nNNPDF3.0: Evidence for a modified partonic structure in heavy nuclei

Rabah Abdul Khalek, Rhorry Gauld, **Tommaso Giani**, Emanuele R. Nocera, Tanjona R. Rabemananjara and Juan Rojo

Based on arXiv:2201.12363

DIS2022

Tuesday, May 3

Why nuclear PDFs?

Nucleus is not an ensemble of Z free protons and A-Z free neutrons.

$$F_2(x,Q^2,A) = \sum_i C_i(x,Q^2) \otimes f_j^{(N/A)}(x,Q^2) + \dots$$
$$f^{(N/A)}(x,Q) = \frac{Z}{A} f^{(p/A)}(x,Q) + \frac{(A-Z)}{A} f^{(n/A)}(x,Q)$$

- LHC experiments colliding nuclei
- signal and background events in neutrino-nucleus scattering (lceCube)
- investigating gluon saturation
- determine flavour, atomic mass A and x dependence nuclear modifications
- pion PDF (extracted from pion-A collisions)

Inew data

e methodology and general strategy

results

New data in nNNPDF3.0

Data in nNNPDF2.0:

- NC and CC DIS structure functions for a range of nuclei
- inclusive gauge boson production in p-Pb collisions at LHC

Two group of new measurements in nNNPDF3.0:

- IDIS and fixed-target DY involving D and Cu targets
- 2 LHC data from p-Pb collision

Process	Dataset	n_{dat}	Nucl. spec.	Theory
	NMC 96	123/260	$^2 \mathrm{D/p}$	APFEL
NC DIS	SLAC 91	38/211	² D	APFEL
	BCDMS 89	250/254	^{2}D	APFEL
Fixed-target DY	FNAL E866	15/15	$^2 D/p$	APFEL
	FNAL E605	85/119	64 Cu	APFEL
Collider DY	ALICE W [±] , Z (5.02 TeV)	6/6	208 _{Pb}	MCFM
	LHCb Z (5.02 TeV)	2/2	208 _{Pb}	MCFM
	ALICE Z (8.16 TeV)	2/2	208 _{Pb}	MCFM
	CMS Z (8.16 TeV)	36/36	$^{208}\mathrm{Pb}$	MCFM
Dijet production	CMS p-Pb/pp (5.02 TeV)	84/84	²⁰⁸ Pb	NLOjet++
Prompt photon production	ATLAS p–Pb/pp (8.16 TeV)	43/43	$208 {\rm Pb}$	MCFM
Prompt D^0 production	LHCb p-Pb/pp (5.02 TeV)	37/37	208 _{Pb}	POWHEG

- $\bullet\,$ extended coverage at small-x (D meson data) and high Q (photon and dijets data)
- kinematic cuts: $Q^2 \geq 3.5 \, {\rm GeV}^2$, $W^2 \geq 12.5 \, {\rm GeV}^2$
- nNNPDF2.0: 1476 datapoints, nNNPDF3.0: 2188 datapoints

Treatment of D meson production data

We consider in a coherent manner the constraints of the LHCb D-meson data both on the proton and nuclear PDFs while keeping track of their correlation

• LHCb measurements of D^0 meson production in pPb collisions at $\sqrt{s}=5.02~{\rm TeV}$

$$R_{\rm pPb}(y^{D^0}, p_{\rm T}^{D^0}) = \left. \frac{d\sigma^{\rm pPb}(y^{D^0}, p_{\rm T}^{D^0})}{dy^{D^0} dp_{\rm T}^{D^0}} \right/ \frac{d\sigma^{\rm pp}(y^{D^0}, p_{\rm T}^{D^0})}{dy^{D^0} dp_{\rm T}^{D^0}}$$

• D^0, D^+, D^+_s meson production in pp collisions at 7 and 13 TeV into the proton PDF baseline

$$N_X^{pp}(y^D, p_{\rm T}^D) \equiv \left. \frac{d\sigma^{\rm pp}\left(X \ {\rm TeV}\right)}{dy^D dp_{\rm T}^D} \right/ \frac{d\sigma^{\rm pp}\left(X \ {\rm TeV}\right)}{dy_{\rm ref}^D dp_{\rm T}^D}$$

No public interface for the computation of fast interpolation tables \rightarrow multi-stage Bayesian reweighting procedure to include these data

Methodology

Six independent nPDF of a proton bound in a nucleus with atomic mass number A

$$\begin{split} & x \Sigma^{(p/A)}(x,Q_0) = x^{\alpha_{\Sigma}}(1-x)^{\beta_{\Sigma}} \mathrm{NN}_{\Sigma}(x,A) \,, \\ & x T_3^{(p/A)}(x,Q_0) = x^{\alpha_{T_3}}(1-x)^{\beta_{T_3}} \mathrm{NN}_{T_3}(x,A) \,, \\ & x T_8^{(p/A)}(x,Q_0) = x^{\alpha_{T_8}}(1-x)^{\beta_{T_8}} \mathrm{NN}_{T_8}(x,A) \\ & x V^{(p/A)}(x,Q_0) = B_V(A) x^{\alpha_V} (1-x)^{\beta_V} \mathrm{NN}_V(x,A) \,, \\ & x V_3^{(p/A)}(x,Q_0) = B_{V_3}(A) x^{\alpha_{V_3}} (1-x)^{\beta_{V_3}} \mathrm{NN}_{V_3}(x,A) \,, \\ & x g^{(p/A)}(x,Q_0) = B_g(A) x^{\alpha_g} (1-x)^{\beta_g} \mathrm{NN}_g(x,A) \,, \end{split}$$

- parameterization valid from A = 1 (free proton) to A = 208 (lead)
- Hyperparameters (NN architecture, optimizer, learning rate ...) determined through automated hyperoptimization (backup slides)
- distributions for bound neutrons obtained assuming isospin symmetry

average bound nucleon N within nucleus A defined as

$$f^{(N/A)}(x,Q) = \frac{Z}{A} f^{(p/A)}(x,Q) + \frac{(A-Z)}{A} f^{(n/A)}(x,Q)$$

nNNPDF3.0, no D-meson data

- differences due to i) new data involving D, Cu and Pb targets ii) different boundary condition iii) automated optimization of model parameters
- bigger small-x uncertainties (due to new boundary condition)
- impact of W and Z LHC data visible in \bar{u} and \bar{d} , impact of D and Cu data in s^+

$$R_f^{(A)}(x,Q) \equiv \frac{f^{(N/A)}(x,Q)}{\frac{Z}{A}f^{(p)}(x,Q) + \frac{(A-Z)}{A}f^{(n)}(x,Q)}$$

• reduced (increased) small-x shadowing in the quark (gluon) nPDFs

• increased gluon anti-shadowing peaking at $x \sim 0.2$ (dijets cross-sections in pPb)

Impact of D-meson data

experimental data well described within the big nPDF uncertainty
 nPDF error dominates over missing high orders uncertainty

D-meson data both on the proton and nuclear PDFs while keeping track of their correlation \rightarrow the impact on the ratio $R_f^{(A)}$ is expected to be more marked as compared to that restricted to the lead PDFs.

A-dependence of nuclear modifications

- nuclear modification well constrained for lead (LHC data)
- few point available for silver, no points for A=31 (average atomic mass number of Earth matter)
- largest uncertainties for A = 108, being far from both A = 1 (proton boundary condition) and A = 208 (pPb data from LHC)

Comparison with other results

Good agreement between different groups, with few exceptions:

- strength of gluon small-x shadowing and large-x anti-shadowing
- strangeness nuclear modification
- large-x behaviour of nuclear antiquarks

Summary

- we have presented a new set of nPDF based on an extensive dataset
- new hyperoptimized methodology and updated boundary condition
- ${\, \bullet \,}$ coverage on small-x and high Q^2 regions from D-meson and dijets data
- D-meson data included consistently in both proton baseline and nuclear fit
- we deliver two variants with and without D-meson data

TO DOs:

- move to NNLO QCD
- simultaneous fit of proton and nuclear PDFs

Fit quality

			nNNPDF3.0 (no LHCb D)	nNNPDF3.0
Dataset	A	$n_{\rm dat}$	$\chi^2/n_{ m dat}$	$\chi^2/n_{\rm dat}$
FNAL Drell-Yan E605 (*)	64 Cu	85	0.82	0.85
FNAL Drell-Yan E886 (*)	$^2 d/^1 p$	15	1.04	1.16
ATLAS Z $\sqrt{s} = 5.02$ TeV	²⁰⁸ Pb	14	0.91	0.93
CMS Z $\sqrt{s} = 5.02 \text{ TeV}$	²⁰⁸ Pb	12	0.6	0.6
CMS W $\sqrt{s} = 5.02$ TeV	²⁰⁸ Pb	10	1.02	1.07
CMS W $^+$ $\sqrt{s} = 5.02$ TeV	²⁰⁸ Pb	10	1.11	1.08
CMS W $\sqrt{s} = 8.16$ TeV	²⁰⁸ Pb	24	0.72	0.73
CMS W $^+$ $\sqrt{s}=8.16$ TeV	²⁰⁸ Pb	24	0.77	0.8
ALICE Z $\sqrt{s}=5.02$ TeV (*)	²⁰⁸ Pb	2	0.14	0.14
ALICE W $\sqrt{s} = 5.02$ TeV (*)	208 Pb	2	0.18	0.18
ALICE W $^+$ $\sqrt{s} = 5.02$ TeV (*)	208 Pb	2	2.55	2.54
LHCb Z $\sqrt{s}=5.02$ TeV (*)	208 Pb	2	0.9	0.9
CMS Z $\sqrt{s}=8.16$ TeV (*)	208 Pb	36	2.49	2.49
ALICE Z $\sqrt{s}=8.16$ TeV (*)	208 Pb	2	0.02	0.03
Total Drell-Yan		240	1.08	1.11
CMS dijet pPb $\sqrt{s} = 5.02$ TeV	²⁰⁸ Pb	85	[13.6]	[13.96]
CMS dijet pPb/pp $\sqrt{s} = 5.02$ TeV(*)	208 Pb	84	1.81	1.75
ATLAS photon pPb $\sqrt{s}=8.16~{ m TeV}$	208 Pb	46	[3.33]	[3.21]
ATLAS photon pPb/pp $\sqrt{s} = 8.16 \text{ TeV(*)}$	²⁰⁸ Pb	43	1.03	1.03
Total dataset		2151	1.11	1.09

Free proton boundary condition

PDFs at A = 1 are fixed such that central values and uncertainties reproduce those of a given free-proton baseline PDF.

- all datasets included in NNPDF4.0 NLO except those involving nuclear targets
- extended up to $x = 10^{-6}$
- two variant with and without LHCb D-meson production data in pp collisions at 7 and 13 TeV are produced

Impact of CMS dijets production at $\sqrt{s} = 5.02$ TeV

- for the quark singlet nPDF stronger small-x shadowing is favored
- for the gluon nPDF stronger enhancement of small-x shadowing and of large-x anti-shadowing

Alternative observable for D^0 data

Ultra-High-energy neutrino-nucleus interactions

Hyperparameter optimization

Find the best combination of hyperparameters through an iterative search of the Hyperparameter space following some specific optimization algorithm.

$$L_{\rm hyperopt} = \frac{1}{2} \left(\chi_{\rm tr}^2 + \chi_{\rm val}^2 \right)$$

	nNNPDF3.0	nNNPDF2.0
Architecture	[3, 25, 6]	[3, 25, 6]
Weight initialisation	Glorot Normal	Glorot Uniform
Bias initialisation	Zeros	Zeros
Activation function	RELU	Sigmoid
Learning rate	10^{-2}	10^{-3}
Optimiser	Adam	Adam
Learning rate Optimiser	10 ⁻² Адам	10 ⁻³ Адам

A-dependence of nuclear modifications: pulls

$$P\left[R_{f}^{(A)}\right](x,Q) \equiv \frac{\left(R_{f}^{(A)}(x,Q)-1\right)}{\delta R_{f}^{(A)}(x,Q)}$$

Figure of merit

$$\chi^2_{\rm fit} = \chi^2_{\rm t_0} + \kappa^2_{\rm pos} + \kappa^2_{\rm BC}$$

with

$$\begin{split} \chi_{t_0}^2 &= \sum_{ij}^{n_{\text{dat}}} (T_i - D_i) \, \left(\text{cov}_{t_0} \right)_{ij}^{-1} \, (T_j - D_j) \,, \\ \kappa_{\text{pos}}^2 &= \lambda_{\text{pos}} \sum_{l=1}^{n_{\text{pos}}} \sum_{j=1}^{n_A} \sum_{i_l=1}^{n_{\text{dat}}^{(l)}} \max \left(0, -\mathcal{F}_{i_l}^{(l)}(A_j) \right) \\ \kappa_{\text{BC}}^2 &= \lambda_{\text{BC}} \sum_{f} \sum_{j=1}^{n_x} \left(f^{(p/A)}(x_j, Q_0, A = 1) - f^{(p)}(x_j, Q_0) \right)^2 \end{split}$$