The NNPDF4.0 global analysis of the proton structure

Roy Stegeman

University of Milan and INFN Milan

On behalf of the NNPDF Collaboration Based on: arXiv:2109.02653

DIS 2022, 3 May 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006.

NNPDF4.0	Data	Methodology	Stability	LHC phenomenology	Open-source code	Summary and Outlook
●O	000	0000	0000	OO	OO	OO

High-precision: gluon

$$\mathcal{L}_{ij}\left(M_X, y, \sqrt{s}\right) = \frac{1}{s} \sum_{i,j} f_i\left(\frac{M_X e^y}{\sqrt{s}}, M_X\right) f_j\left(\frac{M_X e^{-y}}{\sqrt{s}}, M_X\right)$$

How did we get here?

High-precision: singlet

$$\mathcal{L}_{ij}\left(M_X, y, \sqrt{s}\right) = rac{1}{s} \sum_{i,j} f_i\left(rac{M_X e^y}{\sqrt{s}}, M_X
ight) f_j\left(rac{M_X e^{-y}}{\sqrt{s}}, M_X
ight)$$

How did we get here?

NNPDF4.0	Data	Methodology	Stability	LHC phenomenology	Open-source code	Summary and Outlook
OO	●00	0000	0000	OO	OO	00

Data

Data from NNPDF1.0 to NNPDF4.0

The number of datasets – normally corresponding to different processes – is generally more relevant than the number of datapoints

Experimental data in NNPDF4.0

New processes:

- direct photon
- single top
- dijets
- W+jet
- DIS jet

NNPDF4.0 Data Methodology Stability LHC phenomenology Open-source code 00 000 000 00	Summary and Outlook OO
--	---------------------------

Methodology

Improved fitting methodology

- Stochastic Gradient Descent for NN training using TensorFlow
- Automated optimization of **model hyperparameters**
- Methodology is validated using closure tests (data region), future tests (extrapolation region), and parametrization basis independence

Physical constraints:

- PDF positivity
- Integrability of nonsinglet distributions (Gottfried sum rules)

$$f_i(x, Q_0) = x^{-\alpha_i} (1-x)^{\beta_i} NN_i(x)$$

Automated model selection

NNPDF aims to minimize sources of bias in the PDF:

- \bullet Functional form \rightarrow Neural Network
- Model parameters \rightarrow ?

Automated model selection

NNPDF aims to minimize sources of bias in the PDF:

- $\bullet\,$ Functional form $\to\,$ Neural Network
- $\bullet~\mbox{Model parameters} \rightarrow \mbox{Hyperoptimization}$

Scan over thousands of hyperparameter combinations and select the best one

k-fold cross-validation: used to define the reward function based on a **test dataset**

Objective function: $L = mean(\chi_1^2, \chi_3^2, \chi_2^2, \dots, \chi_k^2)$

NNPDF4.0 Data Methodology Stability LHC phenomenology Open-source code Summary and Outloo	NNPDF4.0	Data	Methodology	Stability	LHC phenomenology	Open-source code	Summary and Outlook
00 000 000 000 00 00 00 00 00 00	OO	000	0000	●000	OO	OO	

Stability

Parametrization basis independence

Evolution Basis:

 $xV(x, Q_0) \propto \text{NN}_V(x)$ $xT_3(x, Q_0) \propto \text{NN}_{T_3}(x)$ Flavour Basis: Different strategies to parametrize the quark PDF flavour combinations leave the uncertainties essentially unchanged

$$\begin{aligned} xV\left(x,Q_{0}\right) &\propto \left(\mathrm{NN}_{u}(x) - \mathrm{NN}_{\bar{u}}(x) + \mathrm{NN}_{d}(x) - \mathrm{NN}_{\bar{d}}(x) + \mathrm{NN}_{s}(x) - \mathrm{NN}_{\bar{s}}(x)\right) \\ xT_{3}\left(x,Q_{0}\right) &\propto \left(\mathrm{NN}_{u}(x) + \mathrm{NN}_{\bar{u}}(x) - \mathrm{NN}_{d}(x) - \mathrm{NN}_{\bar{d}}(x)\right) \end{aligned}$$

Impact of the new data

Individual datasets have a limited impact, but collectively they result in:

- Moderate reduction of PDF uncertainties
- Shifts in central value at the one-sigma level

Impact of the new fitting methodology

- Significant reduction of PDF uncertainties
- Good agreement between the central values

PDF uncertainties are validated using closure tests and future tests Validation tests successful for both NNPDF4.0 and NNPDF3.1

NNPDF4.0	Data	Methodology	Stability	LHC phenomenology	Open-source code	Summary and Outlook
OO	000	0000	0000	●O	OO	00
00	000	0000	0000	00		

LHC phenomenology

Implications for LHC phenomenology

Reduced luminosity uncertainties \rightarrow Reduced uncertainty at the level of observables

NNPDF4.0	Data	Methodology	Stability	LHC phenomenology	Open-source code	Summary and Outlook
OO	000	0000	0000	OO	●O	OO
00	000	0000	0000	00	●O	

Open-source code

The open-source NNPDF code

The full NNPDF code has been made public along with user friendly documentation

This includes: fitting, hyperoptimization, theory, data processing, visualization

It is possible to reproduce all results of NNPDF4.0 and more!

Eur.Phys.J.C 81 (2021) 10, 958 https://github.com/NNPDF/nnpdf https://docs.nnpdf.science

00 000 0000 000 00 •O	NNPDF4.0	Data	Methodology	Stability	LHC phenomenology	Open-source code	Summary and Outlook
	OO	000	0000	0000	OO	OO	●O

Summary and Outlook

Summary and Outlook

- NNPDF4.0 is the latest release in the NNPDF family of PDF sets
- 44 new datasets from many new processes are included
- Improved methodology with Stochastic Gradient Descent and hyperoptimization
- Validation of PDF uncertainties using closure test, future test and parametrization basis independence
- \Rightarrow NNPDF4.0 achieves a high precision over a broad kinematic range
- The current level of PDF uncertainties challenges the accuracy of theoretical predictions and demands an increased effort towards the systematic inclusion in the fit of theoretical uncertainties (nuclear, higher orders, SM parameters, ...) and higher-order QCD and EW corrections

Summary and Outlook

- NNPDF4.0 is the latest release in the NNPDF family of PDF sets
- 44 new datasets from many new processes are included
- Improved methodology with Stochastic Gradient Descent and hyperoptimization
- Validation of PDF uncertainties using closure test, future test and parametrization basis independence
- \Rightarrow NNPDF4.0 achieves a high precision over a broad kinematic range
- The current level of PDF uncertainties challenges the accuracy of theoretical predictions and demands an increased effort towards the systematic inclusion in the fit of theoretical uncertainties (nuclear, higher orders, SM parameters, ...) and higher-order QCD and EW corrections

Thank you!

Backup

Experimental data in NNPDF4.0

- 44 new datasets included
- 323 more data points in NNPDF4.0 than in NNPDF3.1
- New data is mostly from the LHC RUN II

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
ATLAS W, Z 7 TeV ($\mathcal{L} = 35 \text{ pb}^{-1}$)	[51]	1	1	1	1	1
ATLAS W, Z 7 TeV $(\mathcal{L} = 4.6 \text{ fb}^{-1})$	[52]	1	1	×	(✔)	1
ATLAS low-mass DY 7 TeV	(53)	1	1	×	(✔)	×
ATLAS high-mass DY 7 TeV	[54]	1	1	×	(✔)	1
ATLAS W 8 TeV	[79]	×	(✔)	×	×	1
ATLAS DY 2D 8 TeV	[78]	×	1	×	×	1
ATLAS high-mass DY 2D 8 TeV	(77)	×	1	×	(✔)	1
ATLAS $\sigma_{W,Z}$ 13 TeV	[81]	×	1	1	×	×
ATLAS W+jet 8 TeV	[93]	×	1	×	×	1
ATLAS Z p _T 7 TeV	(260)	(✔)	×	×	(✔)	×
ATLAS Z p _T 8 TeV	[63]	1	1	×	1	1
ATLAS $W + c$ 7 TeV	[83]	×	1	×	(✔)	×
ATLAS σ_{ll}^{104} 7, 8 TeV	(65)	1	1	1	×	×
ATLAS σ_{tt}^{tot} 7, 8 TeV	[261 - 266]	×	×	1	×	×
ATLAS σ_{tt}^{tot} 13 TeV ($\mathcal{L} = 3.2 \text{ fb}^{-1}$)	[66]	1	×	1	×	×
ATLAS $\sigma_{t\bar{t}}^{\text{tot}}$ 13 TeV ($\mathcal{L} = 139 \text{ fb}^{-1}$)	[134]	×	1	×	×	×
ATLAS σ_{tt}^{tot} and Z ratios	[267]	×	×	×	×	(✔)
ATLAS tl lepton+jets 8 TeV	[67]	1	1	×	1	1
ATLAS t dilepton 8 TeV	(89)	×	1	×	×	1
ATLAS single-inclusive jets 7 TeV, R=0.6	[73]	1	(✔)	×	1	1
ATLAS single-inclusive jets 8 TeV, R=0.6	(86)	×	1	×	×	×
ATLAS dijets 7 TeV, R=0.6	[148]	×	1	×	×	×
ATLAS direct photon production 8 TeV	[100]	×	(✔)	×	×	×
ATLAS direct photon production 13 TeV	[101]	×	1	×	×	×
ATLAS single top R_t 7, 8, 13 TeV	[94, 96, 98]	×	1	1	×	×
ATLAS single top diff. 7 TeV	[94]	×	1	×	×	×
ATLAS single top diff. 8 TeV	[96]	×	1	×	×	×

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
CMS W asym. 7 TeV $(\mathcal{L} = 36 \text{ pb}^{-1})$	[268]	×	×	×	×	1
CMS Z 7 TeV ($\mathcal{L} = 36 \text{ pb}^{-1}$)	[269]	×	×	×	×	1
CMS W electron asymmetry 7 TeV	[55]	1	1	×	1	1
CMS W muon asymmetry 7 TeV	[56]	1	1	1	1	×
CMS Drell-Yan 2D 7 TeV	[57]	1	1	×	(✔)	1
CMS Drell-Yan 2D 8 TeV	[270]	(✔)	×	×	×	×
CMS W rapidity 8 TeV	[58]	1	1	1	1	1
CMS $W, Z p_T 8$ TeV ($\mathcal{L} = 18.4$ fb ⁻¹)	[271]	×	×	×	(✔)	×
CMS $Z p_T 8$ TeV	[64]	1	1	×	(✔)	×
CMS $W + c$ 7 TeV	[76]	1	1	×	(✔)	1
CMS $W + c$ 13 TeV	[84]	×	1	×	×	(✔)
CMS single-inclusive jets 2.76 TeV	[75]	1	×	×	×	1
CMS single-inclusive jets 7 TeV	[147]	1	(✔)	×	1	1
CMS dijets 7 TeV	[74]	×	1	×	×	×
CMS single-inclusive jets 8 TeV	[87]	×	1	×	1	1
CMS 3D dijets 8 TeV	[149]	×	(✔)	×	×	×
CMS σ_{tt}^{tot} 5 TeV	[88]	×	1	×	×	×
CMS $\sigma_{t\bar{t}}^{\text{tot}}$ 7, 8 TeV	[146]	1	1	×	×	×
CMS σ_{tt}^{tot} 8 TeV	[272]	×	×	×	×	1
CMS $\sigma_{t\bar{t}}^{\text{tot}}$ 5, 7, 8, 13 TeV	[68, 273 - 281]	×	×	1	×	×
CMS σ_{tt}^{tot} 13 TeV	(69)	1	1	1	×	×
CMS t t lepton+jets 8 TeV	[70]	1	1	×	×	1
CMS $t\bar{t}$ 2D dilepton 8 TeV	(90)	×	1	×	1	1
CMS tf lepton+jet 13 TeV	[91]	×	1	×	×	×
CMS $t\bar{t}$ dilepton 13 TeV	[92]	×	1	×	×	×
CMS single top $\sigma_t + \sigma_{\tilde{t}}$ 7 TeV	[95]	×	1	1	×	×
CMS single top R_t 8, 13 TeV	[97, 99]	×	1	1	×	×
CMS single top 13 TeV	[282, 283]	×	×	×	×	(✔)
Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
LHCb Z 7 TeV ($\mathcal{L} = 940 \text{ pb}^{-1}$)	(59)	1	1	×	×	1
LHCb $Z \rightarrow ee 8 \text{ TeV} (\mathcal{L} = 2 \text{ fb}^{-1})$	[61]	1	1	1	1	1
LHCb W 7 TeV ($\mathcal{L} = 37 \text{ pb}^{-1}$)	[284]	×	×	×	×	1
LHCb $W, Z \rightarrow \mu$ 7 TeV	[60]	1	1	1	1	1
LHCb $W, Z \rightarrow \mu$ 8 TeV	[62]	1	1	1	1	1
LHC b $W \to e$ 8 TeV	[80]	×	(✔)	×	×	×
LHC b $Z \to \mu \mu, ee$ 13 TeV	[82]	×	1	×	×	×

NNPDF4.0 model For more information see EPJC79 (2019) 676

Main changes:

- Python codebase
 - Easier and faster development
- Freedom to use external libraries (default: TensorFlow)
- $\bullet\,$ Modularity \Rightarrow ability to vary all aspects of the methodology

Performance benefit - time per replica

	NNPDF3.1	NNPDF4.0 (CPU)	NNPDF4.0 (GPU)
Fit timing per replica	15.2 h	38 min	6.6 min
Speed up factor	1	24	140
RAM use	1.5 GB	6.1 GB	NA

Hyperoptimization: the reward function

Choosing as the hyperoptimization target the χ^2 of fitted data results in overfitting.

Hyperoptimization: the reward function

Choosing as the hyperoptimization target the χ^2 of fitted data results in overfitting.

We solve this using k-fold cross-validation:

- $\textbf{ it } k-1 \text{ sets and use } k\text{-th as test set} \\ \Rightarrow k \text{ values of } \chi^2_{\text{test}}$

 \Rightarrow The hyperoptimization target is not based on data that entered the fit.

- No overfitting
- Compared to NNPDF3.1:
 - Increased stability
 - Reduced uncertainties

The (negligible) impact of datasets with tension

Excluding datasets with large $(\chi^2 - 1)/\sigma_{\chi^2}$ one at a time and combining the resulting PDFs following the conservative PDF4LHC15 prescription shows stability at the level of statistical fluctuations.

Envelope of fits with different arametrization bases

Different strategies to parametrize the PDF flavour combinations lead to the same result

Understanding the χ^2 distribution

Impact of positivity on the PDFs

More implications for phenomenology

