Introduction

Do heavy quarks contribute to the proton PDFs at low scales?

We look a the charm PDF in NNPDF4.0 [1]:

• The charm PDF is parametrized as an independent combination at scale $Q = 1.65 \ GeV$, and $n_f = 4$ (4FNS):

$$xc^{+}(x,Q_{0},\Theta) = \frac{1}{4} \left(x^{\alpha_{\Sigma}}(1-x)^{\beta_{\Sigma}} N N_{\Sigma}(x,\Theta) - x^{\alpha_{T_{15}}}(1-x)^{\beta_{T_{15}}} N N_{T_{15}}(x,\Theta) \right)$$
(1)

- We always assume: $c(x,Q) = \overline{c}(x,Q) \rightarrow c^- = 0.$
- At the fitting scale, we observe that constrain are coming mainly from collider data. NNPDF4.0 is consistent with EMC data.

Fitted or Pertubative?

the initial boundary conditions on gluons and light quarks.

- PDF uncertainties are clearly not the dominant source of uncertainties. Needs to **estimate MHOU**. PC is also highly correlated to the mass value.
- Fitted charm is favored by data: $\chi^2_{fitted ch} = 1.17, \chi^2_{pert ch} = 1.19$ mainly due to a worsening of the LHC W, Z and top pair data sets.
- Fully perturbative charm is not compatible with the fitted one especially at large x, even is MHOU (N 3 LO - NNLO) are considered.

From 4FNS to 3FNS

https://nnpdf.mi.infn.it/, https://github.com/N3PDF/eko

Intrinsic Charm in the Proton R.D. Ball¹, A. Candido², J. Cruz-Martinez², S. Forte², T. Giani³, F. Hekhorn², K. Kudashkin², G. Magni³, J. Rojo³

¹University of Edinburgh ²Università di Milano and INFN, Sezione di Milano ³Vrije Universiteit Amsterdam and Nikhef Theory Group

The Intrinsic Charm

- Below the charm mass scale the perturbative charm is vanishing by definition.
- Fitted charm in 4FNS contains both the intrinsic and the perturbative components.
- To obtain the Intrinsic charm (IC) we start from the fitting scale we evolve the NNPDF4.0 baseline to $Q = m_c = 1.51 \ GeV$. When passing the heavy quark threshold we need invert the matching conditions.
- The remaining part of the charm PDF is the intrinsic component, which is **scale independent**

IC stability

- IC valence-like peak at large-x is a stable feature.
- IC vanishes for $x \to 0$. In this region the effect of MHOU is large.
- IC is stable upon mass variation in the range $m_c = 1.51 \pm 0.13 \ GeV$.
- The momentum faction carried by the IC component is: $0.62 \pm (0.28_{pdf} \pm 0.54_{mhou})\%$
- In our best estimation (NNPDF4.0+EMC+LHCb Zc) we reach a 3σ local evidence.

DIS 2022, Santiago de Compostela — 2-6 May 2022

The determination of the IC can be compared to some non perturbative models:

- BHPS [2]: the proton fluctuate with to a pentaquark state $p \rightarrow uudc\bar{c}$. It assumes $c = \bar{c}$. • Meson Baryon model [3]: fluctuations to a charmed baryon plus meson state (ex: $p \rightarrow \lambda_c^+ + \bar{D_0}$). It can account for c, \bar{c} asymmetry.

Impact on LHC observables

We validate our observation of IC testing the impact on prediction for: **Z** + **c** production at LHCb [4]

- Better agreement is found with the NNPDF4.0 fitted charm especially in the forward region High correlation with the charm PDF and LHCb observable.
- Predictions are also stable upon charm mass variation
- [1] R. D. Ball et al., The Path to Proton Structure at One-Percent Accuracy, arXiv:2109.02653. [2] S. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, The intrinsic charm of the proton, Physics Letters B 93 (1980), no. 4
- 451-455.
- [3] T. J. Hobbs, J. T. Londergan, and W. Melnitchouk, Phenomenology of nonperturbative charm in the nucleon, Phys. *Rev. D* 89 (2014), no. 7 074008, [arXiv:1311.1578].
- [4] LHCb Collaboration, R. Aaij et al., Study of Z Bosons Produced in Association with Charm in the Forward Region, Phys. Rev. Lett. 128 (2022), no. 8 082001, [arXiv:2109.08084].

Comparison with models

Reasonable agreement is found with both models. However, the analysis is not yet conclusive in this respect and there are still some limitations (ex: is $c^- \neq 0$?, mass corrections)

References