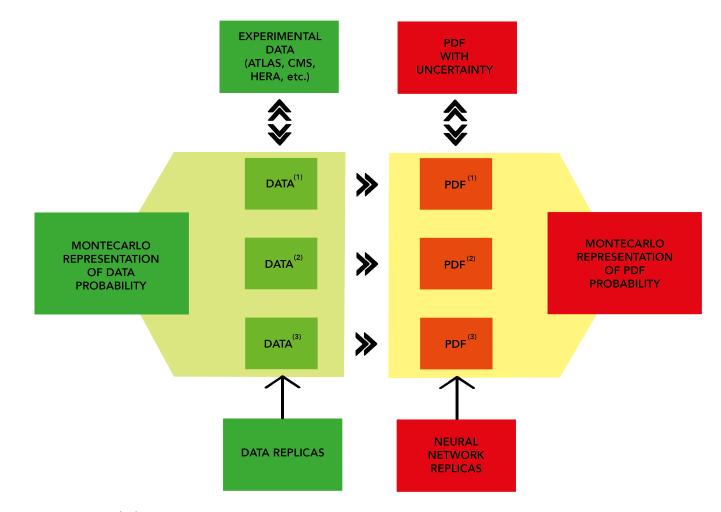


PROTON STRUCTURE AS AN AI PROBLEM: NNPDF

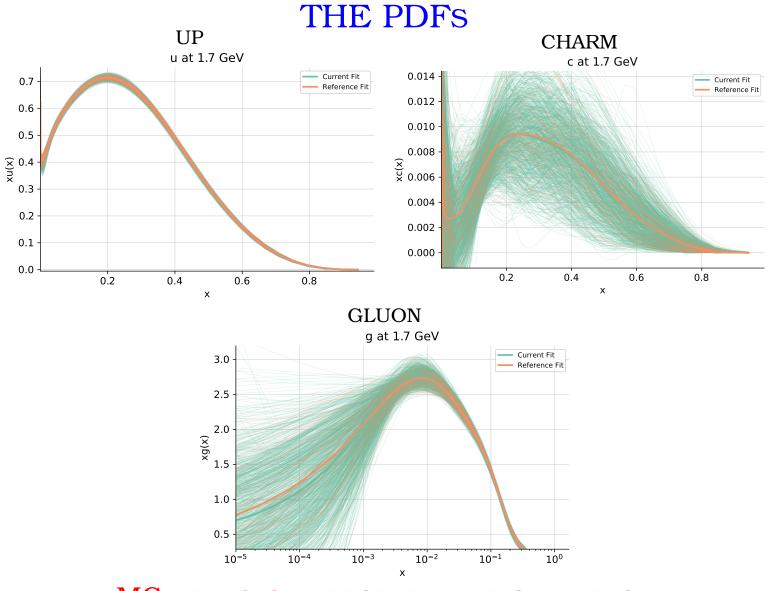


AI FOR PDFS: THE NNPDF APPROACH THE FUNCTIONAL MONTE CARLO

REPLICA SAMPLE OF FUNCTIONS ⇔ PROBABILITY DENSITY IN FUNCTION SPACE KNOWLEDGE OF LIKELIHHOD SHAPE (FUNCTIONAL FORM) NOT NECESSARY

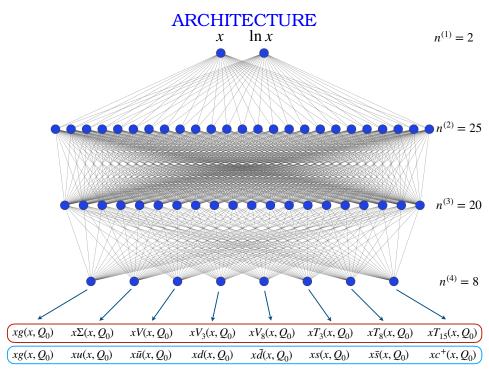


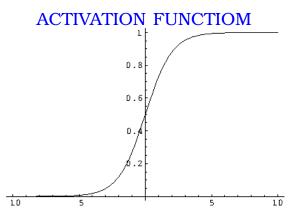
FINAL PDF SET: $f_i^{(a)}(x,\mu)$; i =up, antiup, down, antidown, strange, antistrange, charm, gluon; $j = 1, 2, ... N_{rep}$



 $MC \text{ REPLICAS} \Leftrightarrow \text{PROBABILITY DISTRIBUTION}$

NEURAL NETWORKS





$$F_{\text{out}}^{(i)}(\vec{x}_{\text{in}}) = F\left(\sum_{j} \omega_{ij} x_{\text{in}}^{j} - \theta_{i}\right)$$

PARAMETERS

- UNIVERSAL INTERPOLANT
- CAN REPRODUCSE ANY FUNCTIONAL FORM

• THRESHOLDS θ_i

• WEIGHTS ω_{ij}

• COMPLEXITY GROWS DURAING TRAINING

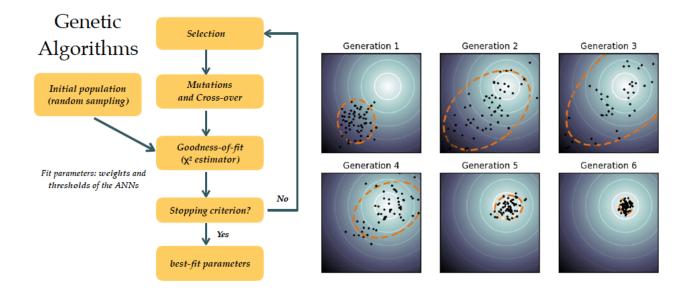
TRAINING: MINIMIZE LOSS FUNCION (E.G. χ^2)

GENETIC ALGORITHMS BASIC IDEA

- RANDOM MUTATION OF THE NN PARAMETER
- SELECTION OF THE FITTEST

FEATURES

- SLOW, COMPUTATIONALLY EXPENSIVE
- AVOIDS LOCAL MINIMA



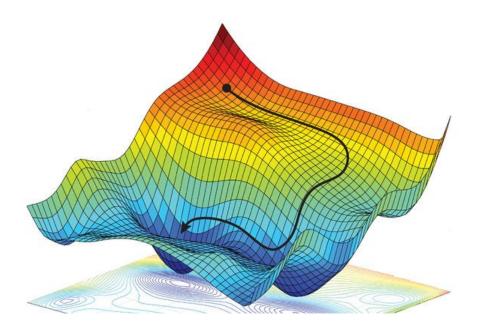
CHOICES

- NUMBER OF MUTANTS
- MUTATION RATES
- NODAL VS LOCAL MUTATION
- . . .

- COMPUTE GRADIENT OF LOSS WR TO PARAMETERS
- STEEPEST DESCENT PATH

FEATURES

- LARGE MEMORY FOOTPRINT
- FAST



CHOICES

- GRADIENT SAMPLING AND BATCHES
- MOMENTUM (MEMORY OF PREVIOUS GRADIENT)
- ADAPTIVE PER-PARAMETER RATE
- . . .

NNPDF4.0 PDF LEARNING: AN ANIMATION

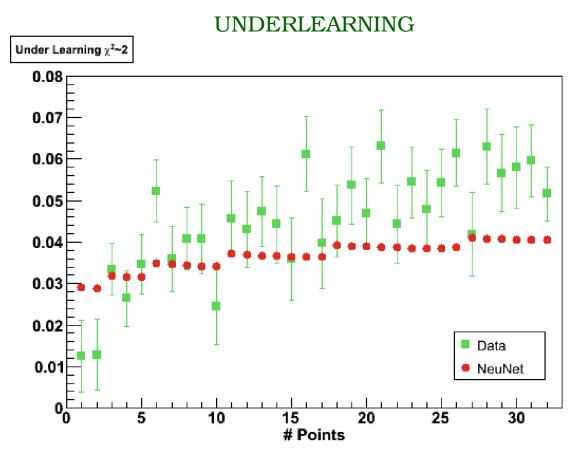
NEURAL NETWORK TRAINING

SOME FEATURES: GRADIENT DESCENT OPTIMIZATION SHOWN (NADAM)

- STRUCTURE BUILDS UP
- **OUTLIERS** BROUGHT UNDER CONTROL
- FEWER RANDOM FLUCTUATIONS
- UNCERTAINTIES SHRINK

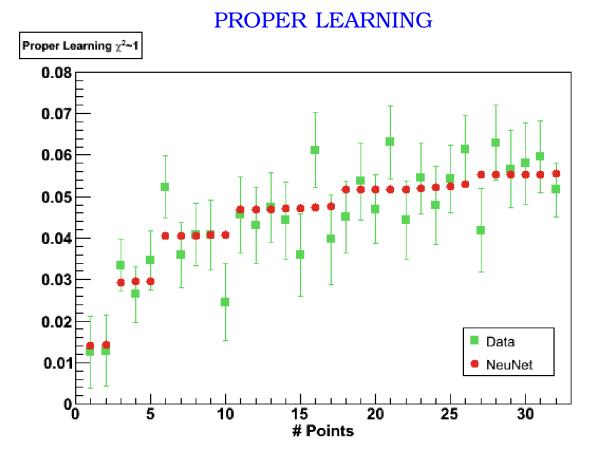
NEURAL LEARNING

- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?



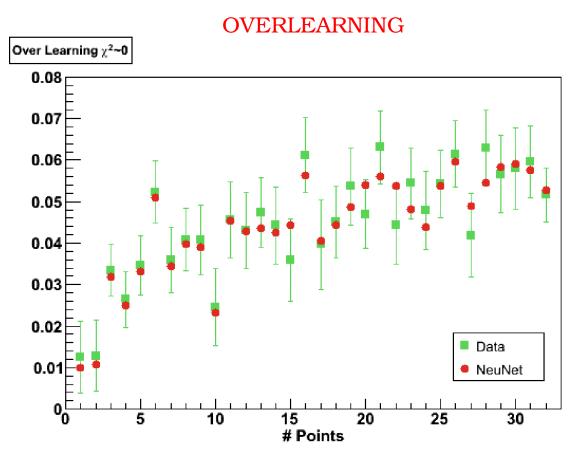
NEURAL LEARNING

- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?

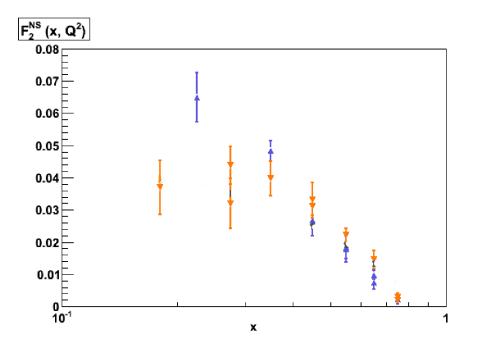


NEURAL LEARNING

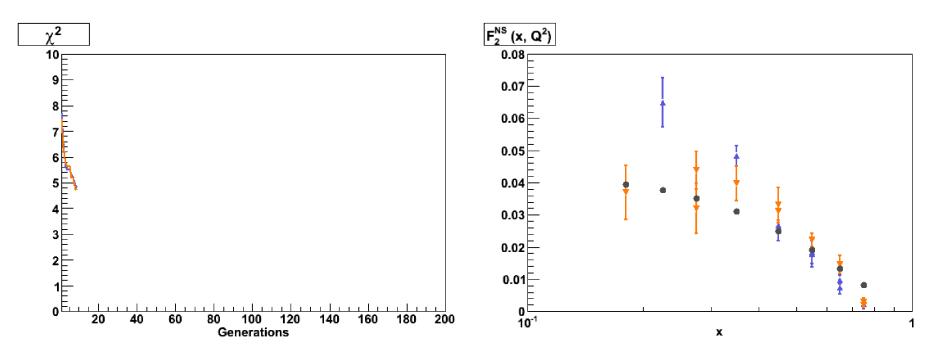
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?



- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

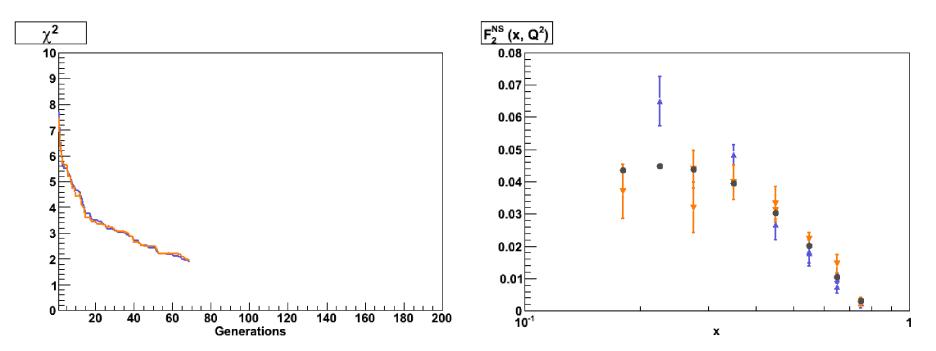


- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT



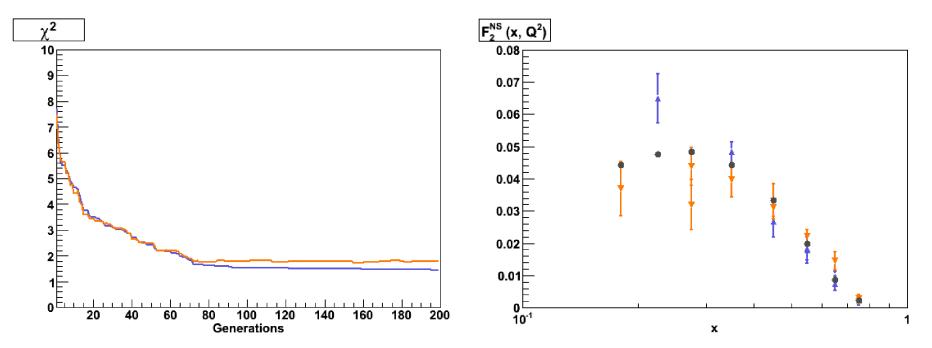
GO!

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

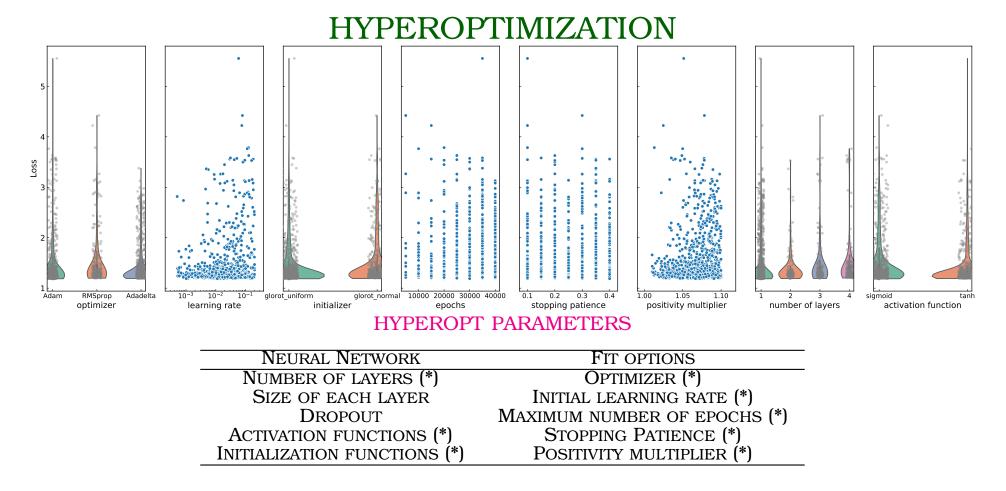


STOP!

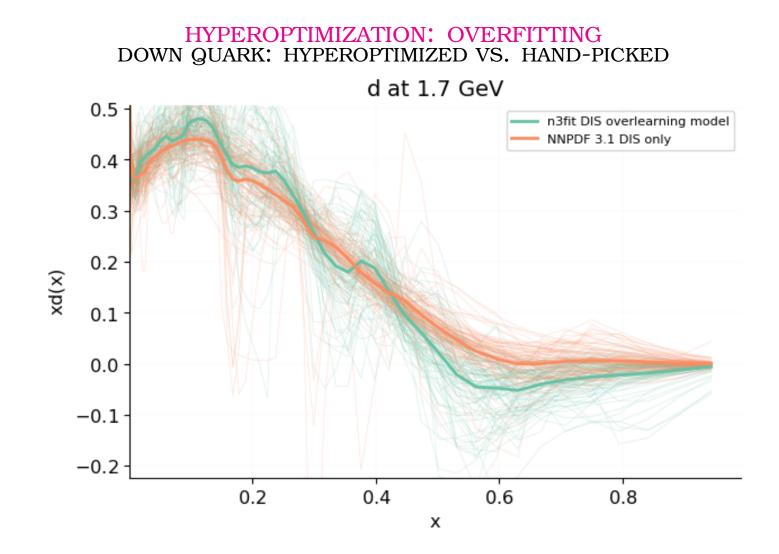
- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT



TOO LATE!

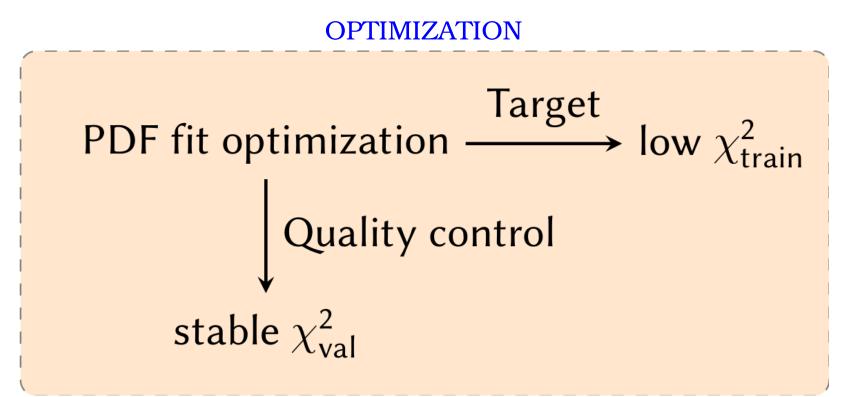


- SCAN PARAMETER SPACE
- OPTIMIZE FIGURE OF MERIT: VALIDATION χ^2
- BAYESIAN UPDATING



- NOT HYPEROPTIMIZED: WIGGLES: FINITE SIZE \Rightarrow WILL GO AWAY AS N_{rep} GROWS
- N3FIT: WIGGLY PDFS \Leftrightarrow OVERFITTING \Rightarrow WILL NOT GO AWAY ($\chi^2_{train} \ll \chi^2_{valid}$!!)

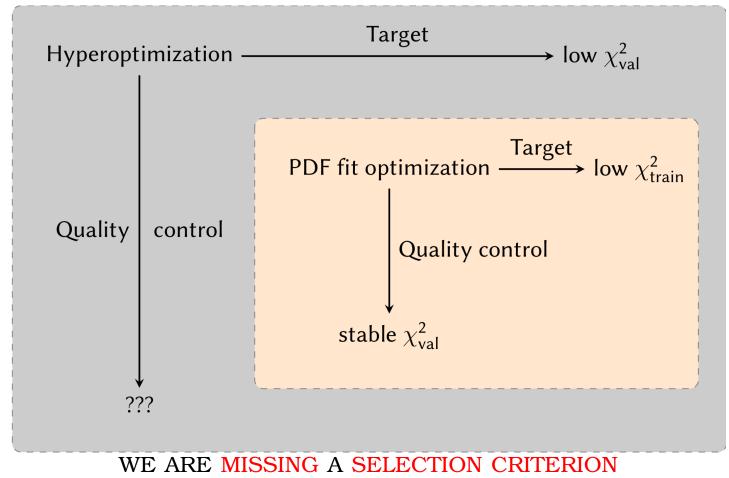
WHAT HAPPENED?

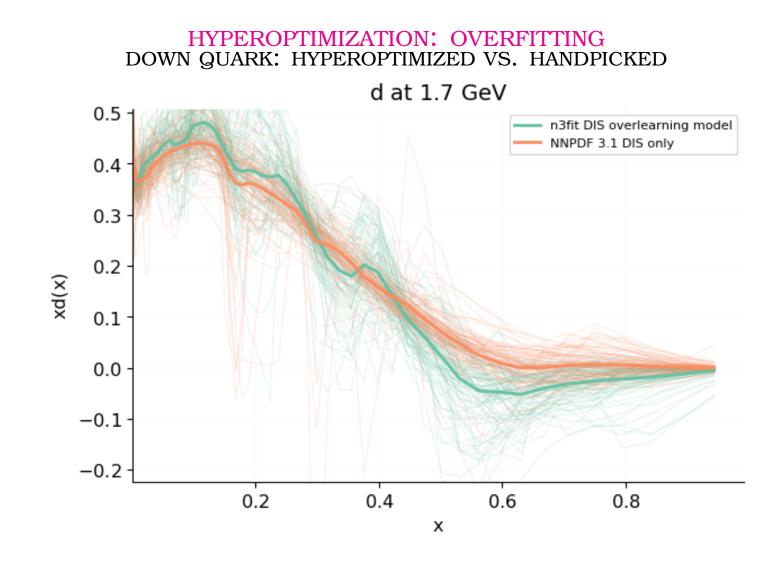


CROSS-VALIDATION SELECTS THE OPTIMAL MINIMUM

WHAT HAPPENED?

HYPEROPTIMIZATION

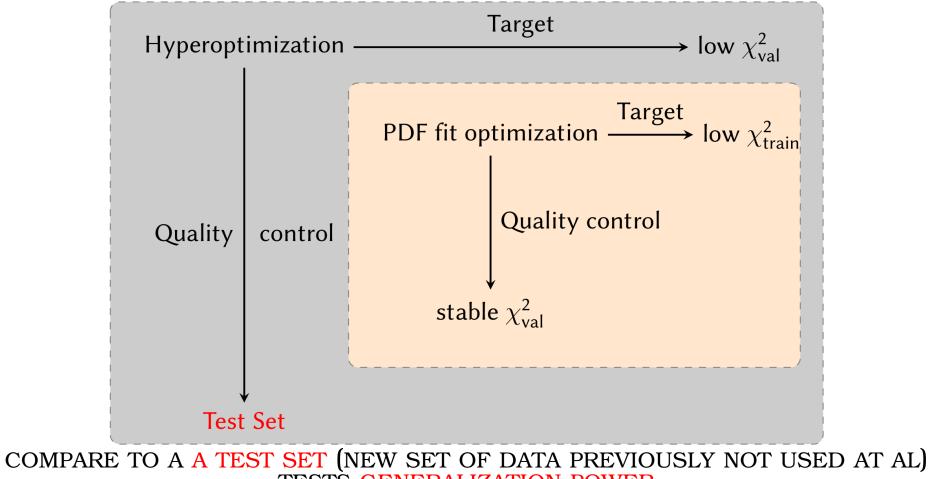




- HANDPICKED: WIGGLES: FINITE SIZE \Rightarrow WILL GO AWAY AS N_{rep} GROWS
- N3FIT: WIGGLY PDFS \Leftrightarrow OVERFITTING \Rightarrow WILL NOT GO AWAY ($\chi^2_{train} \ll \chi^2_{valid}$!!)
- CORRELATIONS BETWEEN TRAINING AND VALIDATION DATA

THE SOLUTION

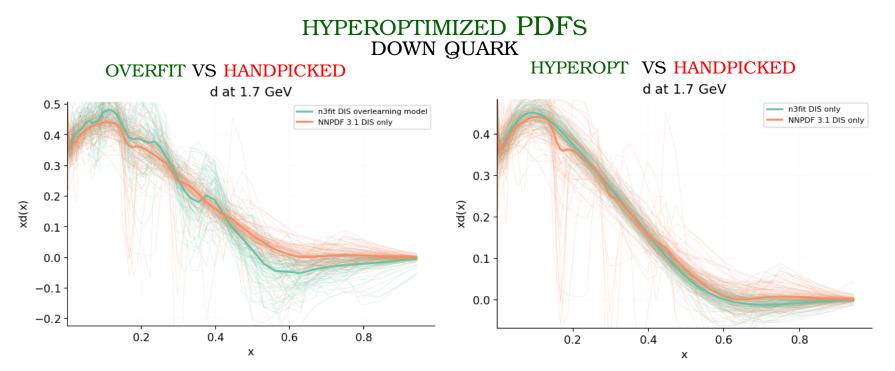
TUNED HYPEROPTIMIZATION



TESTS GENERALIZATION POWER

THE TEST SET METHOD

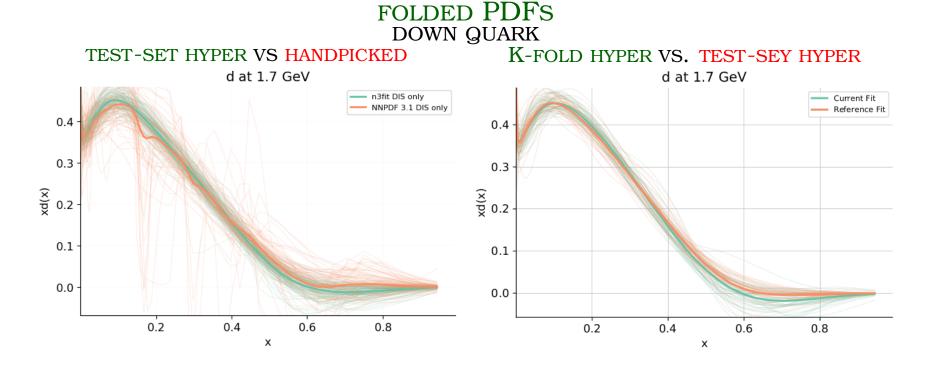
- COMPLETELY UNCORRELATED TEST SET
- OPTIMIZE ON WEIGHTED AVERAGE OF VALIDATION AND TEST \Rightarrow NO OVERLEARNING



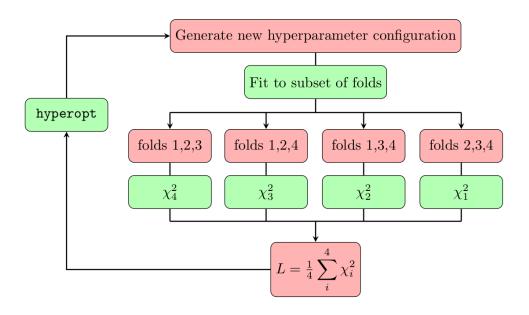
- NO OVERFITTING
- COMPARED TO HANDPICKED
 - MUCH GREATER STABILITY \Rightarrow FEWER REPLICAS FOR EQUAL ACCURACY
 - UNCERTAINTIES SOMEWHAT REDUCED

K-FOLDING THE BASIC IDEA:

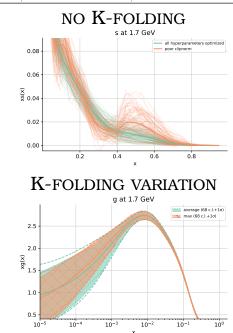
- DIVIDE THE DATA INTO n REPRESENTATIVE SUBSETS EACH CONTAINING PROCESS TYPES, KINEMATIC RANGE OF FULL SET
- FIT n 1 SETS AND USE n-TH SET AS TEST $\Rightarrow n$ VALUES OF $\chi^2_{\text{test, i}}$
- HYPEROPTIMIZE ON NON FITTED $\chi^2_{\rm test,\ i}$ \rightarrow GOOD & STABLE GENERALIZATION



K-FOLDING IMPLEMENTATION



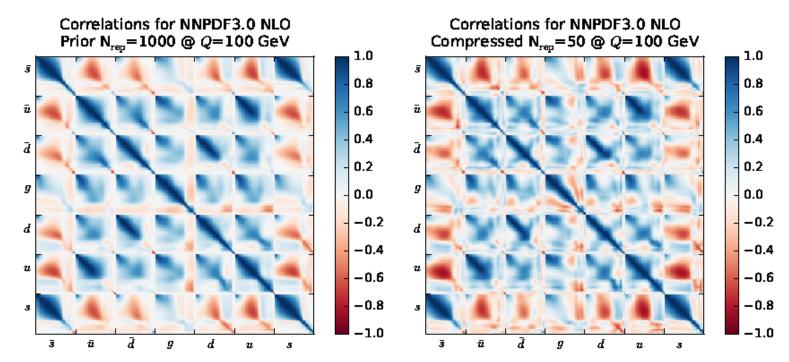
	Fold 1					
CHORUS σ_{CC}^{ν}	HERA I+II inc NC e^+p 920 GeV	BCDMS p				
LHCb Z 940 pb	ATLAS W, Z 7 TeV 2010	CMS Z p_T 8 TeV (p_T^{ll}, y_{ll})				
DY E605 σ_{DY}^{p}	CMS Drell-Yan 2D 7 TeV 2011	CMS 3D dijets 8 TeV				
ATLAS single- $\bar{t} y$ (normalised)	ATLAS single top R_t 7 TeV	CMS $t\bar{t}$ rapidity $y_{t\bar{t}}$				
CMS single top R_t 8 TeV						
	Fold 2					
HERA I+II inc CC e^-p	HERA I+II inc NC e^+p 460 GeV	HERA comb. $\sigma_{b\bar{b}}^{red}$				
NMC p	NuTeV σ_c^{ρ}	LHCb $Z \rightarrow ee~2$ fb				
CMS W asymmetry 840 pb	ATLAS Z p_T 8 TeV (p_T^{ll}, M_{ll})	D0 $W \rightarrow \mu\nu$ asymmetry				
DY E886 σ_{DY}^{p}	ATLAS direct photon 13 TeV	ATLAS dijets 7 TeV, R=0.6				
ATLAS single antitop y (normalised)	CMS σ_{tt}^{tot}	CMS single top $\sigma_t + \sigma_{\bar{t}}$ 7 TeV				
	Fold 3					
HERA I+II inc CC e^+p	HERA I+II inc NC e^+p 575 GeV	NMC d/p				
NuTeV σ_c^{ν}	LHCb $W, Z \rightarrow \mu$ 7 TeV	LHCb $Z \rightarrow ee$				
ATLAS W, Z 7 TeV 2011 Central selection	ATLAS W^+ +jet 8 TeV	ATLAS HM DY 7 TeV				
CMS W asymmetry 4.7 fb	DYE 866 $\sigma_{DY}^d / \sigma_{DY}^p$	CDF Z rapidity (new)				
ATLAS σ_{tt}^{tot}	ATLAS single top y_t (normalised)	CMS σ_{tt}^{tot} 5 TeV				
CMS $t\bar{t}$ double diff. $(m_{t\bar{t}},y_t)$						
	Fold 4					
CHORUS σ_{CC}^p	HERA I+II inc NC e^+p 820 GeV	LHC b $W,Z \rightarrow \mu$ 8 TeV				
LHCb $Z \rightarrow \mu \mu$	ATLAS W, Z 7 TeV 2011 Fwd	ATLAS W^- +jet 8 TeV				
ATLAS low-mass DY 2011	ATLAS Z p_T 8 TeV (p_T^{ll}, y_{ll})	CMS W rapidity 8 TeV				
D0 Z rapidity	CMS dijets 7 TeV	ATLAS single top y_t (normalised)				
ATLAS single top R_t 13 TeV	CMS single top R_t 13 TeV					

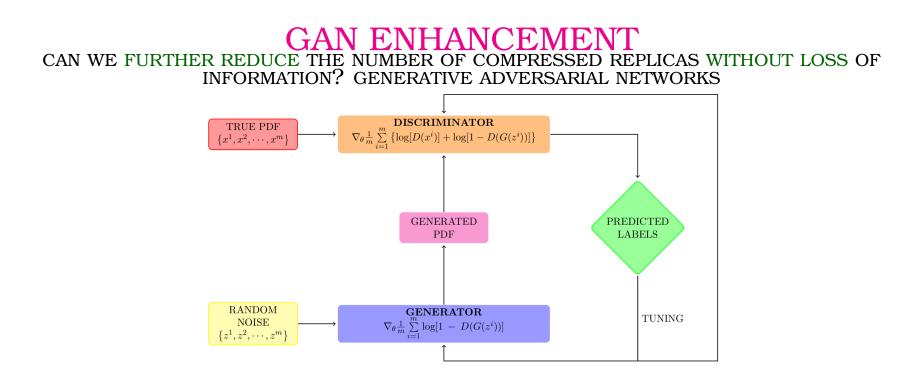


- EACH FOLD REPRODUCES FEATURES OF FULL DATASET
- DIFFERENT CHOICES POSSIBLE FOR LOSS (NON-FITTED)
 - BEST WORST
 - BEST AVERAGE
- RESULTS **STABLE**

MONTECARLO COMPRESSION CAN WE REDUCE THE NUMBER OF REPLICAS?

- START WITH LARGE REPLICA SAMPLE
- SELECT BY GENETIC ALGORITHM SUBSET OF REPLICAS \Rightarrow STATISTICAL FEATURES OPTIMIZED TO PRIOR
- MINIMIZE LOSS: DIFFERENCE OF MOMENTS, KL DIVERGENCE, ...
- 50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY

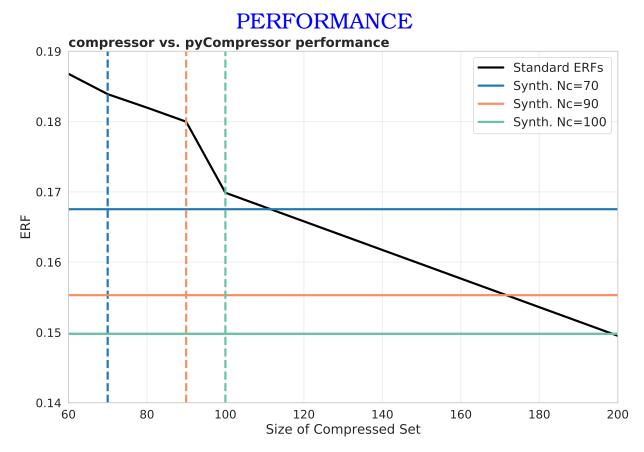




- TRAIN A NETWORK TO SIMULATE THE TRUE DISTRIBUTION (GENERATOR)
- TRAIN A NETWORK TO **DISCRIMINATE** TRUTH FROM SIMULATION (**DISCRIMINATOR**)
- TRAIN THE GENERATOR TO TRICK THE DISCRIMINATOR

GAN ENHANCEMENT

- ENHANCE THE STARTING PDF SET BY ADDING GAN-PDFS TO IT
- PERFORM COMPRESSION OF THE ENHANCED SET



ENHANCED: NUMBER OF REPLICAS CUT IN HALF FOR SAME TARGET ACCURACY

IN LIEU OF A CONCLUSION

15

()

Description

The Higgs boson discovery at the Large Hadron Collider in 2012 relied on boosted decision trees. Since then, high energy physics (HEP) has applied modern machine learning (ML) techniques to all stages of the data analysis pipeline, from raw data processing to statistical analysis. The unique requirements of HEP data analysis, the availability of high-quality simulators, the complexity of the data structures (which rarely are image-like), the control of uncertainties expected from scientific measurements, and the exabyte-scale datasets require the development of HEP-specific ML techniques. While these developments proceed at full speed along many paths, the nineteen reviews in this book offer a self-contained, pedagogical introduction to ML models' real-life applications in HEP, written by some of the foremost experts in their area.

Contents:

- Discriminative Models for Signal/Background Boosting:
 - Boosted Decision Trees (Y Coadou)
 - Deep Learning from Four-Vectors (P Baldi, P Sadowski, and D Whiteson)
 - Anomaly Detection for Physics Analysis and Less than Supervised Learning (B Nachman)
- Data Quality Monitoring:
 - Data Quality Monitoring Anomaly Detection (A Pol, G Carminara, C Germain, and M Pierini)
- Generative Models:
 - Generative Models for Fast Simulation (M Paganini et al.)
 - Generative Networks for LHC Events (A Butter and T Plehn)
- Machine Learning Platforms:
 - Distributed Training and Optimization of Neural Networks (J R Vlimant and J Yin)
 - Machine Learning for Triggering and Data Acquisition (P Harris)
- Detector Data Reconstruction:
 - End-to-End Analysis using Image Classification (A Aurisano and L Whitehead)
 - Clustering (K Terao)
 - · Graph Neural Networks for Particle Tracking and Reconstruction (| Duarte and | R Vlimant)
- Jet Classification and Particle Identification from Low Level:
 - Sequence-Based Learning (R Teixeira de Lima)
 - Particle Identification in Neutrino Detectors (R Sharankova and T Wongjirad)
 - Image-Based Jet Analysis (M Kagan)
- Physics Inference:
 - Simulation-Based Inference Methods for Particle Physics (J Brehmer and K Cranmer)
 - Dealing with Nuisance Parameters (T Dorigo and P de Castro Manzano)
 - Bayesian Neural Networks (T Charnock, L Perreault-Levasseur, and F Lanusse)
 - Parton Distribution Functions (S Forte and S Carrazza)
- Machine Learning Challenges:
- Machine Learning Challenges and Open Data Sets (D Rousseau and A Uztyushanin)