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Abstract

Fragmentation functions (FFs) describe the non-perturbative effects of a parton frag-
menting into a hadron. As with their counterparts parton distribution functions (PDFs),
FFs are key to applying perturbative QCD to hadron scattering. An overview of FFs is
described here, noting the similarities and differences shared with PDFs. Special atten-
tion is paid to bridging numerical, theoretical, and experimental calculations.

This paper presents the results of reweighting the unpolarized neutral pion fragmentation
function set MAPFF against proton-proton collision data. Unlike previous fits of FFs
against hadron-hadron collisions, MAPFF is parameterized by a neural-network. The FFs
are represented by a Monte Carlo ensemble of replicas, which are assigned weights based
upon how well individual replicas predict proton-proton cross sections to next to leading
order (NLO) in perturbative QCD. Because the original MAPFF fit, based on SIA and
SIDIS data, accurately predicts the proton-proton cross sections, the reweighting does
not significantly constrain the FF set. The successes and limitations of reweighting are
discussed, and an unweighted FF set is reported. Future fits of other light hadron FFs
will provide a validation of the techniques presented here.
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Chapter 1

Introduction

Hadronic scattering is governed by Quantum Chromodynamics (QCD), which describes
the strong interaction that binds the internal hadron structure. Bound hadron states are
non-perturbative, so observables dependent upon them cannot be computed ab initio in
perturbation theory. However, at high energies QCD processes factorize into perturbative
and non-perturbative components due to the asymptotic freedom of the strong coupling
αS [6]. The non-perturbative components consist of parton distribution functions (PDFs)
and fragmentation functions (FFs) which describe the distribution of internal constituents
of hadrons. Such constituent particles are known as “partons”. Determination of these
distribution functions tests the factorization and universality theorems of QCD. Accurate
knowledge of distribution functions may also be used to predict results of strong processes,
including hot QCD matter [7], as well as other distribution functions such as transverse
momentum dependent (TMD) FFs [8].

A fitted distribution function consists of a method to calculate the central value and vari-
ance of any observable. The fitting may be done against any experimental data whose
observable depends upon the distribution function. However, different processes are dom-
inated by contributions from different distribution functions, e.g. proton-proton collisions
are dominated by gluon FFs, while semi-inclusive annihilation is not [9]. By universality,
determining the same distribution function from any two sets of observables will represent
the same underlying ”true” distribution [8]. Incorporating data from various processes
therefore acts as a constraint, allowing it to more precisely reproduce the underlying
exact distribution. Verifying that the new distribution function is indeed a constrained
form of the previous distribution is thus a test of universality. Unless otherwise stated,
universality will be assumed [8], and instead serve as way to validate fitting.

For a given hadron, PDFs describe the probability that one of its constituent partons
participates in a collision, where the parton carries a fraction x ∈ [0, 1] of the hadron’s
collinear momentum. In scattering events, the hadron appears in the initial state, such as
in deep inelastic scattering, where a lepton interacts with a proton through an electroweak
current. Because the non-perturbative behavior of the PDF is in the initial state, the final
hadron states may be summed over, which is experimentally convenient. Thus there is
significant data available to constraint PDF sets. Conversely, FFs describe the probability
of a parton producing a given hadron with a momentum fraction z through hadronization.

2



In scattering events, FFs appear after the collision when a parton produces a hadron in the
final state. Data used to constrain FFs must perform some type of particle identification
of outgoing hadrons. Due to the experimental difficulty of particle identification, there’s
less available data to constrain FFs. The limited data demands careful treatment of
uncertainties to ensure the best fit.

Initial attempts at fitting FFs focused on matching boundary behavior at z → 0 and
z → 1 [8]. Intermediate behavior was fitted via an appropriate interpolation function
between power scaling at the boundaries [10]. The fit is then limited by how accurately
the form of the interpolation function was guessed, while any inaccuracies of the form are
propagated into the uncertainty of the fit. Alternatively, FFs may be approximated by
more general methods with no knowledge of their functional form. Following techniques
of the NNPDF Collaboration [11], FFs have been approximated by training feed-forward
neural networks [4] [5]. While the functional form of a neural network is too complicated
to manipulate algebraically, it is straightforward to implement numerically, and assuming
continuity, is guaranteed to reproduce the FF’s functional form [12].

Fitting experimental data requires identifying the variance of the fit from experimental
uncertainty and appropriately propagating the variance into observables. Explicit func-
tional forms of the FFs allow for analytic descriptions of uncertainty, such as through
individual parameters via the Hessian method [13]. For neural networks, the parame-
ter count is too large to employ analytic techniques. Instead, the Monte Carlo (MC)
technique is favored, where a statistical ensemble of MC replicas is generated preserving
the average value and error of the experimental data [14]. A fit is performed against
every MC replica individually, creating an ensemble of FFs. As in statistical mechanics,
central values and variances of observables may be calculated via ensemble averages and
moments of the distribution functions. For an initial fit, the probability that an arbitrary
replica matches the underlying physical FF is uniform. This manifests in the ensemble
average where all replicas are equally weighted. Introducing new experimental data to
the fit alters the probability that a replica might match the total observed data set. Up-
dating the probability with respect to new data is equivalent to adjusting the ensemble
weights. This process is known as reweighting [15], which has been previously performed
on PDFs. Reweighting is only dependent upon the MC replica ensemble of a FF and the
new data to be fitted; it is agnostic of the fitting technique used to generate the original
ensemble.

In this paper, reweighting was used to incorporate semi-inclusive proton-proton (pp)
collisions into the integrated fragmentation function of the pion. The FF set used was
MAPFF10NLOPI, which was fitted via a feed-forward neural network. This FF set was
previously fitted against semi-inclusive annihilation (SIA) data and semi-inclusive deep
inelastic scattering (SIDIS) data. The MAP collaboration has used neural networks to
fit unidentified charged hadrons FFs against hadron-hadron collisions [16], however this
was the first time a neural network FF for pions has been fitted against semi-inclusive
hadron-hadron collisions.

Previous analysis of FFs against hadron-hadron collisions resulted in significant over
prediction of observables [9]. However, the previous predictions used functional forms
with limited (if available) uncertainty predictions which reduced the fit quality. The data-
theory discrepancy was posited by the author to be due to the FF sets used, specifically
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in the hardness of gluons in the high-z range at different energies. Results of reweighting
the MAPFF set showed unbiased fitting is capable of describing the hadron-hadron data,
as well as provide the uncertainties of the predictions.

1.1 Terminology and Notation

Quantities dependent on PDFs and FFs will often appear as sums over all possible par-
tons. The parton flavor basis is denoted:

{q, q, g} where q = u, d, s, c, b, t (1.1)

Anti-quarks are denoted by q.

Parton distribution functions of a hadron H into a parton i throughout this paper will
be denoted as

fHi (x, µ2
fact), i = {q, q, g} (1.2)

where x is the momentum fraction and µfact is the factorization scale. In the case of a
proton, H = p is omitted by convention, i.e. the proton’s PDFs are {fi}.
Fragmentation functions of a parton i into a hadron H will be denoted as

DH
i (z, µ2

frag), i = {q, q, g} (1.3)

where z is the momentum fraction and µfrag is the fragmentation scale.

Both PDFs and FFs have similar properties and often follow the same path of analysis.
In such cases, the generic name distribution function will be used. A distribution function
associated to a parton i and hadron H is denoted

dHi (x, µ2), i = {q, q, g} (1.4)

Which corresponds to the same notation choices made for PDFs and FFs.
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Chapter 2

Theory

This chapter introduces the concepts of parton distribution functions and fragmentation
functions, and the primary methods to manipulate them. Theorems regarding the fac-
torization of processes into distribution functions and their scaling dependence is briefly
described, with emphasis on fragmentation functions. Three standard semi-inclusive pro-
cess involving unpolarized fragmentation functions are described in greater detail at the
end. Techniques for how to numerically calculate distribution functions and observables
is emphasized throughout.

2.1 Introduction to Distribution Functions

The running of the strong coupling αS(Q2) disallows expansions in the coupling at low
energies since the coupling grows large for small Q2 [17]. Inelastically probing a strong
process will therefore be non-perturbative, and produce a complicated bound state rather
than an individual particle. Treatment of this bound state may be encompassed in
the conjugate diagram as shown in figure 2.1. Applying the optical theorem by taking
a vertical cut through the diagram gives the modulus squared of the desired original
amplitude. Thus inelastic strong processes are naturally described via cut diagrams.

For a scattering event, such as in figure 2.2, the amplitude is dependent on the probing
momentum q, which is conjugate to a spacetime interval ξ that separates the currents at

Im =

2

Figure 2.1: Application of the optical theorem to define cut diagrams (left).

5



Jµ(ξ) Jν(0)

q q

Figure 2.2: Forward hadronic current scattering process involving an electroweak current
Jµ. Currents are separated by a spacetime interval ξ conjugate to the probing momentum
q

two hadronic vertices [18]:

Wµν =
1

4M

∫
d4ξ

2π
eiq·ξ 〈p| [Jµ(ξ), Jν(0)] |p〉 (2.1)

The dominant contributions to this amplitude occur at the singularities of the current
commutator, which is when the interval ξ is light-like [18]. At such separations, both the
time and space intervals vanish at high probing energies q2, so the hadron being probed
appears constant in time. Thus probing a hadron is time and space independent. This
is the basis of the impulse approximation [18], which is the starting point for the quark
parton model (QPM) [17].

In the QPM, the probing particles incoherently scatter off constituent particles of the
parton, namely quarks and gluons. Processes factor, as shown in figure 2.3, into a hard
cross section, involving only the partons and the probing particle, and a distribution
function. The hard cross section may be directly computed using standard perturbation
theory. The distribution contains all of the non-perturbative strong effects. For a diagram
with an incoming hadron and outgoing parton, the distribution function is called a parton
distribution function (PDF), while for an incoming parton and outgoing hadron the
distribution function is called a fragmentation function (FF). Their similarities may be
seen in figure 2.4.

In the QPM, PDFs are commonly defined with respect to deep inelastic scattering (DIS)

dHi (x, µ2)

k k

q + k

q q

p p

Figure 2.3: Handbag diagram of an electroweak current probing the constituent partons
of a hadron. Separation of the hadronic and partonic components is shown by the dashed
line.
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fHi (x, µ2)

xP

P

DH
i (z, µ2)

P

P/z

Figure 2.4: Defining cut diagrams of the PDF (left) and FF (right). P is the momentum
of the hadron H.

[17] where a lepton scatters off of a hadron. An electroweak current probes the hadron
via the handbag diagram 2.3, where the hadronic tensor may be rewritten as [18]:

Wµν(p, q) =
∑
i=q,q,g

∫
d4k BH

i (p, q)wiµν(q, k)δ[(k + q)2] (2.2)

Where i is a sum over partons, wiµν is the hard cross-section involving parton i, and BH
i

is the unpolarized strong vertex. The delta function constrains the struck parton i to
carry a fraction x ∈ [0, 1] of the hadron’s momentum: k = xp. In DIS this is equivalent
to the Bjorken x-variable [18]. PDFs qHi are then defined as [17]:

fHi (x) =
π

4

∫
d2kT B

H
i (p · k) (2.3)

where k2
T is the momentum transverse to q. In QPM, PDFs may be interpreted as the

probability density of finding a parton i in the hadron H carrying a momentum xp. As
with (2.2), observables are split into a partonic process and PDF, which are integrated
over the full range of momentum fractions. A sum over all partons accounts for all
possible partonic processes. This decomposition is explored in section 2.2.

Conversely, FFs in the QPM appear as the probability density of producing an outgoing
hadron H from a parton i. The total unpolarized fragmentation function FH may be
defined with respect to semi-inclusive annihilation of leptons (figure 2.7) at a center of
mass energy

√
s [17]:

FH(x, s) =
1

σtot

dσ

dx
(l+l− → HX) (2.4)

where x = 2EH/
√
s ≤ 1 is the fraction of the total energy that H carries. FH may be

decomposed into the fragmentation functions DH
i of individual partons i via [17]:

FH(x, s) =
∑
i=q,q,g

∫ 1

x

dz

z
Ci(s; z, αS)DH

i (x/z, s) (2.5)

As with PDFs, the FFs carry the non-perturbative effects of the strong interaction. Cross
sections involving FFs have a similar decomposition to PDFs, which is also explored in
section 2.2.

Distribution functions obey certain symmetries under charge conjugation and isospin
symmetry [8]. The charge conjugation symmetries relevant to this paper are:

dH
±

q = dH
∓

q and dH
±

g = dH
∓

g (2.6)
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Under isospin symmetry, the charged pion distribution functions are related to the neutral
pion:

1

2

[
dπ

+

i + dπ
−

i

]
= dπ

0

i (2.7)

Up to a factor, the neutral pion and summed charged pion distribution functions are
equal. Therefore, knowledge of the neutral pion cannot determine either of the charged
pion distributions.

2.1.1 Mellin Transformations

Quantities involving distribution functions often appear as components of a Mellin con-
volution [3]:

(f ⊗ g)(x) =

∫ 1

0

dy

∫ 1

0

dz f(y)g(z)δ(x− yz) =

∫ 1

x

dz

z
f(x/z)g(z) (2.8)

For example, equation (2.5) may be written as:

FH(x, s) =
∑
i=q,q,g

(Ci ⊗DH
i )(x, s) (2.9)

The factorization theorems (section 2.2) and DGLAP equations (section 2.3) will also
be written in terms of Mellin convolutions. As with (Fourier) convolutions, there’s a
corresponding convolution theorem using the Mellin transformation:

f̃ ⊗ g(n) = f̃(n) · g̃(n) (2.10)

where f̃(n) is the Mellin transformation, defined alongside its inverse transformation [3]:

f̃(n) =

∫ 1

0

dx xn−1f(x) and f(x) =
−1

2πi

∫ a+∞

a−∞
dnx−nf̃(n) (2.11)

where a is chosen such that all poles of the integrand are to the left of the integration
contour. These Mellin techniques are particularly useful in a direct analysis of distribution
functions from field theory. Recall the forward scattering in figure 2.2, which admits the
hadronic tensor Wµν in equation (2.1). The currents are defined as local operators, so
their commutator appears as a bilocal operator. Wilson’s operator product expansion
may be applied to the commutator to produce a series of bilocal operators Oτn weighted
by coefficient functions Cτ,n

µν [18]. The index τ defines the twist of the operator, which

corresponds to factors of (−1/q2)τ/2−1 in the series. At high probing energies, leading
twist operators dominate the contributions. The Mellin transformed hadronic tensor (as
a function of x) appears as a series over the twist of the product of coefficient functions
and operators:

W̃µν(q
2, n) =

1

4

∞∑
τ=2

Cτ,n
µν Oτn

(
−1

q2

) τ
2
−1

(2.12)
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Recalling the Mellin convolution theorem, W̃µν appears is a Mellin transformed func-
tion that is equal to the product of functions. Interpreting Cτ,n

µν and Oτn also as Mellin
transformed functions, the leading twist contributions take the form [18]

Oτ=2
n =

∑
i=q,q,g

f̃Hi (n) =

∫
dy yn−1

∑
i=q,q,g

fHi (y)

Cτ=2,n
µν = σ̃µν(n) =

∫
dz zn−1σµν(z)

(2.13)

Thus, by the convolution theorem, the leading twist contribution to the hadronic tensor
appears as a convolution:

Wµν(q
2, x) =

1

4

∑
i=q,q,g

(fHi ⊗ σµν)(x) +O

(
1

q4

)
(2.14)

2.1.2 Numerical Techniques

In practice, operators O(x) need to be convoluted with distribution functions d(x). How-
ever, computing convolutions is expensive since an integral needs to be computed every
time x is evaluated. To reduce the number of integrations, d is assumed to be sufficiently
smooth such that it may be approximated by a collection of interpolation functions [3].
For a grid g = {x0, . . . , xN} of N interpolation points and a collection of {w0, . . . , wN}
interpolation functions, the distribution may be expressed as d(x) =

∑N
i=0 wi(x)di where

di = d(xi). The distribution function only needs to be evaluated at each grid point di.
The convolution may be evaluated at a grid point by:

(O ⊗ d)(xi) =

∫ 1

xi

dy

y
O
(
xi
y

)
d(y) =

∫ 1

xi

dy

y
O
(
xi
y

) N∑
j=0

wj(y)dj =
N∑
j=0

Oijdj (2.15)

where the operator Oij may be precomputed on the square grid g × g as

Oij =

∫ 1

xi

dy

y
O
(
xi
y

)
wj(y) (2.16)

The original convolution O⊗d may be interpolated in the same manner as d: (O⊗d)(x) =∑N
i=0 wi(x)(O ⊗ d)i. This procedure is used by libraries such as APFEL++ [3], which

will be used to compute observables dependent on convolutions of distribution functions
throughout this paper. This is also allows distribution functions to be expressed as a
finite number of evaluations on a grid, which separates reporting distributions from any
underlying model.

2.2 Factorization Theorems

The purpose of distribution functions is to incorporate all of the non-perturbative be-
havior of a strong interaction. When calculating cross sections involving hadrons, the

9



l

A

B

A

Figure 2.5: Factorizations of PDF processes. Left: factorization of DIS where a lepton l
probes a hadron A. Right: factorization of hadron-hadron scattering where two hadrons
A and B contribute partons to a partonic cross section.

observable may be factorized into distribution functions and a hard cross section involv-
ing just partons [6]. In the QPM, a parton is chosen from each incoming hadron with
a probability given by the PDF. These partons are then involved in the partonic cross
section, and hadrons are produced from the outgoing partons with a probability given
by the FF. The distribution functions are combined with the partonic cross section by
convolutions, and are summed over all possible choices of hadrons and partons.

Purely partonic quantities are denoted by a hat, i.e. if the hadronic cross section is σ
then the partonic cross section is σ̂. Cut diagrams are color coded such that the green
blobs are partonic cross sections, blue blobs are PDFs, and red blobs are FFs. The colors
match the defining diagrams 2.4.

The basic exclusive cross sections involving PDFs have the following factorization theo-
rems:

• Deep Inelastic Scattering (DIS): A lepton l scatters inelastically off of a hadron A
by the process lA→ lX

σ = σ̂ ⊗ PDFA (2.17)

• Hadron-Hadron scattering: A hadron A scatters off of a hadron B inelastically into
exclusive hadrons X by the process AB → X

σ = σ̂ ⊗ PDFA ⊗ PDFB (2.18)

The basic cross sections involving FFs appear as semi-inclusive processes where a hadron
H is observed as a final hadron. They augment the previous PDF processes, as well as
including lepton-lepton annihilation:

• Semi-Inclusive Annihilation (SIA): A lepton l− and antilepton l+ annihilate to pro-
duce quarks through a neutral current via l+l− → HX

σ = σ̂ ⊗ FFH (2.19)

10
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l+

H

q
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l

l H

q
A

B

H

q

Figure 2.6: Factorization theorems of FF processes. A hadron H is observed in all out
states. Upper left: factorization of SIA where a lepton-antilepton pair l± annihilate.
Lower left: factorization of SIDIS where a lepton l probes a hadron A. Right: factoriza-
tion of semi-inclusive hadron-hadron collisions involving hadrons A and B.

• Semi-Inclusive Deep Inelastic Scattering (SIDIS): A DIS process where H is ob-
served in the outgoing hadrons: lA→ lHX

σ = σ̂ ⊗ PDFA ⊗ FFH (2.20)

• Semi-Inclusive Hadron-Hadron Scattering: Hadron-hadron scattering where H is
observed in the outgoing hadrons: AB → HX

σ = σ̂ ⊗ PDFA ⊗ PDFB ⊗ FFH (2.21)

Beyond leading order, gluon exchange produces extra vertices in the propagation of par-
tons. Soft and collinear gluon emission produces non-perturbative effects associated with
the long-range physics of the strong interaction. A choice of energy scale µfact for PDFs
and µfrag for FFs separates low transverse momentum partons out of the partonic cross
section and absorbs them into the distribution functions. The total cross section is inde-
pendent of these energy scales:

∂σ

∂µfact

=
∂σ

∂µfrag

= 0 (2.22)

A choice of µfact = µfrag is often made out of convenience, and similarly may be set equal
to the re normalization scale µ of the running couplings. The specific behavior of these
scales is discussed in section 2.3.
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2.3 Scale Dependence and Re normalization

By incorporating QCD into the quark parton model, a partonic observable Ôi0 for a
parton i may be calculated to higher orders in the strong coupling αS(µ2). At NLO, qqg
vertices affect both quark and gluon parton processes, and at higher orders 3- and 4-point
gluon vertices contribute. Unlike electroweak loop diagrams which produce ultraviolet
divergences, gluon corrections to Ôi0 also produce infrared divergences which arise from
soft and collinear particle emission [17]. Such IR divergences are long-distance effects
and so are non-perturbative. By the factorization theorems, the total observable O is
given by convoluting the appropriate distribution functions with the partonic observable
Ôi0 and summing over all partons. Suppose there’s a single distribution type di0(x) to
be convoluted, called the bare distribution of the parton i. Because the distribution
functions already contain non-perturbative long-range effects, the IR divergences of Ôi0
may be transferred into di0 at a given scale µ2 [18]:

O(x,Q2) =
∑
i=q,q,g

Ôi0(x,Q2)⊗ di0(x) =
∑
i=q,q,g

Ôi(x,Q2, µ2)⊗ di(x, µ2) (2.23)

In the case of PDFs, µ2 is known as the factorization scale, while for FFs, µ2 is the
fragmentation scale. Like the renormalization of masses and bare couplings, the factor-
ization and fragmentation scales define the scale at which IR divergences are subtracted
from Ôi and instead incorporated into di. The subtraction method is scheme dependent
[17], e.g. the DIS scheme ensures there are no O(αS) corrections to the DIS structure
functions of the proton (F2, F3, FL) [17]. More generally, the MS scheme only subtracts
the IR divergence and a ln(4πe−γE) contribution associated with dimensional regulation
calculations (here γE is the Euler-Mascheroni γ constant) [17]. Generally in MS, partonic
observables will have non-trivial O(αS) contributions that will need to be calculated. The
perturbative expansion of Ôi takes the form

Ôi(x,Q2, µ2) = Ai
∞∑
n=0

(
αS(µ2)

2π

)n
Ci
n(x) (2.24)

where Ai is a common prefactor, and Ci
n(x) are the coefficient functions at order n for

the parton i.

Analogous to renormalization, the scale dependence of the distribution functions (i.e.
their “running”) is given by the DGLAP equation to O(αS) (i.e. the “renormalization
group equations”) [17]:

µ2 ∂

∂µ2
d(x, µ2) =

αS(µ2)

2π
P (x)⊗ d(x, µ2) =

αS(µ2)

2π

∫ 1

x

dξ

ξ
P

(
x

ξ

)
d(ξ, µ2) (2.25)

As with the QPM, a more formal derivation may be done with operator product expan-
sions of quark and gluon operators and applying the renormalization group equation to
their associated anomalous dimensions [18]. This is equivalent to the DGLAP equations
at O(αS), but also extends them to all orders. The general DGLAP equations are:

µ2 ∂

∂µ2

(
dqi
dg

)
=
αS(µ2)

2π

∑
qj ,qj

(
Pqiqj Pqig
Pgqj Pgg

)
⊗
(
dqj
dg

)
(2.26)
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where dq(x, µ
2) are the quark distributions, dg(x, µ

2) are the gluon distributions, and
P (x, αS(µ2) are the splitting functions. Each splitting function is given by the IR diver-
gences of the partonic observable Ô0 being shifted into the quark and gluon distributions.
Since divergences occur with gluon vertices, the splitting functions also admit a pertur-
bative series in αS. The solutions to the evolution equations take the form of a linear
evolution operator Γ(x;µ2, µ2

0) which evolves the distribution functions from a scale µ2
0

to µ2 [2]:

di(x, µ2) =
∑
j=q,q,g

Γij(x;µ2, µ2
0)⊗ dj(x, µ2

0) (2.27)

As with previous numerical techniques to calculate observables dependent on distribution
functions, the evolution operator may be calculated on an x grid independently of d for
a fixed energy scale µ2

0 to µ2.

Corrections to a partonic observable Ôi may also include electroweak interactions. While
the EW coupling α is significantly smaller than the strong coupling αS, at high energies
the exchange of soft and collinear massive gauge bosons may produce logarithms of the
order ln2(Q2/M2

W ) [19]. The same analysis of splitting functions in QCD may be applied
to EW interactions, and thus EW splitting functions may be calculated for the quarks,
leptons, photons, and weak massive bosons [2]. A corresponding evolution equation
involving EW splitting functions applies to the distribution functions now at a EW scale
ν2:

ν2 ∂

∂ν2

(
dqi
dg

)
=
α(ν2)

2π

∑
qj ,qj

(
PEW
qiqj

PEW
qig

PEW
gqj

PEW
gg

)
⊗
(
dqj
dg

)
(2.28)

The solution to the EW evolution equations is likewise a linear evolution operator
ΓEW(x; ν2, ν2

0) satisfying

di(x, ν2) =
∑
j=q,q,g

ΓEW
ij (x; ν2, ν2

0)⊗ dj(x, ν2
0) (2.29)

If the EW and QCD evolution equations are solved simultaneously, the evolution operator
takes the form ΓQCD⊗EW. However when solved independently, the order of individual
evolution functions produces O(ααS) errors [2]. Taking the average of QCD then EW
evolution and EW then QCD evolution cancels this linear order error, and thus has
accuracy up to O(α2).

At higher orders, the evolutions have non-trivial mixing between different flavors which
makes solving the integrodifferential equations difficult. By using SU(nf ) flavor symme-
try, the flavor structure of the splitting functions may be expressed in terms of singlet S
and non-singlet V components [2]:

Pqiqj = δijP
V
qq + P S

qq

Pqiqj = δikP
V
qq + P S

qq

P± = P V
qq ± P V

qq

P S
qq = P S

qq

(2.30)

The flavor basis may then be partitioned into a non-singlet basis:
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Vi = q−i T15 = u+ + d+ + s+ − 3c+

T3 = u+ − d+ T24 = u+ + d+ + s+ + c+ − 4b+

T8 = u+ + d+ − 2s+ T35 = u+ + d+ + s+ + c+ + b+ − 5t+

where q± = q ± q. This non-singlet basis is entirely decoupled between each of its basis
functions, as well as from the singlet basis:(

Σ = u+ + d+ + s+ + c+ + b+ + t+

g

)
(2.31)

which is a 2D coupled system. For EW, a basis consisting of a (different) singlet qSG and
non-singlet qNS

i set decouples the system:

qSG =

 γ
Σ = u+ + d+ + s+ + c+ + b+ + t+

D∆Σ = u+ + c+ + t+ − d+ − s+ − b+


qNS =

{
Duc, Dds, Dsb, Dct, u

−, d−, s−, c−, b−, t−
} (2.32)

where Dab = a+−b+. The singlet functions form a 3x3 coupled system, while the 10 non-
singlet functions are decoupled. Given a QCD basis, the transformation to the EW basis
is a rotation by an invertible linear transformation. Since the evolution equations are
linear, the change of basis transformation may be absorbed into the evolution operator.
Thus the evolution operators may be discussed with respect to the original flavor basis.

2.3.1 Time-like Splitting Functions

While both PDFs and FFs follow the same general analysis outlined above, the functional
forms of splitting functions for FFs (time-like) are different than the splitting functions
of PDFs (space-like). Firstly, for a space-like splitting function Pij, the corresponding
time-like splitting function is denoted Pji. Thus the singlet time-like evolution equation
is often written

µ2 ∂

∂µ2

(
DΣ

Dg

)
=
αS(µ2)

2π

(
Pqq 2nfPgq
Pqg Pgg

)
⊗
(
DΣ

Dg

)
(2.33)

At leading order, the time-like and space-like splitting functions are indeed equal, but
including NLO terms introduces singularities as x → 0 in the gluon splitting functions
that are not present in the space-like splitting functions [17]. These singularities are due
to soft gluon emission, but may be resummed in power series of αS to provide a coherent
final state where soft gluons are suppressed [17].

2.4 Semi-Inclusive Annihilation

Semi-inclusive lepton-antilepton annihilation provides the most direct access to fragmen-
tation functions. Since there are no initial state hadrons, there are no PDFs, so all of
the non-perturbative strong effects are in the FF. The process is normally expressed as
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Figure 2.7: Tree level process of SIA involving electron-positron annihilation

electron-position annihilation e−e+ → X, and the total exclusive process as a ratio of
hadron production vs muon production for a center of mass energy

√
s [17]:

R =
σ(e+e− → X)

σ(e+e− → µ+µ−)
= 3

∑
q

Q2
q s�M2

Z

RZ =
σ(Z → X)

σ(Z → µ+µ−)
=

3
∑

q(A
2
q + V 2

q )

A2
µ + V 2

µ

s ≈M2
Z

(2.34)

where Q,A, and V are the photon, axial, and vector couplings respectively. The color
structure is entirely contained as the prefactor of 3. While (2.34) is to leading order in
αS, its expansion occurs as a multiplicative correction:

R = 3
∑
q

Q2
q → 3

∑
q

Q2
q

(
1 +

αS
π

+O(α2
S)
)

= KQCDR (2.35)

and the same for RZ . Higher order corrections to KQCD have been calculated, but intro-
duce a dependence on the number of active quark flavors nf .

The semi-inclusive process is identical, with the addition of identifying an outgoing hadron
H. From the definition of FFs, the normalized differential cross section for SIA may be

10−3
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1

σ
to
t

d
σ d
z
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BABAR

0.0 0.2 0.4 0.6 0.8 1.0
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R
a
ti

o

Figure 2.8: BABAR data (blue) plotted against predictions made by MAPFF (red). The
bands of the MAPFF fit corresponds to the variance of the observable.
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predicted by combining (2.4) and (2.5):

1

σtot

dσ

dz
=
∑
i=q,q,g

Ci(s; z, αS)⊗DH
i (z, s) (2.36)

where σtot = Rσ(e+e− → µ+µ−) below the Z threshold, or the corresponding Z variables
near the Z pole.

A sample comparison of SIA differential cross sections from BABAR [20] is plotted in 2.8
against predictions made by MAPFF1.0 for charged pion production [5]. The calculations
were performed using APFEL [2], which provides built-in methods of computing SIA
cross sections and structure functions. Note that the center of mass energy

√
s = 10.54

GeV is below MZ ≈ 91.2 GeV, so all calculations were done in QED. Because of the
simplicity of the process, the terms may be calculated to perturbative orders which give
highly constrained predictions. For further analysis and fitting of SIA data, refer to [4].

2.5 Semi-Inclusive Deep Inelastic Scattering

Deep inelastic scattering provides the simplest process that gives rise to PDFs. Unpolar-
ized observables from DIS are often reported in terms of structure functions F2 and FL.
For a lepton scattering off of a proton via a photon with virtuality −q2 = Q2 > 0 shown
in 2.9, the differential cross section is given as [18]:

d2σ

dx dQ2
=

4πα2

xQ4

([
1 + (1− y)2

]
F2(x,Q2)− y2FL(x,Q2)

)
(2.37)

where x = Q2/2p · q is the Bjorken x-variable and y = p · q/k · p. The structure functions
are calculated as convolutions of coefficient functions with PDFs:

Fj(x, µ
2) =

∑
i=q,q,g

Cj(x, µ
2)⊗ fi(x, µ2) j = 2, L (2.38)

Coefficient functions are readily available to NLO [21].

fAA

l

p

k

q

fAA

l

DH H

Figure 2.9: Left: Tree level diagram of DIS. Right: Tree level diagram of SIDIS.
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Figure 2.10: Comparison of COMPASS and MAPFF integrated multiplicities from equa-
tion (2.40). Both plots are integrated over a y bin of 0.3 to 0.5 and: Left: x bin of 0.004
to 0.01. Right: x bin of 0.01 to 0.02. Plots serve as a check of MAPFF results but do not
include all corrections from [5].

The SIDIS differential cross section takes a similar form where the structure functions
have been convoluted with the fragmentation functions DH

q (z):

d3σ

dz dQ2 dz
=

4πα2

xQ4

([
1 + (1− y)2

]
F2(x, z,Q2)− y2FL(x, z,Q2)

)
Fk(x, z, µ

2) =
∑

i,j=q,q,g

Ck,ij(x, z, µ
2)⊗ fi(x, µ2)⊗DH

j (z, µ2), k = 2, L
(2.39)

The observables are now dependent upon two non-perturbative distribution functions:
fi(x, µ

2) and DH
i (z, µ2). Because of the large amount of data used to fit PDFs indepen-

dently of FFs, the PDFs may be treated as inputs of the theory rather than quantities to
be fitted. The amount of data points lost by not fitting against SIDIS data concurrently
with FFs may be considered negligible. SIDIS data is often delivered as a multiplicity
M , which is the ratio of integrated cross sections:

M =

[∫ Qmax

Qmin

dQ

∫ xmax

xmin

dx

∫ zmax

zmin

dz
d3σ

dx dQ dz

]/[∫ Qmax

Qmin

dQ

∫ xmax

xmin

dx
d2σ

dx dQ

]
(2.40)

A sample comparison of multiplicities from COMPASS data [22] is plotted in figure 2.10
against predictions made by MAPFF1.0 for charged pion production. The calculations
were performed using APFEL++ [3], which extends the APFEL library to perform numeric
convolutions of arbitrary operators and distributions. The calculations closely follow the
techniques in [5]. The PDF was similarly chosen to be NNPDF31 as nlo pch as 0118 [11].
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Figure 2.11: Tree level diagram of hadron-hadron scattering (Left: exclusive, Right: semi-
inclusive). Both diagrams show only one of the leading order partonic processes.

2.6 Semi-Inclusive Hadron-Hadron Scattering

Scattering of hadrons introduces two non-perturbative distributions (PDFs) in the initial
hadrons, which makes fitting increasingly sensitive to measurement uncertainties. The
simplest expression for the differential cross section in figure 2.11 is just the factorization
theorem for AB → X:

d3σ

dp3
=

∑
i,j=q,q,g

d3σ̂ij
dp3

⊗ fAi ⊗ fBj (2.41)

The leading order partonic processes are shown in figure 2.12. Of these, the gluon-gluon
processes dominate due to the larger number of color combinations available for sampling
[9]. Therefore hadron-hadron scattering provides a sensitive measurement of the gluon
distributions.

Figure 2.12: Leading order αS partonic processes that contribute to hadron-hadron scat-
tering. Rows are organized by the number of quark-antiquark pairs in the in and out
states. The final row also includes the gluon 4-point cross section.

The semi-inclusive hadron-hadron scattering also follows from factorization, and provides
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the same sensitivity to gluon distributions:

d3σ

dp3
=

∑
i,j,k=q,q,g

d3σ̂ij→kX
dp3

⊗ fAi ⊗ fBj ⊗DH
k (2.42)

The focus of this paper will be on the analysis of results computed by equation (2.42).
Recent semi-inclusive hadron-hadron scattering measurements are mostly proton-proton
collisions, so the PDFs will be assumed to be PDFs of the proton. Numerical techniques
discussed in section 2.1.2 allow the differential cross section to be computed directly,
so further analysis is superfluous here. Those interested may consult [17] for photon
production and the photon fragmentation function, or [8] for studying small-x behavior.
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Chapter 3

Experimental

This chapter explains the parameters, observables, and uncertainties of experimental data
sets and how to calculate them from provided data. The experimental data sets used in
reweighting are explained here, with details regarding particular experiments enumerated.

3.1 Parameters

Consider a particle beam of center of mass energy
√
s directed along the z-axis. Particles

produced by scattering events are observed in a finite cylinder about the beam axis. An
out-state particle momentum has cylindrical symmetry, and thus its transverse magnitude
may be determined by a radial component pT and angle φ. The momentum along the
beam axis is commonly reported as the rapidity y:

y = ln

√
E + pzc

E − pzc
=

1

2
ln
p+

p−
(3.1)

where p± are the light-cone coordinates [17]. At high energy, this is equivalent to the
pseudorapidity η:

η = − ln tan
θ

2
(3.2)

where θ is the angle between the outgoing particle and the beam axis. The original
momentum may be derived from pT , φ, and y via [17]:

pµ = (mT cosh y, pT sinφ, pT cosφ,mT sinh y) (3.3)

where mT =
√
m2 + p2

T . The corresponding change of variable volume is given by:

d3p = 2πE dy dp2
T (3.4)
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3.2 Observables

As derived in the theory section, the semi-inclusive proton-proton scattering into a pion
is given by

σ(P1 + P2 → P3 +X) =
∑
ijk

∫ 1

0

dx1 dx2
dz

z
fi(x1, µ

2
fact)fj(x2, µ

2
fact)D

π
k (z, µ2

frag)

× σ(p̂1 + p̂2 → p̂3, µ
2
ren, µ

2
fact, µ

2
frag)

(3.5)

for the proton PDFs fi(x, µ
2) and the pion’s fragmentation functions Dπ

i (z, µ2). For a
2-2 scattering partonic process, the differential cross section is defined as

E3E4
d6σ̂

dp3
3 dp3

4

=
1

2ŝ

1

16π2

∑
|M|2δ4(p1 + p2 − p3 − p4) (3.6)

where
∑

is an appropriately averaged sum over spin states, and M(ij → kl) is the 2-2
scattering process

partoni(p1) + partonj(p2)→ partonk(p3) + partonl(p4) (3.7)

Parton 4 which doesn’t fragment into the pion may have its momentum integrated over
to give

E3
d3σ̂

dp3
3

=
1

2ŝ

1

8π2

∑
|M|2δ(ŝ+ t̂+ û) (3.8)

for the standard partonic Mandelstam variables ŝ, t̂, û. The total cross section is given
by directly substituting (3.8) into (3.5):

E3
d3σ

dp3
3

=
1

16π2s

∑
ijkl

∫ 1

0

dx1

x1

dx2

x2

dz

z
fi(x1, µ

2
fact)fj(x2, µ

2
fact)D

π
k (z, µ2

frag)

×
∑
|M(ij → kl)|2δ(ŝ+ t̂+ û)

(3.9)

The cross section is also given in terms of an equivalent parameterization of y and pT :

E3
d3σ

dp3
3

=
d3σ

dy dp2
T

=
1

2πpT

d2σ

dy dpT
(3.10)

3.3 Experimental Data Sets

The analysis of MAPFF is based upon semi-inclusive proton-proton collisions given by
the following process:

p+ p→ π +X (3.11)

where π may be charged, neutral, or the sum of positive and negatively charged pions.
The data is listed as differential cross sections (3.10) dependent on the center of mass
energy

√
s, the inclusive pion’s rapidity y, and its transverse momentum pT . Data is
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Figure 3.1: Kinematic coverage of the experimental data. Grey: Data below momentum
cutoff. Red dots: ALICE experiments. X’s: CMS experiments (all cut). Green triangles:
PHENIX experiments. Orange squares: STAR experiments.

Name Ref. Pion Observable Ndat

√
s [GeV] pT -range y

ALICE [23] π± 1
Nev

d2σ
dy dpT

33 900 0.1− 2.6 |y| < 0.5

[24] π0 E d3σ
dp3

18 2760 0.4− 10.0 y = 0

[25] π0 E d3σ
dp3

30 2760 0.4− 40.0 |y| < 0.6

[26] π+ + π− 1
2πpTNev

d2σ
dy dpT

63 2760 0.1− 20.0 |y| < 0.8

[27] π+ + π− 1
Nev

d2σ
dy dpT

58 5020 0.1− 20.0 |y| < 0.5

[28] π0 E d3σ
dp3

33 7000 0.3− 25.0 y = 0

[29] π+ + π− 1
N

d2σ
dydpT

41 7000 0.1− 3.0 |y| < 0.5

[30] π0 E d3σ
dp3

44 8000 0.3− 35.0 y = 0

CMS [35] π± 1
Nev

d2σ
dy dpT

22 900 0.125− 1.175 |y| < 1.0

[35] π± 1
Nev

d2σ
dy dpT

22 2760 0.125− 1.175 |y| < 1.0

[35] π± 1
Nev

d2σ
dy dpT

22 7000 0.125− 1.175 |y| < 1.0

PHENIX [31] π± E d3σ
dp3

26 62 0.3− 2.9 |y| < 0.6

[31] π± E d3σ
dp3

27 200 0.3− 3.0 |y| < 0.6

[32] π± E d3σ
dp3

6 200 5.0− 13.0 |y| < 0.35

[33] π0 E d3σ
dp3

17 200 1.0− 15.0 |y| < 0.35

[34] π0 E d3σ
dp3

28 510 1.0− 30.0 |y| < 0.35

STAR [36] π0 E d3σ
dp3

13 200 1.0− 17.0 0 < y < 1.0

[37] π0 E d3σ
dp3

13 200 1.0− 17.0 0.8 < y < 2.0

Table 3.1: Details of unfiltered experimental observables and coverage.
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Name Ref. Pion Observable Ndat

√
s [GeV] pT -range y

ALICE [24] π0 E d3σ
dp3

4 2760 5.0− 10.0 y = 0

[25] π0 E d3σ
dp3

15 2760 5.0− 40.0 |y| < 0.6

[28] π0 E d3σ
dp3

11 7000 5.0− 25.0 y = 0

[30] π0 E d3σ
dp3

22 8000 5.0− 35.0 y = 0

PHENIX [32] π± E d3σ
dp3

6 200 5.0− 13.0 |y| < 0.35

[33] π0 E d3σ
dp3

9 200 5.0− 15.0 |y| < 0.35

[34] π0 E d3σ
dp3

20 510 5.0− 30.0 |y| < 0.35

STAR [36] π0 E d3σ
dp3

7 200 5.0− 17.0 0 < y < 1.0

[37] π0 E d3σ
dp3

7 200 5.0− 17.0 0.8 < y < 2.0

Total 101

Table 3.2: Details of filtered experimental observables and coverage.

provided by experiments at ALICE [23] [24] [25] [26] [27] [28] [29] [30], PHENIX [31] [32]
[33] [34], CMS [35], and STAR [36] [37].

The kinematic coverage of the experiments is shown in figure 3.1. Details of each ex-
periment are listed in table 3.1. For experiments in which the rapidity was binned in
a specific interval, the rapidity was integrated over said interval. Otherwise the cross
sections were directly evaluated at the rapidity point.

Fiducial cuts were made over low pT , specifically pmin
T = 5 GeV. This is due to the limited

predictive ability that fragmentation functions have at low transverse momentum [16].
The remaining data after filtering low pT is given in table 3.2. For an analysis of the
dependence of the fit against the choice of momentum cut, see the 5.4.

While many ALICE experiments provide heavy ion (i.e. lead) collision data [24] [26]
[27], only proton-proton collision data was used in this fitting. This avoids nuclear effects
in favor of the simpler proton structure, but heavy ion collisions may be included in
the future if so desired. Furthermore, the ALICE experiments which only provided a
normalized observable were too expensive to fit against, and were not included. ALICE
experiments provided the largest center of mass energy sampling from 2760 GeV to 8000
GeV, as well as the majority of data points. These experiments also provided the most
constrained uncertainty measurements and smallest normalization uncertainties. Thus
the ALICE data has the greatest influence on the reweighting.

The CMS data only sampled a pT range up to 0.175 GeV, which was far below all
considered pT cutoffs, and thus was not included.

PHENIX measurements provided the majority of low energy
√
s = 200, 510 GeV mea-

surements. While charged pion data remained post-filtering, the small quantity of data
points was deemed to be too small to fit the charged fragmentation functions individually,
and instead the data was summed and treated as a summed pion data set.

STAR data provided the same
√
s = 200 GeV coverage as PHENIX, however it only

recorded forward rapidities. As with ALICE, STAR also measured heavy ion (deuterium-
gold collisions), but these were omitted from this analysis.
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3.3.1 Covariance Matrix

In order to calculate the best-fit measurement χ2 [38], the covariance matrix for each
experiment must be calculated. While some experiments may provide their own pre-
calculated covariance matrix, the filtered experiments did not, and instead provided a set
of uncertainties. Call an experiment’s set of Ndat data points {yi}. These uncertainties
were categorized as:

• Uncorrelated statistical uncertainties {σstat,i}.

• Uncorrelated systematic uncertainties {σsys,i}. Reported multiplicative systematic
uncertainties {σ′sys,i} are multiplied by the corresponding data point: σsys,i = σ′sys,iyi.

• Fully correlated normalization uncertainties {σnorm,i}. In the case of an overall
normalization uncertainty N , then σnorm,i = Nyi.

where i = 1, . . . , Ndat. The covariance matrix represents the uncorrelated and correlated
uncertainties as quadratic sums:

covij = (σ2
stat,i + σ2

sys,i)δij + σnorm,iσnorm,j i, j = 1, . . . , Ndat (3.12)

Assuming all uncertainties are positive, the covariance matrix is real, positive-definite,
and orthogonal. Therefore the covariance matrix is invertible, and its inverse may be
quickly calculated via Cholesky decomposition for large data sets.
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Chapter 4

Methodology

This chapter details the specific calculations used to fit and reweight distribution func-
tions. A definition of fitting a continuous function from data is provided, and common
methods of parameterizing distribution fits are discussed. The core of the paper, reweight-
ing, is discussed in detail. Information loss and unweighting are outlined at the end. Extra
methods of fit validation are reserved for the appendices.

Throughout this section the following notation will be used: Bold-face expresses a vector
/ array of data. Let D be a fixed data set

• ND - the number of measurements in D

• {xi} for i = 1, . . . , ND - the dependent variables of D

• {yi} for i = 1, . . . , ND - the independent variables of D

• covij - the covariance matrix of D

4.1 Fitting

In the most general sense, distribution functions d(x,Q2) are elements of a continuous
functional space with x ∈ [0, 1] and Q2 > 0. Fitting distributions against data sets
presents a problem, since experimental data forms a finite set while distributions live in
an infinite-dimensional space. Furthermore, the data sets carry an associated uncertainty
which needs to be propagated to the fitted distribution. These errors may be quantified
by defining a probability measure P(d) on the space of distributions such that the ex-
pectation value of any observable O matches the average over distributions weighted by
this probability measure [14]:

〈O[d]〉 =

∫
ddO[d]P(d) (4.1)

There are many choices of probability measures which are equivalent in reproducing the
expectation value of an observable [14]. Fixing a choice of a probability measure, the

25



quality of a fit may be determined by a best fit measurement E[d], which quantifies the
deviation of theoretical predictions from a given data set. A standard choice of best fit
is the χ2 function:

χ2[d] =

ND∑
i,j=1

(yi −O[d](xi))(cov−1)ij(yj −O[d](xj)) (4.2)

Minimizing E[d] minimizes the distance between a measured point yi and its correspond-
ing prediction O[d](xi). The associated uncertainty, and thus probability measure, is
given by expanding in a confidence region about the minimum.

4.1.1 Hessian Method

Analytically, this may be performed by the Hessian method [13], which is a quadratic
expansion about the minimum of E[d]. Recall that a linear expansion about an extremum
is zero, and thus provides no information, so a quadratic expansion is the lowest non-
trivial expansion. A quadratic expansion is accurate only within some neighborhood of
the minimum defined by a tolerance parameter T :

∆E[d] ≤ T 2 (4.3)

Let d(x,Q2;a) be a model of a distribution function d(x,Q2) dependent on a set of pa-
rameters a = {ak} for k = 1, . . . , Np, where Np is the number of parameters. To calculate
the Hessian uncertainty of the parameters, first determine a set a0 which minimizes E[d]:

∂E[d(x,Q2;a)]

∂a

∣∣∣∣
a=a0

= 0 (4.4)

Expanding the best fit to second order in the parameters gives [13]

∆E[d(x,Q2;a)] = E[d(x,Q2;a)]− E[d(x,Q2;a0)] ≈
Np∑
i,j=1

Hij(ai − a0
i )(aj − a0

j) (4.5)

where H is the Hessian matrix. Since Hessian matrices are real and symmetric, by
the spectral theorem there exists a unitary transformation to an orthonormal basis of
eigenvectors of H. The previous parameters a may be expressed as linear combinations
of rescaled parameters z in the eigenbasis. In this new basis, the neighborhood where
the quadratic approximation is valid is now an Np-sphere [13]:

Np∑
k=1

z2
k ≤ T 2 (4.6)

This defines a set of parameters {a′i} lying on the boundary of the sphere. By an ap-
propriate choice of T , these parameters represent a one-sigma error set of the model.
Returning to the probability measure formalism, the expectation value of an observable
O is just the observable evaluated with the minimized parameters:

〈O[d](x)〉 = O[d(a0)](x) (4.7)
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while the uncertainty associated with O is dependent on the one-sigma parameter set:

σ2
O(x) =

Np∑
i=1

{O[d(a′i)](x)−O[d(a0)](x)}2
(4.8)

The magnitude of the eigenvalues of H describe how tightly constrained by the data
an eigenparameter is. Large eigenvalues require only small changes in their respective
parameters to vary E[d] greatly, while small eigenvalues admit large changes in their
parameters while having little effect on E[d]. Thus the Hessian method provide a direct
analysis of the uncertainties of a distribution model. However it requires calculating
second order partial derivatives of E[d] with respect to parameters of a given model. For
models with large numbers of parameters or complicated structure, performing Hessian
analysis becomes difficult.

4.1.2 Monte Carlo Method

Numerically, the probability measure of the functional space may be determined by re-
peatedly sampling the space of data sets. A given data point has an associated uncer-
tainty which describes the probability successive measurements return a value within some
neighborhood of the data point. The measurements are assumed to sample a Gaussian
distribution with matching uncertainty. The Monte Carlo method simulates successive
measurements by randomly generating points based on their uncertainty. This creates
an ensemble of measurements, similar to ensembles of systems in statistical physics.

The basis of Monte Carlo sampling begins with creating Nrep replicas of the data set
{yi}, which are denoted yk = {yki } for k = 1, . . . , Nrep. Initially each replica is equally
weighted, so for an arbitrary function g depending on the data set, its ensemble average
over the replicas is defined as

〈g〉MC =
1

Nrep

Nrep∑
k=1

g(yk) (4.9)

The replicas are randomly generated in a Gaussian distribution such that the ensemble
average of a data point recovers the data point itself, while the ensemble covariance
recovers the experimental covariance matrix [5]:

〈yi〉MC ≈ yi 〈yiyj〉MC ≈ yiyj + covij ∀i, j = 1, . . . , ND (4.10)

For every Monte Carlo replica k, define Ek[d] to be the best-fit measurement which
uses the kth replica as its experimental data set, and fit a distribution model dk which
minimizes Ek. This generates a Monte Carlo ensemble {dk} of distribution functions,
which fully contains all of their associated uncertainty. For an arbitrary observable O,
the expectation value and standard deviation are given in terms of ensemble averages
over {dk}:

O0 = 〈O[d]〉 = 〈O[dk]〉MC

σ2
O = 〈(O0 −O[dk])

2〉MC

(4.11)
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As shown in [14], the Monte Carlo method reproduces the Hessian method. By generating
replicas in the parameter space (specifically, normally distributed in the eigenbasis of the
parameter space), the one-sigma error set of a Hessian method may be approximated by
a MC ensemble, and thus the method reproduced. The Monte Carlo method will be used
throughout the rest of the paper.

4.2 Parameterization

Once an effective probability measure has been chosen for the distribution space, a model
needs to be chosen. In general, models are chosen with the constraint that at x = 1,
d(1, Q2) = 0. In practice, the distribution is evaluated on a grid G = {xi} × {Qi}. First,
an initial scale Q2

0 ∈ {Qi} is chosen, and the distribution is evaluated on the grid line
{d(x,Q2

0) : x ∈ {xi}}. Then the results are evolved to each energy scale Qi via the
DGLAP equations. Points not on the grid are interpolated using a suitable interpolation
function, such as cubic splines (see section 2.1.2).

4.2.1 Analytic

Theoretical calculations predict that large and small x scale by a power law [8]. Thus
the distribution may be given by the form [10]:

di(x,Q
2
0) = Aix

αi(1− x)βiF(x, ci) (4.12)

where Ai is a normalization parameter, αi and βi are power parameters, and ci are
parameters for the interpolation function F at an initial scale Q2

0. The standard param-
eterization [10] of F is:

F(x, αi, βi, δi, γi) =
1 + γi(1− x)δi

B[2 + αi, βi + 1] + γiB[2 + αi, βi + δi + 1]
(4.13)

where B[a, b] is the Euler beta function. By appropriate choice of parameters, the stan-
dard parameterization reduces to previous parameterizations used in earlier distribution
function work [10] [39]. The standard parameterization assumes a functional form of
the distribution function, which may produce artifacts in future predictions if the model
substantially differs from the actual form.

Alternatively, complete orthogonal bases of the distribution function space may be used
to approximate the interpolation function. Chebyshev polynomials have been used [14],
but little work has been done with them due to computational complexity. In theory,
other sets such as the Legendre polynomials may be used, but likely will have similar
drawbacks. The benefit, however, is that there is no bias in approximating a functional
form of the model.

4.2.2 Neural Network

In the early 90’s, Cybenko and Hornik proved the universal approximation theorem [12],
a corollary of which states that feed-forward neural networks are capable of approximat-
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ing continuous functions between Euclidean spaces. Therefore, given appropriate weights
and thresholds, a finite neural network is capable of acting as an unbiased interpolation
function. Thus the problem of finding appropriate parameters for an interpolation func-
tion now reduces to training a neural network to reproduce a given function. Since f
itself is a continuous function, it may be approximated directly by the neural network,
and thus further avoid constraining by power law scaling.

For the purposes of this paper, a neural network may be considered to be just a mathe-
matical function. Specifically, neural networks are multi-layered feed-forward perceptrons
[5] with NL layers and {ni} nodes per layer with i = 1, . . . , NL. An activation function
gi : Rni−1 → Rni is fixed for each layer i > 1. The network is dependent on a set of
weights {wi} ⊂ Rni−1 and thresholds {θi} ⊂ Rni , again for layers i > 1. The weights
and thresholds are the parameters of neural network which are varied to fit the desired
distribution function. A neural network N : Rn1 → RnNL is thus defined recursively for
an input x ∈ Rn1 :

N (x; {wi}, {θi}) = lNL
li = gi(wi · li−1 − θi)
l1 = x

(4.14)

Fitting a neural network is done by minimizing a cost function, in this case the best-
fit functional E[d]. Given an initial guess of weights and thresholds, the network is
then trained by back-propagation algorithms which perform gradient descent of the cost
function in the combined weight-threshold parameter space. There’s an abundance of
minimization algorithms, including stochastic gradient descent and ADAM [40], which
are beyond the scope of this paper, but mainly differ by speed and efficiency of reaching
a minimum. It shall be assumed that all reach an appropriate estimate of the global
minimum.

To ensure that f(x,Q2
0) = 0 as x→ 1, the evaluation of the network at x = 1 is subtracted

from all x values:

N ′(x,Q2
0; {wi}, {θi}) = N (x,Q2

0; {wi}, {θi})−N (1, Q2
0; {wi}, {θi}) (4.15)

The application of neural networks to fit distribution functions is currently being applied
by the NNPDF Collaboration to create PDF sets [11]. The Collaboration’s efforts have
been successful in reproducing various high-energy phenomena at the LHC [11]. Similar
work has been done for unpolarized fragmentation functions of the pion by the MAP
Collaboration. Their MAPFF set will be used for reweighting later in this paper [5].

4.3 Reweighting

Distribution functions are reported as a set of Monte Carlo replicas of points fitted against
sets of experimental data. However, experiments regularly produce new data sets. The
most direct way of fitting this new data is to refit the distribution entirely with both the
old and new data. For complicated fitting procedures, refitting is laborious and is rather
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done when techniques improve or large bulk data becomes available. Some probability
analysis allows refitting to be avoided entirely.

Consider a distribution function f(x,Q2), which has been fitted against a previous data
set A (the notation of PDFs is used to avoid confusion with the differential d). The
distribution has an associated probability P(f |A) Df , which is represented as an ensemble
of Monte Carlo replicas {fk} for k = 1, . . . , Nrep. The probability is used to compute
observables O[f ] via the ensemble average (4.9):

〈O[f ]〉A =

∫
O[f ]P(f |A) Df =

1

Nrep

Nrep∑
k=1

O[fk] (4.16)

where 〈·〉A denotes an average over distributions fitted against A. Suppose a new data set
B is to be included with A giving the total data set AB. Computing observables with the
combined data set amounts to determining P(f |AB). Such a process is called reweighting,
since the end result appears as weights of A’s ensemble average. The following proof the
reweighting process is adapted from [15].

Let B be a data set consisting of n points, or equivalently as a vector B ∈ Rn. Probability
distributions P may be defined for probability measures P on a local volume of their
respective spaces, i.e.

P (f |A) = P(f |A) Df

P (B|fA) = P(B|fA) dnB

Applying Bayes’ theorem to probability distributions combined with the above allows the
theorem to be applied to probability measures:

P (fB|A) =P (f |AB)P (B|A) = P (B|fA)P (f |A)

=⇒ P(f |AB) Df P(B|A) dnB = P(B|fA) dnB P(f |A) Df

To calculated the desired quantity P(f |AB) Df , the quantities P (B|A) and P (B|fA)
must be well defined in their local neighborhoods to take the following ratio:

P(f |AB) Df =
P(B|fA) dnB

P(B|A) dnB
P(f |A) Df (4.17)

However, taking the limit as the volume dnB goes to zero is ambiguous. To treat the
neighborhoods consistently, they will be converted to n-spheres where the volume vanishes
only as the radial coordinate vanishes, thus making the zero-volume limit explicit. Note
in the above that there is no dependence of the denominator P (B|A) on f . Requiring
that the probability measure P(f |AB) is normalized fixes the denominator:

P (B|A) =

∫
P (B|fA)P(f |A) Df (4.18)

This is precisely an ensemble average over A, as defined in (4.16):

P (B|A) = 〈P (B|fA)〉A =
1

Nrep

Nrep∑
k=1

P (B|fkA) (4.19)
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Or in terms of the probability measure:

P(B|A) dnB =
1

Nrep

Nrep∑
k=1

P(B|fkA) dnB (4.20)

The measure P(B|fkA) dnB is the probability that a given fk lies in a dnB neighborhood
centered about B. Assuming that all uncertainties are Gaussian, the density is given by
the multivariate Gaussian distribution

P(B|fA) =
e−

1
2
χ2[f ;B]√

(2π)n det(covB)
(4.21)

where χ2[f ;B] is the chi-squared best fit (4.2) with respect to B’s data, while covB is B’s
covariance matrix. To convert this to n-spherical coordinates, perform a change of basis
to B′ which maps covB to the identity matrix (this is always possible by the spectral
theorem, since a covariance matrix is real, symmetric, and has positive eigenvalues), and
translate to be centered on f . The relevant changes are

dnB =
√

det(covB) dnB′ and χ2[f ;B] =
n∑
i=1

(B′)2
i (4.22)

Notice that χ takes the form of a radial component with respect to a rectangular space
B′, and thus converting to spherical coordinates in n-dimensions:

dnB′ =
2πn/2

Γ(n/2)
χn−1 dχ dn−1Ω (4.23)

Where dn−1Ω is the standard solid angle measure. Thus the multivariate Gaussian dis-
tribution becomes

P(B|fA) dnB =
21−n/2χn−1[f ;B]

Γ(n/2)
e−

1
2
χ2[f ;B] dχ dn−1Ω (4.24)

This expresses the numerator of (4.17) in terms of spherical χ coordinates. In turn, (4.24)
defines the probability of measuring χ[f ;B] given a function f fitted against A:

P(χ|fA) dχ =
21−n/2χn−1

Γ(n/2)
e−

1
2
χ2

dχ (4.25)

As with P (B|fA), the χ probability is an ensemble average over A:

P(χ|A) =

∫
P(χ|fA)P(f |A) Df =

1

Nrep

Nrep∑
k=1

P(χk|fkA)

=
21−n/2

Γ(n/2)Nrep

Nrep∑
k=1

χn−1
k e−

1
2
χ2
k

(4.26)

Combining equations (4.20) and (4.26) expresses the denominator of (4.17) in terms of
χ as well:

P(B|A) dnB = 〈P(B|fA)〉A dnB = 〈P(χ|fA)〉A dχ dn−1Ω = P(χ|A) dχ dn−1Ω (4.27)
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Returning to equation (4.17) with the new χ measures:

P(f |AB) Df =
P(χ|fA) dχ dn−1Ω

P(χ|A) dχ dn−1Ω
P(f |A) Df

=
P(χ|fA)

P(χ|A)
P(f |A) Df

(4.28)

Since dn−1Ω is a solid angle, it is non-vanishing in the zero-volume limit, and thus directly
cancels. Since dχ is one-dimensional, it approaches zero in the zero-volume limit, but
does so in the same neighborhood for both the numerator and denominator. The zero-
volume limit is therefore well-defined, and dχ may be canceled as well. Now (4.28) may
be substituted into 〈O[f ]〉AB as defined by (4.16):

〈O[f ]〉AB =

∫
O[f ]P(f |AB) Df

=

∫
O[f ]

P(χ|fA)

P(χ|A)
P(f |A) Df

=

〈
O[fk]

P(χ|fkA)

P(χ|A)

〉
A

=
1

Nrep

Nrep∑
k=1

P(χ|fkA)

P(χ|A)
O[fk]

(4.29)

The final expression takes the form a weighted average, where the weights {wk} are

wk =
P(χ|fkA)

P(χ|A)
with

Nrep∑
k=1

wk = Nrep (4.30)

Notice that by application of Bayes theorem again, the weights may be written

wk =
P(fk|χA)

P(fk|A)
= NrepP(fk|χA) (4.31)

which promotes the interpretation that the reweighting process weights each replica by
the probability it is generated by the new combined dataset. Weights may be directly
calculated from (4.25) and (4.26):

wk =
(χ2

k)
(n−1)/2e−

1
2
χ2
k

1
Nrep

∑Nrep

i=1 (χ2
i )

(n−1)/2e−
1
2
χ2
i

(4.32)

As (4.32) shows, reweightings are entirely determined by the χ2
k = χ2[fk;B] for each

replica fk. Because χ2 takes such a central role in reweighting, specifically from multi-
variate Gaussian distributions in (4.21), it’s naturally chosen to be the best-fit function.

4.3.1 Reweighting Multiple Experiments

Consider reweighting a distribution function ensemble {fk} by two independent experi-
ments B1 and B2 simultaneously. Because the experiments are independent, the covari-
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ance matrix factorizes into the covariance matrices of the individual experiments:

cov =

(
cov1 0

0 cov2

)
and cov−1 =

(
cov−1

1 0
0 cov−1

2

)
(4.33)

The χ2 similarly factorizes:

χ2 =
(

∆yT1 ∆yT2
)( cov−1

1 0
0 cov−1

2

)(
∆y1

∆y2

)
= ∆yT1 cov−1

1 ∆y1 + ∆yT2 cov−1
2 ∆y2

= χ2
1 + χ2

2

(4.34)

Directly substituting into (4.32) gives [15]:

wk ∝ (χ2
1;k + χ2

2;k)
(n1+n2−1)/2e−

1
2

(χ2
1;k+χ2

2;k) (4.35)

again normalized such that the sum is Nrep. This process may be repeated for a finite
number of data sets {Bi} for i = 1, . . . , N :

wk ∝ (χ2
k)

(n−1)/2e−
1
2
χ2
k

χ2
k =

N∑
i=1

χ2
i;k

n =
N∑
i=1

ni

(4.36)

Now instead, consider reweighting an already reweighted ensemble {f ′k = w1;kfk} by a
second data set B2. The final weights should match (4.35) and may be directly calculated
by

w′k =
w1+2;k

w1;k

=
(χ2

1;kχ
2
2;k)

(n1+n2−1)/2

(χ2
1;k)

(n−1)/2
e−

1
2
χ2
2;k (4.37)

The weights are not given by {w2;k} on the original {fk} since the probability P(f |χ1χ2)
does not factorize: χ2

2;k is dependent on f ′k = w1;kfk and is thus dependent on the initial
reweighting w1;k. For independent experiments the order of reweighting is irrelevant
since the results of either order is guaranteed to match (4.35). However, this involves
determining χ2

1;k for the previous experiment, which might not be readily available.

4.4 Unweighting

Reporting a reweighted distribution ensemble is unfavorable as it’s inefficient for large en-
sembles, requires adapting existing code bases, and makes successive reweighting difficult.
Reweighted ensembles may be converted to an equally weighted ensemble via unweighting
[41]. A description of the unweighting method is given here; for an alternative derivation
see [41].
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To unweight a reweighted ensemble {fk;wk} for k = 1, . . . , Nrep, fix a new ensemble size
N ′rep. For each weight, define the probability cummulant Pk as the normalized sum of all
weights before k:

Pk =

Nrep∑
j=1

wj
Nrep

, P0 = 0 (4.38)

The cummulant P0 is defined to be zero for convenience. This defines a partitioning of
the unit interval into sub-intervals {[Pk−1, Pk] : k = 1, . . . , Nrep} where kth sub-interval
has a size of wk/Nrep. A similar partitioning may be performed on the new ensemble.
Since each replica in this ensemble has an equal weight of one, the partitioning of the
unit interval is just {[rj−1, rj] : j = 1, . . . , N ′rep]} for rj = j/N ′rep. For each reweighted
replica, define its unweighting as:

w′k =

N ′rep∑
j=1

θ (rj − Pk−1) θ (Pk − rj) (4.39)

and θ(x) is the Heaviside theta function. Note that w′k is a non-negative integer. Equation
(4.39) is interpreted as the number of copies of the reweighted replica fk to make in the
unweighted ensemble to reproduce the weighting wk. Each 1/N ′rep interval corresponds
to a single replica f ′j in the unweighted ensemble. In equation (4.39), a replica f ′j is a
copy of fk only when the right-hand side of f ′j’s interval lies in fk’s interval. That is,
when Pk−1 < j/N ′rep ≤ Pk, which is precisely the summand term. Thus w′k indeed counts
the number of copies of fk to be made. This ensures that the w′k satisfy the correct
normalization of a N ′rep ensemble:

Nrep∑
k=1

w′k = N ′rep (4.40)

Unweighting preserves the probability density for large enough N ′rep, since

p′k =
w′k
N ′rep

→ wk
Nrep

= pk (4.41)

in the limit of N ′rep → ∞. This happens because smaller unweighted intervals allow for
more accurate sampling of the original partitioning, and approach perfect sampling as
the interval size vanishes.

4.4.1 Replica Ensemble Information Measurement

Reweighting an ensemble changes the importance of each replica in calculating observ-
ables. Replicas with relatively small weights will give negligible contributions to the
average, and thus may be removed from a replica set. The information loss of reweight-
ing may be quantified via information entropy. Given a distribution function ensemble
{fk} with a probability density P(fk), the information a replica fk carries may be defined
by the Shannon information:

I(P(fk)) = ln

(
1

P(fk)

)
= − lnP(fk) (4.42)
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To characterize the information distribution in a set, the Shannon entropy of {fk} is given
by the ensemble average of the information:

H({fk}) = 〈I(P(f))〉{fk} = −
Nrep∑
k=1

P(fk) lnP(fk) (4.43)

For an equally weighted ensemble, such as an initially fitted distribution ensemble, the
probability of a replica fk is just P(fk) = 1/Nrep, so the entropy is minimized:

H = −
Nrep∑
k=1

(
1

Nrep

)
ln

(
1

Nrep

)
= lnNrep (4.44)

For a reweighted ensemble, the probability is given by the weights in equation (4.31), and
has an entropy of

H = −
Nrep∑
k=1

(
wk
Nrep

)
ln

(
wk
Nrep

)
=

1

Nrep

Nrep∑
k=1

wk ln(Nrep/wk) (4.45)

Matching the entropy of a reweighted ensemble with Nrep replicas (4.45) to an ensemble
with Neff equally weighted replicas (4.44) gives the effective number of replicas:

Neff = exp

(
1

Nrep

Nrep∑
k=1

wk ln(Nrep/wk)

)
(4.46)

Thus a reweighted ensemble carries the same effective information as a Neff fitted ensem-
ble. When unweighting a reweighted ensemble, it is therefore appropriate to use (4.46) as
the unweighted ensemble size, since the addition of more replicas will not carry further
information, while the removal of any replica will lose information.
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Chapter 5

Results and Discussion

This chapter describes the results of numerically calculating differential cross sections
of unpolarized hadron-hadron scattering and the consequent reweighting of the summed
pion fragmentation functions. All theoretical data was calculated via unpolarized hadron-
hadron code to O(α3

S) with the code of [42] [43]. The MAPFF1.0NLOPIsum FF set and
NNPDF3.1 nlo as 0118 PDF set were used for all calculations, and µren = µfact = µfrag

was chosen for all processes. Plots showing theoretical observables (including plots of
FF sets) display a line representing the central value calculated by the ensemble average
(4.9) centered in a band whose width is the standard deviation given by (4.11). Plots of
data points display the uncertainty as the uncorrelated error summed in quadrature, but
do not show the normalization error. All FFs are plotted at µ = 5 GeV unless otherwise
stated.

Reweighting, as outlined in section 4.3, was performed on the total experimental data
sets. Each data set was filtered against a momentum cutoff of pmin

T = 5 GeV. An ensemble
of observables was calculated for each experiment by sampling the FF replicas. For every
FF replica Dπ0

k , the χ2
i;k value for the ith experiment was calculated and summed over

all experiments. The reweight was computed and normalized via equation (4.36). This
defines the reweighted FF set described in this chapter.

5.1 Data-Theory Comparison

Figures 5.1, 5.2, and 5.3 show the data-theory comparison of the filtered data sets to
the original and reweighted FFs. With respect to the observables, the reweighting does
not significantly alter the central value. The only appreciable change is a tightening of
variance in the ALICE data sets in the high-pT range (> 20 GeV). Table 5.1 shows the
effect of reweighting on the χ2 fits of individual experiments, as well as the total combined
fit. While reweighting is not guaranteed to maintain or lower the χ2 of individual fits, it
does ensure the total χ2 is minimized. Note that sets which have an increased χ2 in total
contain 26 points, which is ∼ 1/4 of the total 101 points used in reweighting. Due to the
small size of the increased χ2 sets, whether reweighting is an actual decrease in accuracy
on these sets is not conclusive.
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Figure 5.1: Comparison of original and reweighted FF sets on ALICE data.
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Figure 5.2: Comparison of original and reweighted FF sets on PHENIX data.
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Figure 5.3: Comparison of original and reweighted FF sets on STAR data.
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Experiment Original χ2/point Reweighted χ2/point Ndat filtered

ALICE 2760 π0 [24] 1.45 2.00 4
ALICE 2760 π0 [25] 1.53 0.97 15
ALICE 7000 π0 [28] 2.42 1.87 11
ALICE 8000 π0 [30] 1.52 1.36 22

ALICE Total 1.71 1.49 52

PHENIX 200 π+ + π− [32] 0.75 1.29 6
PHENIX 200 π0 [33] 0.56 0.67 9
PHENIX 510 π0 [34] 0.75 0.48 20

PHENIX Total 0.70 0.67 35

STAR 200 π0 [36] 0.98 0.64 7
STAR 200 π0 [37] 1.38 1.68 7

STAR Total 1.18 1.16 14

Total 1.29 1.12 101

Table 5.1: χ2 per point for each experiment for both the original and reweighted sets.
The cumulative χ2 per point for each set of experiments is also listed.

The total χ2 per point is 1.12, which indicates the reweighted FF fits the data well. The
ALICE experiments contain the most fitted data points, and, while acceptable, they also
had the worst overall fit at 1.49. The total lower energy results

√
s < 1 TeV of PHENIX

and STAR have a χ2 per point of only 0.81, indicating the fit is indeed poorer for energies
above the 1 TeV scale. The previous fitting of MAPFF was performed on SIA and SIDIS
data on a scale of 10 to 100 GeV, while the range of new pp-collision data begins at 200
GeV. The successful predictions of MAPFF verifies the accuracy of the time-like DGLAP
equations in describing the energy scale dependence of fragmentation functions. Since
gluon partonic processes dominate the kinematic region below 20 GeV at high energies,
the lack of change in this region indicates previous fits accurately described the gluon
FFs. Rather, the high-pT constraints correspond to constraints of the quark FF.

5.2 Reweighted Fragmentation Functions

The original FF set and reweighted FF set are plotted against each other in figure 5.4.
Because only the summed pion distribution was reweighted, quarks and antiquarks are
equivalent under charge conjugation and isospin symmetry. Thus only the real quarks
and gluons are shown.

Quark fragmentation functions are highly constrained in the high-z region (z & 0.2).
Reweighting is unable to alter FFs in this region, so any dependence upon high-z behavior
of quark FFs in pp-collisions that differs from SIA or SIDIS will appear as a discrepancy,
even in the limit of large replica ensembles. Because of how well the fit describes the data,
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Figure 5.4: Comparison of original and reweighted FF sets.
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Figure 5.5: Left: Distribution of χ2 values for each ensemble replica. Right: Histogram of
reweighting weights. The outlined box indicates the weights corresponding to the highest
contributing replicas.

the pp-collisions are unlikely to introduce such changes. Furthermore, the improvement of
the χ2 by reweighting indicates below the high-z region has a significant effect on fitting
pp-collision data.

The sea quarks c, b exhibit small change, and only in the variance near low-z values.
Although a sea quark, the s distribution shows a positive adjustment in the 0.05 . z . 0.2
range. Most notably, the valence d quark shows the greatest change after reweighting.
The central value differs for z ≤ 0.2, and there’s any accompanying constraint on the
variance. While also a valence quark, u only shows a deviation in the low-z region.

The gluon fragmentation function is of special interest in pp-collisions due to its large
relative contribution to partonic cross sections. Unlike the quark FFs, the gluon does not
share the same constraints in the high-z region. Any high-z dependence of pp-collisions is
therefore entirely contained in the gluon FF in this region. Reweighting had the largest
effect on the gluon FF at high-z, while below this region it showed the same general
constraining as the quark FFs. The lack of change in the gluon FF indicates that the
previous SIA and SIDIS data were able to accurately describe the gluon’s behavior.
Surprisingly, reweighting has shown that the pp-collisions introduce constraints mainly
into the quarks FFs.

5.3 Reweighting and Unweighting

The reweighting process may be characterized by the weight distribution shown in figure
5.5. As expected, the weight distribution roughly mirrors the χ2

k distribution of replica fits
in the original data-theory comparison. After reweighting, the χ2 distribution contracts
towards χ2 = 1, indicating the reweighted set improves the fit on a per replica basis.
A measure of consistency P(α) is tested in appendix B. This test confirms that the
experimental uncertainties are well estimated by the reweighting.

Both the original and reweighted distributions are highly compatible. Overall there’s only
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Figure 5.6: Sample ratios of unweighted and weighted FFs.

small deviations which are entirely contained in the variance of the original FF set. A
more quantitative analysis may be performed through calculating the distances between
the central values and the variances, which is done in appendix A. Comparing distances
confirms that the FF sets are generated by the same underlying physical distribution.

To prepare the reweighted FF set for reporting, it was unweighted according to the
unweight algorithm. The number of effective replicas as determined by [41] was Neff =
39, which is shown in figure 5.5 as the outlined weights. These weights take values
in the range [0.6, 15]. Because the probability distribution is expected to be preserved
by unweighting, there should be little variation between the reweighted and unweighted
distributions. Figure 5.6 shows the ratio of reweighted and unweighted FF sets. The
changes in the unweighted central values is well contained in the variance of the FF sets,
and the variances are roughly equivalent. While the unweighted ensemble contains 39
replicas, only 33 unique replicas of the original ensemble were preserved. The remaining 6
unweighted replicas are copies of the 33 unique ones in order to maintain the reweighting
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probability distribution. As with the comparison of original and reweighted sets, the
distances between the reweighted and unweighted sets is computed in appendix A, which
provides the same conclusion.

The best test of reweighting is to perform an independent fit of the data. In the absence
of a refit, reweighting acts as indicator of when a new fit would be productive. As shown
previously, the pp-collision data is well reproduced by the previous SIA and SIDIS fit,
outside the high energy and high-pT region. When substantial data becomes available in
such a region, it would then be advantageous to do a new fit to independently verify the
results of reweighting.

5.4 Impact of Theoretical Choices

The choice of PDF set greatly contributes to pp-collision cross sections since they are
sampled twice. Since MAPFF is a neural-network based fit, NNPDF is a natural choice of
PDF that also provides a high-quality fit. The PDF variance was propagated through to
the observables by randomly choosing a PDF replica for every FF replica. Because of time
constraints, the effects of PDF variance were not quantified. These calculations consist of
recalculating the observables and reweighting using only the central PDF value, as well
as repeating the process for other PDF sets. This technique was applied to MAPFF [5] and
NNFF [4] fits, which both showed little dependence upon the PDF variance. Because PDF
sets are fitted against a larger independent data set (i.e. fully exclusive data), they are
better determined than FF sets, so it’s expected that PDF variance will have little effect
on FF variance.

The FF fit is dependent upon the choice of cutoff pmin
T as it directly determines the

number of data points used in the fit. While increasing cutoff improves the agreement,
less data points are included in the reweighting, and thus provide a weaker constraint on
the fragmentation functions. This dependence is shown in figure 5.7, where the χ2/point
measures the data-theory agreement while the total Ndat shows the decreasing number of
data points available to constrain the FF. All choices of cutoff for 5 GeV ≤ pmin

T ≤ 10 GeV
showed improvement of the total χ2, and all reweighted χ2/point were in an acceptable
range of ≤ 1.2. The minimum cutoff possible is 2 GeV, which was the cutoff of the
previous MAPFF1.0NLOPI fit, but for cutoffs smaller than 5 GEV the predictions began
showing significant disagreement with data. This is in part due to numerical instabilities
in the code for calculating hadron-hadron cross sections in the < 5 GeV range. A cutoff of
5 GeV was chosen for the fits used in this paper since it encapsulates the largest kinematic
range while maintaining a decent fit.

The influence of different experimental sets may be shown by performing separate reweight-
ings on individual experimental subsets. Figure 5.8 shows the ratio of reweighting by LHC
(ALICE) and non-LHC (PHENIX, STAR) versus the total reweighted FF set. The LHC
data shows the strongest constraint on the variance of the FF, but the central values
show significant disagreement with the non-LHC data. This effect may be due to the
greater abundance and improved uncertainty bounds of the LHC data.

43



0.8

0.9

1.0

1.1

1.2

1.3

χ
2
/
p

o
in

t

χ2 distribution for all

original

weighted

5 6 7 8 9 10

Cutoff [GeV]

0

50

100

T
o
ta

l
N
d
a
t

Figure 5.7: Above: Variation of χ2/point based on the choice of cutoff pmin
T . Below:

Number of points remaining for the given cutoff.

5.5 Implications

A primary motivation for this analysis was to see if results from Ref. [9] were consistent
with the MAPFF set. In their paper, the most accurate sets used in pp-collisions were the
Kretzer [39] and DSS [10] fragmentation function sets, where their main difference was
in the hardness of gluons at high-z values. Both sets failed to predict pp-collision data
in the high energy and high-pT zone. However, both these sets (and other less predictive
sets tested in [9]) all used a functional analytic form, with DSS the most complex and
Kretzer just power law scaling. Even without fitting against pp-collision data, MAPFF

produced consistent predictions. The functional form FF sets significantly differ from
neural network sets, so the later are capable of varying more to fit experimental data.
Therefore some of the authors’ observations, such as soft high-z gluons better predicting
pp-collision data, are not necessarily applicable to neural network fits. Rather, the neural
network sets significantly improve over the functional form sets, indicating that the FF
behavior is more complicated in the interpolation region 0 < z < 1.

The disagreement of the pp-collision data and the functional FF sets is most apparent in
the high-pT region, which is not strongly sampled by the reweighted fit. A full test of the
reweighted set’s data-theory agreement requires sampling this region. Another important
discrepancy is the lack of error estimation for the Kretzer set, and the large variance of
the DSS set. The reweighted FF set provides the most constrained error estimation of the
fit based on all three major semi-inclusive processes, and therefore may quantify whether
or or not it agrees with high energy and high-pT data.
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5.6 Improvements

The most substantive limiting factor in the analysis of pp-collisions is the lack of sampling
the high energy and high-pT domain, as previously stated. While data for the pion
fragmentation function is limited in this domain, a similar analysis may be performed
on other hadrons which admit a larger data range. Repeating this analysis for kaon,
(anti-)protons, and unidentified charged hadrons, even on the same kinematic domain,
provides a strong test of the results for the pion FF reweighting.

Similarly, a lack of identified charged pion data meant that the FF set could not be
reweighted against charged pions individually, but rather against their average, i.e. summed
and neutral pions. Only one type of charged pion needs to be collected in order to de-
termine the other charge from the summed fit. However, this analysis is again limited by
available data.

Available hadron-hadron collisions were omitted from this analysis due to time con-
straints. Collisions involving nuclei (i.e. Pb-Pb collisions) introduce nuclear effects
and require more detailed corrections. However, this is still an artificial omission, and
reweighting against these data sets will improve the quality of the FF fit.

46



Chapter 6

Conclusion

In this paper, the specific methods to link theoretical calculations, experimental data,
and numeric computations of distribution functions are discussed, so that a researcher
unfamiliar with the material may understand the internal behavior of modern PDF and
FF programs (and a dedicated researcher may imagine how to produce such programs
themselves). Emphasis is placed upon fragmentation functions, which are the subject
of analysis for reweighting. However, it is necessary to identify their similarities and
differences with the more abundant parton distribution functions, as well as the specifics
of their treatment in fitting. PDFs have been successfully fitted using neural networks
spanning multiple versions. FFs have only been recently fitted using neural networks,
and this is the first time charged pion FFs have been fitted against semi-inclusive hadron-
hadron collision data as well as the first time being reweighted. Still, PDF analysis serves
as a baseline to compare this FF analysis.

Reweighting showed to be a useful technique for incorporating new data into a previously
fitted FF set. As expected, it improved the fit against the total experimental data, and
tended to improve individual fits for each ensemble replica. Unweighting the reweighted
ensemble was successful in reproducing the probability distribution of the ensemble while
reducing the ensemble size to the one predicted by Shannon information entropy.

Surprisingly, the original SIA and SIDIS fit was capable of reproducing most of the pp-
collision data, including in the gluon partonic dominance range. Instead, the quark FFs
received the greatest constraints under the new data. The high energy (> 1 TeV) and
high-pT (& 20 GeV) range is the only part to be noticeably affected through reweighting,
but is under-sampled in the experimental data. Future fittings should focus on data in
the region to test whether hadron-hadron data does actually constrain FFs here.

Finally, the determination of FFs of the light hadrons is necessary to give accurate deter-
minations of other topics of research, such as transverse-momentum-dependent distribu-
tions (TMDs) [8]. Parton in this paper are assumed to be collinear with the hadron, but
in general they may carry a non-vanishing momentum transverse to the hadron. TMD
FFs rely upon collinear FFs, so the accurate determination of collinear FFs will improve
the fit of TMD FFs.
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Appendix A

Distribution Function Distances

The distance between distribution functions is defined for reweighted distribution func-
tions in [15]. The measurement is defined to determine if the same underlying distribution
(i.e. the true physical distribution) generates both sets. A distance below approximately
2.3 at a point indicates the functions are generated by the same underlying distribution
with about 90% confidence. The same applies to the variance of the distributions. Unlike
the methods in the reference, the averages were not taken from random subsets of the
ensemble since the MAPFF ensemble was twice as large as the NNPDF ensemble. Figure
A.1 shows the distance between the original and reweighted FFs, as well as the distance
between their uncertainties. The vast majority of the distribution functions lie within
the 90% confidence interval, and what parts do no lie close to the boundary. Thus the
original and reweighted distributions are very likely generated by the same underlying
physical distribution.

Figure A.2 is the same analysis except between the reweighted and unweighted distribu-
tions. Again for the same reasons, the distributions are very likely generated by the same
underlying physical distribution.

Because the corresponding ratio plots of the above comparisons show the central values
are well encapsulated in the variance, the fact they’re generated by the same underly-
ing distribution may be concluded directly from the plots. The analysis of distances is
included here for completeness.
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Figure A.1: Distance of original and reweighted FFs and their uncertainties at µ = 5GeV .
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Figure A.2: Distance between weighted and unweighted distributions at µ = 5GeV .
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Appendix B

χ2 Scale Estimation

The probability density P(α) is a measure of consistency of the reweighting [15], where
α rescales the replica χ2

k values by χ2
k/α

2. Reweighting by this new χ2
k value for each

replica quantifies the underestimation of uncertainty in the χ2 analysis. A peak near one,
as shown in B.1, indicates the uncertainties are well estimate by the reweighting.
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Figure B.1: Probability density of rescaling parameter α.
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Appendix C

Code

All code, excluding external libraries, is documented and made available at the following
GitHub repository:

https://github.com/Hollenbeck-Hayden/MSc colliding partons.git

Build instructions, including external dependencies, is listed in the repository documen-
tation. An instance of the data generated and used in this report is provided, including an
unweighted fragmentation function set in an LHAPDF compatible format. Instructions
for how to include new data sets are also provided.
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[27] S. Acharya, D. Adamová, S. P. Adhya, A. Adler, J. Adolfsson, M. M. Aggarwal,
G. Aglieri Rinella, M. Agnello, N. Agrawal, Z. Ahammed, and et al. Production
of charged pions, kaons, and (anti-)protons in pb-pb and inelastic pp collisions at√
snn = 5.02TeV. Physical Review C, 101(4), Apr 2020.

[28] B. Abelev, A. Abrahantes Quintana, D. Adamová, A.M. Adare, M.M. Aggarwal,
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