

PDFs WITH 1% ACCURACY

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

IRN TERASCALE MEETING

LPC-CLERMONT, NOV. 22, 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

PDFs WITH 1% ACCURACY

THE NNPDF COLLABORATION

RICHARD D. BALL, STEFANO CARRAZZA, JUAN CRUZ-MARTINEZ, LUIGI DEL DEBBIO, STEFANO FORTE, TOMMASO GIANI, SHAYAN IRANIPOUR, ZAHARI KASSABOV, JOSE I. LATORRE, EMANUELE R. NOCERA, ROSALYN L. PEARSON, JUAN ROJO, ROY STEGEMAN, CHRISTOPHER SCHWAN, MARIA UBIALI, CAMERON VOISEY, MICHAEL WILSON

AMSTERDAM-CAMBRIDGE-EDINBURGH-INFN-MILAN-NIKHEF-SINGAPORE

IRN TERASCALE MEETING

LPC-CLERMONT, NOV. 22, 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

SUMMARY

NNPDF4.0

- DATA
- THEORY
- METHODOLOGY
- DATASET SELECTION
- UNCERTAINTIES
- VALIDATION
- STABILITY
- DELIVERY

DATA

- ABOUT 50 NEW DATASETS & 400 EXTRA DATAPOINTS
- FULL DIS AND FT DY DATASET
 - AS IN NNPDF3.1: FINAL HERA, NMC, BCDMS, CHORUS, NUTEV
 - NOW ALSO NOMAD NEUTRINO
 - SEAQUEST DY
- FULL 7 TEV AND 8 TEV DATASET & EXTENSIVE USE OF 13 TEV DATA:
 - W, Z production: rapidity distributions, asymmetries,
 - $Z p_T$ DISTRIBUTIONS
 - TOP PAIR PRODUCTION: ALL AVAILABLE DISTRIBUTIONS
 - SINGLE-INCLUSIVE JETS
- SEVERAL NEW PROCESSES:
 - PROMPT PHOTON
 - SINGLE TOP
 - DIJETS
 - HERA JETS

TYPICAL PDF DETERMINATION: $\sim 10^{10}$ predictions needed

LHC DATA

LHCB

Data set	NNPDF4.0	NNPDF3.1	ABMP16	CT18	MSHT20
LHCb Z 940 pb	1	1	×	×	1
LHC b $Z \to ee$ 2 fb	1	1	1	1	1
LHC b $W,Z \to \mu$ 7 TeV	1	1	1	1	1
LHC b $W\!,Z\to\mu$ 8 TeV	1	 Image: A second s	1	1	 Image: A second s
LHC b $Z \to \mu \mu, ee$ 13 TeV	1	×	×	×	×

ATLAS

Data set	NNPDF4.0	NNPDF3.1	ABMP16	CT18	MSHT20
ATLAS W, Z 7 TeV (2010)	1	1	1	1	1
ATLAS W, Z 7 TeV (2011)	1	1	×	1	1
ATLAS low-mass DY 7 TeV	1	1	×	×	×
ATLAS high-mass DY 7 TeV	1	1	×	×	1
ATLAS W 8 TeV	1	×	×	×	1
ATLAS DY 2D 8 TeV	1	×	×	×	1
ATLAS high-mass DY 2D 8 TeV	1	×	×	×	1
ATLAS $\sigma_{W,Z}$ 13 TeV	1	×	1	×	×
ATLAS W^+ +jet 8 TeV	1	×	×	×	1
ATLAS $Z p_T$ 8 TeV	1	1	×	1	1
ATLAS σ_{tt}^{tot} 7, 8 TeV	1	1	1	×	×
ATLAS σ_{tt}^{tot} 13 TeV	1	1	1	×	×
ATLAS $t\bar{t}$ lepton+jets 8 TeV	1	1	×	1	1
ATLAS $t\bar{t}$ dilepton 8 TeV	1	×	×	×	1
ATLAS single-inclusive jets 7 TeV, $R=0.6$	×	1	×	1	1
ATLAS single-inclusive jets 8 TeV, $R=0.6$	1	×	×	×	×
ATLAS dijets 7 TeV, R=0.6	1	×	×	×	×
ATLAS direct photon production 13 TeV	1	×	×	×	×
ATLAS single top R_t 7, 8, 13 TeV	1	×	1	×	×
ATLAS single top diff. 7, 8 TeV	1	×	×	×	×
ATLAS single top diff. 8 TeV	1	×	×	×	×

• CUTOFF DATE AROUND 06/2020

• DIJETS NOW INCLUDED ALONG WITH JETS CANNOT INCLUDE SIMULTANEOUSLY FROM SAME UNDERLYING DATASET CMS

Data set	NNPDF4.0	NNPDF3.1	ABMP16	CT18	MSHT20
CMS W electron asymmetry 7 TeV	1	1	×	1	1
CMS W muon asymmetry 7 TeV	1	1	1	1	×
CMS Drell-Yan 2D 7 TeV	1	1	×	×	1
CMS W rapidity 8 TeV	1	1	1	1	1
CMS $Z p_T$ 8 TeV	1	1	×	1	×
CMS $W + c$ 7 TeV	1	1	×	×	1
CMS $W + c$ 13 TeV	1	×	×	×	×
CMS single-inclusive jets 2.76 TeV	×	1	×	×	1
CMS single-inclusive jets 7 ${\rm TeV}$	×	1	×	1	1
CMS dijets 7 TeV	1	×	×	×	×
CMS single-inclusive jets 8 TeV	1	×	×	1	1
CMS 3D dijets 8 TeV	×	×	×	×	×
CMS σ_{tt}^{tot} 5 TeV	1	×	1	×	×
CMS σ_{tt}^{tot} 7, 8 TeV	1	1	1	×	1
CMS σ_{tt}^{tot} 13 TeV	1	1	1	×	×
CMS $t\bar{t}$ lepton+jets 8 TeV	1	1	×	×	1
CMS $t\bar{t}$ 2D dilepton 8 TeV	1	×	×	1	1
CMS $t\bar{t}$ lepton+jet 13 TeV	1	×	×	×	×
CMS $t\bar{t}$ dilepton 13 TeV	1	×	×	×	×
CMS single top $\sigma_t + \sigma_{\bar{t}}$ 7 TeV	1	×	1	×	×
CMS single top R_t 8, 13 TeV	1	×	1	×	×

ELECTROWEAK CORRECTIONS

- PineAPPL FAST INTERFACE TO Madgraph5_aMC@NLO AVAILABLE (Schwan, Carrazza, Nocera, Zaro 2020)
 ⇒ FULL NLO EW+QCD POSSIBLE
- DATA W/O FSR & PHOTON-INITIATED SUBTRACTION OFTEN NOT AVAILABLE
- CURRENTLY USED FOR DATASET SELECTION: \Rightarrow DISCARDED IF EW CORRNS EXCEED THRESHOLD

NUCLEAR CORRECTIONS

- INCLUDED AS CONTRIBUTION TO COVARIANCE MATRIX (FULLY CORRELATED) (Ball, Nocera, Pearson, 2019)
- COMPUTED AS SHIFT BETWEEN NUCLEAR & STANDARD PDF
- DEUTERIUM PDF DETERMINED FROM SELF-CONSISTENT NNPDF FIT (Ball, Nocera, Pearson, 2019)
- NUCLEAR PDFS FROM NNPDF2.0 (Abdul Khalek, Ethier, Rojo, van Weelden, 2020)

PDF POSITIVITY & INTEGRABILITY

- MS PDFs ARE NON-NEGATIVE! (Candido, Hekhorn, Forte, 2020)
- PDF POSITIVITY IMPOSED (PREVIOUSLY: OBSERVABLE POSITIVITY) \Rightarrow SMALLER LARGE x UNCERTAINTIES
- SEA NONSINGLET COMBINATIONS INTEGRABLE: GOTTFRIED $u + \bar{u} - (d + \bar{d})$ STRANGENESS $u + \bar{u} + (d + \bar{d}) - 2(s + \bar{s})$ \Rightarrow SMALLER SMALL x UNCERTAINTIES

METHODOLOGY

THE NNPDF CODE STRUCTURE

- MODULAR PYTHON-BASED CODE
- HIGH DEGREE PARALLELIZATION & HARDWARE ACCELERATION

AVERAGE FITTING TIME PER REPLICA AND USE OF RESOURCES	
SAME DATASET FOR OLD AND NEW METHODOLOGIES IN CPU AND GPU	
CPU: INTEL(R) CORE(TM) 17-4770 AT 3.40GHZ; GPU: NVIDIA TITAN	V

	NNPDF31 CODEBASE	NNPDF40 CODEBASE IN CPU	NNPDF40 CODEBASE IN GPU
TIME	15.2 н.	38 ± 5 Min.	6.6 MIN.
RAM USE	1.5 GB	6.1 GB	NA

MINIMIZATION AND CROSS-VALIDATION

- DATA REPLICAS \Rightarrow PDF REPLICAS
- EACH PDF REPLICA: PREPROCESSED NEURAL NET
- NEURAL NET \Rightarrow OBSERVABLES
- RANDOM TRAINING-VALIDATION SPLIT, χ^2 to training data replicas minimized
- TRAINING STOPS IF VALIDATION χ^2 GROWS FOR A WHILE (PATIENCE)
- LOWEST VALIDATION $\chi^2 \Rightarrow {\rm OPTIMAL}\; {\rm FIT}$

HYPEROPTIMIZATION

- PARAMETRIZATION AND MINIMIZATION PARAMETERS VARIED
- SCAN OF PARAMETER SPACE
- BAYESIAN UPDATING LEADS TO BEST METHODOLOGY

K-FOLDING

	Fold 1	
CHORUS σ_{CC}^{ν}	HERA I+II inc NC e^+p 920 GeV	BCDMS p
LHCb Z 940 pb	ATLAS W, Z 7 TeV 2010	CMS Z p_T 8 TeV (p_T^{ll}, y_{ll})
DY E605 σ_{DY}^{p}	CMS Drell-Yan 2D 7 TeV 2011	CMS 3D dijets 8 TeV
ATLAS single- $\bar{t} y$ (normalised)	ATLAS single top R_t 7 TeV	CMS $t\bar{t}$ rapidity $y_{t\bar{t}}$
CMS single top $R_t \ 8 \ {\rm TeV}$		
	Fold 2	
HERA I+II inc CC e^-p	HERA I+II inc NC e^+p 460 GeV	HERA comb. $\sigma_{b\bar{b}}^{red}$
NMC p	NuTeV σ_c^p	LHCb $Z \rightarrow ee~2$ fb
CMS W asymmetry 840 pb	ATLAS Z p_T 8 TeV (p_T^{ll}, M_{ll})	D0 $W \rightarrow \mu\nu$ asymmetry
DY E886 σ_{DY}^p	ATLAS direct photon 13 TeV	ATLAS dijets 7 TeV, R=0.6
ATLAS single antitop y (normalised)	CMS $\sigma_{tt}^{\rm tot}$	CMS single top $\sigma_t + \sigma_{\bar{t}}$ 7 TeV
	Fold 3	
HERA I+II inc CC e^+p	HERA I+II inc NC e^+p 575 GeV	NMC d/p
NuTeV σ_c^{ν}	LHCb $W, Z \rightarrow \mu$ 7 TeV	LHCb $Z \rightarrow ee$
ATLAS W, Z 7 TeV 2011 Central selection	ATLAS W^+ +jet 8 TeV	ATLAS HM DY 7 TeV
CMS W asymmetry 4.7 fb	DYE 866 $\sigma_{DY}^d / \sigma_{DY}^p$	CDF Z rapidity (new)
ATLAS σ_{tt}^{tot}	ATLAS single top y_t (normalised)	CMS σ_{tt}^{tot} 5 TeV
CMS $t\bar{t}$ double diff. $(m_{t\bar{t}},y_t)$		
	Fold 4	
CHORUS σ_{CC}^{p}	HERA I+II inc NC e^+p 820 GeV	LHC b $W,Z \to \mu$ 8 TeV
LHCb $Z \rightarrow \mu \mu$	ATLAS W, Z 7 TeV 2011 Fwd	ATLAS W ⁻ +jet 8 TeV
ATLAS low-mass DY 2011	ATLAS Z p_T 8 TeV (p_T^{ll}, y_{ll})	CMS W rapidity 8 TeV
D0 Z rapidity	CMS dijets 7 TeV	ATLAS single top y_t (normalised
ATLAS single top R_t 13 TeV	CMS single top R_t 13 TeV	

- HYPEROPTIMIZATION \Rightarrow OVERFITTING (χ^2 TOO GOOD)
- CHECK GENERALIZATION POWER: K-FOLDING
 - DIVIDE DATA IN FOLDS
 - EXCLUDE ONE FOLD IN TURN FROM FIT
 - Optimize on the χ^2 of the excluded folds
 - BEST AVERAGE OR BEST WORST

THE ML METHODOLOGY

Parameter	NNPDF4.0	L as in Eq. (3.21)	Flavour basis Eq. (3.2)
Architecture	25-20-8	70-50-8	7-26-27-8
Activation function	hyperbolic tangent	hyperbolic tangent	sigmoid
Initializer	glorot_normal	glorot_uniform	glorot_normal
Optimizer	Nadam	Adadelta	Nadam
Clipnorm	6.0×10^{-6}	5.2×10^{-2}	2.3×10^{-5}
Learning rate	2.6×10^{-3}	2.5×10^{-1}	2.6×10^{-3}
Maximum $\#$ epochs	17×10^3	45×10^{3}	45×10^{3}
Stopping patience	10% of max epochs	12% of max epochs	16% of max epochs
Initial positivity $\Lambda^{(\rm pos)}$	185	106	2
Initial integrability $\Lambda^{(\rm int)}$	10	10	10

HYPEROPTIMIZED PARAMETERS

- HYPEROPT ADAPTS TO EXTERNAL CHOICES (E.G. PARAMETRIZATION BASIS)
- SIMILAR RESULTS CAN BE OBTAINED WITH RATHER DIFFERENT SETTINGS
- ~ 800 free parameters

DATASET SELECTION

$\begin{array}{c} \textbf{DATA "TENSION"} \\ \textbf{PROBLEMATIC DATA} \\ \frac{\chi^2 - 1}{\sigma_{\chi^2}} \gg 1 \Leftrightarrow \text{POOR FIT QUALITY} \end{array}$

- MISSING HIGHER-ORDER CORRECTIONS
- NO RESUMMATION WHERE NEEDED
- ILL-CONDITIONED COVARIANCE MATRIX
- EXPERIMENTAL ISSUES

THE WEIGHTED FIT METHOD

- LARGE FROBENIUS NUMBER OF COVMAT (EIGEN-VALUES TOO SMALL)
- REPEAT GLOBAL FIT WITH LARGE WEIGHT GIVEN TO EACH PROBLEMATIC DATASET IN TURN

- χ^2 OF DATASET
 - − UNCHANGED \Rightarrow INTERNAL INCONSISTENCY
 - **DECREASES** \Rightarrow TENSION
- GLOBAL χ^2
 - UNCHANGED \Rightarrow CONSISTENT, KEEP
 - − INCREASES \Rightarrow INSONSISTENT, DISCARD

UNCERTAINTIES

UNCERTAINTIES: FROM NNPDF3.1...

- TYPICAL UNCERTAINTIES IN DATA REGION: SINGLET $\sim 3\%$, NONSINGLET $\sim 5\%$
- DATA REGION: $10^2 \lesssim M_X \lesssim 10^3$ TeV, $-2 \lesssim y \lesssim 2$

UNCERTAINTIES: ...TO NNPDF4.0

- TYPICAL UNCERTAINTIES IN DATA REGION: SINGLET $\sim 1\%$, NONSINGLET $\sim 2-3\%$
- DATA REGION: $10 \lesssim M_X \lesssim 3 \cdot 10^3$ TeV, $-4 \lesssim y \lesssim 4$

VALIDATION

CLOSURE TESTS FAITHFUL UNCERTAINTIES IN DATA REGION?

- Assume "true" underlying PDF \Rightarrow E.G. some random PDF replica
- GENERATE DATA DISTRIBUTED ACCORDING TO EXPERIMENTAL COVARIANCE MATRIX
- RUN WHOLE METHDOLOGY ON THESE DATA
- DO STATISTICS ON "RUNS OF THE UNIVERSE", POSSIBLE THANKS TO EFFICIENT METHDOLOGY: COMPARE TO TRUE PDFS, OR TO TRUE VALUES OF OBSERVABLES (NOT FITTED)
 - BIAS/VARIANCE: MEAN SQUARE DEVIATION WR TO TRUTH VS UNCERTAINTY
 - is truth within one sigma 68% of times?

0.40	deviation from truth	Dataset	$\sqrt{\text{bias/variance}}$	$\xi_{1\sigma}^{(m data)}$
0.30		DY	0.99 ± 0.08	0.69 ± 0.02
0.25		Top-pair	0.75 ± 0.06	0.75 ± 0.03
0.20		Jets	1.14 ± 0.05	0.63 ± 0.03
0.15		Dijets	0.99 ± 0.07	0.70 ± 0.03
0.10		Direct photon	0.71 ± 0.06	0.81 ± 0.03
		Single top	0.87 ± 0.07	0.69 ± 0.04
0.00	-4 -2 0 2 4 Difference to underlying prediction	Total	1.03 ± 0.05	0.68 ± 0.02

RESULTS

FUTURE TESTS FAITHFUL UNCERTAINTIES IN EXTRAPOLATION?

- DETERMINE PDFs FROM A SUBSET OF CURRENT DATA: "PRE-HERA", "PRE-LHC",...
- COMPUTE χ^2 TO THE FULL CURRENT DATASET:
 - WITHOUT PDF UNCERTAINTIES \Rightarrow IF \gg 1, MISSING INFORMATION
 - with PDF uncertainty \Rightarrow if \sim 1, missing info reproduced by uncertainty

VALENCE: PRE-HERA VS

Process	PRE-HERA	PRE-LHC	3.1-like	4.0-glob
FT DIS (NC)	1.04	1.17	1.17	1.26
FT DIS (CC)	0.80	0.86	0.88	0.90
FT DY	0.93	1.27	1.43	1.59
HERA	24.01/ 1.12	1.22	1.21	1.21
Coll. DY (Tev.)	5.31/ 1.08	0.96	0.95	1.13
Coll. DY (LHC)	15.50/ 1.37	2.64/1.54	1.39	1.54
TOP QUARK	23.35/1.08	1.29/ 0.86	0.82	0.98
JETS	6.18/ 1.21	3.66/ 1.29	2.07/1.37	1.26
TOTAL	9.70	1.44	1.22	1.17

 χ^2 WITHOUT/WITH PDF UNC.

STABILITY

NNPDF4.0 vs. NNPDF3.1

- FULL BACKWARD COMPATIBILITY
- SUBSTANTIAL REDUCTION IN UNCERTAINTY

NNPDF4.0 vs DIS-only

- DIS-ONLY FIT NO LONGER COMPETITIVE
- HADRONIC DATA NEEDED FOR PRECISION

NNPDF4.0 VS COLLIDER ONLY

- COLLIDER ONLY COMPETITIVE!
- ONLY DEUTERIUM FIXED-TARGET DATA STILL RELEVANT

AN OPEN SOURCE CODE!

- THE FULL NNPDF CODE HAS BEEN MADE PUBLIC!
- INCLUDING HYPEROPTIMIZATION, EVOLUTION, THEORY, FITTING, VISUALIZATION •
- FULLY DOCUMENTED CODE •

Fig. 2.1. Workflow for an NNPDF fit

OUTLOOK

THE ACCURACY CHALLENGE

- AT 1%, NOT ALL REDUCED DATASETS AGREE
- MUST INCLUDE MISSING HIGHER-ORDER CORRECTION UNCERTAINTIES
- INCLUDE **EW** CORRECTIONS
- GO BEYOND K-FACTORS
- WEIGHT SMALL DATASETS

THE ACCURACY CHALLENGE

- AT 1%, NOT ALL REDUCED DATASETS AGREE
- MUST INCLUDE MISSING HIGHER-ORDER CORRECTION UNCERTAINTIES
- INCLUDE **EW** CORRECTIONS
- GO BEYOND K-Factors
- WEIGHT SMALL DATASETS

STAY TUNED FOR NNPDF4.1!!

PROTON STRUCTURE AS AN AI PROBLEM: NNPDF

AI FOR PDFS: THE NNPDF APPROACH THE FUNCTIONAL MONTE CARLO

REPLICA SAMPLE OF FUNCTIONS ⇔ PROBABILITY DENSITY IN FUNCTION SPACE KNOWLEDGE OF LIKELIHHOD SHAPE (FUNCTIONAL FORM) NOT NECESSARY

FINAL PDF SET: $f_i^{(a)}(x,\mu)$; i =up, antiup, down, antidown, strange, antistrange, charm, gluon; $j = 1, 2, ... N_{rep}$

ARTIFICIAL INTELLIGENCE NEURAL NETWORKS

ARCHITECTURE

NNPDF: 2-5-3-1 NN FOR EACH PDF: $37 \times 8 = 296$ parameters

SUPERVISED LEARNING GENETIC ALGORITHMS

- BASIC IDEA: RANDOM MUTATION OF THE NN PARAMETER
- SELECTION OF THE FITTEST

NEURAL LEARNING

- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?

NEURAL LEARNING

- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?

NEURAL LEARNING

- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GO!

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

TOO LATE!

LEARNING THE METHODOLOGY

THE N3FIT PROJECT

HOW DO WE KNOW THAT THE METHODOLOGY IS THE BEST? "ACCUMULATED WISDOM" INEFFICIENT AND SLOW

CHANGE OF PHILOSOPHY \Rightarrow DETERMINISTIC MINIMIZATION (GRADIENT DESCENT) GO FOR THE ABSOLUTE MINIMUM, AND (HYPER)OPTIMIZE

- PYTHON-BASED KERAS + TENSORFLOW FRAMEWORK
- EACH BLOCK INDEPENDENT LAYER
- CAN VARY ALL ASPECTS OF METHODOLOGY

- SCAN PARAMETER SPACE
- OPTIMIZE FIGURE OF MERIT: VALIDATION χ^2
- BAYESIAN UPDATING

- NNPDF3.1: WIGGLES: FINITE SIZE \Rightarrow WILL GO AWAY AS N_{rep} GROWS
- N3FIT: WIGGLY PDFS \Leftrightarrow OVERFITTING \Rightarrow WILL NOT GO AWAY ($\chi^2_{\text{train}} \ll \chi^2_{\text{valid}}$!!)

WHAT HAPPENED?

CROSS-VALIDATION SELECTS THE OPTIMAL MINIMUM

WHAT HAPPENED?

HYPEROPTIMIZATION

- NNPDF3.1: WIGGLES: FINITE SIZE \Rightarrow WILL GO AWAY AS N_{rep} GROWS
- N3FIT: WIGGLY PDFS \Leftrightarrow OVERFITTING \Rightarrow WILL NOT GO AWAY ($\chi^2_{\text{train}} \ll \chi^2_{\text{valid}}$!!)
- CORRELATIONS BETWEEN TRAINING AND VALIDATION DATA

MACHINE LEARNING THE SOLUTIC

TUNED HYPEROPTIMIZATION

THE TEST SET METHOD

- COMPLETELY UNCORRELATED TEST SET
- OPTIMIZE ON WEIGHTED AVERAGE OF VALIDATION AND TEST \Rightarrow NO OVERLEARNING

- NO OVERFITTING
- COMPARED TO NNPDF3.1
 - MUCH GREATER STABILITY \Rightarrow FEWER REPLICAS FOR EQUAL ACCURACY
 - UNCERTAINTIES SOMEWHAT REDUCED