

New Software Tools for DGLAP and DIS

Alessandro Candido, <u>Felix Hekhorn</u>, Giacomo Magni DIS 2022, Santiago di Compostela, May 2022

Acknowledgement: This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement number 740006.

1. EKO [arXiv: 2202.02338]

- 2. Intrinsic Charm in the Proton [submitted]
- 3. yadism [in preparation]

4. Theory Prediction Pipeline

1. EKO [arXiv: 2202.02338]

DGLAP:

$$\mu_F^2 \frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mu_F^2}(\mu_F^2) = \mathbf{P}(\mathbf{a}_s(\mu_R^2), \mu_F^2) \otimes \mathbf{f}(\mu_F^2)$$

as operator equation for the evolution kernel operator (EKO) E:

$$\mu_F^2 \frac{\mathrm{d}}{\mathrm{d}\mu_F^2} \mathbf{E}(\mu_F^2 \leftarrow \mu_{F,0}^2) = \mathbf{P}(\mathbf{a}_s(\mu_R^2), \mu_F^2) \otimes \mathbf{E}(\mu_F^2 \leftarrow \mu_{F,0}^2)$$

with

$$\mathbf{f}(\mu_F^2) = \mathbf{E}(\mu_F^2 \leftarrow \mu_{F,0}^2) \otimes \mathbf{f}(\mu_{F,0}^2)$$

- independent of boundary condition \rightarrow PDF fitting
- Mellin (*N*-) space solution, but momentum (*x*-) space delivery via piecewise Lagrange-interpolation
- Intrinsic heavy quark distributions \rightarrow see part 2
- Backward VFNS evolution (i.e. across thresholds and with intrinsic) \rightarrow see part 2

EKO Project Management

Abd and the Manual American Street		· · · · · · · · · · · · · · · · · · ·	Evolution Kernel Operations	
		a sources of damages	🖉 sincreadtheisen.in	
- Auro	Dobug workflow: remove debug leftover	z monthe ago	(000) (1910) (10-resp1910)	
berdinaka	Scheichmah, AFEL, Sat, Scheiche, Jedings	ityle last month	(heat)	
6 00	equal fir also example	last month	Q2 Readme	
10	serve sore-precessly also also return	last month	OPLICIONSE	
heads -	more but as to proper locker	last month	O Jules	
D alignee	Add version mediale	4 months app	(b) 4 withing	
D pre-commit config part	Add ST152MUG bandh, update pre-commit	3 montre ago	V stolo	
Inequestion and	Lippade does in poerly setup	á morba ago		
D creationer	Lipstein zermele pare	2 montes apo	Roleases (m)	
D LORME	Initial assessed	3 prars apr	C Paper (clim)	
D PEADLE-IN	Lipdate Finalize	2 marths ago	+ 9 Infration	
D postytea	Upgrade Exercise dependency	lad month		
D garged.test	Upgrade barana dependency	lad month	Pashases	
FEAGAB.end		/	Negativegen published Mutati you thit pochoge	
	EKO		Contribution :: Contribution :: Contribution ::	
	Entronnesis (

Interpolation

demonstration: was interpolation

order to obtain the operators in an PDF independent way we use approximation theo rentiree, we define the basis grid

$$\mathbf{G} = \{x_j: 0 < x_j <= 1, j = 0, \dots, N_{grid} - 1\}$$

from which we define our interpola

$$f(x)\sim f(x)=\sum_{j=0}^{r}f(x_j)p_j(x)$$

use each grid paint x_j has an associated interpolation polynomial $p_j(x)$ (represented by an interpolation, function). We interpolate in $\ln(x)$ using Lagrange interpolation among the areast $N_{dayras} + 1$ points, which renders the $p_j(x)$: polynomials of order $O(\ln^{N_{dayras}}(x))$.

Algorithm

rst, we split the interpolation region into several areas (represented by -nin-interpolation-drue), Nich are bound by the grid points:

 $A_j = \{x_j, x_{j+1}\}, \text{ for } j = 0, ..., N_{grid} - 2$

Note, that we include the right border point into the definition, but not the left which keeps all areas deplete. This assumption is based on the physical fact, that PDPs do have a fixed upper bound (z = 1), but no fixed levere bound.

cond, we define the interpolation blocks, which will build the interpolation polynomials and stain the needed amount of noints:

- Fully open source: https://github.com/N3PDF/eko
- Written in Python
- Fully documented: https://eko.readthedocs.io/
- A cornerstone in a new theory prediction suite \rightarrow see part 4

LHA benchmark [G+02][D+05]:

 \Rightarrow EKO is working!

EKO Snapshot: $\Sigma \leftarrow \Sigma$

FFNS LO LHA settings: $\Sigma(Q^2 = 10^4 \, {\rm GeV}^2) \leftarrow \Sigma(Q^2 = 2 \, {\rm GeV}^2)$

xgrid: $10^{-7}(0) \rightarrow \log \rightarrow \lim \rightarrow 1(59)$, axis: $x \sim \text{input } (2 \text{ GeV}^2)$, $y \sim \text{output } (10^4 \text{ GeV}^2)$

2. Intrinsic Charm in the Proton [submitted]

Intrinsic Charm: Strategy

- see poster by G. Magni
- based on NNPDF4.0 [arxiv:2109.02653] see talk by R. Stegeman

For (forward) evolution across a matching scale μ_h^2 :

$$\begin{split} \tilde{\mathbf{f}}^{(n_f+1)}(\mu_{F,1}^2) &= \tilde{\mathbf{E}}^{(n_f+1)}(\mu_{F,1}^2 \leftarrow \mu_h^2) \mathbf{R}^{(n_f)} \tilde{\mathbf{A}}^{(n_f)}(\mu_h^2) \tilde{\mathbf{E}}^{(n_f)}(\mu_h^2 \leftarrow \mu_{F,0}^2) \\ &\times \tilde{\mathbf{f}}^{(n_f)}(\mu_{F,0}^2) \end{split}$$

with $\mathbf{R}^{(n_f)}$ a flavor rotation matrix and $\tilde{\mathbf{A}}^{(n_f)}(\mu_h^2)$ the operator matrix elements (partially known up to N³LO)

For (forward) evolution across a matching scale μ_h^2 :

$$\begin{split} \tilde{\mathbf{f}}^{(n_f+1)}(\mu_{F,1}^2) &= \tilde{\mathbf{E}}^{(n_f+1)}(\mu_{F,1}^2 \leftarrow \mu_h^2) \mathbf{R}^{(n_f)} \tilde{\mathbf{A}}^{(n_f)}(\mu_h^2) \tilde{\mathbf{E}}^{(n_f)}(\mu_h^2 \leftarrow \mu_{F,0}^2) \\ &\times \tilde{\mathbf{f}}^{(n_f)}(\mu_{F,0}^2) \end{split}$$

with $\mathbf{R}^{(n_f)}$ a flavor rotation matrix and $\tilde{\mathbf{A}}^{(n_f)}(\mu_h^2)$ the operator matrix elements (partially known up to N³LO)

for backward evolution:

- invert $\tilde{\mathbf{E}}^{(n_f)}$: simple
- invert $\mathbf{R}^{(n_f)}$: simple
- invert $\tilde{\mathbf{A}}^{(n_f)}$: expanded or exact

Intrinsic Charm: PDF plot

- in **3FNS** valence-like peak is still present
- for $x \le 0.2$ the perturbative uncertainties are quite large
- the carried momentum fraction is within 1%

• match better recent LHCb Z+c measurement [PRL128-082001]

Intrinsic Charm: LHCb and Significance

- match better recent LHCb Z+c measurement [PRL128-082001]
- we find a 3σ evidence of intrinsic charm
- result is stable with mass variation, dataset variation

3. yadism [in preparation]

yadism Physics Features

- DIS coefficient function database
- independent of boundary condition \rightarrow PDF fitting
- separate features: TMC, FNS, interpolation
- constant benchmark against APFEL (eventually discovering minor bugs there)

same improvement in terms of project management as EKO!

• implemented coefficient functions:

	light	heavy	intrinsic
NC	$O(a_s^2)$ [VVM05,MVV05,MV00]	$O(a_s^2)$ [Hek19]	$O(a_s)$ [KS98]
CC	$O(a_s^2)$ [MRV08,MVV09]	$O(a_s)$ [GKR96]	$O(a_s)$ [in prep.]

- for CC intrinsic: see talk by K. Kudashkin
- implemented flavor number schemes: FFNS, ZM-VFNS, FONLL

Comparison yadism against APFEL

green, "pineappl" = yadism vs. orange, "old" = APFEL

4. Theory Prediction Pipeline

- We're about to develop a new pipeline for theory predictions around PineAPPL [arXiv:2008.12789]
- both, EKO and yadism, are interfaced with PineAPPL
- PineAPPL also has interfaces to mg5amc@nlo, APPLgrid, FastNLO
- aim: produce FastKernel tables used in PDF fitting

Thank you!

5. Backup slides

EKO APFEL benchmark

EKO PEGASUS benchmark

EKO LHA benchmark: g and Σ

EKO LHA benchmark: V and V_3

EKO LHA benchmark: T_3 and T_8

EKO LHA benchmark: T_{15} and T_{24}

EKO Interpolation Error

EKO Snapshot $V \leftarrow V$

EKO Backward Evolution

IC - all uncertainties combined

IC - model comparison

[BHPS] or [Meson/Baryon Cloud Model]

IC - dataset variation

IC - mass variation

Comparison yadism against APFEL

Comparison yadism against APFEL

