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ABSTRACT

The present thesis focuses on three distinct yet complementary areas in QCD. The first
area concerns the resummation of large logarithmic contributions appearing in transverse
momentum distributions. In particular, we focus on the hadroproduction of colour singlet
final states such as Higgs boson produced via gluon fusion and the production of a lepton-
pair via Drell–Yan mechanism. We present phenomenological studies of a combined
resummation formalism in which standard resummation of logarithms of Q/pT is sup-
plemented with the resummation of logarithmic contributions at large x=Q2/ŝ. In such
a formalism, small-pT and threshold logarithms are resummed up to NNLL and NNLL*
respectively. The second area concerns the construction of an approximate NNLO expres-
sion for the transverse momentum spectra of the Higgs boson production by exploiting the
analytical structure of various resummed formulae in Mellin space. The approximation
we construct relies on the combination of two types of resummations, namely threshold
and high-energy (or small-x). Detailed phenomenological studies, both at the partonic and
hadronic level, are presented. And finally, the third area concerns the a posteriori treatment
of Parton Distribution Functions (PDFs), specifically the compression of Monte Carlo PDF
replicas using techniques from deep generative models such as generative adversarial
models (or GANs in short). We show that such a GAN-based methodology results in a
compression methodology that is able to provide a compressed set with smaller number
of replicas and a more adequate representation of the original probability distribution. The
possibility of using this methodology to address the problem of finite size effects in PDF
determination is also investigated.
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d-ū). The hatched error bands and the region envelopped with the
dashed lines represent the 68% confidence level and 1-sigma de-
viation respectively. Plots produced using REPORTENGINE-based
VALIDPHYS [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Figure 37 Comparison of the best ERF values for the compression of a Monte
Carlo PDF set with Np=1000 replicas for various sizes of the com-
pressed sets. For each compressed set, we show the contribution
of the statistical estimators (see Sec. (5.1)) that contribute to the
total error function using the standard compression (green) and
the GAN-enhanced compression (orange) methodology. Notice
that the ERFs on the plot are non-normalized. For illustration pur-
poses, the mean (purple) and median (light blue) resulting from the
average of NR=1000 random selections are shown. The resulting
confidence intervals from the random selections are represented by
the blue (50%), green (68%), and red (90%) error bars. . . . . . . . 164

Figure 38 Comparison of the performance of the new generative-based com-
pression algorithm (GANPDFS) and the previous methodology
(standard). The normalized ERF values of the standard compres-
sion are plotted as a function of the size Nc of the compressed set
(solid black line). The dashed blue, orange, and green lines rep-
resent Nc=70, 90, 100 respectively. The solid lines represent the
corresponding ERF values of the enhanced compression. . . . . . . 165



x L I S T O F F I G U R E S

Figure 39 Comparison of the correlations between various pairs of flavours.
The results are shown for different size of the compressed sets,
namely Nc=50, 100. The energy scale Q has been chosen to be
Q=100 GeV. The correlation extracted from the results of the
GAN-compressor (orange) is compared to the results from the
standard compressor (green). For a comparison, the results from
the random selection are also shown in purple. Plots produced
using REPORTENGINE-based VALIDPHYS [6]. . . . . . . . . . . . . . 166

Figure 40 Difference between the correlation matrices of the prior and the
compressed set resulting from the standard (first row) or enhanced
(second row) compression. The correlation matrices are shown for
different sizes of the compressed set. . . . . . . . . . . . . . . . . . . 167

Figure 41 Integrated LHC cross sections at
√

s=13 TeV for W production
(1st row), Z production (2nd row), top pair production (3rd row),
and Higgs via VBF (4th row). The left column compares the prior
with the Nc=50 compressed sets while the right column compares
the prior with the Nc=70 compressed sets. Plots produced using
PINEAPPL [7] scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Figure 42 Differential distributions in rapidity ηX (where X=W, Z) during
the production of a W (top) and Z bosons (bottom). The heading
in each plot represents the decay mode of the corresponding weak
boson. As previously, the results are shown for Nc=50 (left) and
Nc=70 (right). The top panels show the absolute PDFs with the
seven-point scale variation uncertainties, the middle panel show
the relative uncertainties for all PDF sets, and the bottom panels
show the pull defined in Eq. (5.4.2) between the prior and the
compressed sets generated using the standard (red) and GAN-
enhanced approach (orange). Plots produced using PINEAPPL [7]
scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Figure 43 Same as Fig. 42 but for top-quark pair production (top) and Higgs
boson production via VBF (bottom). Similar as before, the results
are shown for Nc=50 (left) and Nc=70 (right)Plots produced using
PINEAPPL [7] scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Figure 44 The KL distance as expressed in Eq. (5.4.3) between the prior Monte
Carlo PDF replicas and the compressed sets resulting from the stan-
dard (green) and GAN-enhanced (orange) approach. For reference,
the KL distance between the prior and its Hessian representation
with N=50 eigenvectors (blue) is also shown. For each class of
observables, the various production modes are detailed in Table 4. . 176

Figure 45 Same as Fig. 44 but for compressed sets with Nc=70 replicas. . . . . 177

Figure 46 Positivity constraints for the prior (green) and synthetic (orange)
Monte Carlo PDF replicas. The constraints correspond to the pos-
itivity of a few selected observables from Eq. (14) of Ref. [8], namely
Fu

2 (x, Q2), Fd
2 (x, Q2), dσ2

dd̄/dM2dy(x1, x2, Q2), and dσ2
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I N T R O D U C T I O N

QCD at high energies

It is now an accepted fact that most of the visible matter in the universe is composed of
hadrons. Hadrons, with the examples of protons and neutrons, are bound states of quarks
and gluons. The interaction between these elementary constituents–quarks and gluons (col-
lectively known as partons)–are dictated by the strong nuclear force whose mathematical
description is formulated in a quantum field theory known as Quantum Chromodynamics
(or QCD in short). In this picture, partons carry colour charges that transform under the
(anti-) fundamental and adjoint representation of the group SU(3), but which at the level
of hadrons lead to a neutral colour combination. QCD, in turns, constitutes a part of
a larger theory called Standard Model (SM) which provides a theoretical framework to
the description of all known interactions (electromagnetic, weak and strong interactions)
except gravity.

One of the defining features of QCD is that as the energy grows, the elementary inter-
actions taking place in a collision of hadrons occur at distances much smaller than the
confinement scale, allowing for their descriptions to be formulated in terms of quasi-free
quarks and gluons. In this respect, theoretical predictions of hard scatterings are calculated
using perturbative QCD (or pQCD). In pQCD, the observable of interest is expanded as
a power series in the QCD strong coupling αs. In the case where the strong coupling is
small compared to other scales involved in the process, truncating the perturbative series
at some finite power of αs is an accurate approximation to the full calculation. This is
crucial since the exact computation of physical observables is not feasible within the realm
of QCD. To the present day, several observables that are of interests to hadron colliders
such as LHC have been computed to very high accuracy in perturbation theory both at the
integrated [9–21] and differential [22–33] levels. Whilst pushing the frontier of currently
known perturbative orders seems to be a gigantic task, it is natural to extract as much
information as possible concerning the unknown orders from known orders. Hereinafter,
we refer to this as the estimation of the missing higher-order uncertainties.

However, in order to compute measurable observables that can be compared to experi-
mental measurements, the results from perturbative calculations have to be supplemented
with the knowledge of the momentum distributions of the partons inside the colliding
hadrons. Such information are encapsulated in what is known as Parton Distribution
Functions (PDFs). This suggests that in order to perform precision calculations for hadron-
initiated processes (henceforth referred to as hadroproduction), an accurate knowledge of
the PDFs is crucial. As a matter of fact, not only PDFs are vital to high-precision physics at
LHC, but as will be briefly discussed later, they are essential tools to interpret experimental
measurements for a variety of hard processes in light of the quest for new physics (beyond
the Standard Model or BSM). Since they contain information on long-distance interactions,
parton distributions are non-perturbative objects, and hence they cannot be computed
from first principle. Instead, they have to be determined through a fitting procedure in
which theoretical predictions are compared to experimental measurements.
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The problem of accurately determining PDFs has seen considerable advancements in
the past decades. There exists thus far various PDF fitting groups [34–74] that implement
different methodology and provide different estimation of the PDF errors. Remarkably,
despite the fact the resulting PDFs may differ, they agree within a reasonable uncertainty.
Roughly speaking, the underpinning idea behind a PDF determination consists in learning
from experimental data a set of functions. That is, a parton density function is modelled
in terms of a function whose parameters are adjusted during the fit to yield matching
theoretical predictions. Such a function, for instance, can be defined in terms of a suitable
polynomials whose functional form is chosen based on physical arguments such as Regge
theory [75], Brodsky-Farrar quark counting rules [76], et cetera. This approach is used by all the
PDF fitting groups mentioned previously except the NNPDF. The NNPDF collaboration
takes a different approach by modelling the parton density functions in terms of neural
networks. This approach turns out to be very robust as it removes the bias introduced
in the choice of a particular functional form to fit the PDFs. Very recently [4, 77], thanks
to the adoption of state-of-the-art machine learning methodologies and the inclusion of
new datasets, the NNPDF collaboration claims to reach–in a wide range of kinematic
regions–one-percent relative uncertainties. This is a milestone toward reaching the objective
of having smaller PDF errors, which so far represented one of the dominant sources of
uncertainties in LHC processes such as the Higgs boson production. However, in order
to consistently produce PDFs accurate at a percent-level, theoretical uncertainties [52,
53] (especially those arising from missing higher-orders) have to be taken into account.
Hopefully, with the current NNPDF4.0 methodology [77] and evolution codes such as
EKO [78] and YADISM [79], this will become possible in the very near future.

Returning back to the short-distance interactions, perturbative computations suffer
from two main pathologies: first the appearance of large logarithmic enhanced terms in a
multiscale process even if the observable in question is Infrared and Collinear (IRC) safe,
second the non-existence of a robust and reliable method to estimate missing higher-order
uncertainties. In the former, the smallness of the QCD coupling αs is compensated by the
largeness of ln µ2 (where µ denotes an arbitrary ratio of scales) such that αs ln µ2∼O(1).
In such a scenario, the convergence of the perturbative series is spoiled and any truncation
at a given power of αs is meaningless. These types of logarithmic divergences are cured by
performing an all-order computation through a procedure known as resummation. Generally,
different resummation techniques are required for different classes of large logarithms.
For instance, logarithmic enhancements arising when the invariant mass of the final-state
system approaches the kinematic threshold are resummed in threshold resummation.

The issue related to finding an efficient method to estimate theoretical uncertainties asso-
ciated with missing higher-order corrections is still arguably an open question. Currently,
the most standard way to evaluate such uncertainties is by varying the unphysical scales
involved in the process according to a scale variation prescription. This approach, however,
has a number of caveats. Various approaches have recently emerged [80–82] in order to
address the shortcomings related to the scale variation method. However, most of these
approaches are only applicable to particular types of processes and observables.

All of this said, in order to push forward precision and discovery physics at the LHC,
the three pillars of QCD–namely the fixed-order calculations, resummations, and PDFs–
need to be determined at the highest accuracy possible. While significant efforts have
been underway at the PDF level to achieve this objective, much works remain both in
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terms of fixed-order computations (especially with regards to the estimation of missing
higher-order uncertainties), and resummations. The present thesis attempts to fill the tiny
gaps in those areas by combining theoretical computations and machine learning.

Structure of the thesis

In Chapter 1, we first establishes background notations and definitions on which the theo-
retical part of the present thesis is based upon. In particular, we review how theoretical
predictions in QCD are computed. Specifically, we briefly review how matrix elements fac-
torize in the collinear and soft limits and re-derive the expression of the splitting functions
using non-classical approach such as spinor helicity formalism and MHV techniques. This
is followed by a description of the underlying ideas behind a PDF determination. We then
conclude the introductory part by commenting on the estimation of missing higher-order
uncertainties in fixed-order computations and the road toward one-percent accuracy.

In Chapter 2, we detail how the large logarithmic contributions appearing in perturbative
computations due to kinematic enhancements are cured using resummation techniques in
the context of transverse momentum distributions. Specifically, we focus on the resumma-
tions of contributions that are enhanced at the partonic threshold and at small transverse
momentum. We then provide detailed derivations on how subclasses of the threshold
logarithms can be consistently incorporated into the transverse momentum resummation.
In doing so, we extensively study the relation between the soft and collinear logarithms
which drive the transverse momentum distribution.

In Chapter 3, we perform extensive phenomenological studies in which the soft-improved
standard transverse momentum resummation is compared with the standard transverse
momentum resummation in the context of Higgs boson production at the LHC and Z-
boson production via Drell–Yan (DY) mechanism. This eventually requires us to construct
prescriptions to perform the inverse Fourier and Mellin transforms in which the resumma-
tions are derived. Then, by studying the singularity structure of the resummed expressions
(specifically threshold and high energy resummations), we try to construct an approxima-
tion to the NNLO transverse momentum distribution of the Higgs boson produced via
gluon fusion in the HEFT approximation.

In Chapter 4, we introduce machine learning concepts that are relevant for the treatment
of Monte Carlo PDF sets. For the sake of pedagogical clarity, we purposefully give a brief
review of deep learning and analyse, through explicit illustrations the mechanism behind
the training of a deep neural network. We then describe how deep learning can be used
to model posterior probability distributions. In particular, we concentrate our attention to
a specific deep generative model known as Generative Adversarial Network (or GANs in
short). To conclude the chapter, we give a brief survey of how GANs have been applied so
far to tackle problems in high energy physics.

In Chapter 5, we apply the concept of GANs to the problem of compressing Monte Carlo
PDF sets. The need for a PDF compression can be stated as follows: the main published
PDFs are typically based on a NR=1000 replicas fit, however, having to deal with such a
large set of replicas is not ideal when performing Monte Carlo simulations, for example.
For this reason, it is therefore advantageous to construct a set of replicas with smaller sizes
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while maintaining the same underlying probability distribution as the prior. The role of
the GAN is then to further enhance the statistics of a given PDF set by generating synthetic
replicas before a compression is performed. This, as will be discussed further, results in a
compression methodology that is able to provide a compressed set with smaller number
of replicas and a more adequate representation of the original probability distribution.
Before closing the chapter, we investigate the possibility of using the GANs to tackle finite
size effects in PDFs.

Finally, we conclude by first summarizing the main guiding ideas and results presented in
the present thesis. In particular, we highlight the relevance of resummation in perturbative
computations and the possibility of combining different categories of resummation to
construct approximate predictions for yet unknown higher-order contributions.
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In the following chapter, we set the stage to the research topics studied in the present
thesis. In particular, we highlight the role the QCD factorization theorem plays in per-
turbative calculations in order to separate short-distance interactions from long-distance
ones. The concept of Mellin transforms is then introduced in the context of transverse
momentum observables, which turns out to be crucial for all-order computations. As
very well known in pQCD, scattering amplitudes factorize in presence of radiative (soft
and/or collinear) emissions. These properties are reviewed in Sec. (1.1.1) using the spinor
helicity formalism and Maximally Helicity Violating (MHV) techniques. Such computations
eventually lead to the introduction of splitting functions that govern the DGLAP equations.
We then explicitly show how the solutions to the DGLAP equations are computed. Such
a derivation is relevant in the context of soft-improved transverse momentum resummation
(discussed in Sec. (2.4)) where the PDF evolutions need to be treated in a particular way.
While the µ2-dependence of the PDFs is predicted at all values by the DGLAP equations,
the x-dependence must be derived through a fit to the experimental data. Details on such
determinations are briefly described in Sec. (1.1.3). To conclude the chapter, we discuss
the main missing pieces in terms of PDF determination and perturbative computations
toward achieving a one-percent accuracy.

1.1 Structure of QCD predictions

1.1.1 Perturbative computations

At hadron colliders such as LHC, the colliding particles are bound configurations of quarks
and gluons. As mentioned in the introduction, these bound states are held together by
the strong nuclear force whose mathematical descriptions are described by the Quantum
Chromodynamics (or QCD in short). A proton, for example, can be thought as a bound
state of one down quark (d) and two up quarks (u)1. At high-energies (greater than
ΛQCD∼200 MeV) where hadrons behave as bunches of quasi-free partons (phenomenon
known as Asymptotic Freedom), QCD effects modify the effective composition of the protons
where they also contain gluons, and quarks & antiquarks of all flavours. In the parton
model, interactions of hadrons taking place at such energy can be described through the
interactions of partons via the QCD factorization theorem.

1 Recent studies of the contents of the proton by the NNPDF collaboration, however, seem to suggests that the
bound state of the proton also contains a charm (c) quark. This is thought to be the case due to the presence a
bump in the charm-quark distribution at x∼0.3
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Hadron collisions & QCD factorization theorem

Physical processes (specifically hadroproduction) typically studied at hadron colliders take
place at very high energies2 allowing for the separation of the long-distance physics and the
short-distance ones. The assumption of the parton model states that physical observables
can be computed in terms of perturbative objects such as partonic cross sections. Thus, for
a collision of two hadrons h1 and h2 leading to the creation of a final-state system F, an
observable O (typically cross section) can be factorized as follows

O = ∑
a,b

fa/1(µ)⊗ fb/2(µ)⊗ Ôab(µ), (1.1.1)

where the sum takes into account all the possible sub-partonic channels and ⊗ denotes
the convolution. The function fa/h represents the Parton Distribution Function (PDF)
and describes the fraction of momentum carried out by a parton a from a hadron h. The
partonic version of the physical observable is represented by Ô. The scale µ–conventionally
known as factorization scale–separates soft (long-distance) and hard (short-distance) physics.
As physical quantities should not depend on the scale µ, Eq. (1.1.1) suggests that the scale
dependence must cancel when the perturbative part is convoluted with the PDFs. However,
in perturbative computations, only a few orders in the strong coupling are included in Ô ,
leaving the scale dependence present. Based on renormalization group invariance, such a
scale dependence is, however, expected to decrease as the perturbative order increases. As
a result, the residual scale dependence µ is typically used to estimate the size of the next
unknown contribution in the perturbative expansion.

The PDFs, as opposed to the hard scattering part, are process-agnostic. They cannot
be computed using perturbative QCD and therefore needs to be extracted from experi-
mental data using some fitting procedure. In order for the PDFs to have a probabilistic
interpretation, they need to satisfy a set of constraints known as sum rules. In other words,
PDFs are constrained such that integrating a parton PDF over all the momentum fraction
x must yield the number of valence partons present in the hadron. For instance, a proton
must be composed of one valence down quark and two valence up quarks. In addition, for the
remaining quark flavours (ℓ=s, c, b, t), the valence must be equal to zero as these quark-
antiquark pairs fluctuate in and out of existence within the proton. These constraints can
be mathematically written as

∫ 1

0
dx ( fℓ(x)− fℓ̄(x)) = 0,

∫ 1

0
dx ( fd(x)− fd̄(x)) = 1,

∫ 1

0
dx ( fu(x)− fū(x)) = 2.

(1.1.2)

Since there is no number conservation law for gluons, gluons are only constrained by
momentum conservation, i.e. satisfy ∑i

∫
x fi(x)=1 where i sums over the gluon and all

quark & antiquark flavours.
The factorization formula given in Eq. (1.1.1) thus far has only been rigorously proven for

sufficiently inclusive observable such as Deep Inelastic Scatterings (DIS) and its validity for
more exclusive observables remain to be proved (especially at higher perturbative order).
That is, for most of the physical observables that are of interests to LHC phenomenology,

2 The Run II of the LHC, for examples approached a center-of-mass energy of
√

s∼14 TeV.
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such as differential distributions, the factorization theorem is simply assumed to hold
true. In addition, Eq. (1.1.1) is only valid up to power corrections O

(
ΛQCD/Q

)
therefore

neglecting hadronization corrections and higher-twist contributions which at the energy
considered in this thesis are negligible.

Let us make a final comment on the partonic component of Eq. (1.1.1). As mentioned
before, the hard parton scattering Ô can be computed using perturbative approach. In
the presence of collinear emission in either the initial or final sate, it exhibits collinear
divergences. Such divergences can be factorized out from the hard scattering as

Ôab(µ) = ∑
i,j
Ci/a(µ)⊗ Cj/b(µ)⊗ Ôij (1.1.3)

where Ci/a are referred to as collinear counter-terms describing the singular part of the
parton-in-parton distribution due to higher order corrections to the parton a. In the case
where the observable we are considering is both Infrared and Collinear Safe (IRC safe), the
functions Ci/a and Ôij are well defined (finite) perturbative functions. Details on this
subject are explored in the subsequent sections.

Notations & Definitions for transverse momentum distributions

Consider the collision of two protons p1+p2 −→ F+X in which a colour singlet object F
is produced with an invariant mass M and transverse momentum pT . We can define a
scaling variable τ as follows

τ =
(ET + pT)

2

s
(1.1.4)

where s=(p1+p2)
2 represent the hadronic center-of-mass energy squared. The analogue

of τ and s at the partonic level is given by

x =
(ET + pT)

2

ŝ
where ET =

√
M2 + p2

T and ŝ = x1x2s (1.1.5)

with x1 and x2 representing the momentum fractions. By introducing a new variable
Q=ET + pT , the hadronic and partonic scaling variables become τ=Q2/s and x=Q2/ŝ
respectively. Here, Q is the threshold energy, i.e. the minimum energy needed to produce
the final state system F with an invariant mass M. This ensures that 0≤τ≤1. Using the
factorization formula given in Eq. (1.1.1), the hadronic cross section for the transverse
momentum distribution can be written as

1
τ

dσ

dξp

(
τ,

M2

Q2 ,
M2

µ2
R

,
M2

µ2
F

)
= ∑

a,b

∫ dx
x
Lab

(τ

x
, µ2

F

) 1
x

dσ̂ab
dξp

(
x,

M2

Q2 ,
M2

µ2
R

,
M2

µ2
F

)
(1.1.6)

where we have defined the dimensionless variable ξp= p2
T/M2. For brevity, we have

omitted the explicit dependence on the strong coupling αs. It should always be kept in
mind that dσ̂ab/dξp is a perturbative function admitting a series expansion in αs. The
luminosity function Lab is expressed in terms of the two parton densities as

Lab

(
z, µ2

F

)
=
∫ 1

z

dy
y

fa(y) fb

(
z
y

)
. (1.1.7)
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In the context of all-order computations, it is clear that Eq. (1.1.6) is not suitable due to
the presence of convolution. However, it turns out that in Mellin space, the convolution
becomes a normal product. The Mellin transform of Eq. (1.1.6) can be constructed by
defining the following transformations

dσ

dξp

(
N,

M2

Q2 ,
M2

µ2
R

,
M2

µ2
F

)
=
∫ 1

0
dτ τN−1 dσ

dξp

(
τ,

M2

M2 ,
M2

µ2
R

,
M2

µ2
F

)
(1.1.8)

dσ̂

dξp

(
N,

M2

Q2 ,
M2

µ2
R

,
M2

µ2
R

)
=
∫ 1

0
dx xN−1 dσ̂

dξp

(
x,

M2

Q2 ,
M2

µ2
R

,
M2

µ2
F

)
. (1.1.9)

Using Eq. (1.1.8) and Eq. (1.1.9), it can be shown that Eq. (1.1.6) can be written as

dσ

dξp

(
N,

M2

Q2 ,
M2

µ2
R

,
M2

µ2
F

)
= ∑

a,b
Lab

(
N + 1, µ2

F

) dσ̂ab
dξp

(
N,

M2

Q2 ,
M2

µ2
R

,
M2

µ2
F

)
. (1.1.10)

Notice that the cross sections and their Mellin transforms are denoted with the same
symbol and only distinguished through their arguments. It is worth emphasizing that
the Mellin transform of the hadronic cross section in Eq. (1.1.8) is taken w.r.t. the scaling
variable τ while the Mellin transform of the hard partonic cross section in Eq. (1.1.9) is
taken w.r.t. the partonic variable x.

Matrix element factorization in the collinear limit

To see how matrix elements factorize in the collinear limit, let us consider a 2 to 3 process
where two of the outgoing particles are collinear. In particular, let us consider a process
in which a quark and an antiquark annihilates and produces three gluons (qq̄→ ggg), as
depicted in Fig. 1. Using the spinor helicity formalism, each momentum involved in the
process can be expressed in terms of a left and right-handed spinors kaȧ=λaλ̃ȧ (where a
and ȧ are spinor indices running from 1 to 2). For real-valued momenta, the holomorphic
and anti-holomorphic spinors (λa and λ̃ȧ respectively) are complex conjugate of each other,
λ⋆

a = λ̃ȧ. In such a representation, massless tree-level amplitudes are straightforwardly
computed by considering all the momenta to be either incoming or outgoing in which the
leading non-vanishing contribution is given by the Maximally Helicity Violating (MHV)
amplitudes [83–86]. By virtue of the colour kinematic decomposition [87–91], the full
amplitude for a given helicity configuration of a process involving three gluons and a
quark-antiquark pair is given by

M5 (p, 1, 2, 3, p̄) = g3
s ∑
P3

(Ta1 Ta2 Ta3) M̃5 (p, 1, 2, 3, p̄) (1.1.11)

where P3 sums over the permutations of all three gluons, gs is the fine structure constant
(g2

s =4παs), Ta are the generator matrices of SU(3), and M̃ are called colour-ordered partial
amplitudes which have all the colour factors removed. It is worth emphasizing that each
partial amplitude corresponds to a particular colour flow, which naively can be thought as
the ordering in which the gluons are emitted. Let us first consider an MHV configuration
in which only the quark p and gluon k1 possess negative helicities. Using the Parke-Taylor
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k1 k1

p p

k1 k1

p p

Figure 1 Sample of the squared amplitudes for the tree level diagrams that contribute to
the five-point amplitude qq→ ggg. For both diagrams, the time runs from the bottom to
the top. The dashed lines that divide the diagrams represent the Cutkosky cut [1–3]. The
gluon that is emitted collinearly to the outgoing gluon k1 is represented by the blue-coloured
coiled lines. Similarly, the soft gluon that is emitted from the quark p is labelled by the
red-coloured coiled line. The internal unlabelled lines represent the outgoing gluon k2 and
the incoming anti-quark q.

formula [92] (see discussions in App. 1.C), the MHV colour-ordered amplitude for our
five-point process is given by the following expression

M̃5
(

p−, 1−, 2+, 3+, p̄+
)
=

⟨p1⟩3⟨ p̄1⟩
⟨p1⟩⟨12⟩⟨23⟩⟨3p̄⟩⟨ p̄p⟩ (1.1.12)

where the angle brackets are defined in terms of the scalar product of two momenta as
2(kik j)=

(
εabλaµb

) (
εȧḃλ̃ȧµ̃ḃ

)
=⟨ij⟩ [ij]. Therefore, the angle and square brackets repre-

sentation of the spinors are defined as ⟨ij⟩=εabλaµb and [ij] =εȧḃλ̃ȧµ̃ḃ. Hereinafter, we
drop the dependence on p and p̄ and only keep M̃5 (1−, 2+, 3+). Indeed, due to the parity
of the partial amplitudes, the helicity of the quark-antiquark line is immaterial and one
only has to take into account in the full amplitude configurations where the helicities of
the gluons change.

In the limit where the two gluons k2 and k3 are collinear, the spinor products ⟨23⟩ and
[23] vanish. This can be used to simplify further the expression of the full amplitude
since in this limit only terms that contain ⟨23⟩ and/or [23] in the denominator contribute.
That is, the partial amplitudes M̃5 (1−, 2+, 3+) and M̃5 (2−, 3+, 1+) will contribute to the
full amplitude while partial amplitudes with helicity configurations M̃5 (2−, 1+, 3+) and
M̃5 (3−, 1+, 2+) will be suppressed. Introducing an intermediate momentum q=(k2+k3),
the collinearity condition implies that k2=xq and k3=(1−x)q where x is the fraction of
momentum carried out by the gluon k2. Defining the momenta to be q=µaµ̃ȧ, k2=λaλ̃ȧ,
and k3=ηaη̃ȧ, the aforementioned parametrization can be translated into spinor variables
as follows

{
λa =

√
xµa

λ̃ȧ =
√

xµ̃ȧ
, and

{
ηa =

√
1− xµa

η̃ȧ =
√

1− xµ̃ȧ.
(1.1.13)
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Plugging the above relations into Eq. (1.1.12) and exploiting the linearity of the angle brack-
ets in order to factorize the fraction of momentum x, we can write the partial amplitude
for the helicity configuration M̃5 (1−, 2+, 3+) as follows

M̃5
(
1−, 2+, 3+

)
=

1
⟨23⟩

√
x(1− x)

⟨p1⟩3⟨ p̄1⟩
⟨p1⟩⟨1q⟩⟨qp̄⟩⟨ p̄p⟩ , (1.1.14)

where we have made explicit the term coming from the four-point partial amplitude
M̃4 (1−, q+). Indeed, it is clear from Eq. (1.1.14) that in the collinear limit, the MHV
amplitude for the helicity configuration considered factorizes into a four-point part and
a collinear term, M̃5∼ f (2, 3, x)M̃4. The same exact calculations can be performed for
all possible helicity configurations that lead to non-vanishing partial amplitudes. For
completeness, we list the two remaining MHV configurations below

M̃5
(
1+, 2−, 3+

)
=

x2

⟨23⟩
√

x(1− x)
M̃5

(
1+, q−

)
(1.1.15)

M̃5
(
1+, 2+, 3−

)
=

(1− x)2

⟨23⟩
√

x(1− x)
M̃5

(
1+, q−

)
. (1.1.16)

Notice that the anti-MHV partial amplitudes can be straightforwardly computed from
the MHV configurations by realizing that M̃ ({hi}) and M̃ ({−hi}) (with hi denoting the
helicity) are related by a change of angle brackets into square brackets. That is,

M̃5
(
1+, 2−, 3−

)
=

1
[23]

√
x(1− x)

M̃5
(
1+, q−

)
(1.1.17)

M̃5
(
1−, 2+, 3−

)
=

x2

[23]
√

x(1− x)
M̃5

(
1−, q+

)
(1.1.18)

M̃5
(
1−, 2−, 3+

)
=

(1− x)2

[23]
√

x(1− x)
M̃5

(
1−, q+

)
(1.1.19)

In order to complete the computation of the full amplitude, for say the configuration
(1−, 2+, 3+), we need to consider all the possible permutations of gluons as expressed
in Eq. (1.1.11). This can be effortlessly done by realizing that: (a) due to the cyclic ordering
of the gluons the partial amplitude M̃5 (2, 3, 1) is related to M̃5 (1, 2, 3) by a swap of k1
and q in the four-point partial amplitude, (b) due to the antisymmetric property of the
angle and square brackets M̃5 (1, 2, 3) and M̃5 (1, 3, 2) are related by an overall minus
sign. Combining these observations and exploiting the normalization of the generator
matrices [Ta, Tb] = fabcTc, we can finally write down the expression of the full amplitude
for the helicity configuration (1−, 2+, 3+)

M5
(
1−, 2+, 3+

)
= − gs fa2a3c

⟨23⟩
√

x(1− x)
∑
P2

(Ta1 Tc) M̃4
(
1−, q+

)
, (1.1.20)

where P2 sums over the permutation of the two gluons k1 and q. We can now take the
modulus square of the above amplitude and sum over the colours by promoting the
generator matrices to structure constants and finally using ∑ fa2a3c fa2a3d=CAδcd. Doing
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so leads to an expression where the collinear term and the four-point amplitude are
independent of each other

∣∣M5
(
1−, 2+, 3+

)∣∣2 =
g2

s
2(k2k3)

CA
x(1− x)

∣∣M4
(
1−, q+

)∣∣2 (1.1.21)

The final step consists in summing the square amplitudes (as in Eq. (1.1.21)) over all the
possible helicity configurations (including MHV). Provided with Eqs. (1.1.15-1.1.19), this
just amounts to a few algebraic simplifications. The final expression now writes as

∑
hel.
|M5 (1, 2, 3)|2 = αs

(
4π

q

)2
P̃(0)

gg (x) ∑
hel.
|M4 (1, q)|2 , (1.1.22)

where we have defined the leading-order Altarelli-Parisi splitting function associated with
the probability of the gluon to split into two gluons (g→ gg) to be

P̃(0)
gg (x) =

CA
π

[
x

1− x
+

1− x
x

+ x(1− x)
]

. (1.1.23)

Notice that the above expression is symmetric under the interchange of x and (1− x)
reflecting the fact that it does not matter which gluon carries the fraction x of the parent’s
momentum. It is then clear that there are different splitting functions associated with the
different possible branching and each of them can be expanded as a series in powers of the
strong coupling αs. For instance, by performing the same procedure as described before,
one can show that the splitting functions P̃(0)

gq (x) and P̃(0)
qg (x) are given by

P̃(0)
gq (x) =

CF
2π

[
1
x
+

(1− x)2

x

]
, P̃(0)

qg (x) =
n f

2π

[
x2 + (1− x)2

]
. (1.1.24)

Notice that we have used the shorthand notation P̃(0)
ab (x) to label splittings associated to the

branching a→ bX. By inspection of P̃(0)
gg (x) in Eq. (1.1.23) one notice that the expression

is singular when x → 1. This reflects the double divergence that arise when the emitted
gluon is both soft and collinear at the same time. In order to cure such a divergence, one
needs to include virtual contributions depicted in Fig. 2. Since virtual contributions can
only affect terms that are proportional to δ(1− x), the virtual corrections can be encoded
in a function V generically written as

P(0)
gg (x) = P̃(0)

gg (x) + Vδ(1− x). (1.1.25)

Notice that this does not apply to the P̃(0)
gq (x) and P̃(0)

qg (x) splitting functions since Eq. (1.1.24)

is free of divergence when x → 1 and therefore P(0)
gq (x) ≡ P̃(0)

gq (x) and P(0)
qg (x) ≡ P̃(0)

qg (x).

Unlike for fermions, the computation of the P(0)
gg (x) splitting is slightly more difficult since
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qq

k2

k3
q q

k2

k3

Figure 2 Amplitude squares arising from the virtual three-point contribution where two of
the outgoing gluons are collinear. For both diagrams, the time runs from left to right. The
dashed lines that slices both diagrams represent the Cutkosky cuts [1–3].

the number of gluons is not conserved and therefore one has to use as a constraint the
conservation of momentum of the incoming gluon which can be written as follows3

∫ 1

0
dx x

(
P(0)

gg (x) + P(0)
qg (x)

)
= 0. (1.1.26)

The above momentum conservation can therefore be used to determine the value of the
function V in Eq. (1.1.25). By isolating the singular part and performing the integration,
one can express the gg-splitting function in terms of a plus distribution,

P(0)
gg (x) =

[
P̃(0)

gq (x)− xδ(1− x)
∫ 1

0
dx̃

CA
π(1− x̃)

]
+ β0δ(1− x) (1.1.27)

=
CA
π

[
x

(1− x)+
+

1− x
x

+ x(1− x)
]
+ β0δ(1− x) (1.1.28)

where β0 is the first coefficient of the QCD β-function. Explicit expressions of the QCD
β-functions including higher-orders are given in App. 1.A. The P(0)

qq (x) splitting function
can be derived in a similar way using instead the conservation of the number of fermions
in which the total fraction of momentum carried away by an emitted quark xP(0)

qq (x)
integrated over x vanishes. Repeating the same calculations as performed above, the
splitting associated with the branching q→ qg is given by

P(0)
qq (x) =

CF
2π

[
1 + x2

(1− x)+
+

3
2

δ(1− x)
]

. (1.1.29)

The results presented above are only the leading-order coefficients of the perturbative
splitting functions. To the present day, splitting functions are fully known up to three-loop
in both the singlet and non-singlet case [93, 94], and up to four-loop in the planar [95–97]
and small-x [98] limit. Since resummation of transverse momentum distributions are
mainly performed in the Mellin space (as will be discussed later), the following thesis
mainly focuses on the Mellin space version of the splitting functions known as Anomalous
Dimensions. Their expressions up to three-loop are given in Refs. [93, 94].

3 The total fraction of momentum carried away by an emitted gluon is
∫

dx xP̃(0)
gg (x). On the other hand, a gluon

can also split into a quark-antiquark pair where the total fraction of momentum carried away by the quark (or

respectively the antiquark) is
∫

dx xP(0)
qg (x). Combining these probabilities with the case that the gluon does not

radiate yields unity.
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Matrix element factorization in the soft limit

In this section, we see how the matrix element factorize in the case where the gluon, say
with momentum k3, radiated from the quark or antiquark line goes soft. Let us start again
with the colour kinematic decomposition of the amplitude as expressed in Eq. (1.1.11) and
consider the helicity configuration as given in Eq. (1.1.12). The sum over the permutation
P3 can be decomposed into a sum over the permutation P2,

M5
(
1−, 2+, 3+

)
= g3

s ∑
P2(1,2)

⟨p1⟩3⟨ p̄1⟩
⟨p1⟩⟨12⟩⟨2p̄⟩⟨ p̄p⟩× (1.1.30)

[
(Ta3 Ta1 Ta2)

⟨p1⟩
⟨p3⟩⟨31⟩ + (Ta1 Ta3 Ta2)

⟨12⟩
⟨13⟩⟨32⟩ + (Ta1 Ta2 Ta3)

⟨2p̄⟩
⟨23⟩⟨ p̄1⟩

]

where we recognize the partial amplitude for the four-point scattering M̃4 (1−, 2+). Notice,
however, that its colour structure is entangled with the factorized piece. In order to recover
the full amplitude of the four-point process, one has to decompose the colour factors. The
idea is to regroup the colour terms of the four-point amplitude in such a way that the
colour term for the radiative process can be factorized out. This can be done by realizing
that product of generator matrices can always be written in terms of (anti) commutators.
One possible decomposition is given by the following

M5
(
1−, 2+, 3+

)
= g3

s ∑
P2(1,2)

(Ta1 Ta2 Ta3)

[ ⟨p1⟩
⟨p3⟩⟨31⟩ +

⟨12⟩
⟨13⟩⟨32⟩ +

⟨2p̄⟩
⟨23⟩⟨ p̄1⟩

]
(1.1.31)

×M̃4
(
1−, 2+

)
+ g3

s ∑
P2(1,2)

M̃4
(
1−, 2+

) [
[Ta3 , Ta1 Ta2 ]

⟨p1⟩
⟨p3⟩⟨31⟩Ta1 [Ta3 , Ta2 ]

⟨12⟩
⟨13⟩⟨32⟩

]

Some comments are in order. First, we are here interested in the case where the radiative
gluon is emitted from the quark or antiquark line (as depicted on the right-hand side
of Fig. 1), therefore neglecting the possibility that the gluon is emitted from the outgoing
gluon legs. In the MHV formalism, this corresponds to requiring the gauge fields of QCD
to commute by setting the Casimir factor CA to zero. Based on this observation, the second
term in Eq. (1.1.31) can be neglected. Second, the colour structure of the radiative process
has now been factorized out from the four-point amplitude. Indeed, the sum over the
permutation P2 is independent of the soft gluon k3 and therefore Ta3 can be extracted from
the summation. Finally, the square brackets appearing in the first term can be simplified
using the Schouten identity [85] ⟨ij⟩⟨lk⟩+⟨jk⟩⟨il⟩=⟨ik⟩⟨l j⟩. As a result, in the soft limit,
the expression of the five-point amplitude is given by the following

M5
(
1−, 2+, 3+

)
=


g2

s ∑
P2(1,2)

(Ta1 Ta2) M̃4
(
1−, 2+

)

× gs

Ta3⟨pp̄⟩
⟨p3⟩⟨3p̄⟩ , (1.1.32)

where one recognizes immediately the full amplitude for the four-point process with
the helicity configuration (1−, 2+, 3+). The factorized terms is usually referred to as the
(partial) eikonal current Jg for a single soft gluon emission. Therefore, writing Eq. (1.1.32)
in a compact form yields

M5
(
1−, 2+, 3+

)
=M4

(
1−, 2+

)
×Jg(3+) with Jg(3+) = gs

Ta3⟨pp̄⟩
⟨p3⟩⟨3p̄⟩ . (1.1.33)
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The expression of the eikonal current is interesting in two ways: first, it is invariant under
the rescaling of ⟨p| → a⟨p| and | p̄⟩ → b| p̄⟩; second it does not depend on the momentum
of the two hard gluons. For the helicity configuration we are currently considering, we can
now compute the modulus square of the five-point amplitude and sum over the colours.
Multiplying Eq. (1.1.33) by its complex conjugate, summing over the colours, and using
the cyclic property of the trace, we have

∣∣M5
(
1−, 2+, 3+

)∣∣2 = g2
s CF

(pp̄)
2(pk3)(k3 p̄)

×
∣∣M4

(
1−, 2+

)∣∣2 (1.1.34)

We recall that taking the complex conjugate of the eikonal current just amounts to replacing
the angle brackets to square brackets and use the definition ⟨ij⟩ [ij] =2(kik j) to recover the
usual scalar products.

In order to get the full expression of the amplitude in the soft limit, we have to sum
the amplitude in Eq. (1.1.34) over all possible helicity configurations. Let us recall that
from the properties of the partial amplitudes, we haveM5 ({hi}) =M⋆

5 ({−hi}) which
obviously implies that the modulus squares are also equal. With this property, it is clear
that one only has to compute in total three MHV amplitudes associated with the configu-
rations (1−, 2+, 3+), (1+, 2−, 3+), and (1+, 2+, 3−). But even the first two configurations
are related since flipping the helicity of the two gluons involved in the hard scattering is
equivalent to simply swapping the gluons (1↔ 2). In addition, one can notice immedi-
ately that in the limit k3 → 0, the amplitude arising from the third helicity configuration
is subleading due to the presence of ⟨p3⟩ and ⟨3p̄⟩ in the numerator. Since the first he-
licity configuration has already been computed, the expression for (1+, 2−, 3+) can be
read-off directly from Eq. (1.1.34) by swapping 1↔ 2 which leaves the whole expression
unchanged. Reading-off the MHV configurations (1+, 2−, 3−) and (1−, 2+, 3−) from the
two MHV amplitudes and combining everything, we finally find

∑
hel.
|M5 (1, 2, 3)|2 = g2

s CF
2(pp̄)

(pk3)(k3 p̄)
×∑

hel.
|M4 (1, 2)|2 . (1.1.35)

One should notice that in the soft limit, the Lorentz invariant phase space also factorizes.
We can therefore deduce the expression of the gluon multiplicity distribution dω

(1)
g that a

single gluon is radiated from a quark-antiquark line. In terms of the transverse momentum
kT of the soft gluon, the distribution writes as

dW (1)
g (x, k2

T) =
(αs

π

)
CF

dk2
T

k2
T

dx
(1− x)

. (1.1.36)

This distribution exhibits soft singularity when x → 1 and kT → 0. As guarantied by the
Kinoshita-Lee-Nauenberg (KNL) [99–101] theorem, such infrared divergences are cured
by adding the soft limit of the virtual correction that cancels the singularities at the level of
physical cross section. Indeed, at the level of the inclusive cross sections, the divergences
appearing in the real contribution are cancelled exactly by those appearing in the virtual
correction due to the fact that the integral over soft momenta are scaleless and such that
the phase space integral and loop corrections vanish in pure dimensional regularization.
However, this is not entirely the case for exclusive observables such as transverse momentum
distributions. Whist the inclusion of the virtual corrections still keeps the cross section
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Infrared (IR) finite, the sensitivity to some measurements yields leftover logarithms that
can become large. Omitting the details of the calculations for the sake of brevity, the exact
result after subtracting the infrared divergences is given by

W (1)
g (kmax

T , µ) = −2CF

(αs

π

)
ln2
(

kmax
T
µ

)
, (1.1.37)

where µ is the scale induced by the dimensional regularization of the phase space integral
and kmax

T is the maximum cut-off imposed on the kT integral.
What about multiple radiative gluon emission? Within the framework of the MHV

computations, it is straightforward to show that the eikonal current for n radiative gluon
emission for a given helicity configuration can be decoupled from the four-point hard
process. Analogous to the result of Eq. (1.1.33), the eikonal contribution in the case of
multiple gluon emission is given by

J (n)
g
(
1+, · · · , n+

)
= gn

s ⟨pp̄⟩∑
Pn

(Ta1 · · · Tan)

⟨p1⟩⟨12⟩ · · · ⟨np̄⟩ . (1.1.38)

Due to the non-commutativity of the QCD colour charges Ta, the eikonal current for
multiple gluon emission cannot be factorized nicely as in the case for photons in Quantum
Electrodynamics (QED). This reflects the fact that as opposed to photons, radiative gluons
can be emitted from a hard gluon line. However, it can be shown that the most singular
contribution to Eq. (1.1.38) in the soft limit is obtained when the emitted gluons are strongly-
ordered. That is, the transverse momenta of the gluons satisfy k2

1,T ≪ k2
2,T ≪ · · · ≪ k2

n,T
where the labels 1, · · · , n on the transverse momenta represent the order of the emission.
In this case, for instance, the first emitted gluon cannot resolve the remaining radiative
emission from the parent (anti) quark line. Such an approximation implies that the
following relations hold at the spinor levels when k2

1,T ≪ k2
2,T ,

⟨pi⟩
⟨p1⟩⟨1i⟩ −→

⟨pp̄⟩
⟨p1⟩⟨ p̄1⟩ and

⟨ij⟩
⟨i1⟩⟨1j⟩ −→ 0. (1.1.39)

This procedure can be performed iteratively by starting with the first emitted gluon. Once
the first radiative gluon is factorized out, we can do the same for the second emitted gluon
which in turn by virtue of the strong angular ordering cannot resolve the (n−2) emission
from the parent (anti) quark. Doing so up to the m-th gluon emission yields

⟨pp̄⟩∑
Pn

(Ta1 · · · Tan)

⟨p1⟩⟨12⟩ · · · ⟨np̄⟩ =
Ta1⟨pp̄⟩
⟨p1⟩⟨1p̄⟩ · · ·

Tam⟨pp̄⟩
⟨pm⟩⟨mp̄⟩ ∑

Pn−m

(
Tam+1 · · · Tan

)
⟨pp̄⟩

⟨p(m + 1)⟩ · · · ⟨np̄⟩ . (1.1.40)

When such a simplification is carried on until the n-th radiative gluon emission, one finds
that the eikonal current for n gluon emission factorizes into a product of the individual
eikonal current. Using Eq. (1.1.40), we can now compute the modulus square of the
radiation current, average over the colours, and calculate the multiplicity distribution for
the case of n radiative gluon emission

dW (n)
g

(
{xi, k2

i,T}
)
=

n

∏
i=1

dW (1)
g

(
xi, k2

i,T

)
(1.1.41)
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with the single emission probability defined as in Eq. (1.1.36). Similar to the case for
the single gluon emission as shown in Eq. (1.1.37), the exact result can be computed by
subtracting the infrared divergences. Since in general, we do not know from which external
leg the radiative gluon is emitted off, we have to sum over all external partons. Therefore,
the part that contains the radiative contributions becomes

W (n)
g (kmax

T , µ) =
∞

∑
n=0

1
n!

[
−2CF

(αs

π

)
ln2
(

kmax
T
µ

)]n
(1.1.42)

= exp
{
−2CF

(αs

π

)
ln2
(

kmax
T
µ

)}
, (1.1.43)

where the 1/n! comes from the fact that the gluons are indistinguishable. Eq. (1.1.43) shows
that the soft contributions are resummed to all-order in the strong coupling in a space
where the multiple emission kinematics factorizes w.r.t the LO hard process. Eq. (1.1.43)
is evidently a first approximation as it only resums the leading-logarithmic (LL) power.
Resummation of the soft contributions to higher logarithmic order is one of the main topics
of the present thesis and will be amply detailed in the subsequent sections.

Infrared and Collinear safe observables

It was mentioned previously that whilst the KNL theorem ensures that higher-order
corrections are well defined and finite for inclusive cross sections, this is not necessarily the
case in practice. Therefore, in order for an observable to be computable (i.e. well defined
and finite), one must define precisely the requirements that such an observable has to fulfil.
Two requirements to properly define a physical observable has been proposed by Sterman
and Weinberg [102]:

- Infrared safety: For an observable On evaluated on a set of n particles, if one of the
particles is soft, then the observable On must equal the observable On−1 obtained by
neglecting the soft emission. Mathematically, this can be written as follows

On(k1, k2, · · · , kn)
k1→0−−−→ Om−1(k2, · · · , kn). (1.1.44)

- Collinear safety: For an observable On evaluated on a set of n particles, if two of
the particles are collinear to each other, then the observable On must equal the
observable On−1 obtained by replacing the two collinear momenta with a particle
whose momentum equals the sum of the momenta of the two collinear particles.
Mathematically, this can be written as follows

On(k1, k2 · · · , kn)
k1||k2−−−→ Om−1(k1 + k2, · · · , kn). (1.1.45)

These two properties define what is known as Infrared and Collinear Safety (IRC) and
guarantees that perturbative observables with radiative corrections are well defined and
finite. Typically, two more ingredients are required in order to fully link the perturbative
description of a given process and what is being observed experimentally. The first
ingredient consists on replacing the final state plain partons in favour of jets. Conceptually,
jets are defined as collimated bunches of particles composed of quarks and/or gluons
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clustered according to a jet algorithm. Different jet algorithms might implement different
definitions of how final state particles are grouped into jets. It should also be noted that the
optimal jet definitions and methods may vary depending on the specific physics analysis
tasks. For a review of the jet definitions and algorithms, refer to Refs. [103–105]. The second
ingredient concerns the recombination of the partons or jets into hadrons, or hadronization.
As opposed to the situation in QED where soft radiations can be resolved up to the detector
resolution, in QCD, one never observes free partons due to the confinement. Indeed, once
the shower of partons is terminated, the process enters a low-momentum transfer and
long-distance regime in which non-perturbative effects can no longer be neglected. Various
models such as the independent fragmentation model [106], string model [107–110], and
cluster model [111, 112] have been proposed to simulate the transition of the partons into
hadrons. These models have been implemented in various Parton Shower Monte Carlo Event
Generators such as HERWIG [113], PYTHIA [114, 115], and SHERPA [116].

1.1.2 Solving the DGLAP equations

In the previous section, it was shown that long-distance effects are separated from short-
distance scattering by the factorization scale µ (commonly denoted µF). Such a factoriza-
tion allows for the µ-dependent hard function (partonic cross section) to be computable
perturbatively. In the same way that physical observables should not depend on the
renormalization scale µR (introduced through the renormalization procedure), they should
not also depend on the factorization scale, i.e. ∂O/∂µ2=0. This implies that the parton
distribution function has to satisfy some Renormalization Group Equations (RGEs) known as
DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equations.

In order to define the DGLAP equations in a more compact form while being explicit,
let us define the vectors q(x, µ2) and q̄(x, µ2) whose components are the different flavour
of quark and antiquark distributions. That is, the k-th elements are respectively given by
the following expressions

[
q(x, µ2)

]
a
= fa(x, µ2),

[
q̄(x, µ2)

]
a
= f ā(x, µ2). (1.1.46)

Adopting the same notation for the gluon distribution, the all-order DGLAP evolution
equations can be written as

µ2 ∂

∂µ2




q(x, µ2)

q̄(x, µ2)

g(x, µ2)


 =

∫ 1

x

dz
z




Pqq(x/z) Pqq̄(x/z) Pqg(x/z)

Pq̄q(x/z) Pq̄q̄(x/z) Pq̄g(x/z)

Pgq(x/z) Pgq̄(x/z) Pgg(x/z)







q(z, µ2)

q̄(z, µ2)

g(z, µ2)


 (1.1.47)

where we for brevity we have omitted the dependence on the strong coupling αs(µ2). The
functions P are defined in terms of the splitting functions introduced in Sec. (1.1.1) and
can be computed perturbatively P(αs(µ2), x/z)= ∑∞

n=0 αn+1
p (µ2)P(n)(x/z). The functions

given by Pqq, Pqq̄, Pq̄q, and Pq̄q̄ are n f -dimensional square matrices; Pqg and Pq̄g are
column vectors with dimension n f ; Pgq and Pgq are row vectors with dimension n f ; and
finally Pgg is a one-dimensional matrix. Therefore, the big square matrix on the right-
hand side of the equations has dimension (2n f+1). At leading-logarithmic accuracy,
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each element of these matrices corresponds to the splitting function whose expression we
derived in Sec. (1.1.1)

[
Pqq̄

(
αs(µ

2),
x
z

)]
ab

=
[
Pq̄q

(
αs(µ

2),
x
z

)]
ab

= 0 (1.1.48)
[
Pqg

(
αs(µ

2),
x
z

)]
a
=
[
Pq̄g

(
αs(µ

2),
x
z

)]
a
= αsP(0)

qg

( x
z

)
(1.1.49)

[
Pgq

(
αs(µ

2),
x
z

)]
a
=
[
Pgq̄

(
αs(µ

2),
x
z

)]
a
= αsP(0)

gq

( x
z

)
(1.1.50)

[
Pqq

(
αs(µ

2),
x
z

)]
ab

=
[
Pq̄q̄

(
αs(µ

2),
x
z

)]
ab

= αsP(0)
qq

( x
z

)
δab (1.1.51)

and the gluon distribution Pgg=αsP(0)
gg . The DGLAP equations in Eq. (1.1.47) is a system

of coupled (2n f+1) integro-differential equations, and therefore in order to solve such a
differential equations, it is advantageous to decouple them. It turns out that one could
find a combination of the parton distribution functions that can decouple the system of
equations. This combination is given by the (2n f−1) independent combination of PDF
matrices with dimension one known as non-singlet, and a single rank 2 matrix that couples
a particular combination of quarks known as singlet.

Let us start with construction of the non-singlet sector. Using charge conjugation
and flavour asymmetry constraints, the DGLAP equations related to the non-singlet
decomposition are given by

µ2 ∂

∂µ2 qV
ns(x, µ2) =

∫ 1

x

dz
z

PV
ns

( x
z

)
qV

ns(z, µ2) (1.1.52)

µ2 ∂

∂µ2 q±ns,a(x, µ2) =
∫ 1

x

dz
z

P±ns,a

( x
z

)
q±ns(z, µ2) (1.1.53)

where the non-singlet combination of the various (anti) quarks are given by the following
linearly independent functions:

qV
ns(z, µ2) = ∑q

(
q(z, µ2)− q̄(z, µ2)

)
(1.1.54)

q±ns,a(z, µ2) = −a (η(a)± η̄(a)) + ∑a
k=1 (η(k)± η̄(k)) (1.1.55)

with a={2, · · · , n f } and η mapping a flavour integer representation FI ={1, · · · , n f } into
the set of quark flavours FQ={u, · · · , t}. The splitting function governing the evolution
equation as expressed in Eq. (1.1.47) are derived using the general structure of the splitting
functions and they are given by

P±ns,a(x) = Pqq(x)± Pqq̄(x) (1.1.56)

PV
ns (x) = P−ns(x) + Psea

ns (x) (1.1.57)

where the Psea
ns =n f (PqQ−PqQ̄) represents the sea-combination with Q denoting a quark

with different flavour. It is worth emphasizing that only the flavour diagonal quantity
Pqq contributing in the valence starts at O(αs). The function Pqq̄ along with the flavour
independent sea contributions start to contribute at O(α2

s ).
The non-singlet sector described above entirely decoupled from the flavour singlet gluon

density. One therefore needs to define a flavour singlet quark density that maximally
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couples to the gluon. Such a construction leads to the DGLAP equations for the flavour
singlet densities in which the splitting functions that govern the evolution equation is
expressed in terms of a rank-2 matrix

µ2 ∂

∂µ2

[
Σ(x, µ2)

g(x, µ2)

]
=
∫ 1

x

dz
z

[
Pqq(x/z) Pqg(x/z)

Pgq(x/z) Pgg(x/z)

] [
Σ(z, µ2)

g(z, µ2)

]
(1.1.58)

with the flavour singlet quark density defined as follows

Σ(x, µ2) ≡∑
n f
i=1

(
qi(x, µ2) + q̄i(x, µ2)

)
. (1.1.59)

It is worth mentioning that processes such as DIS and Higgs boson production are only
sensitive to the singlet distributions and therefore the various non-singlet distributions are
not involved.

Due to the presence of convolutions in the DGLAP equations, it is convenient to solve
the non-singlet and singlet evolution equations in Mellin space where the convolutions
become normal products. We see that whilst the solution to the non-singlet equation
possesses a closed exponential form at all-order, the singlet case beyond leading-order
does not. As a matter of fact, the diagonalization of the singlet matrix in order to have two
independent equations for the two linear combinations of gluon and singlet-quark Σ only
works at leading-order. Therefore, for the singlet section, one has to compute higher-order
solutions as a series expansion around the lowest order. In Mellin space, the evolution
equations for the non-singlet and singlet sectors can be generically written in the following
way

µ2 ∂

∂µ2Q(N, µ2) = Γ(N)Q(N, µ2) (1.1.60)

where Q(N) denotes the Mellin version of one of the non-singlet qV
ns, q±ns,a, singlet Σ, and

gluon g distributions while the function Γ(N) represents the associated Mellin transform
of one of the various splitting functions. Again, for the sake of brevity, we have omitted
the dependence in the strong coupling. Recall that both Γ and Q are scalar quantities for
the non-singlet case and a rank-2 matrix for the singlet. The differential equation in µ
of Eq. (1.1.60) can be promoted into an evolution equation in αs. This is advantageous since
one can write Eq. (1.1.60) unambiguously as a series in αs using the running of the coupling
given in App. 1.A. Using the definition of the QCD β-function to take into account of the
change of variables, Eq. (1.1.60) becomes

∂

∂αs
Q(N, αs) =

Γ(N, αs)

β(αs)
Q(N, αs), (1.1.61)

where for simplicity we have omitted the explicit dependence of strong coupling on
the scale µ2. Unless explicitly mentioned, throughout this section, we always consider
αs≡αs(µ2). Expanding both the β-function and the anomalous dimensions, we get

∂

∂αs
Q(N, αs) = −

1
αsβ0

[
1 +

∞

∑
n=1

αn
s

βn

β0

]−1 [ ∞

∑
n=0

αn
s Γ(n)(N)

]
Q(N, αs) (1.1.62)

= − 1
αs

[
R0(N) +

∞

∑
n=1
Rn(N)

]
Q(N, αs) (1.1.63)
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where we have defined the recursive functionRn(N) as [94, 117]

R0(N) =
1
β0

Γ(0)(N), (1.1.64)

and Rn(N) =
1
β0

Γ(n)(N)−
n

∑
k=1

βk
β0
Rn−k(N) (if n > 1) (1.1.65)

The anomalous dimension quantitiesRn are diagonalizable if and only if they commute,
which is not the case for the singlet sector. On the contrary, since the functions Γ(N)
are just scalar quantities in the case of non-singlet, the anomalous dimension quantities
Rn do commute and closed exponential form of the solution can be constructed. The
leading-order solution to Eq. (1.1.63) for both non-singlet and singlet is given by

U(LO)
NS,S

(
N, µ2 ← µ2

0

)
≡ Q

(
N, αs(µ2)

)

Q
(

N, αs(µ2
0)
) =

∞

∑
n=0

1
n!

[
−R0(N) ln

(
αs(µ2)

αs(µ2
0)

)]n

(1.1.66)

where U(LO)
NS,S is called an evolution function that evolves Q from scale µ2

0 to µ2. In the
case where the function Q represents one of the non-singlet qV

ns, q±ns,a distributions, higher-
order solutions can be exactly computed from Eq. (1.1.63). At next-to-leading order, the
non-singlet solution has a closed exponential form

U(NLO)
NS

(
N, µ2 ← µ2

0

)
= exp

{
R1(N)

(
αs(µ2

0)− αs(µ2)
)−1

}
U(LO)

NS

(
N, µ2 ← µ2

0

)
. (1.1.67)

Using the corresponding order of the β-function and anomalous dimensions, higher-order
solutions to the non-singlet evolution equation can be exactly determined and expressed in
a closed exponential form. The term in the denominator of the exponent of Eq. (1.1.67) can
be written in terms of ln

(
µ2/µ2

0
)
. In this sense, the evolution function can be reorganized

in terms of the logarithmic contributions. That is, the all-order evolution function can
be written as UNS(N)= ∑∞

n=1 αn−2
s gn(N) where g1/αs contains logarithms of the form

αn
s lnn+1 (µ2/µ2

0
)
, g2 contains logarithms of the form αn

s lnn (µ2/µ2
0
)
, and so forth. Using

jargon from resummation (see subsequent sections for details), the first term resums the
leading logarithmic contributions (LL), the second resums the next-to-leading logarithmic
contributions (NLL), et cetera.

Before moving to the higher-order solutions of the singlet evolution equation, let us first
rewrite its leading order solution (Eq. (1.1.66)) in a more intuitive form by diagonalizing the
leading-order singlet anomalous dimension Γ(0)(N). In light of doing so, we decompose
the zeroth order anomalous dimension quantityR0 as follows

R0(N) = λ
(0)
− (N)E−0 (N) + λ

(0)
+ (N)E+0 (N) (1.1.68)

where λ± represent the (lower and higher) eigenvalues of R0 (Γ(0) to be precise) and
E± the corresponding projectors. Recall that the projectors E±, similar to the anomalous
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dimension quantitiesRn, are rank-2 matrices while the eigenvalues λ± are scalar quantities.
Their expressions are respectively given by

λ
(0)
± =

1
2

[
γ
(0)
qq + γ

(0)
gg ±

√(
γ
(0)
qq − γ

(0)
gg

)2
+ 4γ

(0)
gq γ

(0)
qg

]
(1.1.69)

E±0 =
1

λ
(0)
± − λ

(0)
∓

[
β0R0 − λ

(0)
∓ × I

]
, (1.1.70)

where we have omitted the N dependence for brevity. By making use of the eigen-
values and projectors, the leading order evolution function for the singlet sector given
in Eq. (1.1.66) can now be expressed as

U(LO)
S

(
N, µ2 ← µ2

0

)
= ∑

r=±
E r

0(N) exp

{
−λ

(0)
r (N)

β0
ln

(
αs(µ2)

αs(µ2
0)

)}
. (1.1.71)

As repeatedly mentioned, the solutions to the singlet evolution equation cannot be written
in a closed exponential form and have to be computed as a series expansion around the
leading-order solution in Eq. (1.1.71). We therefore use the following ansatz [94, 117]

US

(
N, µ2 ← µ2

0

)
= VS

(
N, αs(µ

2)
)

U(LO)
S

(
N, µ2 ← µ2

0

)
V−1

S

(
N, αs(µ

2
0)
)

(1.1.72)

=

[
1 +

∞

∑
n=1

αn
s (µ

2)V(n)
S (N)

]
U(LO)

S (N)

[
1 +

∞

∑
n=1

αn
s (µ

2
0)V

(n)
S (N)

]−1

where the evolution matrices V(n)
S are constructed from combinations of the anomalous

dimension quantitiesRn. The inverse evolution matrix factor ensures that the evolution US
reduces to unity when µ=µ0. By plugging Eq. (1.1.72) into Eq. (1.1.63), one can recursively
construct commutation relations between V(n)

S andR0. Sorting in powers of αs, we have

∞

∑
n=1

αn
s

[
V(n)

S ,R0

]
=

∞

∑
n=1

αn
s

(
nV(n)

S +Rn

)
+

∞

∑
n,m=1

αm
s αn

s V(m)
S Rn, (1.1.73)

which order-by-order gives the following commutation relations

[
V(n)

S ,R0

]
= nV(n)

S +Rn

n−1

∑
m=1

V(n−m)
S Rn ≡ nV(n)

S + R̃n. (1.1.74)

These equations can be solved recursively using the eigenvalue decomposition of the
leading-order singlet anomalous dimension matrix. Details of such computations are
given in Refs. [118, 119], here we directly give the solutions

V(n)
S =

β0E+1 R̃nE−0
λ
(0)
− − λ

(0)
+ − nβ0

+
β0E−0 R̃nE+0

λ
(0)
+ − λ

(0)
− − nβ0

− 1
n
(
E+0 R̃nE−0 + E−0 R̃nE+0

)
. (1.1.75)

Notice that the expression of V(n)
S (N) contains poles when the denominators λ

(0)
− − λ

(0)
+ ±

nβ0 vanish. These poles, however, are cancelled by the inverse evolution matrix V−1
S (N)
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in Eq. (1.1.72). This statement also holds for the truncated solutions where the inverse
evolution matrix V−1

S is not determined as an inverse of the evolution matrix VS but rather
from a series expansion. Plugging everything back into Eq. (1.1.63) using the form of the
leading-order solution given in Eq. (1.1.76), the next-to-leading (NLO) order solution to
the singlet evolution equation is given by

U(NLO)
S

(
N, µ2 ← µ2

0

)
= ∑

r=±
exp

{
−λ

(0)
r (N)

β0
ln

(
αs(µ2)

αs(µ2
0)

)}
M(r,−r) (1.1.76)

where we have defined the matrixM as follows

M(r, p) = E (r)0 +
E (r)0 R1E (p)

0(
αs(µ2

0)− αs(µ2)
)−1 − αs(µ

2
0)

β0E (r)0 R1E (p)
0

λ
(0)
p − λ

(0)
r − β0

(1.1.77)

+ αs(µ
2)

β0E (r)0 R1E (p)
0

λ
(0)
p − λ

(0)
r − β0

exp





λ
(0)
r − λ

(0)
p

β0
ln

(
αs(µ2)

αs(µ2
0)

)
 .

In the above equation, the poles λ
(0)
± −λ

(0)
∓ =β0 are cancelled when the last two terms are

combined. The analytic expressions of the truncated solutions to the singlet evolution
equation up to three-loop can be found in Refs. [117, 118]. These expressions will be
important when constructing the improved transverse momentum resummation for colour
singlet observables, that will be discussed in the subsequent sections.

Before closing this section, let us emphasize the role that the DGLAP evolution equations
play in QCD, but mainly in the determination of the PDFs. Parton distribution Functions
have an intrinsic non-perturbative feature that manifest through the scale µ2 and the
fraction of momentum x. While the x-dependence must be derived through a fit to the
experimental data, the µ2-dependence is predicted at all values by the DGLAP evolution
equations. This is very practical as it allows the PDFs to be fitted at an initial scale (usually
chosen to be slightly below the charm quark mass if heavier quark PDFs are assumed to
be generated by QCD radiation, i.e. µ0≡Q0∼1 GeV, or slightly above if the charm PDFs
are fitted on the same footing as light quarks, i.e. µ0≡Q0∼1.65 GeV) and then afterward
evolved to higher scales.

1.1.3 Determination of the proton PDFs

The non-perturbative nature of the parton distribution functions prevent their computa-
tion from first principle, instead, they have to be determined by comparing theoretical
predictions of hadronic cross sections (as expressed by the key equation, Eq. (1.1.1)) with
experimental measurements. That is, PDFs are modelled in terms of a collection of sensible
parameters whose values are optimized w.r.t. a suitable goodness-of-fit measure through
some minimization procedure in order to match experimental measurements.

To the present day, there exists various groups that implement different methodology
and provide different estimation of the PDF errors. To mention just a few collaborations:
ZEUS/H1 [34–39], NNPDF [40–53], ABM [54–58], CTEQ [59–68], and MSHT [69–74].
As the machine learning part in Sec. (5.5) is purely based on PDF sets produced using
NNPDF methodology, we base the subsequent descriptions of how PDFs are parametrized
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in terms of the NNPDF framework. While we refer the interested reader to the aforemen-
tioned references for a detailed review of the methodology, we briefly highlight in the
following passage the main key ingredients. The determination of (unpolarized) proton
PDFs relies primarily on the following elements:

- Perturbative Calculations

The factorization formula given in Eq. (1.1.1) provide a framework in which pertur-
bative and non-perturbative regimes are separated allowing for the short-distance
(hard) interactions to be computed perturbatively. In order for the perturbative
series (partonic cross section) to converge to its asymptotic result, computations of
higher-order contributions are vital. Beyond leading-order, the expression of the
partonic cross sections include loop momenta which when integrated over leads to
Ultraviolet (UV) divergences. Such divergences are renormalized through the running
of strong coupling with the introduction of the renormalization scale µR. Based on the
renormalization group argument, the dependence of the partonic cross section on
the renormalization scale decreases as the perturbative calculations are carried out
to higher orders.

Apart from the UV divergences, two classes of singularities also arise at higher orders:
infrared divergences associated with virtual contributions which (as described in
the previous section) cancel the corresponding soft divergences from the emission
of real gluons; and collinear divergences which are subtracted by terms arising in
the renormalization of the PDF operators. Depending on the observables, additional
singularities might arise due to the appearance of large logarithmic terms that
compensate the smallness of the strong coupling and spoil the convergence of the
perturbative calculations. Such divergences have to resummed to all-order in the
strong coupling.

Higher order partonic cross sections, usually next-to-leading order (NLO) and next-
to-next-to-leading order (NNLO), are generally available via Monte Carlo programs
such as MADGRAPH [120], NNLOJET [121], and MCFM [122] that typically takes
countless hours to accurately compute cross sections. In addition, since during the
fitting procedure PDFs are constantly evolved and convoluted with the partonic
cross sections, the parts which perform the DGLAP evolution and convolutions must
be carried out quickly and accurately. Several proposals have been put forward
in order to achieve this. The underlying idea behind these approaches consists on
pre-computing the partonic cross sections convoluted with the evolution kernels
and store the results into a suitable interpolation grid. The computation of the full
hadronic cross sections thus reduces to the scalar product between the PDFs param-
eterized at the initial scale Q2

0 and the interpolation tables. Each of the previously
mentioned Monte Carlo Program has its own fast interpolating software: AMC-
FAST [123] as the MADGRAPH interface, FASTNLO [124, 125] for NNLOJET, and
APPLGRID [126] interfaces both NNLOJET and MCFM. In addition, the NNPDF
collaboration uses the FASTKERNEL methodology [42, 43] that permits a fast precom-
putation of evolved parton densities.

- PDF Parametrization



1.1 S T R U C T U R E O F Q C D P R E D I C T I O N S 23

As highlighted in the previous section, thanks to the DGLAP evolution equations,
proton PDFs can be parameterized at an initial scale Q2

0 and then evolved to the
energy of the experimental predictions. In the NNPDF methodology, each parton fa
is parameterized in terms of a neural network at an initial scale Q0 as

x fa(x, Q2
0, θ) = Naxα(1− x)βNNa(x, θ) (1.1.78)

where Na is a normalization constant that accounts for theoretical constraints en-
forced by the QCD sum rules. In the NNPDF jargon, the factors xα and (1− x)β are
called preprocessing whose purpose is to speed up the convergence. They respectively
describe the small-x and large-x behaviours of the PDFs, in particular, the second
factor ensures that the PDFs vanish at large-x. The exponents α and β are different
for each PDF flavour and are determined from the data in global QCD analyses. The
main core of the parametrization lies in the neural network function NNa(x, θ)–with
θ representing the set of neural network parameters–that is defined to interpolate
between the low-x and high-x regions. For non-linear regression problems such as
the extraction of PDFs from experimental data, the use of neural networks is suitable
as it offers more flexibility and more importantly reduces the bias associated with
the choice of a functional form. Due to the sensitivity of the data set to different
species of PDFs, the extractions of the PDFs are typically performed in the evolution
basis (constructed from a linear combination of independent PDFs, or the singlet
and non-singlet distributions) instead of the flavour basis. However, the choice of
parametrization basis is arbitrary and the results of the fit should be basis indepen-
dent. Such an independence of the parametrization basis has been demonstrated in
the NNPDF4.0 global analysis.

- Optimization

Once the PDFs have been computed at the initial scale Q0, they can be evolved to the
scale of the experimental data set using the DGLAP evolution equations presented
in the previous section. The resulting PDFs can then be convoluted with the partonic
cross section (computed at a given perturbative order) in order to obtain theoretical
predictions for the hadronic cross section. Theoretical predictions are then compared
to experimental predictions through a log-likelihood χ2 measure. The optimal PDF
parameters are thus obtained by minimizing the χ2-figure of merit. For a given Ndat
of experimental measurements Di and a corresponding theoretical predictions Ti,
the loss function to be minimized is defined as

χ2(θ) ≡
Ndat

∑
i,j

(Di − Ti(θ)) cov−1
ij
(

Dj − Tj(θ)
)

, (1.1.79)

where i, j run over the experimental data points and covij represents the covariance
matrix. A typical fit typically only includes experimental information in the co-
variance matrix. However, recently, it has become possible to also include into the
covariance matrix theoretical information due to the uncertainties related to missing
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higher order in perturbation theory [52, 53]. The experimental covariance matrix is
defined as

covij = δij

(
δDUNC

i

)2
+

NCOR

∑
k=1

δDCOR
k,i δDCOR

k,j (1.1.80)

with δDUNC
ij and δDCOR

k,i respectively denoting the uncorrelated and correlated un-
certainties. It is worth pointing that in the absence of correlated uncertainties, the
covariance matrix has non-zero entries only in the diagonal.

The outcome of a PDF fit largely depends on the optimization strategy used to
minimize the figure of merit expressed in Eq. (1.1.79). In previous NNPDF determi-
nations (NNPDF3.1 and priors), stochastic algorithms have been used for the training
of neural networks. While these algorithms are less prone to end up in a local min-
ima, they become unsuitable when the parameter space is large, which is the case
for PDF extractions due to the large covariance matrices. The NNPDF4.0 methodol-
ogy [4, 77] instead considers (deterministic) Stochastic Gradient Descent algorithms
which not only is more computationally efficient but most importantly provides
faster and stable convergence. Indeed, due to frequent updates, the steps taken
by stochastic gradient descent algorithms towards the minima of the loss function
contain oscillations that can help to get out of local minima.

With fast and efficient minimization strategies also comes the risk of over-training.
This is also often referred to as overfitting. In order to avoid fitting noises in the data,
it is important to conceive a suitable stopping criterion. The NNPDF methodology
implements a widely used method in literature known as cross-validation in which
the data points are randomly divided into a training and validation sets. While the χ2

is computed for both sets, the training optimization is only performed on the training
set. The stopping algorithms keeps track of the values of both χ2 and terminates
when the value of the validation χ2

val does not improve for a certain number of steps
(while the training χ2

tr continues to decrease).

Let us finally comment on the propagation of PDF uncertainty. State-of-the-art PDF de-
terminations (including NNPDF ) only includes experimental uncertainties on the data
used to extract the PDFs. Theoretical uncertainties associated to missing higher order
corrections are usually neglected as they are assumed to be negligible compared to experi-
mental and possibly methodological uncertainties. Although proof of concepts on how
theoretical uncertainties can be systematically included in the PDF determination already
exist, PDF sets are delivered accounting only experimental (and possibly methodological)
uncertainties.

There exists two commonly used approaches to propagate experimental uncertainties
into the PDFs: the Monte Carlo and Hessian methods. For the determination of unpolar-
ized PDFs, the latter has been used in CT18 [67] and MSHT20 [74] while the former has
been used by the NNPDF and JAM [127] collaborations. While both of these methods
have their own advantages, the Monte Carlo method is more robust. As a matter of fact,
the Monte Carlo approach outweighs the traditional Hessian approach in two main ways.
First, the Monte Carlo method does not require the selection of a functional form removing
the bias associated to the PDF parametrization. Second, the Monte Carlo approach does
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not assume that the underlying PDF uncertainties follow a Gaussian distribution and thus
it does not require the linearity of the observables in order to propagate the uncertainties to
the PDFs. The Monte Carlo technique, instead, consists on generating Monte Carlo replicas
according to a Multi-Gaussian distribution centered on the central values Di and with
variances based on the experimental covariance matrices. The distribution of the data
replicas is thus mapped into the confidence interval in the space of PDFs by performing a
fit to each of the replicas. A fit to a replicas consists in minimizing the χ2

R where R denotes
a given replica index. In order to reproduce the statistical properties of the original data,
the number of replicas needs to be sufficiently large. Once fit results for the whole set of
Monte Carlo replicas are available, post-fit checks are required in order to ensure that each
replica satisfies a set of criteria. For instance, replicas with too large χ2 values or that do
not pass positivity constraints [128] must be removed.

1.2 Evaluating MHOUs with scale variations

A reliable estimation of the theoretical uncertainties is of foremost importance for high
precision physics of the kind aimed for at the LHC. The main source of theoretical uncer-
tainties stem from the missing higher-order corrections in perturbative computations. The
variation of the unphysical scales appearing in the calculation is thus far the most used
and widespread method to estimate such uncertainties. In the following, we first describe
how missing higher-order uncertainties coming from the hard scattering and PDFs are
evaluated independently using scale variations. Then, we discuss how these uncertainties
can be simultaneously assessed at the level of physical observables, still using the method
of scale variations. Our derivations follow closely Refs. [52, 53]

For the sole reason that the present thesis is mainly concerned about hadroproduction
processes, let us consider as illustration the factorized expression given in Eq. (1.1.1)

O
(

αs(µ
2),

Q2

µ2

)
= L⊗ Ô

(
αs(µ

2),
Q2

µ2

)
(1.2.81)

where for the time being, we assume that the PDFs (expressed through the luminosity
L= f ⊗ f ) are evaluated at ta fixed scale. Thus, the scale µ2 in Eq. (1.2.81) represents an
arbitrary normalization scale. For the sake of brevity, the sum over the partonic (sub)
channels have been omitted and assumed to be implicit.

1.2.1 Scale variation for partonic cross sections

As introduced in the previous section, the renormalization group (RG) invariance states that
all-order predictions are independent of the renormalization scale. That is,

µ2 ∂

∂µ2O
(

αs(µ
2),

Q2

µ2

)
= L⊗ µ2 ∂

∂µ2 Ô
(

αs(µ
2),

Q2

µ2

)
= 0 (1.2.82)

Eq. (1.2.82) shows that the renormalization group invariance of the physical observable
(henceforth cross section) requires the renormalization group invariance of the perturbative
observable. Thus, hereinafter, let us mainly focus on the hard scattering partonic part
µ2∂Ô/∂µ2=0. For the purpose of what will follow, let us define the following observables:



26 PA R T O N D I S T R I B U T I O N F U N C T I O N S AT C O L L I D E R P H Y S I C S

Q2=kµ2, κ= − ln k, t= ln(Q2/Λ2
QCD) such that αs(µ2) is a function of (t+κ). Assuming

that the function Ô is analytic in αs and κ, it can be shown that the renormalization group
equation in Eq. (1.2.82) writes as [52, 53]

∂

∂t
Ô (αs(t + κ), κ) = − ∂

∂κ
Ô (αs(t + κ), κ) (1.2.83)

Notice that the derivative w.r.t. t (in the first term) is taken keeping κ fixed, and in a similar
way, the derivative w.r.t. κ (in the second terms) is performed keeping αs fixed. By Taylor
expanding the partonic cross section Ô around κ=0 (i.e. µ2=Q2) while keeping αs(t + κ)
fixed, it can be shown that scale-dependent κ cross section can be expressed in terms of
the cross section evaluated at the central scale while keeping the κ-dependence in the
argument of the coupling αs. This can be written as follows

Ô (αs(t + κ), κ) =
∞

∑
n=0

κn

n!
∂

∂κn Ô (αs(t + κ), 0) (1.2.84)

=
∞

∑
n=0

(−1)n κn

n!
∂

∂tn Ô (αs(t + κ), 0) (1.2.85)

where to go from the first to the second line, we used the renormalization group invariance
condition given in Eq. (1.2.83) ∂/∂κ= − ∂/∂t. Notice that all the derivatives in Eq. (1.2.84)
and Eq. (1.2.85) are taken keeping αs and κ fixed respectively. Let us emphasize that when
κ=0, the left and right-handed side of Eqs. (1.2.84-1.2.85) are exactly the same at every
order in perturbation theory. It is clear from Eq. (1.2.85) that derivatives w.r.t. t always add
one power of the running of the coupling. That is, the O(κn)-term in Eq. (1.2.84) is O(αn

s )
w.r.t. the leading term Ô(αs, 0). By defining the cross section evaluated at the central scale
Ō(t) ≡ Ô (αs(t), 0), the missing higher order uncertainty can be defined in the following
way

∆NmLO(t, κ) = ÔNmLO (αs(t + κ), κ)− ŌNmLO(t) (1.2.86)

where m∈N denotes the order at which the perturbative computation is truncated. If we
assume that the hard partonic cross section admits the following perturbative expansion

Ō(t) =
∞

∑
m=0

αm+n
s (t)Ōn with n ∈N, (1.2.87)

then the derivatives that appear in Eqs. (1.2.84-1.2.85) can be computed exactly using the
definition of the β-function. For instance, by regrouping terms w.r.t. the coupling constant,
it follows that the first derivative of Eq. (1.2.85) is given by

∂

∂t
Ō(t) = nαn−1

s (t)β(αs)Ō0 + (n + 1)αn+1
s (t)β(αs)Ō1 + · · · (1.2.88)

= nαn+1
s β0Ō0 + αn+2

s
(
nβ1Ō0 + (n + 1)β0Ō1

)
+ · · · (1.2.89)

Hence, by computing up to the second derivatives and regrouping the terms w.r.t. the
strong coupling αs, it can be shown that up to NLO order the renormalization scale
variation of the hard partonic cross section is given by the following expression

Ô (αs(t + κ), κ) = αn
s (t + κ)Ō0 + αn+1

s (t + κ)
(
Ō1 − nκβ0Ō0

)
+ · · · (1.2.90)
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Upon convoluted with the luminosity (as shown in Eq. (1.2.82)), we can derive the renor-
malization scale-dependent hadronic function

O (αs(t + κ), κ) = αn
s (t + κ)L⊗ Ō0 + αn+1

s (t + κ)L⊗
(
Ō1 − nκβ0Ō0

)
+ · · · (1.2.91)

In order to estimate the missing higher-order uncertainty at the hadronic level, it suffices to
simply replace Ô by O with the renormalization scale-dependent hadronic function given
in Eq. (1.2.91). The estimation of the missing higher-order uncertainty just amounts to vary-
ing κ, typically κ ∈ [− ln 4, ln 4]. In practice, the evaluation of the derivatives appearing
in Eq. (1.2.85) cannot always be performed analytically, especially when the dependence
on αs is non-trivial as is often the case in resummed (all-order) computations. Therefore, it
is often convenient to perform the derivatives numerically. While the formalism presented
here were described in terms of the hadroproduction, it can be used to estimate missing
higher-order uncertainty for any (partonic) cross sections [52, 53].

1.2.2 Scale variation for parton evolutions

In the previous section, we assumed that the factorization scale appearing in Eq. (1.1.1)–
that separates short-distances from long-distance physics–is fixed. However, since such
a factorization scale persists at the level of the physical observables (similar to the renor-
malization scale), it can be considered as a source of missing higher-order uncertainty
and the ambiguity of its definition must be assessed. As argued in Refs. [52, 53], missing
higher-order uncertainties associated with the parton evolutions can be assessed using
scale variations (similar to the case for the partonic cross section) by varying the scale
either at the level of the anomalous dimensions, or at the level of the PDFs, or at the level of
the hard scattering partonic coefficient functions. For its simplicity, here, we only present
the second approach. We refer the reader to Refs. [52, 53] for details related to the third
approach. As we shall see, the derivation of the second approach can be inferred from the
results obtained using the first approach.

As our starting point, let us consider the PDF evolution equation defined in Mellin space
as given by Eq. (1.1.60)

µ2 ∂

∂µ2Q(µ
2) = Γ

(
αs(µ

2)
)
Q(µ2) (1.2.92)

where as before Q(N) denotes the Mellin version of one of the non-singlet qV
ns, q±ns,a,

singlet Σ, and gluon g distributions while the function Γ(N) represents the associated
Mellin transform of one of the various splitting functions. For brevity, in this section, the
argument of Q and Γ are presented assuming Mellin space formalism. Here, µ represents
the factorization scale and is related to the scale of the process via Q2=kµ2. As it was the
case for the partonic cross section, the factorization scale dependence µ2 of the anomalous
dimension can be made explicit order-by-order in perturbation theory using the the
renormalization group invariance. Repeating the procedure in Eqs. (1.2.83-1.2.90) assuming
that Γ admits a series expansion Γ̄(t)= ∑∞

n=0 αn+1
s (t)Γ̄0, where we defined the anomalous

dimension computed at the central scale Γ̄(t)≡Γ(αs(t), 0), it follows that

Γ (αs(t + κ), κ) = αs(t + κ)Γ̄0 + α2
s (t + κ) (Γ̄1 − κβ0Γ̄0) + · · · . (1.2.93)



28 PA R T O N D I S T R I B U T I O N F U N C T I O N S AT C O L L I D E R P H Y S I C S

Eq. (1.2.93) represents the key element for the estimation of the missing higher-order
uncertainties of the parton evolution through a variation of the factorization scale on
which the anomalous dimensions depend. In order to incorporate the above results into
the PDFs, we need to integrate Eq. (1.2.92). Based on the derivation performed in Sec. (1.1.2),
the scale varied parton density function can be expressed as

Q (αs(t + κ), κ) = exp
{∫ t

t0

dq Γ (αs(t + κ), κ)

}
Q̄(t0) (1.2.94)

where as before we defined the PDF computed at the central scale to be Q̄(t0)≡Q(αs(t), 0).
The exponential term in Eq. (1.2.94) can be simplified using Eqs. (1.2.84-1.2.85) and replac-
ing Ô with Γ. After performing some algebraic simplifications, we have

exp
{∫ t

t0

dq Γ (αs(t + κ), κ)

}
= [1− κΓ̄(t + κ) + · · · ] exp

{∫ t+κ

t0

dq Γ̄(q)
}

. (1.2.95)

Plugging the above equation back into Eq. (1.2.94), we can derive the PDF obtained
by varying the renormalization scale in the anomalous dimensions with a fixed Q̄(t0)
evaluated at the initial scale µ0. Eq. (1.2.94) thus becomes

Q (αs(t + κ), κ) = [1− κΓ̄(t + κ) + · · · ] Q̄(t + κ). (1.2.96)

The above equation gives the estimation of the missing higher-order uncertainty of the
parton evolutions through a variation of the factorization scale µ2 in the PDFs. Similar
to the case for the (partonic) cross section, the missing higher order uncertainty can be
conveniently computed using numerical methods with κ varying in the range [− ln 4, ln 4].

1.2.3 Combined scale variations

After having described how missing higher-order uncertainties coming from the hard
cross section and parton evolutions are estimated independently, let us now discuss how
such estimations can be combined in a consistent way. Consider the factorization formula
in Mellin space for the hadroproduction cross section:

O
(

αs(µ
2),

Q2

µ2
F

,
Q2

µ2
R

)
= L

(
αs(µ

2
F),

Q2

µ2
F

)
Ô
(

αs(µ
2
R),

Q2

µ2
R

)
(1.2.97)

where the dependence of the perturbative functions on N are assumed to be implicit.
In addition, for the sake of brevity, we have omitted the summation over all possible
(sub) channels. Here, µR denotes the renormalization scale whose dependence is entirely
embodied in the hard scattering partonic cross section, and whose variation estimates the
missing higher-order uncertainties from due to truncation of the partonic cross section. In
a similar way, µF represents the factorization scale whose dependence is entirely embodied
in the anomalous dimensions, and whose variation estimates the missing higher-order
uncertainties in the parton evolutions.

Given that the physical cross section in Eq. (1.2.97) factorizes the scale dependence, the
renormalization scale µR and the factorization scale µF can be chosen independently. For
what will follow, let us defined the following variables:

kRµ2
R = Q2, kFµ2

F = Q2, and κR = − ln kR, κF = − ln kF (1.2.98)
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Figure 3 Various prescriptions indicating the sampled values of the factorization scale κR
and renormalization scale κF. From left to right, we show the five-point prescription, the
seven-point prescription, and the nine-point prescription. The are spanned by the variation
of scales are represented by the gray shapes. The origin of coordinates corresponds to the
central scale.

such that the coupling αs appearing in the hard cross section and in the PDFs are func-
tions of tR= t+κR and tF= t+κF respectively with t= ln

(
Q2/Λ2

QCD

)
. In terms of these

variables, the scale-varied factorized hadronic cross section is expressed as

O (t, κF, κR) = L (αs(tF), κF) Ô (αs(tR), κR) (1.2.99)

Based on the derivations performed in Secs. 1.2.1-1.2.2, the all-order scale varied PDFs
(here expressed in terms of the luminosity) and the partonic cross section are respectively
given by the following expressions

L (αs(tF), κF) =
∞

∑
n=0

(−1)n κn
F

n!
∂

∂tn
F
L̄(tF) (1.2.100)

Ô (αs(tR), κR) =
∞

∑
n=0

(−1)n κn
R

n!
∂

∂tn
R
Ō(tR). (1.2.101)

The luminosity and partonic cross sections evaluated at the central scales, namely µ2=Q2,
are respectively defined as L̄(tF)=L(αs(tF), 0) and Ō(tR)=Ô(αs(tR), 0). Taking into
account that ∂/∂t is O(α2

s ), the NLO scale-varied hadronic cross section is given by

ONLO (t, κF, κR) = L̄ (tF) Ō (tR)−
[

κR
∂

∂t
L̄ (tF) Ō (tR) + κFL̄ (tF)

∂

∂t
Ō (tR)

]
(1.2.102)

The above expression suggests that scale variations w.r.t κR can be determined by taking
the derivatives of the hadronic cross section w.r.t tR while keeping tF fixed, and vice-versa.
Up to NLO, the scale-varied hadronic cross section can finally be written as

ONLO (t, κF, κR) = Õ(tF, tR)−
(

κR
∂

∂tR
Õ(tF, tR) + κF

∂

∂tR
Õ(tF, tR)

)
, (1.2.103)

where Õ(tF, tR)=L̄ (tF) Ō (tR) is the hadronic cross section evaluated at the central scale.
The missing higher-order uncertainties of the hadronic cross section are then estimated by
varying independently in a symmetric way, typically |κF|, |κR| ≤ ln 4. One of the ways to
achieve such a double scale variations is a prescription known as fived-point scale variation
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where the scale choices are given by (κF, κR)=(0, 0), (± ln 4, 0), (0,± ln 4). Alternative
prescriptions are shown in Fig. 3. Throughout this thesis, we adopt the seven-point scale
variation, details on such a prescription are described in Sec. (3.3).

1.3 The road toward 1% accuracy

Chief among the goals of precision phenomenology of the kind studied at hadron colliders
such as LHC is to produce theoretical predictions accurate at percent-level to be compared
to an ever increasing range of high precision experimental measurements. The road
to such an accuracy requires the following aspects: an understanding of the meaning
of the residual theoretical uncertainty given by unknown higher-orders in perturbation
theory, and a better determination of the parton density functions in order to push their
uncertainties to lower values. In the following section, we summarize the advancements as
well as the issues that currently persist toward achieving that goal. In particular, we report
in the first part the current state-of-the-art on PDF determination and their accuracies.
The second part is dedicated to the discussion of the estimation of missing higher-order
uncertainties including a discussion on how resummed calculations can be used to estimate
these unknown contributions.

1.3.1 Methodological aspects

Considerable advancements have happened in the area of PDF determination with the
release of the NNPDF4.0 methodology [4, 77]. The improvements in comparison to
NNPDF3.1 manifest in two main aspects: the systematic inclusions, for the first time,
of LHC Run II data at a center-of-mass energy

√
s=13 TeV, enlarging significantly the

experimental data used to constrain PDFs; and a new fitting procedure based on state-of-
the-art machine learning techniques, whose impacts improve significantly the fitting time
and provide more accurate descriptions of the PDF uncertainties.

In terms of experimental data set, the NNPDF4.0 PDF set includes new LHC measure-
ments at

√
s=13 TeV for processes already present in NNPDF3.1, but also new processes

such as single top production [129], dijets [130], and W+jet [131]. In terms of methodology,
not only the minimization algorithm has been changed from Genetic Algorithm to Stochastic
Gradient Descent, but also the whole methodology itself is fitted using the hyperparameter
optimization. The hyperparameter optimization if performed through a procedure called
κ-folding where the effectiveness of a given methodology (here methodology means a
particular set of hyperparameters) is checked on sets of data excluded in turn from the fit.
Despite the fact that fitting procedure does not account for the methodological uncertain-
ties, such ambiguities can be kept under control using: closure tests [40] which assesses the
faithfulness of the uncertainties, and future tests which tests the backward and forward
compatibility of the data.

Thanks to these improvements, both in terms of experimental data and methodology,
the PDFs are reliable and accurate at one-percent level across a wide range of kinematic
regions. This is illustrated in Fig. 4 where we plot the relative parton luminosities as a
function of the invariant mass mX and the rapidity y for various channels at a center-
of-mass energy

√
s=14 TeV. The results from NNPDF3.1 are shown on the left while
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results from NNPDF4.0 are shown on the right. For all the channels considered, it is
apparent that the NNPDF4.0 methodology yields smaller PDF uncertainties reaching up
to one-percent accuracy for most of the kinematic ranges.

In terms of PDF determination, the main missing piece towards achieving a one-percent
accuracy is the inclusion of theoretical uncertainties, which is dominated by missing higher-
order uncertainties in perturbative QCD computations. The inclusion of the theoretical
uncertainties into the PDF fit will become increasingly crucial with the insatiable quests
for new physics and the advent of future high energy colliders [132]. Despite the fact that
a proof of concept of how this could be achieved already exists [52, 53], PDF sets are still
delivered without accounting for theoretical uncertainties.

1.3.2 Theoretical aspects

On the theory side, one of the main obstacles toward approaching a percent-level accuracy
is the unknown higher-order corrections in perturbative calculations. Whilst considerable
progress has been made in performing higher-order perturbative computations for a large
number of processes of interest at the LHC, the need for a reliable estimation of theory
uncertainties associated with missing higher contributions is becoming more pressing. As
mentioned in previous sections, thus far, the most standard and widespread approach of
estimating theoretical uncertainties associated with missing higher-orders in perturbative
calculations is to perform a variation of the unphysical scales involved in the process,
namely the factorization and renormalization scales. In Sec. (1.2.3), we presented various
prescriptions on how the two scales could be varied. The uncertainty envelope is then
computed by taking the minimum and the maximum from the scale variations.

From the practical point of view, the use of scale variation to estimate missing higher-
order uncertainties presents a number of advantages. First, due to the fact that the scale
dependence of the strong coupling and PDFs are universal, scale variations can be used
to estimate theoretical uncertainties for any perturbative process. Second, the constraint
imposed by the renormalization group invariance ensures that as the order order of
perturbative calculations increases, the scale dependence decreases. Third, estimation
of missing higher-order uncertainties resulting from scale variations produces smooth
functions of the kinematics, incorporating strong correlations in the nearby regions of
the phase space. However, the procedure of estimating missing higher-order uncertainty
using a scale variation also presents some shortcomings, chief among which is the fact that
it does allow for a probabilistic interpretation, therefore removing any attempt to estimate
the degree of belief. In addition, there is the ambiguity in defining the central scale around
which the variation should be performed and the ranges at which the scales are allowed to
vary. Most importantly, scale variation misses uncertainties associated to new singularities
appearing at higher-orders but not present at lowers-orders.

Recently, several methods have been proposed in order to address some of the caveats
of the scale variations. In Ref. [80], Cacciari and Houdeau proposed a new approach
of estimating missing higher-order uncertainties using a Bayesian model. In short, the
method consists on adopting some assumptions on the progression of the perturbative
expansion, then based on the knowledge of the first few orders, one can infer on the
hidden parameters that are assumed to bound the structure of the perturbative coefficients,
allowing for an inference on the unknown subsequent contributions. While this approach
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Figure 4 The relative parton luminosities as a function of the invariant mass mX and the
rapidity y for various channels, namely gg (top), gq (middle), and ud̄ (bottom). The results
are shown the the two families of NNPDF sets: NNPDF3.1 (left) and NNPDF4.0 (right).
The colour-bars on the right represent the relative uncertainty in terms of percentage. Plots
are taken from Ref. [4].
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has proved to perform quite well for QCD observables at e+e− colliders [80], its reliability
when it comes to proton-proton collider observables is subject to questions [22, 81]. In
Ref. [82], Bonvini built upon Cacciari-Houdeau’s work to construct more general, flexible
and robust models. The various models have been validated on some observables at LHC
that are known to very high accuracy.

A possible way to estimate the impacts of unknown higher-orders in perturbation
theory is the information provided by resummed calculations. Indeed, information on the
various kinematic limits that appear in fixed order calculations are contained at all-order
in resummed expressions. Thus, it should be possible to consistently combine these various
limits to predict the subsequent unknown contributions in the perturbative computations,
in the same way as it was done in Ref. [133]. In Sec. (3.4) we give a proof of concept by
combining high energy and threshold resummations to approximate the NNLO Higgs
transverse momentum distribution.

1.4 Summary

We have devoted this chapter to the introduction of the concepts for making theoretical
predictions in QCD. In particular, we highlighted the importance of the factorization
property that allows one to perform perturbative computations by separating long-distance
physics from short-distance interactions. As a result, it is possible to represent measurable
cross sections by folding the partonic cross sections with the PDFs. At the partonic level,
we emphasized the efficiency of the spinor helicity formalism and the MHV techniques
in computing massless scattering amplitudes. This allowed us to introduce the splitting
functions that govern the DGLAP evolution equations. At the PDF level, we investigated
the relation between the scale dependence of the PDFs and the DGLAP evolution equations
whose solutions we have explicitly computed up to NLO in the singlet and non-singlet
sector. In particular, we provided a brief overview of the determination of the PDFs in
terms of the momentum fractions using as a reference the NNPDF methodology. We then
raised the issue that plagues perturbative computations, namely the estimation of missing
higher-order corrections and the appearance of large logarithms. These subjects will be
the topics of the next chapters.

1.A The running of αs and asymptotic freedom

The applicability of perturbative computations in QCD relies on the smallness of the
strong coupling constant αs. Indeed, perturbative treatment of a given observable can
only be reasonable if the coupling of quarks and gluons are small. As introduced in the
previous sections, the strength of the interaction between these partons are dictated by
αs(µ2)=gs(µ2)/4π, where the the renormalization scale µ2 is a remnant of the renormal-
ization of UV divergences. Since physical observables should not depend on an unphysical
scale, we can derive a differential equation that describes the dependence of αs on µ2. This
is known as the renormalization group equation and writes as

µ2 ∂

∂µ2 αs(µ
2) = β

(
αs(µ

2)
)

, (A.1)
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where the QCD beta function β is a perturbative function that admits an expansion in αs.
At all-order, its expression is given by β(αs)= ∑∞

n=0−βnαn+2
s . Each coefficient appearing

in that series can be computed perturbatively. In MS, the first three coefficients are given
by the following expressions

β0 =
1

12π

(
11CA − 2n f

)
, β1 =

1
24π2

(
17C2

A − 5CAn f − 3CFn f

)
, (A.2)

β2 =
1

64π3

(
2857

54
C3

A −
1415

54
C2

An f −
205
18

CACFn f +
78
54

CAn2
f +

11
9

CFn2
f

)
. (A.3)

The QCD factors CA and CF are respectively defined as CA=Nc and CF=(N2
C−1)/2Nc

where Nc=3 for QCD. By introducing a reference scale µ2
0, we can derive the solution

to the renormalization group equation in Eq. (A.1). Such a solution generally takes the
following form

αs

(
µ2
)
=

∞

∑
n=1

αn
0 fn

(
µ2

µ2
0

)
, (A.4)

where for simplicity we defined α0=αs(µ2
0). Including contributions up to β2, the functions

fn are given by

f1(X) =
1
X

, f2(X) = − β1

β0

ln X
X2 (A.5)

f3(X) =
1

X3

[
β2

1
β2

0

(
ln2 X− ln X− (1− X)

)
+

β2

β0
(1− X)

]
(A.6)

where the scale dependent variable X is defined to be X=1 + α0β0 ln(µ2/µ2
0). Eq. (A.4)

then allows one to compute the coupling constant at scale µ2 in case its value is known
at a reference scale µ2

0. Notice that solving the renormalization group equation sums up
logarithms to all order in perturbation theory. The running of αs(µ2) where functions up
to f3 are included, for instance, resums logarithms up to NNLL.

As a final side remark, it is worth emphasizing the presence of Landau pole. This pole
is given by µ2

L=Λ2=µ2 exp(−1/(α0β0)) and is present at all logarithmic order. Such a
singularity appears also in resummed calculations in Fourier and Mellin space making the
conversion to the direct space a complicated task.

1.B Integral transforms

In the following section, we describe various integral transforms that appear often in the
reset of the manuscript, especially in the context of all-order computations. In particular,
we describe some of the properties of the Fourier and Mellin transforms, mainly in the
context of a differentiable function.

1.B.1 Fourier transform

Let us first briefly review the concept of two-dimensional Fourier transform which will be
used on the context of small-pT resummation. Such a transform is required in order to
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factorize the delta constraints that enforces the conservation of transverse momentum.
Using a function that is differential in dp⃗T=dpx

Tdpy
T as an example, the two-dimensional

Fourier transform is defined as:

F [ f ( p⃗T); p⃗] ≡ d f
dp⃗T

(⃗b) =
∫

d2 p⃗T exp
(

i p⃗T⃗b
) d f

dp⃗T
( p⃗T) . (B.1)

In order to be consistent with previous notations, we denote the differential function and
its Fourier transform with the same variable. Recall that they are only distinguished by
the arguments. As a result, the inverse Fourier transform is derived by integrating back b⃗:

d f
dp⃗T

( p⃗T) =
∫ d2⃗b

(2π)2 exp
(

i p⃗T⃗b
) d f

dp⃗T
(⃗b). (B.2)

In the case where the differentiable function f is azimuthally symmetric, i.e. for pT= | p⃗T |
and b= |⃗b|, if

d f
dp⃗T

( p⃗T) =
1

2π

d f
pTdpT

(pT), and
d f

dp⃗T
(⃗b) =

d f
dpT

(b), (B.3)

then the azimuthal angle can be performed, leading to the Hankel transforms:

d f
dpT

(b) =
∫ ∞

0
dpT J0(bpT)

d f
dpT

(pT), (B.4)

d f
dpT

(pT) = pT

∫ ∞

0
db b J0(bpT)

d f
dpT

(b), (B.5)

where J0(x) is the zeroth-order Bessel function of the first kind.

1.B.2 Mellin transform

Definition & Example

Let f (t) be a function defined on a positive real axis 0 < t < ∞ (in QCD, the value of t is
often restricted in (0, 1)). The Mellin transform of f is defined on the complex plane as:

M [ f ; N] ≡ f (N) =
∫ ∞

0
dt t−N f (t). (B.6)

In general, the above integral only exists for complex values N=a + ib such that c < a < d
for some values of c and d depending on f (t). Such a domain is often referred to as strip
S(c, d). In order for the integral to converge, the function f (t) can grow as much as ect

when t→ ∞.
As an illustration, let us consider a straightforward function defined by f (t)=e−pt

∀p > 0. Using the definition given in Eq. (B.6), it is immediate to see that the Mellin
transform is given in terms of a Gamma function, f (N)= p−NΓ(N). Recalling that the
Gamma function is analytic in the region Re(N) ≡ a > 0, it follows that the strip of
holomorphy is the positive half-plane in complex space.
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Relation with two-sided Laplace transform

The Mellin transform defined in Eq. (B.6) is closely related to the Laplace transform upon
performing the change of variable t=e−x. the integral in Eq. (B.6) now becomes:

f (N) =
∫ ∞

−∞
dx exp (−Nx) f (exp(−x)) . (B.7)

By defining a new function g(x) ≡ f (e−x), one can recover the standard expression of the
extended two-sided Laplace transform:

L̃ [g; N] ≡
∫ ∞

−∞
dx exp (−Nx) g(x). (B.8)

It is worth mentioning that the extended two-sided Laplace transform in Eq. (B.8) and the
Mellin transform in Eq. (B.6) are related through the following relation

M [ f (t); N] = L̃ [ f (exp(−x)) ; N] . (B.9)

Inverse Mellin transform

The inverse Mellin transform can be generally computed by defining the Mellin moment
as N=a + 2πiβ and realizing that (as it was the case for the two-sided Laplace transform)
the Mellin and Fourier transforms are related by

M [ f (t); a + 2πiβ] = F [exp(−ax) f (exp(−x)) ; β] . (B.10)

The above relation implies that the function f (x) is related to the Mellin function f (N)
according to the following relation:

exp(−ax) f (exp(−x)) =
∫ ∞

−∞
dβ f (N) exp (2πβ) . (B.11)

Going back to the definition in terms of t with a change of variable and performing some
algebraic simplifications, we arrive at the expression of the Mellin transform

f (t) =
1

2πi

∫ a+i∞

a−i∞
dN t−N f (N), (B.12)

where the integration is performed along the vertical line Re(N) ≡ a.
The uniqueness of the inverse Mellin transform depends on the strips of holomorphy.

That is, a function f (N) defined in Mellin space can map to different inverse Mellin
transforms depending on the regions of holomorphy considered. This is related to how
the value of a should be chosen.

To illustrate this, let us consider our previous example, f (N)=Γ(N) (with p=1). For
q ≡ Re(N) > 0, f (t)=e−t is shown to be the Mellin transform. Using the inverse formula
in Eq. (B.12), one has the following integral representation

exp(−t) =
1

2πi

∫ a+i∞

a−i∞
dN t−NΓ(N). (B.13)
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As mentioned earlier, the Γ-function is known to be analytically continuable in the left half-
place of the complex space, expect at zero and infinite negative integers where poles exist.
Nevertheless, the contour integration can be shifted to the left such that the integral only
picks up the values of the residues at each pole. thus, introducing −m < ã < −(m− 1) for
an integer m, the integral in Eq. (B.13) can be written as

1
2πi

∫ a+i∞

a−i∞
dN t−NΓ(N) =

m−1

∑
n=0

(−1)n

n!
tn +

1
2πi

∫ ã+i∞

ã−i∞
dN t−NΓ(N). (B.14)

Hence, the inverse Mellin transform of Γ(N) in the region of strip S(−m,−m + 1) is given
by the following expression:

1
2πi

∫ ã+i∞

ã−i∞
dN t−NΓ(N) = e−t −

m−1

∑
n=0

(−1)n

n!
tn. (B.15)

The above result is different from the original function f (t)=e−t. However, it can be
proved using the Stirling formula that the right-hand side of the above integral transform
vanishes in the limit m→ ∞.

1.C Spinor Helicity Formalism

This section is devoted to a brief review of the spinor helicity formalism. This formal-
ism was first introduced when it was realized that the Lorentz group SO(1, 3) ib four
dimensions is isomorphic to the group SL(2)⊗SL(2) and hence the finite-dimensional
representations are classified as (m, n) where m and n are integers or half-integers.

Spinor variables

Massless particles have remarkable properties when expressed in the helicity basis. As a
matter of fact, the spinor helicity formalism renders the analytic expression of scattering
amplitudes in a more compact and simple form as compared to the standard formulation
using momentum four-vectors. The underpinning idea behind the spinor helicity formal-
ism is the mapping from a four-vector into a two-by-two matrix given by the following
expression

kaȧ = kµ (σ
µ)aȧ =

(
k0 − k3 −k1 + ik2
−k1 − ik2 k0 + k3

)
, (C.1)

where σµ=
(
σ0, σ⃗

)
are the usual Pauli matrices. In the high energy limit where particles are

quasi-massless, the determinant of the of kaȧ vanishes. Hence, for a lightlike momentum k,
the momentum can be written as a product of two vectors kaȧ=λaλ̃ȧ where λa and λ̃ȧ are
respectively the left and right-handed spinors. Scattering amplitudes possess interesting
properties when the momentum paȧ is complex. In such a case, the spinors λa and λ̃ȧ are
independent of each other. For the purpose of this review, let us stick to the treatment of
real-valued momenta. As mentioned before, the scalar product between two momenta
can be expressed as 2(kik j)=⟨ij⟩ [ij] where the angle and square brackets are defined in
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terms of the spinors as ⟨ij⟩=εabλaµb and [ij] =εȧḃλ̃ȧµ̃ḃ respectively. Since spinors are
simple mathematical objects, they exhibit algebraic properties. For instance, one can
use the convention for left and right-handed spinors to show that the above definitions
imply ⟨ii⟩= [ii] =0. In addition, all other product of angle and square brackets vanish, for
instance, ⟨ij]=[ij⟩= = 0. Notice also that these spinor products are antisymmetric, i.e.
⟨ij⟩= − ⟨ji⟩ and [ij]= − [ji]. Another useful relation is that square and angle brackets are
related to each other according to the relation ⟨ij⟩⋆=[ij].

For spin-1 bosons, the polarization can also be expressed in terms of a pair of massless
spinors. In order to construct an expression of the polarization in terms of the square
and angle brackets, the expression must satisfy ϵ⋆µ(pi, k)ϵµ(pi, k)= − 1 and the transverse
condition pµϵµ=0. Expressions of the polarization that satisfy those constraints are given
by the following [85]

ϵ−µ (pi, k) = − 1√
2

[k|γµ|i⟩
[ki]

and ϵ+µ (pi, k) =
1√
2

⟨k|γµ|i]
⟨ki⟩ , (C.2)

where k is a reference lightlike momentum that can be chosen arbitrarily. This freedom in
choosing a reference momentum reflects the gauge invariance. The only constraint is that
the reference momentum k cannot be aligned to the momentum pi since we do not want
the product ⟨ik⟩ or [ik] to vanish.

The little group scaling

In the following section, we show how any three-point amplitude can be trivially computed
using the little group scaling. With the knowledge of the three-point amplitude, all higher-
order MHV (MHV) amplitudes can be computed using the BCFW recursion relations [134].
This is possible because the spinor helicity variables make manifest the symmetry obeyed
by the scattering amplitudes.

Roughly speaking, the little group is the group of transformation that leaves invariant the
momentum of an on-shell particle [85]. From the previous definitions, it is straightforward
to deduce that the momentum of a given particle is given by ki= |i⟩[i|. The little group
transformation is therefore the scaling

|i⟩ −→ t|i⟩ and |i] −→ t−1|i] (C.3)

By virtue of this rescaling, one can setup some ground rules for the external fermions and
spin-1 bosons. These rules are defined as follows:

• Spinors for fermion scales as t−2h where h denotes the helicity of the fermion.

• Polarization vectors for spin-1 bosons also scale as t−2h but for h= ± 1. By rescaling
the spinors |i⟩ and |i], one can check in the expression of the polarization (Eq. (C.2))
that this rule hold true.

ϵ−µ → t2ϵ−µ = − t2
√

2

[
k
∣∣γµ

∣∣ i
〉

[ki]
and ϵ+µ → t−2ϵ+µ =

t−2
√

2

〈
k
∣∣γµ

∣∣ i
]

⟨ki⟩ (C.4)
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The above descriptions imply that the little group scaling of each polarization encodes its
helicity. Thus, a scattering amplitude with n external state particles will then be multi-
linear in the corresponding polarization

M
(

1h1 , · · · , nhn
)
= ϵh1

µ1 · · · ϵhn
µnMµ1···µn(1, · · · , n). (C.5)

The tensorial object on the right-hand side of the above equation is the usual amplitude
computed from Feynman diagrams. The object on the left-hand side instead represent a
set o functions corresponding to different helicity configurations. These objects are known
as the true scattering amplitudes in the sense that they are gauge invariant. Therefore, for
on-shell amplitudes, the scaling of a particle labelled by i gives rise to a weight (−2hi)
where again hi labels the helicity of the particle i. That is,

M
(
· · · ,

{
ti|i⟩, t−1

i |i
]}

, · · ·
)
= t−2hiM(· · · , {|i⟩, | i]}, · · ·

)
. (C.6)

The above expression allows one to compute any three-point amplitude in QCD and
subsequently scattering amplitudes with larger number of external legs. In the next
section, we demonstrate how trivial it is to compute three-point MHV amplitudes using
the concept of little group scaling.

Computation of a three-point amplitude using the little group scaling

Consider a three-point amplitude where we have one gluon and a pair of quark-antiquark.
This is a simpler version of the process studied in Sec. (1.1.1). Let us start with the
observation that in order for three-point amplitudes to not vanish, they can only depend on
either the angle or square brackets. To demonstrate this, consider a three point amplitude
where the momentum of the particles are labelled by ki (i=1, 2, 3). Assuming all the
momenta to be incoming, the momentum conservation writes as ∑3

i=1 ki=0, which implies
that (k1+k2)

2= p2
3=⟨12⟩ [12] =0. This tells us that either ⟨12⟩ or [12] must be equal to

zero. Let us first suppose that ⟨12⟩ does not vanish, then we have ⟨12⟩ [23] =⟨1|p2|3]= −
⟨1|(p1+p3)|3]=0, and similarly ⟨12⟩ [13] =⟨2|(p2+p3)|3]=0. This shows that [12], [13],
and [23] vanish if we require ⟨12⟩ to be non-zero. In a similar way, one can easily show
that ⟨13⟩ and ⟨23⟩ vanish if we consider the case where ⟨12⟩ vanish while [12] does not.

We are now ready to compute the partial three-point amplitude M̃3(p, k, p̄) where as
before p and p̄ denote the quark and antiquark with helicity (−1/2) and (1/2) respectively.
In order to have an MHV amplitude, let us choose the gluon k to have a negative helicity.
Based on the above observation, the partial amplitude M̃3 can therefore be expressed in
terms of angle brackets as follows

M̃3
(
hp, hk, h p̄

)
= ⟨pk⟩x⟨pp̄⟩y⟨kp̄⟩z. (C.7)

The values of x, y and z are then fixed by the little group scaling via the equations

x + y = −2hp
x + z = −2hk
y + z = −2h p̄.

(C.8)
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Recalling that the helicities are given by hp= − 1/2, h p̄=1/2 and hk=1, the above system
of equations can be straightforwardly solved in order to find that (x, y, z)=(2,−1, 0).
Hence, the three-point amplitude given in Eq. (C.7) can be expressed as:

M̃3
(

p−, k−, p̄+
)
=
⟨pk⟩3⟨ p̄k⟩
⟨pk⟩⟨kp̄⟩⟨ p̄p⟩ . (C.9)

The above computations clearly show the simplicity of the spinor helicity formalism and
the the MHV technique. Using on-shell recursion relations such as the BCFW recursion
relation in which a complex component is added to the momentum, all higher-order
amplitudes can be recursively derived from the most basic three-point ones. For instance,
the general expression for an MHV amplitude involving a pair of quark-antiquark and an
arbitrary number of gluons is given by

M̃MHV
n+2

(
p−, 1+, · · · , i−, · · · , n+, p̄+

)
=

⟨pi⟩3⟨ p̄i⟩
⟨p1⟩⟨12⟩ · · · ⟨np̄⟩⟨ p̄p⟩ (C.10)

The MHV counterpart of the above partial amplitude can be read off directly from that
expression by simply replacing the angle brackets into square brackets.

1.D Splitting functions & Anomalous dimensions

In the following section, we give the explicit expressions of the splitting functions and
anomalous dimensions at leading order. As we shall discuss in Sec. (2), expression of
the splitting functions (anomalous dimensions) up to NLO is enough in the context of
computing NNLL standard transverse momentum resummation, while the large-N limit
of three loop anomalous dimensions are required in order to correctly account for the soft
logarithms in the context of the improved transverse momentum resummation.

Let us start by collecting the LO expression of the splitting functions that we computed
in Sec. (1.1.1). They were first computed in Ref. [135] and are given by the following

P(0)
gg (x) =

CA

π

[
x

(1− x)+
+

1− x
x

+ x(1− x)
]
+ β0δ(1− x), (D.1)

P(0)
qq (x) =

CF

2π

1 + x2

(1− x)+
+

3CF

4π
δ(1− x), (D.2)

P(0)
qg (x) =

n f

2π

[
x2 + (1− x)2

]
, P(0)

gq (x) =
CF

2π

[
1 + (1− x)2

x

]
. (D.3)

Notice that the above expressions can be used to derive the non-singlet splitting functions,
P±ns,a and PV

ns, which at leading-order vanish. For the NLO splitting functions, they have
been computed in Refs. [136–144]. As for the LO, the expression of the splitting functions
for the singlet and non-singlet combinations can be derived from the above results. Let us
turn to the Mellin version (anomalous dimensions) of the above splitting functions. The
Mellin transform of these functions were mostly computed in Refs. [141, 142] and their
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continuation for complex Mellin moments in Refs. [119, 145–149]. For the sake of brevity,
we only collect below the LO expressions:

γ
(0)
qq (N) =

CF

2π

[
3
2
− 1

N + 1
− 1

N + 2
− 2ψ(N + 1)− 2γE

]
(D.4)

γ
(0)
gq (N) =

CF

2π

[
2
N
− 2

N + 1
+

1
N + 2

]
(D.5)

γ
(0)
qg (N) =

n f

2π

[
1

N + 1
− 2

N + 2
+

2
N + 3

]
(D.6)

γ
(0)
gg (N) =

CA

π

[
1
N
− 2

N + 1
+

1
N + 2

− 1
N + 3

− ψ(N + 1)− γE

]
+ β0 (D.7)
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The use of perturbative computations, described in the previous chapter, is mainly justi-
fied if the strong coupling αs is small compared to other scales involved in the process.
However, as mentioned before, kinematic situations occur where the smallness of the
coupling is compensated by the largeness of logarithmic enhanced terms. In this scenario,
truncating the perturbative expansion at any fixed order will not yield correct results. In
order to produce reliable results, these logarithmically enhanced terms must be resummed
to all-order. Depending on the types of logarithms to be resummed, there exists different
categories of resummation. In the case of transverse momentum distribution–which is the
observable we are mainly interested here and in the subsequent section–we have: (i) the
transverse momentum (or small-pT) resummation that resums logarithmic contributions of the
form ln(p2

T/Q2) which are enhanced when p2
T/Q2 → 0, (ii) the soft/threshold (or large-x)

resummation that resums logarithmic terms that are enhanced when the invariant mass of
the final system approaches the kinematic threshold, and (iii) the high energy (or small-x)
resummation that resums logarithmic contributions arising when the center-of-mass energy
of the system is large compared to the scale Q2.

The following chapter starts by describing in a succinct way the kinematic regions that
are relevant to the different classes of resummation mentioned previously while high-
lighting the need to combine these resummations in a consistent way. We then separately
review the standard formulation of the threshold and transverse momentum resumma-
tions up to NNLL. This will allow us to introduce the concept of soft-improved transverse
momentum resummation in which a subclass of the soft contributions are incorporated into
the small-pT resummation. For the purpose of the phenomenological studies that will
be presented in the next chapter, explicit resummed expressions using this improved
transverse momentum resummation are shown in App. 2.B in the context of the Higgs
and Z (via DY mechanism) boson production. As it is not discussed here, the high energy
resummation of the Higgs transverse momentum spectra will be discussed in the next
chapter.

2.1 Which regions to resum?

Using the definitions given in Sec. (1.1.1), one can map the region of the phase space where
resummations are required. In Fig. 5, we show the regions of the phase space where the
three types of resummation mentioned earlier–namely transverse momentum, threshold,
and high energy resummations–are relevant. Usually, the construction of the resummed
expressions for each of these types of resummation are performed separately. In the past
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Figure 5 Phase space available for the production of a final-state system F with an invariant
mass M in the three kinematic limits: threshold, collinear, and high energy. The hadronic
variable τ is defined in terms of the center-of-mass energy

√
s and the scale Q defined

according to the conventions in Sec. (1.1.1).

few years, several attempts have been made to construct a resummed expression in which
two kinematic limits are take into account. The formulation of a double large-x and small-x
resummation , for instance, has been developed in Ref. [150] where the large-x logarithms
are resummed up to N3LL while the small-x ones up to LL accuracy. Another example
is the combination of the small-pT and small-x resummations, which was formulated
in Ref. [151] where the small-pT logarithms are resummed up to NNLL accuracy. The
combination of the small-pT and the large-x resummations is one of the main subjects of
the following chapter.

To the present day, the current state-of-the-art accuracy in the resummed calculations
of transverse momentum distributions is N3LL matched with fixed order predictions
(usually NNLO). This has been achieved for a variety of processes including the Higgs
boson production [28, 152, 153] and DY [32, 154–158]. The motivation to include threshold
resummed contributions to the transverse momentum resummation boils down to the
fact that large logarithmic corrections present in transverse momentum and threshold
resummations both originate from the emission of soft gluons. There have also been
attempts to construct a joint formalism that simultaneously resum logarithmic contribu-
tions enhanced at small-pT and at partonic threshold [159, 160]. Such joint resummation
have been successful in producing phenomenological results at NLL accuracy for various
processes including Higgs [161] and vector boson production via DY mechanism [162]
which has been recently extended to NNLL [163]. While the aforementioned resumma-
tions were done in Fourier-Mellin space, joint resummation in direct space has also been
achieved up to NNLL accuracy using SCET [164]. It was shown recently that, in the case
of processes with colourless final-state, standard resummation of logarithms of pT/Q can
be consistently supplemented with the resummation og logarithmic contributions at large
x=Q/ŝ [165]. Such an improved resummation has the following features: first, it repro-
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duces the correct behaviour to any logarithmic order in the limit pT → 0 for fixed x, and
second, it reproduces the total cross section at any given logarithmic order in the threshold
limit upon integration over the transverse momentum. Details on the construction of such
a resummation is described in Sec. (2.4).

2.2 Transverse momentum resummation

As mentioned in the previous section, in a process involving multiple scales, the conver-
gence of the perturbative series might be spoiled due to the presence of large logarithms
multiplying the running of the coupling αs. For transverse momentum distributions, such
large logarithmic enhancements are of the form ln(ξp)/ξp. This quantity indeed diverges
as the transverse momentum ξp= p2

T/Q2 goes to zero. In order to obtain reliable prediction
in this situation, the logarithms of ln(ξp)/ξp must be resummed through the transverse
momentum (or small-pT) resummation.

In the following section, we briefly review two formulations of the transverse mo-
mentum resummation for transverse momentum distributions, namely the Collin-Soper-
Sterman (CSS) formalism and the universal transverse momentum resummation formalism
by Catani-deFlorian-Grazzini (CFG).

2.2.1 The Collin-Soper-Sterman formulation

Let us first review the formulation of the transverse momentum resummation introduced
by Collin, Soper, and Sterman [166]. Consider the Mellin space expression of the hadronic
cross-section

dσ

dξp

(
N,

M2

µ2
R

,
M2

µ2
F

)
= ∑

a,b
fa

(
N + 1, µ2

F

)
fb

(
N + 1, µ2

F

) dσ̂ab
dξp

(
N, ξp,

M2

µ2
R

,
M2

µ2
F

)
(2.2.1)

where for brevity we have omitted the scale Q2 and the dependence of the coupling αs on
the renormalization scale µ2

R. One should always keep in mind, unless stated otherwise,
that the hadronic and partonic cross sections are perturbative series in the strong coupling.
The all-order expansion of the hard part is given by

dσ̂ab
dξp

(
N, ξp,

M2

µ2
R

,
M2

µ2
F

)
= σBorn

F

(
α

p
s (µ

2
R)
) ∞

∑
n=1

αn
s (µ

2
R)Σ(n)

ab

(
N, ξp,

M2

µ2
R

,
M2

µ2
F

)
, (2.2.2)

where p denotes the lowest power of αs needed in order for the process to occur and σBorn
F

is the leading order Born cross section. Since the final state F is colourless, the lowest order
partonic cross section is initiated either by gluons or qq̄ annihilation. Later on, we will
make explicit the dependence of σBorn

F on the incident partons.
At this stage, we can decompose the partonic cross section into a regular and singular

part as the transverse momentum pT → 0 (or equivalently ξp → 0):

Σ(n)
ab

(
N, ξp,

M2

µ2
R

,
M2

µ2
F

)
= ΣR,(n)

ab

(
N, ξp,

M2

µ2
R

,
M2

µ2
F

)
+ ΣS,(n)

ab

(
N, ξp,

M2

µ2
R

,
M2

µ2
F

)
(2.2.3)
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where ΣR,(n)
ab contains all the terms that are less singular than δ(p2

T) and p2
T (or equivalently

ξp) in the limit pT → 0. Its hadronic expression truncated at a given order αm
s in the

perturbative expansion is given by

dσ

dξp

(
N,

M2

µ2
R

,
M2

µ2
F

)
=σBorn

F

(
α

p
s (µ

2
R)
)

∑
a,b

fa

(
N + 1, µ2

F

)
× (2.2.4)

fb

(
N + 1, µ2

F

) m

∑
n=1

αn
s (µ

2
R)ΣR,(n)

ab

(
N, ξp,

M2

µ2
R

,
M2

µ2
F

)
.

This term corresponds exactly to the difference between the full fixed-order result and its
asymptotic in the small-pT limit. The asymptotic piece contains terms that are at least as
singular as 1/ξp up to NNLO in the limit ξp → 0.

The singular term ΣS,(n)
ab

(
N, ξp

)
contains the δ(p2

T) term and all the logarithmic en-
hanced terms when ξp → 0. These logarithmic terms are resummed to all-order in the
strong coupling αs:

ΣS,(n)
ab

(
N, ξp

)
= Σδ,(n)

ab (N) δ(p2
T) +

2n−1

∑
m=1

Σ(n,m)
ab (N)

lnm(ξp)

ξp
. (2.2.5)

where the functions Σ(N) are ξp-independent and therefore behave as constants when
ξp → 0. In order to fully take into account the kinematic constraints on the conservation of
transverse momentum, it is advantageous to work in Fourier space where the factorization
of the multiple gluon emission is performed more naturally. Denoting by b the impact
parameter–defined as the conjugate variable of pT in Fourier space–the resummed cross
section in Fourier space can be written as

dσcss

dξp
(N, b) = σBorn

F

(
α

p
s (µ

2
R)
)

∑
a,b

m

∑
n=1

αn
s (µ

2
R) fa

(
N + 1, µ2

F

)
fb

(
N + 1, µ2

F

)
(2.2.6)

∫ ∞

0

d2 pT

M2 exp(−i b⃗ p⃗T)

[
Σδ,(n)

ab (N) δ(p2
T) +

2n−1

∑
m=1

Σ(n,m)
ab (N)

lnm(ξp)

ξp

]
.

As mentioned previously, the above equations obeys the renormalization group equations.
Eq. (2.2.6) can therefore be determined by solving an evolution equation [167]. Using the
results presented in Refs. [166, 168–171], the full resummed cross section in Eq. (2.2.6) can
be written in a more compact form:

dσcss

dξp
(N) = ∑

a,b

∞∫

0

db̂
b̂
2

J0

(
b̂
√

ξp

)
fa

(
N + 1,

C1

C2b̂

)
fb

(
N + 1,

C1

C2b̂

)
dσ̂css

ab
dξp

(N, b̂). (2.2.7)

The partonic cross section that embodies the short range interaction is given by

dσ̂css
ab

dξp
(N, b̂) = ∑

c
σBorn

F,cc̄

(
α

p
s (µ

2
R)
)

Cca

(
N, αs

(
C1

C2b̂

))
Cc̄b

(
N, αs

(
C1

C2b̂

))
Sc(b̂) (2.2.8)

where J0(x) is the zeroth order Bessel function of the first kind while b̂ = bM represents
the modified conjugate variable of ξp in Fourier space. The partonic function dσ̂css

ab /dξp
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embodies the all-order resummation of logarithms of the form ln(b̂). It contains the
coefficient functions Cca and the Sudakov form factor Sc. Both the coefficient functions
and the Sudakov exponent are process dependent.

The coefficient functions Cca can be computed perturbatively. In Mellin space, they are
given in terms of the following series expansion:

Cca

(
N, αs(µ

2)
)
= δca +

∞

∑
n=1

αs(µ
2)C(n)

ca (N). (2.2.9)

These coefficient functions are sometimes referred to as collinear factor for the hadron ha.
They contain both the full splitting functions and the hard process-independent contri-
bution coming from the finite part of the virtual loop corrections. The one and two-loop
coefficient functions have been computed for various processes and various resummation
schemes, see Refs. [167, 172–177] for reference. For instance, for the production of a Higgs
boson via gluon fusion, the leading-order coefficient functions can be defined as

C(1)
gg (N) = 0, C(1)

gq (N) = C(1)
qg (N) =

CF
2π

1
N + 1

. (2.2.10)

The Sudakov form factor which resums all logarithmic contributions can be shown to have
the following integral representation [168, 169, 178, 179]

Sc(b̂) = exp

{
−
∫ C2

2

C2
3 /b̂2

dq2

q2

[
Ac

(
αs(q2)

)
ln

(
C2

2 M2

q2

)
+ Bc

(
αs(q2)

)]}
. (2.2.11)

The functions Ac and Bc are perturbative series in αs(q2). In particular, the function Ac
which is related to the soft-radiation is process-independent while the function Bc which
is related to the flavour conserving collinear radiation is process-dependent from the
two-loop contribution. They are perturbatively given by

Ac(αs) =
∞

∑
n=1

αn
s A(n)

c , Bc(αs) =
∞

∑
n=1

αn
s B(n)

c . (2.2.12)

The coefficients A(n)
c and B(n)

c can be computed either by solving the corresponding
renormalization group equation or by comparing the expanded result to fixed-order
computations. The three loop contributions which are required to compute NNLL accuracy
have been computed both for the gluon [180] and quark [178, 179] initiated process. In
this section, we only presents results up to two loops. At leading-order, the process-
independent parts are given by:

A(1)
c =

Cc

π
, A(2)

c =
Cc

2π
K, B(1)

g = −2β0, B(1)
q = −3

2
CF

π2 , (2.2.13)

where K = CA(67/18− ζ2)− 5n f /9, β0 = (11CA − 2n f )/12π, and Cc which is equal to

CA if c = g and CF if c = q, is the QCD colour factor. The process-dependent part B(2)
c is

generally expressed as follows [181]

B(2)
c = −2δP(2)

cc + β0

[
2
3

π +AF
c (ϕ)

]
, (2.2.14)
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where δP(2)
cc is the coefficient of the δ(1 − x) term in the two-loop splitting functions.

The finite part AF
c comes from the one-loop virtual contributions, it depends on the

kinematics of the final-state colour singlet particle. Its expression has been computed for
both Higgs [172] and DY [182, 183] and they are given by

AH
g =

CA
π

(
2
3

π2 − CF
CA

+ 5
)

, ADY
q =

CF
π

(
2
3

π2 − 8
)

. (2.2.15)

As a result, the B(2)
c -coefficient has been computed for Higgs [181] and DY [167, 181]:

B(2),H
g =

(
CA
π

)2 (23
6

+
22
9

π2 − 6ζ3

)
(2.2.16)

+
4

π2 n f CFTR −
11

2π2 CACF −
CA
π2 n f TR

(
2
3
+

8
9

π2
)

,

B(2),DY
q =

(
CF
π

)2 (
π2 − 3

4
− 12ζ3

)
(2.2.17)

+
CF

π2 TR

(
17
3
− 4

9
π2
)
+

CACF

π2

(
11
9

π2 − 193
12

+ 6ζ3

)
,

where TR = 1/2 is the SU(3) QCD colour factor. The results for the coefficient B(3)
c can be

found in Ref. [184].
We finally comment on the constants Ci that enter in Eq. (2.2.6) and (2.2.11) and that so far

were left arbitrary. These constants arise from solving the renormalization group equations
in which the two scales M and b are separated. The variation of these constants can also
be used to estimate higher-order corrections. In the CSS formalism, they are chosen to be
C1=C3=b0M and C2=1 where b0=2 exp(−γE) with γE denoting the Euler-Mascheroni
constant.

The pT distribution given by Eq. (2.2.6) presents some subtleties as it probes non per-
turbative effect for some particular values of b. Indeed, when b is large, specifically
b ≳ 1/ΛQCD, the running of the coupling αs and the PDFs which both explicitly depend
on the scale b enter the non-perturbative regime. In order to prevent the scale b to probe
such a regime, the b⋆ prescription is introduced where

b⋆ =
b√

1 + (b/bmax)2
, (2.2.18)

with bmax chosen such that 1/bmax ∼ ΛQCD. This modifies the lower bound of the Sudakov
integral in Eq. (2.2.11) to C2

1/b̂⋆. This ensures that dσ̂css
ab /dξp(b) ∼ dσ̂css

ab /dξp(b⋆) when
b ≲ bmax. The non-perturbative dependence is then moved into an auxiliary function
dσ̂NP

ab /dξp defined as

dσ̂css
ab

dξp
(N, b̂) =

dσ̂css
ab

dξp
(N, b̂⋆)×

dσ̂NP
ab

dξp
(N, b̂). (2.2.19)

This ensures that the non-perturbative behaviour is not part of the resummed expression.
The function dσ̂NP

ab /dξp is chosen such that dσ̂NP
ab /dξp → 1 when b̂ → 0. An example of
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such a non-perturbative function is given in Refs. [166, 168, 185, 186]. The correction factor
dσ̂NP

ab /dξp generally takes the form exp(−g(b̂)) where g(x) is just some polynomial. Since
the large b̂ region is out of control of perturbation theory, the parameters that enter g(x)
needs to be adjusted to the experimental data. For DY, different forms of the correction
factor are available from global fits [167, 185–188].

Some comments are in order concerning the disadvantages of the CSS resummation
formalism. Indeed, despite the fact that the formalism has been used to produce theoretical
predictions at various level of perturbative accuracies, it presents some drawbacks:

• First, the behaviour of the soft gluons that is captured by the Sudakov form factor
should be independent of the hard process. Indeed, the Sudakov exponent is sup-
posed to be universal and should only depend on the initial state partons (either
quark or gluon). However, as wee see in Eqs. (2.2.14, 2.2.16, 2.2.17), the Sudakov
form factor in Eq. (2.2.11) is process-dependent through Bc. The same can also be
said about the coefficient functions Cca.

• Second, the fact that the parton distributions in Eq. (2.2.7) is parameterized at the
scale b0/b rather than µ2

F raises some complications. With such a value of scale, the
PDFs will have to be interpolated in the non-perturbative region.

The above issues can be tackled by performing resummation in momentum (or direct)
space. However, despite the fact that the problem of the resummation of the transverse
momentum distribution in direct space has received considerable attention in the past few
years [189–192], it has not been possible to find beyond leading logarithmic accuracy a
closed analytic expression which is simultaneously free of subleading logarithmic con-
tributions and spurious singularities at finite values of pT until very recently [152, 193].
An alternative approach consists in re-arranging the terms in the impact parameter space
b̂ using the renormalization group identity, this is known as the universal transverse
momentum resummation formalism.

2.2.2 The Catani-deFlorian-Grazzini formulation

In the Catani-deFlorian-Grazzini (CFG) formalism, the issue related to the universality
of the Sudakov form factor and the coefficient functions is addressed factorizing out the
process-independent term into a hard function HF

c where the superscript F is used to
indicate that the hard function depends on the kinematics of the final-state system F. This
is achieved by expressing the Cca-functions and the Bc-functions as [194]

CCSS
ca (N, αs) =

√
HF

c (αs)× CCFG
ca (N, αs) (2.2.20)

BCSS
c (N, αs) = BCFG

c (N, αs)− β(αs)
d ln HF

c (αs)

d ln αs
, (2.2.21)

where β(αs) is the ACD β-function that describes the running of the coupling αs. Notice
that one recovers the CSS expressions by setting HF

c = 1. The hard function satisfies the
renormalization group identity:

HF
c (αs(M2)) = Rc

(
αs

(
M2 ← b2

0
b2

))
HF

c

(
αs

(
b2

0
b2

))
(2.2.22)
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where the evolution factor Rc is defined as

Rc

(
αs

(
M2 ← b2

0
b2

))
= exp

{
−
∫ M2

b2
0/b2

dq2

q2 β
(

αs

(
q2
)) d ln HF

c
(
αs
(
q2))

d ln αs (q2)

}
. (2.2.23)

The hard function is a perturbative function and therefore can be expressed as a series
expansion in αs as HF

c (αs) = 1 + ∑∞
n=1 αn

s HF,(n)
c . The expressions of HF,(n)

c up to O(α3
s ) are

explicitly given in Refs. [195–199] for Higgs and in Refs. [200, 201] for DY.
Thanks to the introduction of the hard function HF

c , the coefficient functions C and the
Sudakov form factor Sc are now universal and depend only on the the flavour and colour
charges of the radiating partons. The resummed expression can now be organized in terms
of process-independent contribution in which the logarithmic contributions are controlled
by a set of perturbative functions. The order at which these perturbative functions are
known determine the accuracy at which the resummed formulae is performed.

The issue related to the parametrization of the PDFs at a scale b̂2/b2
0 can be addressed

by substituting the parton densities fa
(

N + 1, b2
0/b2) with the same parton densities but

evaluated at µ2
F. This is done using the scale dependence relation [202–205]

fa

(
N + 1,

b2
0

b2

)
= ∑

b
Uab

(
N,

b2
0

b2 ← µ2
F

)
fb

(
N + 1, µ2

F

)
. (2.2.24)

where Uab is a component of the evolution operator matrix obtained by solving the DGLAP
equation to the required accuracy. It satisfies the following evolution equation:

∂Uab
∂ ln µ

(N, µ2 ← µ2
0) = ∑

c
γac(N, αs(µ

2))Ucb(N, µ2 ← µ2
0) (2.2.25)

with γac denoting the usual Mellin moments of the Altarelli-Parisi splitting functions.
Henceforth, we will omit the superscript CFG that denotes the process-dependent

quantity as given by the replacements in Eqs.(2.2.20, 2.2.21) for simplicity. Using those
same equations, Eqs. (2.2.20, 2.2.21), the resummed expression in Eq. (2.2.7) now becomes

dσcfg

dξp
(N) = ∑

a,b

∫ ∞

0
db̂

b̂
2

J0

(
b̂
√

ξp

)
fa

(
N + 1, µ2

F

)
fb

(
N + 1, µ2

F

) dσ̂
cfg
ab

dξp
(N, b̂) (2.2.26)

where now the partonic part is given by:

dσ̂
cfg
ab

dξp
(N, b) = ∑

c
σBorn

F,cc̄ HF
c (αs(M2))Sc(b̂)∑

k,l
Cck

(
N, αs

(
b2

0
b2

))
× (2.2.27)

Cc̄l

(
N, αs

(
b2

0
b2

))
Uka

(
N,

b2
0

b2 ← µ2
F

)
Ulb

(
N,

b2
0

b2 ← µ2
F

)
.

The above expression can be written in a more compact form by introducing a perturbative
functionHF that collects all the coefficient functions and the evolution operators,

HF
ab→cc̄(N, αs) = HF

c (αs(M2))∑
k,l

Cck

(
N, αs

(
b2

0
b2

))
× (2.2.28)
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Cc̄l

(
N, αs

(
b2

0
b2

))
Uka

(
N,

b2
0

b2 ← µ2
F

)
Ulb

(
N,

b2
0

b2 ← µ2
F

)
.

The notation ab→ cc̄ is a shorthand for the subprocess ab→ cc̄→ F + X. By inspection
of the right-hand side of Eq. (2.2.28), one notices that the scale at which the running of
the coupling αs is computed is not set to a unique value. While the coefficient functions
Cab are evaluated at αs(b2

0/b2), the αs in HF
c is evaluated at M2 which reflects the process-

dependent nature of the hard function. The presence of two different arguments of αs can
be attributed to the physical origin of the various perturbative functions [166, 196, 206].
As mentioned previously, the hard function HF

c contains contributions from the hard
momentum region of the virtual corrections to the lowest subprocess cc̄ → F while the
coefficient function Cca refer to the subprocess ca → F + X where the momenta of the
partons in the final-state system X are almost collinear to the the momentum of the initial-
state parton a. The functionHF can therefore be regarded as the hard-collinear partonic
function. The b-dependence of the perturbative function HF can be factorized out by
computing the evolution operators and the coefficient functions at the renormalization
scale. The difference has to be compensated by an evolution factor that evolves the C and
U-functions from b2

0/b2 to µ2
R. Details of such a procedure is given in details in Sec. (2.4.3).

Now that the perturbative hard-collinear function is independent of the impact parameter
b, it only embodies terms that behave as constants when b→ ∞ (or equivalently pT → 0).
Therefore, it can be computed perturbatively,

HF
ab→cc̄

(
N, αs(µ

2
R),

M2

µ2
R

,
M2

µ2
F

)
= δacδbc̄ +

∞

∑
n=1

αn
s (µ

2
R)H

F,(n)
ab→cc̄

(
N,

M2

µ2
R

,
M2

µ2
F

)
. (2.2.29)

As opposed to the Sudakov form factor, the perturbative functionHF
ab→cc̄ depends on the

factorization scheme through the coefficient functions, the anomalous dimensions, and on
the final state system F through the hard function HF

c . In addition, the hard function HF
c

and the coefficient functions Cca are resummation scheme dependent. The resummation
scheme just amounts to unambiguously define the two functions HF

c and Cca. However,
it can be proved using the renormalization group identity that the such dependence
is cancelled at the level of HF

c × Cca therefore making the hard-collinear function HF
c

resummation scheme independent.
Putting everything together, we can now write down in a compact form the expression

of the partonic resummed cross section

dσ̂
cfg
ab

dξp
(N, b̂) = ∑

c
σBorn

F,cc̄ H
F,{S}
ab→cc̄(N, αs(µ

2
R), µ2

F) exp
(
Sc(N, λb̂) +R{S}(N, λb̂)

)
, (2.2.30)

where λb̂= ᾱs ln(b̂2/b2
0) with ᾱs=αsβ0, {S} labels a set of flavour indices, Sc= ln(Sc) is the

universal Sudakov form factor, andR contains all the evolution factors coming from the
coefficient functions C and the evolution operators U. The terms in the exponent contain
all the dependence in b̂, and in particular, embodies to all-order in αs the logarithmic
divergent terms when b̂ → ∞. In Ref. [195], the resummation variable is expressed in
terms of λb̃= ᾱs ln(b̃2/b2

0) instead where the b̃=bQ. Indeed, the argument of the logarithms
can always be rescaled as ln(b̂2)= ln(b̃2) + ln(b̂2/b̃2) provided that Q is independent
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of b̂ and ln(b̂2/b̃2) ∼ O(1). This takes into account the degree of arbitrariness in the
factorization [207]. Since physical cross sections should not depend on the resummation
scale Q, its value should be set to M. However, varying Q around this central value should
provide an estimate of yet unknown logarithmic corrections at higher-orders. Throughout
this thesis, we always choose Q=M and hence b̂= b̃.

The universal Sudakov exponent Sc has the following logarithmic expansion

Sc(N, λb̂) =
∞

∑
n=1

ᾱn−2
s gn(N, λb̂), where ᾱs ≡ ᾱs(µ

2
R). (2.2.31)

The gi functions categorize the logarithms into classes and they should be defined in such
a way that gi = 0 when λb̂ = 0. The first term ᾱ−1

s g1 contains LL contributions that are
enhanced as αn

s lnn+1(b̂), the NLL contributions αn
s lnn(b̂) are contained in g2, the NNLL

contributions αn
s lnn−1(b̂) are contained in αsg3, and so forth. By inspecting the right-hand

side of Eq. (2.2.31), we notice that unphysical behaviour appears when b̂ → 0 which
corresponds to the large-pT region. This is expected since the resummation formulae
only assures correct predictions in the region when pT is small. However, as suggested
in Ref. [195], the impact of the unjustified contributions can be reduced by shifting the
argument of the logarithms by 1,

λb̂ = ln

(
b̂2

b2
0

)
−→ λ̃b̂ = ln

(
1 +

b̂2

b2
0

)
. (2.2.32)

In the resummation region b̂≫ 1, the two definitions of resummation variable coincide
since we have λ̃b̂ = λb̂ +O(1/b̂2) and thus the replacement is fully justified. However,
in the region b̂ ≪ 1, the two definitions exhibit different behaviours, indeed, as λ̃b̂ → 0
the exponent exp(Sc)→ 1 as opposed to being divergent in the case if λb̂ was chosen. In
particular, in the case b = 0 which corresponds to the total inclusive cross section, we see
that the integral over ξp of the resummed pT-distribution is given by

dσ̂
cfg
ab

dξp
(N, b̂ = 0) =

∫ ∞

0
dξp

dσ̂
cfg
ab

dξp
(N, ξp) = σBorn

F HF
ab(N). (2.2.33)

When matched to fixed-order calculations, this puts constraints on the total inclusive cross
section [195], i.e. upon integration over ξp the resummed distribution at NLL+LO (or
respectively NNLL+NLO) exactly reproduces the total cross section at NLO (or respectively
NNLO) 1.

Upon performing the replacement λb̂ → λ̃b̂ (henceforth, fo brevity, λb̂ will always refer
to λ̃b̂), the resummed expression in Eq. (2.2.30) can be truncated at a given logarithmic
order. At LL accuracy, the function g1 in the Sudakov exponent Sc is included and the
hard-collinear function HF is approximated by the Born cross section σLO. At NLLL,
we include both g1 and g2 in the exponent Sc and the coefficient HF,(1) from the hard
contribution. At NNLL, the function g3 is also included along withHF,(2). The evolution
factor R only start to contribute from NLL. This is summarized in Table. 1 where the
logarithmic accuracy is also explicitly shown.

1 Notice that the perturbative accuracy is counted in different ways at the level of the pT-distribution and the total
inclusive cross section
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Approx. gi up to HF up to R up to ᾱs lnk(1 + b̂2/b2
0)

LL g1 1 - k = 2n
NLL g2 HF,(1) h1 2n− 2 ≤ k ≤ 2n

NNLL g3 HF,(2) h2 2n− 4 ≤ k ≤ 2n

Table 1 Orders of logarithmic approximations and accuracy of the considered logarithms
up to NNLL. The last column represents the predicted power of the logarithms upon
expansion of the resummed formulae as a series in αs. In a similar way as for the Sudakov
exponent Sc, the logarithmic contributions coming from the evolution factor can also be
organized in terms of classes.

2.3 Threshold resummation

We have seen in the previous section that under certain circumstances, the smallness of
the strong coupling αs does not justify the usage of perturbation theory as the presence of
large logarithms (αs ln(µ) ∼ O(1)) may spoil the convergence. Another example of such
a situation is when the center of mass energy

√
s approaches its minimum or threshold

(minimum here means the smallest amount of energy needed to produce the final state
F) leading to the phase space for gluon bremsstrahlung to vanish. In our definitions of
kinematics variables, this corresponds to

√
s=M and τ=1 (or in terms of its partonic

version, x → 1). To put this into perspective, consider the inclusive production of Higgs
boson via gluon fusion in HEFT [182]

σ̂NLO
gg→H (x) = σBorn

F ×
(αs

π

){CA
3π

δ( −x) (2.3.1)

+4CA

(
x2 − τ + 1

)2
(

ln(1− x)
1− x

)
− 2CA

(
x2 − x + 1

)2

(1− x)+
ln(x)− 11

6
CA(1− x)3

}

where for brevety we chose µr = µ f = mH = M. We see that Eq. (2.3.1) exhibits several
distributions that are singular at threshold x → 1 which spoils the convergence of the
perturbative series even if we are well in the perturbative regime where αs ≪ 1. It can be
shown that such logarithms appear at all-order in the perturbative series and generally
can be written as

∞

∑
n=0

2n

∑
k=1

αn
s C(n,k) ×

(
ln2n−k(1− x)

1− x

)

+

, (2.3.2)

where C(n,k) just represent the perturbative coefficients. One can notice from Eq. (2.3.2)
that for each n-th order in the perturbative expansion there is a double-logarithmic structure,
i.e. for every new order in the running of the coupling there is two power of logarithms
arising. Similar to the case for transverse momentum resummation, these logarithms must
be resummed in order to produce reliable predictions.

Threshold resummation is usually performed by factorizing the hadronic cross-section
in Mellin space in which the conjugate transform of the appropriate kinematic variable (x
throughout this thesis) is taken [180,208–210]. Upon performing such a transformation, the
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threshold logarithms is mapped into logarithms of the conjugate variable N̄ = N exp(γE)
where again the γE denotes the Euler constant.

As common to all resummation formalisms, threshold resummation relies on two main
ingredients, namely the factorization of the phase space and the matrix element, and
the exponentiation of the logarithmically enhanced terms to the latter either through a
factorization [180] or eikonal [208] approaches. The NLL threshold resummation has
been computed since long time ago both for colour-singlet and non-colour-singlet in the
final state. For color-singlet observables, NNLL results are available for Higgs [211–213]
and more recently for DY [214]. With the recent computations of up to three-loop of all
threshold distributions, resummed results for up to N3LL have become available [215,216].
At present, no full NNLL threshold resummation is available for processes characterized by
non-colour-singlet final state due to the complexity of the colour structure. Nevertheless,
progress has been made toward constructing threshold resummations beyond NLL for
coloured observables. So far, resummation studies beyond NLL have been developed for
single-particle inclusive hadroproduction at high transverse momentum [217], top-pair
production [218], and squark and gluino production [219].

In the following parts, we sketch a simplified picture of the derivation of a threshold
resummed expression using the renormalization group argument [213]. From the deriva-
tion, a resummed formulae for a generic colour-singlet final state will be presented up
to NNLL. Finally, explicit expressions for Higgs and DY–which are the two processes of
interest in this thesis–will be given.

2.3.1 Resummation from renormalization-group evolution

For the sake of sketching our argument toward a derivation of a resummed formula using
the renormalization group argument, let us consider a generic DIS-like observable O
which in Mellin space is defined as just the product of a partonic function and a parton
distribution function,

O(N, Q2) = Ô
(

N, αs(µ
2),

Q2

µ2

)
f (N, µ2), (2.3.3)

where for brevety we chose µ2 = µ2
R = µ2

F. The standard expression of the renormalization-
group improved of the factorized observable O is derived by setting µ2 = Q2 on the
right-hand side of Eq. (2.3.3) yielding

O(N, Q2) = Ô
(

N, αs(µ
2), 1

)
f (N, Q2). (2.3.4)

By introducing what is known as the physical anomalous dimension, the observable O can be
written in a derivative form. Such a form is convenient since resummed expressions take
the form of an exponent,

Q2 ∂O(N, Q2)

∂O = γAD

(
N, αs(Q2)

)
O(N, Q2), (2.3.5)

where the physical anomalous dimension γAD is related to the standard Altareli-Parisi
anomalous dimensions γ through the relation

γAD

(
N, αs(Q2)

)
= γ

(
N, αs(Q2)

)
+

∂ lnO
(

N, αs(Q2), 1
)

∂ ln Q2 (2.3.6)
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with again the Altareli-Parisi anomalous dimension γ satisfying the following renormal-
ization group identity:

µ2 ∂ f (N, µ2)

∂µ2 = γ
(

N, αs(µ
2)
)

f (N, µ2). (2.3.7)

By solving the renormalization group equation in Eq. (2.3.4), one resums all large log-
arithmic contributions to O. Whilst solving renormalization group equations can be
straightforward for regular functions such as hard functions, this is no longer the case
when O (or specifically its partonic version Ô) contains distributions. This is mostly the
case in our scenario where the observable in question is given by the transverse momentum
spectrum. Let us shortly comment on the relationship between the physical and standard
anomalous dimensions. According to Eq. (2.3.6), the two definitions coincide at LO since
the second term starts at order α2

s , from α2
s the physical anomalous dimension receives

both contribution from γ and O.
By solving the renormalization group equation in Eq. (2.3.5) we have

O(N, Q2) = E(N, Q2 ← Q2
0)O(N, Q2

0), (2.3.8)

where E is known as the evolution kernel with the constraint E(N, Q2
0 ← Q2

0) = 1 and the
function O(N, Q2

0) can be thought as a boundary condition. The evolution kernel takes
into account the evolution from scale Q2

0 to Q2. It is expressed in an exponential form as
follows

E(N, Q2 ← Q2
0) = exp

{∫ Q2

Q2
0

dq2

q2 γAD(N, αs(q2))

}
. (2.3.9)

Eq. (2.3.9) exponentiates all logarithmic contributions and hence predicts their all-order
behaviour in O(N, Q2). For DIS-like kinematics, the evolution factor up to NLL can be
written as follows [142, 200, 220–223]

E(N, Q2 ← Q2
0) =

∫ 1

0
dx

xN−1 − 1
1− x

∫ Q2(1−x)

Q2
0(1−x)

dq2

q2 ĝ(αs(q2)) +K, (2.3.10)

where K just denotes the non-logarithmic terms and the function ĝ is expressed as a series
expansion in the running of coupling which up to NLL is expressed as

ĝ(αs(q2)) =
2

∑
n=1

αn
s (q

2)ĝn. (2.3.11)

By relating Eq. (2.3.10) and Eq. (2.3.10) using the definition of the ĝ function given by Eq. (2.3.11),
we can express the physical anomalous dimension as follows:

γAD(N, αs(q2)) =
∫ 1

0
dx

xN−1 − 1
1− x

2

∑
n=1

αn
s

(
q2(1− x)

)
ĝn, (2.3.12)

If we let the coupling αs run in Eq. (2.3.12),

αs

(
q2(1− x)

)
=

∞

∑
n=1

αs(q2) f̂n

(
αs(q2) ln(1− x)

)
, (2.3.13)
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where f̂n are just analytical functions in their arguments (see App. 1.A for details), we
realize that the terms that are going to be integrated are of the form ln(1− x). These
are exactly the terms that we are interested in as they are the ones that are enhanced at
threshold x → 1. In Mellin space, these logarithms translate into logarithms of the Mellin
moment N, specifically, the region x ∼ 1 is mapped onto the large-N region. This can be
seen by writing the integral in Eq. (2.3.12) as

∫ 1

0
dτ

xN−1 − 1
1− x

lnn(1− x) =
1

n + 1

(
ln

1
N
− γE

)n+1
. (2.3.14)

From Eq. (2.3.14), it follows that Eq. (2.3.12) now becomes

γAD(N, αs(q2)) =
2

∑
n=1

αn
s (q

2) γ
(n+1)
AD

(
αs(q2) ln N

)
+O

(
αk+2

s (q2) lnk N
)
+K, (2.3.15)

where k resums to all-order αs, i.e. k runs from 1 to infinity. Notice also that the series
has been truncated to order αs as these are the only terms relevant for NLL resummed
expression. As shown in Eq. (2.3.15), the physical anomalous dimension admits a series
expansion in αs for fixed αm

s lnm N. That is, the LL refers to the contribution where the
coefficient of the physical anomalous dimension γ

(1)
AD is the sum of terms (all-order in αs)

where the powers of αs and ln N are the same. Therefore, the NLL embodies sum of terms
to all-order in αs where αs has one more power w.r.t. ln N.

As mentioned before, beyond leading order, the physical anomalous dimension differs
from the standard one as the former receives an extra-contribution from the coefficient
function as given by Eq. (2.3.6). In order to separate the contribution that originates from
the Altareli-Parisi anomalous dimension, we can take a form analogue to Eq. (2.3.6) to
write the evolution kernel as

ln E(N, Q2) =
∫ 1

0
dx

xN−1 − 1
1− x

{∫ Q2(1−x)

Q2
0(1−x)

dq2

q2 A(αs(q2)) +
[

B
(

η2(1− x)
)]η=Q

η=Q0

}

(2.3.16)

where both up to NLL the perturbative functions are defined as A(αs)=αs A(1) + α2
s A(2)

and B(αs) = αsB(1). The coefficients of αs and α2
s represent the one and two-loop coef-

ficients of ln N in the standard anomalous dimension respectively. In Eq. (2.3.16), the
coefficient B accounts for the difference between the physical and the standard anomalous
dimensions. It is therefore defined to be,

ĝ(αs(q2)) = A(αs(q2)) +
∂B(αs(q2))

∂ ln(q2)
. (2.3.17)

By putting back the Q2 dependence in the partonic component O, it is now possible to
rewrite the resummed formulae for the factorized observable in Eq. (2.3.3) as

Ores(N, Q2) = Ôres
(

N, αs(µ
2),

Q2

µ2

)
f (N, µ2), (2.3.18)
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where the partonic resummed component is given by

ln Ôres
(

N, αs(µ
2),

Q2

µ2

)
=
∫ 1

0
dx

xN−1 − 1
1− x

{∫ Q2(1−x)

µ2

dq2

q2 A(αs(q2)) + B
(

Q2(1− x)
)}

.

(2.3.19)

Depending on the resummation scheme, the resummed component can be part of either
the partonic function O or the evolution of the parton density f . The function A(αs)
embodies contributions from the emission that are both soft and collinear, in our case, it
only resums logarithms of the form αk

s lnk+1 N and αk
s lnk N. The function B(αs) contains

corrections from the emissions that are only soft. The logarithmic counting is as follows.
At LL, only A(1) contribute while at NLL one has to also include A(2) and B(1). The
coefficients of these perturbative functions can be obtained by comparing fixed-order
computations of physical anomalous dimensions with the fixed-order order expansion
of Eq. (2.3.19) as described in Ref. [224].

2.3.2 Beyond NLL resummation for colour singlet observables

Since the factorization of the hadronic cross-section in Mellin space is understood from
previous sections, here and in the following, we will be mainly working at the level of
partonic partonic. From Refs. [173, 213], it was shown that a natural choice to perform the
resummation is Q̃ = QpT

2. Since the general form of the threshold resummed formulae is
very well known, thanks to the exponentiation of the logarithmic behaviours [225, 226],
here we simply give the expression [227, 228] without detailing the derivations

dσ̂th
ab

dξp

(
N, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
= C(1)

abc(N)gab

(
αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
∆a

(
N, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)

∆b

(
N, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
Jc

(
N, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
∆abc

(
N, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
(2.3.20)

where the subscript abc is just a shorthand for ab→ cF. For brevity, we have also omitted
all the ξp-dependence. Notice that each radiative factor ∆ and J is expressed in terms of
an exponential. The radiative factor ∆a represents the soft and collinear gluon radiation
associated to the initial parton a, the factor Jc takes into account the collinear emission
from the unobserved parton c that recoils against the final state F, and finally the function
∆abc accounts for the large-angle soft gluon emission. While the functions ∆a and Jc are
universal, the function ∆abc is process-dependent. The N-independent gab coefficient
is known as the matching coefficient, it ensures that at every order, the resummed cross
section reproduces the exact fixed-order results, up to corrections suppressed by O(1− τ).
Although it is not apparent from the indices, the definition of the function gab depends
on the nature of the process. Finally, the function C(1)

abc embodies the LO ξp distribution,
and therefore is process-dependent. It can be shown that in the large-N limit, this term
behaves as 1/

√
N. In addition, C(1)

abc only exhibits soft-behaviour (i.e. non-soft for fixed-ξp)

2 In order to relate Ref. [213] with Ref. [213], one indeed need to modify Q into QpT .
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in the small-ξp limit where it behaves as (ln ξp/ξp)+ which is equivalent to ln2 b̂ in Fourier
space.

The radiative factors are given in terms of integrals over the running of the coupling,

ln ∆a

(
N, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
=
∫ 1

0
dx

xN−1 − 1
1− x

∫ Q̃(1−x)2

µ2
F

dq2

q2 Aa

(
αs

(
q2
))

(2.3.21)

ln Jc

(
N, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
=
∫ 1

0
dx

xN−1 − 1
1− x

∫ Q̃(1−x)

Q̃(1−x)2

dq2

q2 Jc

(
αs

(
q2
)

, Q̃
)

(2.3.22)

ln ∆abc

(
N, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
=
∫ 1

0
dx

xN−1 − 1
1− x

DF
abc

(
αs

(
Q̃(1− x)2

))
, (2.3.23)

where the hard-collinear radiation is contained in

Jc

(
αs

(
q2
)

, Q̃
)
= Ac

(
αs

(
q2
))

+ Bc
(
αs
(
Q̃(1− x)

))
. (2.3.24)

The coefficients Ac and Bc are computed perturbatively and their expressions are closely
related to the ones appearing in transverse momentum resummation (see App. 2.A
and App. 2.B). The lower and upper bounds of the q2-integration in Eq. (2.3.22) rep-
resent the soft and collinear limits of the q2 component of the emitted gluon respectively.
They ensures that the logarithmic contributions that appear at fixed-order are fully repro-
duced. The process dependent DF

abc is also a power series in the running of the coupling,

DF
abc = ∑∞

n=1 αn
sDF,(n)

abc . Its first coefficient in the expansion is just proportional to a combi-
nation of the colour factors for each parton involved in the process [213, 227]

D(1)
abc = (Aa + Ab − Ac) ln

(
Q
pT

)
. (2.3.25)

Notice that while the functions ∆a and Jc start to contribute at LL, the radiative factors
that embodies the contributions from the large-angle only start to contribute at NLL.
With regards to the matching function, only the first two order terms in the expansion,
namely g(1)ab and g(2)ab , are required to compute up to NNLL predictions. These coefficients
are computed by comparing the expansion of the resummed formulae with the exact
fixed-order results.

Due to the fact that the radiative factors ∆a and Jc are process-independent, we are going
to compute their expressions first and present the results for the process-dependent parts
later. In a similar way as for the transverse momentum resummation, let us define the
logarithmic variable λN̄ = ᾱ(µ2

R) ln N̄2 and organize the classes of logarithms as follows

ln ∆a

(
N, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
=

1
αs

h(1)a (λN̄) + h(2)a

(
λN̄ ,

Q2

µ2
R

,
Q2

µ2
F

)
+ αsh(3)a

(
λN̄ ,

Q2

µ2
R

,
Q2

µ2
F

)

ln Jc

(
N, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
=

1
αs

f (1)c (λN̄) + f (2)c

(
λN̄ ,

Q2

µ2
R

,
Q2

µ2
F

)
+ αs f (3)c

(
λN̄ ,

Q2

µ2
R

,
Q2

µ2
F

)

In order to determine the expressions of the two functions h(n)a and f (n)c , it is required to
compute the integrals in Eqs. (2.3.21, 2.3.22). There are various ways to compute such
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double integrals, here we follow the approach presented in Ref. [211]. The procedure
consists on fixing the order at which the strong coupling αs is run and then interchanging
the two integrals by redefining the parameter for the Mellin integration. The resulting
integrals of such a procedure can now be computed in a closed form. For illustration
purposes, let us compute the the LL contribution (ha(1)) from Eq. (2.3.21). At such a
logarithmic order, the perturbative coefficient Aa(αs) is truncated at O(αs). Expressing the
argument of αs in terms of the renormalization scale using the definition of the running of
the coupling, we observe that the integral over q2 becomes

A(1)
a

∫ Q̃(1−x)2

µ2
F

dq2

q2 αs

(
q2
)
= A(1)

a

∫ Q̃(1−x)2

µ2
F

dq2

q2
αs(µ2

R)

1 + ᾱs(µ2
R) ln(q2/µ2

R)
. (2.3.26)

Leaving out the coefficient A(1)
a , we can introduce the following relation

xN−1 − 1 = − exp

{
∞

∑
n=2

(−)n ζ(n)
n

(
− ∂

∂ ln N̄

)n
}
+O

(
1
N̄

)
, (2.3.27)

which at the logarithmic order we are interested in is just equal to (−1) after expanding
the exponential. Inserting Eq. (2.3.27) back into Eq. (2.3.21) changes the boundary of the
Mellin integral. We therefore end up with the following expression

−
∫ 1−1/N̄

0
dx

1
1− x

∫ Q̃(1−x)2

µ2
F

dq2

q2
αs(µ2

R)

1 + ᾱs(µ2
R) ln(q2/µ2

R)
(2.3.28)

The order of the x and q-integral can now be interchanged after which the integral over x
can be performed exactly in a closed form. Finally, the integral that we need to compute is
expressed as

−1
2

∫ Q̃/N̄2

Q̃

dq2

q2
αs(µ2

R)

1 + ᾱs(µ2
R) ln(q2/µ2

R)
ln
(

N̄2q2

Q̃

)
−
∫ Q̃

µ2
F

dq2

q2
αs(µ2

R)

1 + ᾱs(µ2
R) ln(q2/µ2

R)
ln N̄

(2.3.29)

The integral over q of Eq. (2.3.29) can be easily performed after which the ensuing expres-
sion can be expanded as a series in αs(µ2

R) by fixing λN̄ = ᾱs(µ2
R) ln N̄2. Notice that the

last term in Eq. (2.3.29) is constructed such that it exactly vanishes when Q̃ = µ2
F. Retaining

only the leading logarithm terms and after performing some algebraic simplification, the
LL contribution to ∆a(N) is given by

ln ∆LL
a

(
N, αs(µ

2
R)
)
=

A(1)
a

β0λN̄
((1− λN̄) ln(1− λN̄) + λN̄) . (2.3.30)

The same procedure applies for the computation of the functions ∆a, Jc and ∆abc at higher
logarithmic orders. In order to obtain NkLL the perturbative functions Aa, Bc and Dabc
have to be included and they should be included up to O(αk+1

s ) while the running of the
strong coupling have to be evaluated at (k + 1)-loops.

The procedure described above permits us to compute any logarithmic accuracy pro-
vided that the perturbative coefficients are known. Up to NNLL, the functions h(i)a are
given by the following expressions

h(1)a (λN̄) =
A(1)

a

β2
0 ln N̄2 ((1− λN̄) ln(1− λN̄) + λN̄) (2.3.31)
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h(2)a

(
λN̄ ,

Q2

µ2
R

,
Q2

µ2
F

)
= −A(2)

a

2β2
0
(λN̄ + ln (λN̄)) +

A(1)
a

2β0
(λN̄ + ln (1− λN̄)) ln

(
Q2

µ2
R

)

− A(1)
a

2β0
λN̄ ln

(
Q2

µ2
F

)
A(1)

a

2β3
0

β1

(
λN̄ + ln (1− λN̄)

1
2

ln2 (1− λN̄)

)
(2.3.32)

h(3)a

(
λN̄ ,

Q2

µ2
R

,
Q2

µ2
F

)
= −A(2)

a

2β3
0

β1

1− λN̄

(
λN̄ + ln (1− λN̄)

λ2
N̄
2

)
+

A(3)
a

β2
0

λ2
N̄

4 (1− λN̄)

+
A(1)

a

2β4
0

β2
1

1− λN̄

(
λ2

N̄
2

+ λN̄ ln (1− λN̄) +
1
2

ln2 (1− λN̄)

)
−

A(1)
a λ2

N̄
2 (1− λN̄)

× ln

(
Q2

µ2
R

)
+

A(1)
a β2

2β3
0

(
λN̄ + ln(1− λN̄) +

λ2
N̄

2 (1− λN̄)

)
+

A(1)
a ζ2λN̄

1− λN̄

− A(2)
a

2β0
λN̄ ln

(
Q2

µ2
F

)
+

A(1)
a
2

λN̄ ln2

(
Q2

µ2
F

)
+

A(1)
a
2

λN̄ ln

(
Q2

µ2
F

)
ln

(
Q2

µ2
R

)

+
1

1− λN̄

(
A(1)

a β1

2β2
0

(λN̄ + ln (1− λN̄))−
A(2)

a
2β0

λ2
N̄

)
ln

(
Q2

µ2
R

)
. (2.3.33)

The functions f (i)c that enter into the definition of Jc can be expressed in terms of the h(i)a
functions above. Indeed, Eq. (2.3.21) and Eq. (2.3.22) are very similar with the difference
that the latter embodies the hard-collinear contribution and the lower boundary of the
q-integration is Q̃(1− x)2 instead of µ2

F. They are therefore expressed as follows

f (1)c (λN̄) = 2h(1)c

(
λN̄
2

)
− h(1)c (λN̄)

f (2)c

(
λN̄ ,

Q2

µ2
R

,
Q2

µ2
F

)
= 2h(2)c

(
λN̄
2

,
Q2

µ2
R

,
Q2

µ2
F

)
− h(2)c

(
λN̄ ,

Q2

µ2
R

,
Q2

µ2
F

)
+

B(1)
c

2β0
ln
(

1− λN̄
2

)

f (3)c

(
λN̄ ,

Q2

µ2
R

,
Q2

µ2
F

)
= 2h(3)c

(
λN̄
2

,
Q2

µ2
R

,
Q2

µ2
F

)
− h(3)c

(
λN̄ ,

Q2

µ2
R

,
Q2

µ2
F

)
+

3
2

ζ2 A(1)
c

λN̄
2− λN̄

+
β1B(1)

c

2β2
0

λN̄ + 2 ln(1− λN̄/2)
2− λN̄

+
B(1)

c
2

λN̄
2− λN̄

ln

(
Q̃2

µ2
R

)
− B(2)

c
2β0

λN̄
2− λN̄

. (2.3.34)

Provided with the procedure to compute integrals of form given by Eqs. (2.3.21, 2.3.22) as
described above, the computation of the radiative factor that embodies the contribution
arising from large-angle soft gluon emission is now straightforward. Since, as mentioned
above, the perturbative functionDabc is process dependent, the expression of its coefficients
are given in App. 2.B. For the same reason, thee expression of the leading-order pT-
distribution C(1)

abc and the matching function gab are also given in App. 2.B for the two
colour singlet processes we are interested in, namely the production of a Higgs boson
production via gluon fusion and the production of a weak boson that decays into two
leptons via DY mechanism.
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2.3.3 Threshold resummation and the Landau pole

Some comments are in order w.r.t the resummed formulae derived in the previous section.
First, notice that the expression in Eq. (2.3.20) are written in Mellin N-space and have
to be inverted back into the momentum space. However, as we shall see, the resulting
momentum space resummed expression turns out to be ill-defined. This is because the con-
tributions from the resummed expression at any finite logarithmic accuracy corresponds to
a divergent series of contributions to the partonic cross section. Such a divergence, which is
of perturbative origin, can be traced to the Landau pole in the running of the strong coupling.
By inspection of Eq. (2.3.20) we notice that a pole is present at N̄L = exp(1/2αsβ0), as a
matter of fact, this actually corresponds to a branch cut as it extends from NL to positive
infinity. On the other hand, since the hadronic cross section is obtained by convoluting the
partonic part with the luminosity, the integration over the momenta always intercepts the
region x → 1 therefore integrating the scale of the running of coupling down to zero. This
results as a divergence of the expansion in the coupling αs. To make this more tangible,
let us only focus on the LL part from the exponent of Eq. (2.3.20) from which the Mellin
inversion can be performed analytically [226]

dσ̂th
ab

dξp
(x) ∝

d
dx

[
exp

{
∞

∑
n=1

αn
s f̂ (n)

(
lnn+1

(
1

1− x

))}
+O (αm

s lnm(1− x))

]
, (2.3.35)

where O (αm
s lnm(1− x)) denotes the subleading NLL contributions. This expression

clearly blows up when x → 1. For the sake of illustrating the above point, let us consider a
toy PDF whose form is chosen such that when integrated over the momentum it suppresses
the integrand in Eq. (2.3.35) when x → 1. For simplicity, here we choose f (x) = (1− x)a.
Combining this with Eq. (2.3.35), we have

∫ 1

0
dx (1− x)a exp

(
lnb
(

1
1− x

))
=

∞

∑
k=1

(bk)!
k!(1 + a)bk+1 . (2.3.36)

The right-hand side of Eq. (2.3.36) diverges for b ≥ 2, which is always the case, regardless
of whether or not the Landau pole is present. This factorial divergence is attributed
to the fact that subleading terms were neglected in the inversion of the resummation
exponent. Thus, the divergence can be removed by addition of subleading terms which
are more suppressed than any power of 1/Q2 [226, 229]. Several prescriptions have been
proposed to treat these divergent effects, the most used one is the Minimal Prescription
which was proposed long ago in Ref. [226]. The benefit of the Minimal Prescription is that
it does not only handle the Landau pole but also properly treats the subleading terms.
Alternatively, a prescription based on Borel summation was proposed in Ref. [230] and
refined in Refs. [231–234]. Details on these prescriptions will be presented in Sec. (3.1).

2.4 Soft-improved small-pT (SIPT) resummation

2.4.1 New factorization & Generating Functions

In the following section, we review the soft-improved transverse momentum (SIPT) re-
summation formalism first proposed in Ref. [165]. Here, we only highlight the main points
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of the formalism, thus for further details on the derivation refer to the aforementioned
paper. This new resummation formalism relies on a new factorization of the phase space
in which soft and collinear contributions are treated at the same footing. Let us recall that
the factorization of the phase space exhibits terms of the following form [165]

1√
(1− τ)2 − 4τξp

. (2.4.1)

The interplay between the threshold and small-pT scaling variables is clearly apparent
from Eq. (2.4.1). In the context of CSS and CFG, it sufficed to just take the small-pT limit
of Eq. (2.4.1) leading to

lim
ξp→0

1√
(1− τ)2 − 4τξp

=

(
1

1− τ

)

+
− 1

2
δ(1− τ) ln ξp. (2.4.2)

In Fourier-Mellin space, this is equivalent to taking the large-b̂ limit while keeping N
fixed. This is justifiable as long as the scaling variable ξp is the smallest scale involved in
the process. However, in the region where threshold contributions are also relevant, i.e.
N/b ∼ 1, oversimplification such as Eq. (2.4.2) neglect soft radiations that are emitted at
small angles. In the context of SIPT, this can be dealt by using a distribution identity in
order to highlight the divergence at threshold

1√
(1− τ)2 − 4τξp

=


 1√

(1− τ)2 − 4τξp




+

− 1
2

δ(1− τ)
[
ln ξp − ln(1 + ξp)

]
. (2.4.3)

Notice that when using the standard Eq. (2.4.2) or the modified Eq. (2.4.3) factorization
of the phase space, the matrix element is always the same. This is justified by the fact
that unlike the phase space, the squared amplitude does not display further infrared
singularities as τ → 1 since power counting arguments ensure that all infrared singularities
only arise in the collinear limit. This means that terms of the form N

√
ξp (or N/b̂) only

arise in phase space and it is sufficient to expand the amplitude in powers of ξp at fixed
N. With Eq. (2.4.3), the two limits are kept for N/b ∼ 1. in conjugate Fourier space,
this corresponds to taking the large-b limit for fixed N/b. As we shall see later, the two
variables N and b are now embodied into one single scaling variable. In such a case,
logarithms of the form ln(b̂) lnk(N̄) and lnk+1(b̂) are considered of the same logarithmic
order. The SIPT then differs from the standard resummation formalism by terms which
are power-suppressed in the large-b̂ limit at fixed N.

It is now possible to construct a transverse momentum resummation that takes into
account the soft limit by combining the new factorized phase space in Eq. (2.4.3) with
the factorized amplitude. Notice that here, we are only interested in the leading-power
resummed expression, i.e. up to corrections that are suppressed by powers of 1/b̂. At the
partonic level, the soft-improved transverse momentum resummation is defined as

dσ̂th
ab

dξp

(
N, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
= σBorn

F Hab→cc̄

(
N, αs(Q2)

)
aN(ξp)

∫ ∞

0
db̂

b̂
2

J0

(
b̂
√

ξp

)
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exp
{∫ ∞

0
dξ J0

(
b̂
√

ξ
) ∫ 1

0
dτ τN−1Ac(αs(Q2))D0(ξ, τ) +O

(
1
b̂

)}

exp
{∫ ∞

0
dξ a−N(ξ)J0

(
b̂
√

ξ
)(1

ξ

)

+
Bc

(
N, αs(Q2ξ)

)
+O

(
1
b̂

)}
, (2.4.4)

where a(ξ)=
(√

1 + ξ +
√

ξ
)2 and the distribution D0 is defined as a more general class

of the term that appears in the phase space of Eq. (2.4.3)

Dk(ξ, τ) =

(
lnk ξ

ξ

)

+





 1√

(1− τ)2 − 4τξp




+

− 1
2

δ(1− τ)
[
ln ξp − ln(1 + ξp)

]

 .

(2.4.5)

The resummed formula Eq. (2.4.4) resums small-pT and threshold logarithms up to NNLL
and NNLL* respectively. By construction, it reduces to the CFG resummation formalism
in the limit b→ ∞. In addition, it reproduces up to NNLL* the threshold resummation for
the total inclusive cross section upon integration over ξp, or equivalently by setting b = 0
in Fourier space. By expanding the perturbative functions Ac and Bc in powers of αs, one
notice that all the integrals appearing in the expansion can be categorized as,

G1,k(N, b̂) =
∫ ∞

0
dξ J0

(
b̂
√

ξ
) ∫ 1

0
dτ τN−1Dk(ξ, τ) (2.4.6)

G2,k(N, b̂) =
∫ ∞

0
dξ a−2N(ξ)J0

(
b̂
√

ξ
)( ln ξ

ξ

)

+
, (2.4.7)

where one can immediately notice that the functions G1,k and G2,k are the terms that

are proportional to the coefficients A(n)
c and B(n)c respectively. The construction of the

final soft-improved transverse momentum resummation amounts to determining the
perturbative coefficients and computing the integrals given by Gi,k. The functions Gi,k
defined in Eqs. (2.4.6, 2.4.6) can be obtained by taking the k-th derivatives w.r.t. ϵ at ϵ = 0
of the following generating functions

G1,k(N, b̂) =

[
∂k

∂ϵk G1(N, b̂, ϵ)

]

ϵ=0

, (2.4.8)

G2,k(N, b̂) =

[
∂k

∂ϵk G2(N, b̂, ϵ)

]

ϵ=0

. (2.4.9)

Since the information concerning the soft behaviour is embodied in Eq. (2.4.7) we will
mostly focus on the computation of G1,k. Before doing so, let us first study its behaviour in
various kinematic limits. This will provide us insights on what kind of contributions are
contained in the soft-improved resummation when compared to the standard transverse
momentum resummation formalism.

2.4.2 Large logarithms at the level of generating functions

In the following parts, we study the behaviours of the generating function given by Eq. (2.4.8)
in the following limits: (a) large-b̂ limit at fixed N which corresponds to the standard
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transverse momentum resummation, (b) large-N limit at fixed b̂ which corresponds to the
soft limit, (c) b̂→ 0 limit which corresponds to the total inclusive resummed cross section,
and (d) large-b̂ at fixed N/b limit which is the limit we are mainly interested in.

Let us start with the expression of the generating function G1 which is defined as

G1(N, b̂, ϵ) =
∫ ∞

0
dξ J0

(
b̂
√

ξ
) ∫ 1

0
dτ τN−1D0(ξ, τ, ϵ) (2.4.10)

=
∫ 1

0
dτ τN−1

∫ ξmax

0
dξ J0

(
b̂
√

ξ
)
D0(ξ, τ, ϵ) (2.4.11)

where ξmax = (1− τ)2/4τ and D0(ξ, τ, ϵ) is given by the following expression

D0(ξ, τ, ϵ) =

(
1

ξ1−ϵ

)

+





 1√

(1− τ)2 − 4τξp




+

− 1
2

δ(1− τ)
[
ln ξp − ln(1 + ξp)

]

 .

(2.4.12)

Using the following distribution identities
(

1
ξ1−ϵ

)

+
=

1
ξ1−ϵ

− 1
ϵ

δ(ξ) and
(

1
ξ1−ϵ

)

+
ln ξ =

1
ξ1−ϵ

ln ξ +
1
ϵ2 δ(ξ), (2.4.13)

the generating function in Eqs. (2.4.10, 2.4.11) can be therefore simplified as

G1(N, b̂, ϵ) = − 1
2ϵ2 +

∫ 1

0
dτ τN−1


1

ϵ

(
1

τ − 1

)

+
+
∫ ξmax

0
dξ J0

(
b̂
√

ξ
) ξϵ−1
√
(1− τ)2 − 4τξp


 .

(2.4.14)

The Mellin transform that appears in the first term of the τ integration Eq. (2.4.14) can be
explicitly expressed in terms of a logarithm in the large-N limit

∫ 1

0
dτ τN−1

(
1

τ − 1

)

+
= − (ψ(N) + γE)

N→∞−−−→ − ln(N̄). (2.4.15)

This allows us to simplify Eq. (2.4.14) further

G1(N, b̂, ϵ) =
1
ϵ

ln N̄ − 1
2ϵ2 +

∫ 1

0
dτ τN−1

∫ ξmax

0
dξ J0

(
b̂
√

ξ
) ξϵ−1
√
(1− τ)2 − 4τξp

.

(2.4.16)

Large-N limit at fixed b̂:

In this section, let us study the logarithmic structure of the generating function, Eq. (2.4.16),
in the limit where N is large and ξ fixed. This will give us an idea on the structure of
ln N̄ that appears in the resummed exponent at threshold when ξ ≫ 0. For simplicity,
we can isolate the integrals in Eq. (2.4.16) from the rest and only consider G̃1(N, b̂) where
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G̃1(N, b̂, ϵ) = G1(N, b̂, ϵ) − ln N̄/ϵ + 1/2ϵ2. By expanding the zeroth-th order Bessel
function in powers of its argument

J0(b̂
√

ξ) =
∞

∑
p=0

(−1)p

Γ2(p + 1)

(
b̂2

4

)p

ξ p, (2.4.17)

we can interchange the sum and the integrals in order to perform the integration for each
power of p. Doing so yields

G̃1(N, b̂, ϵ) =
1
2

∞

∑
p=0

[(
− b̂2

4

)p
Γ2(p + ϵ)Γ(N − p− ϵ)

Γ2(p + 1)Γ(N + p + ϵ)

]
, (2.4.18)

where the duplication formula for Gamma functions has been used. The first term in the
series (p = 0) is independent of b̂ and therefore it is more convenient to separate it off from
the sum. Hence, Eq. (2.4.18) now writes as

G̃1(N, b̂, ϵ) =
1
2

Γ2(ϵ)
Γ(N − ϵ)

Γ(N + ϵ)
+

1
2

∞

∑
p=1

(
− b̂2

4

)p
Γ2(p + ϵ)

Γ2(p + 1)
Γ(N − p− ϵ)

Γ(N + p + ϵ)
. (2.4.19)

In the large-N limit, the ratio of Gamma functions can be simplified using

Γ(N − p− ϵ)

Γ(N + p + ϵ)
N→∞−−−→

(
1

N2

)p+ϵ (
1 +O

(
1
N

))
(2.4.20)

from which it follows that

G̃1(N → ∞, b̂, ϵ) =
Γ2(1 + ϵ)

2ϵ2N2ϵ
+

1
N2ϵ

∞

∑
p=1

(
− b̂2

4N2

)p
Γ2(p + ϵ)

Γ2(p + 1)
. (2.4.21)

We can notice that the second term of the above equation vanishes in the large-N limit.
Thus, the generating function in Eq. (2.4.16) becomes b̂-independent and is expressed as

G1(N → ∞, ϵ) =
1
ϵ

ln N̄ − 1
2ϵ2 +

Γ2(1 + ϵ)

2ϵ2N2ϵ
. (2.4.22)

By taking the k-th derivative of the above expression w.r.t. ϵ as defined by Eq. (2.4.8), one
notices that the singular terms appearing in Eq. (2.4.22) when ϵ→ 0 cancels out and one
can safely set ϵ = 0. As a result, the function G1,k is just a polynomial in ln N,

G1,k(N → ∞) =
k!
2

k+2

∑
m=0

2m(−1)k−m

m!(2 + k−m)!
(ln N)2+k−m. (2.4.23)

Large-b̂ limit at fixed N:

Let us know study the logarithmic structure of the generating functionEq. (2.4.16) in the
large-b̂ limit while keeping N fixed. As shown in Refs. [165, 235] at the resummed level in
both Fourier-Mellin and direct space, such a limit reproduces the standard CFG resummed
formula.
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Let us start from the integrand of Eq. (2.4.10)

D0(ξ, τ, ϵ) =

(
1

ξ1−ϵ

)

+





 1√

(1− τ)2 − 4τξp




+

− 1
2

δ(1− τ)
[
ln ξp − ln(1 + ξp)

]

 .

(2.4.24)

Due to the square root term in the denominator, Eq. (2.4.24) vanishes for all ξ greater than
ξmax. This means that the function D0 only exhibits singular behaviour when ξ = 0 due
to the factor 1/ξ. In the small-ξ limit, the last term ln(1− ξ) behaves as ξ cancelling the
singularity and can therefore be neglected. For a fixed value of τ, Eq. (2.4.24) now becomes

D0(ξ → 0, τ, ϵ) =

(
1

ξ1−ϵ

)

+

{(
1

1− τ

)

+
− 1

2
δ(1− τ) ln ξp

}
. (2.4.25)

The form of Eq. (2.4.25) allows us to decouple the Mellin integral from the Fourier. Per-
forming the integral over the scaling variable τ, we are left with

G1(N, b̂→ ∞, ϵ) = −
∫ ξmax

0
dξ J0

(
b̂
√

ξ
)( 1

ξ1−ϵ

)

+

(
ln N̄ +

1
2

ln ξ

)
. (2.4.26)

The computation of the first term in Eq. (2.4.26) to all logarithmic order can be done in a
closed form using results from Ref. [232]. The approach consists in using the polar coordi-
nates form of b̂ and expressing the Bessel function in terms of its integral representation.
Applying the results to our case, the first term of Eq. (2.4.26) reads

∫ ∞

0
dξ J0

(
b̂
√

ξ
)( 1

ξ1−ϵ

)

+
=

1
ϵ


Γ(1 + ϵ)

Γ(1− ϵ)

(
b̂2

4

)−ϵ

− 1


 , (2.4.27)

where we have extend the upper boundary of the integration to (+∞) in order to re-
late Eq. (2.4.26) with Ref. [232]. As mentioned before, this does not change the integral
since contributions for ξ > ξmax are zero. The second term in Eq. (2.4.26) can be computed
from Eq. (2.4.27) by realizing that

∫ ξmax

0
dξ J0

(
b̂
√

ξ
)( 1

ξ1−ϵ

)

+
ln ξ =

∂

∂ϵ

∫ ∞

0
dξ J0

(
b̂
√

ξ
)( 1

ξ1−ϵ

)

+
. (2.4.28)

Putting Eqs. (2.4.27, 2.4.28) back into Eq. (2.4.26), performing some algebraic simplifications,
and reorganizing the expression, we find

G1(N, b̂→ ∞, ϵ) =
1

2ϵ2

(
M(ϵ)− ϵM(1)(ϵ)−M(0)− 2ϵ(ψ(N) + γE)(M(ϵ)− 1)

)

(2.4.29)

where

M(ϵ) =

(
b̂2

4

)2
Γ(1 + ϵ)

Γ(1− ϵ)
=

∞

∑
k=0

ϵk

k!
M(k)(0) with M(k)(ϵ) =

∂k

∂ϵkM(ϵ). (2.4.30)
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Replacing M in Eq. (2.4.29) using its Taylor expansion in Eq. (2.4.30), taking the k-th
derivative of the resulting expression, and putting everything back into Eq. (2.4.9), we
arrive at the following expression

G1,k(N, b̂→ ∞) = −1
2

[
M(k+2)(0)

k + 2
+ 2 ln N̄

M(k+1)(0)
k + 1

]
. (2.4.31)

Using the definition ofM(k) from Eq. (2.4.30) one observes that such a function is expressed
in as a polynomials in ln b̂. This is expected as those logarithms are the ones that are
resummed in the Sudakov exponent. Keeping only the highest power, we have

G1,k(N, b̂→ ∞) = (−1)k+1

[
1

2k + 4
lnk+2

(
b̂2

b2
0

)
− ln N̄

k + 1
lnk+1

(
b̂2

b2
0

)]
. (2.4.32)

Once multiplied with the coefficient functions Ac as in Eq. (2.4.4), the above logarithmic
structure corresponds exactly to the ones that appear in the standard formulation of the
transverse momentum.

Large-b̂ limit at fixed N/b:

The main point of having constructed the two functions Eqs. (2.4.6, 2.4.7) was to capture
the behaviours of the soft radiations that are emitted at very small angle. This is the main
idea of the soft-improved transverse momentum resummation. In order to make such
a behaviour manifest at the exponent level, the generating functions in Eqs. (2.4.7, 2.4.9)
have to be taken in the limit where b̂ is large but N/b is fixed. In this section, we study
the behaviours of these generating functions in the aforementioned limit and compare the
results with Eq. (2.4.32).

Let us start with Eq. (2.4.18) where no limit has been taken yet

G̃1(N, b̂, ϵ) =
1
2

∞

∑
p=0

[(
− b̂2

4

)p
Γ2(p + ϵ)Γ(N − p− ϵ)

Γ2(p + 1)Γ(N + p + ϵ)

]
. (2.4.33)

Since the Gamma functions do not depend on b̂, their expressions can be replaced by
their asymptotic expansions as in Eq. (2.4.20). This leads us to the exact same expression
as in Eq. (2.4.21) taking into account that the label N → ∞ only corresponds to the N-
independent of the expression. In contrast to Eq. (2.4.22), the sum in Eq. (2.4.21) has to be
performed explicitly. Doing so leads to

G̃1(N, b̂, ϵ) =
1
2

Γ2(ϵ)

N2ϵ 2F1

(
ϵ, ϵ; 1;− b̂2

4N2

)
. (2.4.34)

The simplification of the Hypergeometric function in Eq. (2.4.34) has to be done taking into
account that the generating function has to reproduce the standard transverse momentum
resummation in the large-b̂ limit and reproduce the inclusive threshold momentum resum-
mation upon integration over the transverse momentum. The former can be achieved by:
expanding the Hypergeometric function as a series in ϵ, evaluating the large-b̂ limit, and



68 A L L - O R D E R R E S U M M AT I O N O F T R A N S V E R S E M O M E N T U M D I S T R I B U T I O N S

retaining the highest power in ln b̂. The latter is achieved by letting b̂ = 0 in the Hyperge-
ometric function, expanding the resulting expression as a series in ϵ, and retaining only
the first terms in the expansion. The soft-improved expression can then be constructed by
matching the two expressions.

The expansion of the Hypergeometric function is straightforward using [236, 237]

2F1 (ϵ, ϵ; 1;−z) = 1− ϵ2Li2(−z) +O(ϵ3). (2.4.35)

On the other hand, for a large parameter z, the Hypergeometric is given by [236, 237]

2F1 (ϵ, ϵ; 1;−z) =
1
zϵ

ln z− ψ(1− ϵ)− ψ(ϵ)− 2γE
Γ(ϵ)Γ(1− ϵ)

+O
(

1
z

)
. (2.4.36)

By shifting b̂-dependent variable z→ z + 1 in Eq. (2.4.36), we arrive at an expression that
is regular when z→ 0 but still coincides with Eq. (2.4.36) when z→ ∞. This allows us to
take the small-ϵ expansion of Eq. (2.4.36) as follows

2F1 (ϵ, ϵ; 1;−z→ −(z + 1)) = 1− ϵ2
(

1
2

ln2(z + 1) + ζ2

)
+O(ϵ3). (2.4.37)

In order to interpolate the Hypergeometric function in Eq. (2.4.34), we first relate Eq. (2.4.37)
with Eq. (2.4.35), focusing only on the terms that multiply ϵ2, and using the definition of
the dilogarithm for complex argument in Ref. [238], we have

Li2

(
1

1− z

)
= Li2(z) + ζ2 + ln(−z) ln(1− z)− 1

2
ln2(1− z), (2.4.38)

where in the limit z → 1, the last two terms of Eq. (2.4.38) can be neglected. This is
fully justified since the large-z behaviour is fully described with Eq. (2.4.36). Combining
everything together, we can write a more malleable form of Eq. (2.4.34) that is different
from it by subleading terms. Up to NNLL, we therefore have

2F1

(
ϵ, ϵ; 1;− b̂2

4N2

)
=

ln(b̂2/4N2)− ψ(1− ϵ)− ψ(ϵ)− 2γE

(4N)−2(N2 + b̂2)Γ(ϵ)Γ(1− ϵ)
+ ϵ2Li2

(
4N2

N2 + b̂2

)
.

(2.4.39)

Putting Eq. (2.4.39) back into Eq. (2.4.34) and adding back the ϵ-dependent term that we
left out prior to the integration, the derivative w.r.t ϵ can now be easily taken. After setting
ϵ = 0 and retaining only terms that contribute up to NNLL, we finally have

G1,k

(
b̂→ ∞, fixed

N
b

)
= (−1)k+1

[
lnk+2 χ

2k + 4
− ln N̄ lnk+1 χ

k + 1
− lnk N̄Li2

(
N̄
χ

)]
, (2.4.40)

where we have introduced a new variable χ = N̄2 + b̂2/b2
0. By proceeding exactly in the

same way, one can also compute the expression of G2,k. The difference only resides in
the fact that the expansion of the Hypergeometric function is done up to order ϵ. This is
because the perturbative function Bc that multiplies G2,k starts at NLL. The final result is
given by

G2,k

(
b̂→ ∞, fixed

N
b

)
= (−1)k+1 lnk+1 χ. (2.4.41)



2.4 S O F T- I M P R O V E D S M A L L - pT ( S I P T ) R E S U M M AT I O N 69

The two functions G1,k and G2,k preserve the same logarithmic accuracy as the standard
transverse momentum resummation. In addition, G1,k contains NNLL soft-contributions
that at the level of the total inclusive cross section reproduces the threshold resummation
up to some subleading corrections. Comparing Eq. (2.4.40) to Eq. (2.4.32), we notice two
main differences. First, the argument of the logarithms has changed from b̂2/b2

0 to N̄2 +

b̂2/b2
0. This takes into account soft contributions that are not taken into in the standard

transverse momentum formalism. This also suggests that ln N are resummed at the same
footing as ln b̂. Second, Eq. (2.4.40) contains a dilogarithmic contribution that multiplies the
highest power of ln N. As expected, Eq. (2.4.40) exactly reproduces Eq. (2.4.32) in the large-
b̂ limit since χ→ b̂2/b2

0 and Li2(N̄2/χ)→ 0 in that limit. In particular, it is interesting to
see that the combined resummation variable χ leads to the modified (1 + b̂2/b2

0) of the
CFG when N̄ = 1. Notice, however, that the above expression cannot be exactly compared
to Eq. (2.4.23) since the large-b̂ and large-N limits do not commute.

2.4.3 From the generating functions to the resummed formulae

The previous section provided a description on how to consistently combine soft and recoil
effects in transverse momentum resummation up to NNLL for the process h1 + h2 → F+X.
It was shown that the structure of the large logarithms are governed by two generating
functions, Eqs. (2.4.8, 2.4.9). Having studied and performed the integral of the generating
functions in various kinematic limits, we can now write down the expression of the
partonic resummed formula. Using Eqs. (2.4.40, 2.4.41), it can be shown that the partonic
cross section can be written in a similar form as Eq. (2.2.27)

dσ̂tr
ab

dξp

(
N, χ,

Q2

µ2
R

,
Q2

µ2
F

)
= ∑

c
σBorn

F,cc̄ H̄F
c (N, χ)Sc(N, χ)∑

k,l
Cck

(
N, αs

(
Q2

χ

)
,

Q2

µ2
R

,
Q2

µ2
F

)

Cc̄l

(
N, αs

(
Q2

χ

)
,

Q2

µ2
R

,
Q2

µ2
F

)
Uka

(
N,

Q2

χ
← µ2

F,
Q2

µ2
R

,
Q2

µ2
F

)
Ulb

(
N,

Q2

χ
← µ2

F,
Q2

µ2
R

,
Q2

µ2
F

)
.

(2.4.42)

The soft-improved resummed expression in Eq. (2.4.42) is different from Eq. (2.2.27) in the
following ways. First, the Sudakov form factor Sc depends on the resummation variable χ
which, as mentioned previously, depends both on the Mellin moment N and the impact
parameter b. As a consequence, the exponent of Sc now vanishes when χ=1. Second, the
modified hard function H̄c now depends on χ, nonetheless, it still behaves as a constant in
the large-b̂ limit. It contains constant terms that do not vanish in the exponent when χ=1.
They originate from the dilogarithms appearing in Eq. (2.4.40). Therefore, up to NLO,
H̄c and Hc are related through H̄c(N, χ) = Hc(αs) + αsLi2(N̄2/χ). Finally, the coefficient
functions and the evolution kernels are evaluated at a scale Q2/χ instead of b̂2/b2

0, hence
the resulting evolution factors also depend on χ. The fact that the evolution kernels
explicitly depend on the scale Q2/χ entails a new way of counting the logarithms since
the anomalous dimensions can generate ln N̄ in the large-N limit. To make this statement
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tangible, let us consider for the sake of argument the singlet case where the solution of the
evolution kernel is given by

Uka

(
N,

Q2

χ
← Q2

)
= ∑

i,j
VN

ki

(
αs

(
Q2

χ

))
U(LO)

ij

(
N,

Q2

χ
← Q2

)
ṼN

ja (αs(Q2)), (2.4.43)

where for brevity we omitted the remaining scale dependence and expressed the N-
dependence of V as a superscript. As detailed in Sec. (1.1.2), U(LO) and V represent the
lowest and higher perturbative order solution to the evolution equation respectively. The
function Ṽja denotes the (j, a)-element of the inverse matrix V−1 in the flavour space.
Here and in the following, we shall use the boldface notation to denote the representation
in flavour matrix space. From Eq. (2.4.42) to Eq. (2.4.43) we have evolved the parton
densities from scale Q2/χ to Q2 and then from Q2 to µ2

F which in case Q = µF leads
to U(Q2 ← µ2

F) = 1. The lowest perturbative order solution U(LO) can be derived by
diagonalizing the LO anomalous dimension matrix γ(0). Following Refs. [117, 195],

U(LO)
ij

(
N,

Q2

χ
← Q2

)
= ∑

r=±
E (r)ij (N) exp (Qr(N, χ)) , (2.4.44)

where the exponent Q that resums both soft and recoil contributions is given by

Qr(N, χ) = −λ
(0)
r (N)

β0
ln
(

αs(Q2/χ)

αs(Q2)

)
. (2.4.45)

As described in Sec. (1.1.2), λ± and E± represent the eigenvalues of the singlet matrix
γ(0) and its projectors respectively. In the context of standard transverse momentum
resummation, the leading-order solution to the evolution equation contributes with a
single logarithm in ln b̂ and therefore starts to contribute at NLL. However, in the context
of soft-improved transverse momentum resummation, at leading-logarithm the flavour-
diagonal anomalous dimensions carry an additional contribution of the form A(1)

c ln N̄2.
Indeed, the lowest order contribution to Q is given by

Q±(N, χ) =
1
β0

γ
(0)
gg/qq ln(1− λχ) with λχ = ᾱs ln χ. (2.4.46)

Taking the large-N limit of the anomalous dimensions in the above expression leads to the
following result

1
β0

γ
(0)
gg/qq ln (1− λχ)

N→∞−−−→ −
A(1)

g/q

β0
ln(N̄) ln (1− λχ) = −

A(1)
g/q

2ᾱsβ0
λN̄ ln (1− λχ) , (2.4.47)

which exhibits soft logarithms through λN̄ = 2ᾱs ln N̄ with ᾱs ≡ ᾱs(µ2
R). This suggests

that in order to compute NkLL soft-improved transverse momentum resummation, the
large-N behaviour of the evolution has to be included up to NkLL, which is not the case in
the standard transverse momentum resummation as Nk−1LL is enough. That is, at NNLL,
the solution to the evolution equation is performed up to NNLO accuracy but with the
NNLO anomalous dimensions replaced by their large-N behaviours. To illustrate this



2.4 S O F T- I M P R O V E D S M A L L - pT ( S I P T ) R E S U M M AT I O N 71

further, still in the context of singlet which is the only important for the Higgs production,
let us put Eq. (2.4.42) into the same form as Eq. (2.2.30)

dσ̂tr
ab

dξp

(
N, χ,

Q2

µ2
R

,
Q2

µ2
F

)
= ∑

c
σBorn

F,gg (αs(µ
2
R))H̄

F,{S}
ab→cc̄

(
N, χ, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
(2.4.48)

exp

{
Sc

(
N, χ, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)
+R{S}

(
N, χ, αs(µ

2
R),

Q2

µ2
R

,
Q2

µ2
F

)}
,

where here {S} labels a set of flavour indices. As pointed out above, the function H̄ receives
contribution from the constant terms coming from the generating functions. Despite the
fact that it depends explicitly on b̂ through χ, it behaves as a constant in the limit where b̂
is large since Li2(N̄2/χ)→ 0.

The Sudakov exponent is fully determined by the generating functions. Putting back
the expression of the generating functions in Eqs. (2.4.40, 2.4.41) into Eq. (2.4.4), expressing
the perturbative functions Ac and Bc in terms of the standard Ac and Bc, it follows that

Sc(N, χ, Q2) =
∫ Q2

Q2

N̄2

dq2

q2 Dc(αs(q2))−
∫ Q2

Q2
χ

dq2

q2

[
Ac(αs(q2)) ln

Q2

q
+ Bc(αs(q2))

]
(2.4.49)

where up to NNLL the additional perturbative function Dc contributes up to order α2
s .

With the first coefficient being zero, D(2)
c =A(1)

c β0Li2(N̄2/χ). The function Dc has its
origin from the dilogarithm part appearing in G1,k. When comparing the second term
of Eq. (2.4.49) with Eq. (2.2.11), putting aside the process-dependent part, the difference
only resides in the definition of resummation scale. With Q2/χ, the improved transverse
momentum resummation captures soft contributions that were not present in the stan-
dard resummation formalism which are crucial in order to reproduce the total inclusive
threshold resummed expression. As for the construction of the soft-improved resummed
transverse momentum expression, the universal form factor can be organized in terms of
classes of logarithms as Sc(N, χ)= ∑∞

n=−1 ᾱn
s gn+2(λN̄ , λχ). The explicit expressions of the

functions gi are given by

g1 (λχ) =
A(1)

g

β2
0

(λχ + ln (1− λχ)) , (2.4.50)

g2

(
λχ,

Q2

µ2
R

)
=

A(1)
g β1

β3
0

(
λχ + ln (1− λχ)

1− λχ
+

1
2

ln (1− λχ)
2
)
+

B(1)
g

β0
ln (1− λχ)

− A(2)
g

β2
0

λχ + (1− λχ) ln (1− λχ)

1− λχ
+

A(1)
g

β0

λχ + (1− λχ) ln (1− λχ)

1− λχ
ln

(
Q2

µ2
R

)
,

(2.4.51)

g3

(
λN̄ , λχ,

Q2

µ2
R

)
=

A(1)
g β2

1

2β4
0

(
λχ + ln (1− λχ)

(1− λχ)
2 (λχ + (1− 2λχ) ln (1− λχ))

)

+
A(1)

g β2

β3
0

(
(2− 3λχ) λχ

2 (1− λχ)
2 + ln (1− λχ)

)
+

B(1)
g β1

β0

λχ + ln (1− λχ)

1− λχ
+ A(1)

g
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× Li2

(
N̄2

χ

)
λN̄

1− λN̄
− A(2)

g β1

β3
0

(
(2− 3λχ) λχ

2 (1− λχ)
2 +

(1− 2λχ) ln (1− λχ)

(1− λχ)
2

)

− ApT,(3)
g

2β2
0

λ2
χ

(1− λχ)
2 −

B(2)
g

β0

λχ

1− λχ
+ B(1)

g
λχ

1− λχ
ln

m2
H

µ2
R

+
A(2)

g

β0

λ2
χ

(1− λχ)
2

× ln

(
Q2

µ2
R

)
+

A(1)
g β1

β2
0

(
λχ (1− λχ) + (1− 2λχ) ln (1− λχ)

(1− λχ)
2

)
ln

(
Q2

µ2
R

)

− A(1)
g

2
λ2

χ

(1− λχ)
2 ln2

(
Q2

µ2
R

)
. (2.4.52)

The functionR embodies three types of contributions up to NNLL: the exponent of the
lowest order solution to the evolution given by Eq. (2.4.45), the evolution of the coefficient
functions, and the evolution of the χ-dependent V-function in Eq. (2.4.43). Expressing the
argument of the strong coupling in terms of Q2, the evolution factors for the coefficient
and V functions are respectively given by

Cck

(
N, αs

(
Q2

χ

))
= exp

{
Rck

(
N, αs

(
Q2

χ
← Q2

))}
Cck(N, Q2) (2.4.53)

Vki

(
N, αs

(
Q2

χ

))
= exp

{
Eki

(
N, αs

(
Q2

χ
← Q2

))}
Vki(N, Q2) (2.4.54)

where terms in the exponents are defined as

Rck

(
N, αs

(
Q2

χ
← Q2

))
= −

∫ Q2

Q2/χ

dq2

q2
β
(
αs
(
q2))

αs (q2)

[
d ln Cck

(
N, αs

(
q2))

d ln αs (q2)

]
(2.4.55)

Eki

(
N, αs

(
Q2

χ
← Q2

))
= −

∫ Q2

Q2/χ

dq2

q2
β
(
αs
(
q2))

αs (q2)

[
d ln Vki

(
N, αs

(
q2))

d ln αs (q2)

]
. (2.4.56)

Therefore, the functionR that enter in Eq. (2.4.48) can now be written as

R(N, χ) = Qr(N, χ) +Qp(N, χ) + Rck(N, χ) + Rc̄l(N, χ) + Eki(N, χ) + El j(N, χ) (2.4.57)

where {r, p} = ± and for brevity we have neglected the explicit dependence on the strong
coupling. In the standard transverse momentum resummation formalism, the logarithmic
expansion of Sc starts at LL accuracy while the expansion of Q starts at NLL accuracy.
However, in the context of soft-improved transverse momentum, the large-N behaviour of
Q already contribute at LL and has to be included in order to account for the soft behaviour.
Similarly to the standard resummation, the flavour off-diagonal terms of R̃ci=Rck + Eki
(i.e. c ̸= i) starts to contribute at NLL. The terms in the flavour-off diagonal, instead, start
to contribute at NLL as opposed to the standard resummation procedure where they start
to contribute at NNLL.

In analogy to Eq. (2.2.28), we can collect all the terms that behave as constants in the
limit b̂→ ∞. Expressing the results in terms of running αs(Q2)

H̄F,{S}
ab→cc̄(N, χ) = H̄c(N, χ)W (r)

ca (N, αs(Q2))W (p)
c̄b (N, αs(Q2)), (2.4.58)
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where we have defined

W (r)
ca (N, αs(Q2)) = Cck(N, αs(Q2))Vki(N, αs(Q2)) E (r)ij (N) Ṽja(N, αs(Q2)), (2.4.59)

W (p)
c̄b (N, αs(Q2)) = Cc̄l(N, αs(Q2))Vlm(N, αs(Q2)) E (p)

mn (N) Ṽnb(N, αs(Q2)). (2.4.60)

We recall that the definition of H̄ is related to the Hc from the standard transverse mo-
mentum resummation with an additional dilogarithm function. In addition, it is worth
mentioning that the definition of C-functions are exactly the same as the ones appearing
in the CFG formalism.

The hard-collinear function given in Eq. (2.4.58) can be expressed in a different form.
Indeed, the hard and collinear functions can be separated from the terms coming from the
evolutions. That is, Eq. (2.4.58) can be written as follows

H̄F,{S}
ab→cc̄ = H̃F

ab→cc̄

(
VkiE (r)ij Ṽja

) (
VlmE (p)

mn Ṽnb

)
with H̃F

ab→cc̄ = H̄cCckCc̄l , (2.4.61)

where for brevity we have removed the explicit dependence on the Mellin moment N
and the resummation variable χ. The explicit expressions of the process dependent hard
functions in App. 2.B are given in terms of H̃F

ab→cc̄, specifically in term ofHF
ab→cc̄=HcCckCc̄l

where as mentioned before H̄c and Hc are related through a di-logarithm function.

2.5 Summary

The aim of this chapter was to address the large logarithms appearing in fixed order
computations that spoil the convergence of the perturbative series. In particular, we
focused on logarithmic terms that are enhanced at small transverse momentum and at
partonic threshold. After reviewing the standard formulations of the threshold and trans-
verse momentum resummations separately, we reviewed a formalism in which these two
resummations are combined in a consistent way. This led us to the formulation of the soft-
improved transverse momentum resummation in which a subclass of the soft logarithms
(not contained in the standard formulation) are included in the transverse momentum
resummation. Such a formulation of the transverse momentum resummation entails a
new way to include anomalous dimensions in the evolutions. To briefly summarize, the
truncation of the soft-improved transverse momentum resummation at a given logarithmic
accuracy is defined in the following way:

• At LL, we approximate the process-dependent hard function H̄F
ab→cc̄ by its lowest

perturbative order and include g1 in the Sudakov exponent. The Q± functions are
included up to LO with γ(1) replaced by its large-N behaviour while the R̃ functions
are approximated to 1.

• At NLL, we include H̄F,(1)
ab→cc̄ in H̄F

ab→cc̄ with the function g2 in the Sudakov exponent.
In addition, we include the complete LO term in Q± together with the NLO term
where the anomalous dimensions are replaced the their large-N behaviour. The full
expression of R̃gq is also included while we only include the large-N behaviour of
V(1)(N) in R̃gg.
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• At NNLL, we include in H̄F
ab→cc̄ the coefficient H̄F,(2)

ab→cc̄ and the function g3 in the
Sudakov exponent. Similarly, we also include the complete NLO term in Q± together
with the NNLO term where the anomalous dimensions are replaced by their large-N
behaviour. Finally, we add to R̃gg the large-N behaviour of V(2)(N).

Phenomenological studies assessing the impacts of the improved transverse momentum
resummation is the subject of the next chapter using the Higgs and Z-boson production
as test cases. We recall that herein and in the following chapter, both the small-pT and
large-x logarithms are resummed up to NNLL. In the following Appendix, we give the
explicit expressions of the process-dependent functions that appear in the resummed
expressions for the two processes mentioned earlier. We present analytical expressions
first for the threshold resummation, and then for the soft-improved transverse momentum
resummation.

2.A Process-dependent functions in Threshold resummation

As described in Sec. (2.3.2), the threshold resummed expression contains four terms that
are process-dependent: the Born level cross section σBorn

F,cc̄ , the leading-order pT distribution

C(1)
abc, the matching function gab, and theDabc that appear in the exponent of the large-angle

radiative factor.
Before presenting the explicit expressions of the four process-dependent terms men-

tioned earlier, let us first present the explicit expressions of the coefficients of the cusp
anomalous dimensions Ac(αs) and Bc(αs). So far, we used the same notation of cusp
anomalous dimensions for the threshold and (soft-improved) small-pT resummations.
However, at three loop, the coefficient A(3)

c appearing in the threshold resummation differs
from the one appearing in the (soft-improved) small-pT resummations. Refer to App. 2.B
for the relation between the cusp anomalous dimensions in the two resummations.

In order to reach NNLL accuracy, cusp anomalous dimensions need to be determined
up to three loop. In the context of threshold resummation, the coefficients of the cups
anomalous dimension Ac are given by:

A(1)
c =

Cc

π
, A(2)

c =
Cc

2π2

[
CA

(
67
18
− π2

6

)
− 5

9
n f

]
(A.1)

A(3)
c =

Cc

4π3

[
C2

A

(
245
24
− 67

9
ζ2 +

11
6

ζ3 +
11
5

ζ2
2

)
(A.2)

+n f CF

(
−55

24
+ 2ζ3

)
+ n f CA

(
−209

108
+

10
9

ζ2 −
7
3

ζ3

)
− 1

27
n2

f

]
,

while the coefficients of the cusp anomalous dimension Bc are given by:

B(1)
g = −β0, B(1)

q = −3
4

CF
π

(A.3)

B(2)
g =

1
16π2

[
C2

A

(
−611

9
+

88
3

ζ2 + 16ζ3

)
+ CAn f

(
428
27
− 16

3
ζ2

)
+ 2CFn f −

20
27

N2
f

]

B(2)
q =

1
16π2

[
C2

F

(
−3

2
+ 12ζ2 − 24ζ3

)
+ CFCA

(
44
3

ζ2 + 40ζ3

)
+ CFN f

(
247
27
− 8

3
ζ2

)]
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2.A.1 Higgs production via gluon fusion in HEFT

In this section, we present the analytical expressions of the process-dependent functions
that enter in Eq. (2.3.20) in the case of the Higgs boson production. The Born level cross
section for the Higgs production via gluon fusion has been computed long time ago in
Refs. [239, 240] in the infinite top-quark mass limit and is given by

σBorn
H,gg =

(αs

π

) π
√

2GF
576

, (A.4)

where GF is the Fermi’s constant. The Mellin space version of the leading-order pT-
distribution C(1)

abc has been first computed in Ref. [227] and recomputed in Ref. [165]. Recall
that in our notation, the subscript (abc) is shorthand notation for ab→ c H. They can be
written in the following generic form:

C(1)
abc(N, ξp) =

2αsCA
ξpπ

4

∑
m=0

(−1)m f (m)
ab
(
ξp
) Γ(N + m)

Γ(N + m + 1/2)
× (A.5)

Γ
(

1
2

)
2F1

(
1
2

, N + m, N + m +
1
2

, a2
)

,

where a ≡ a(ξp) =
(√

1 + ξp +
√

ξp
)−2 and the functions f (m)

ab fully depend on the
dimensionless variable ξp. For the various partonic channels, they are defined as follow

- (gg→ g H)-channel:

f (0)gg
(
ξp
)
= 1 (A.6)

f (1)gg
(
ξp
)
= 2a(ξp)

(
1 + ξp

)
(A.7)

f (2)gg
(
ξp
)
= a2(ξp)

(
1 + ξp

) (
3 + ξp

)
(A.8)

f (3)gg
(
ξp
)
= 2a3(ξp)

(
1 + ξp

)
(A.9)

f (4)gg
(
ξp
)
= a4(ξp) (A.10)

- (gq→ g H)-channel:

f (0)gq
(
ξp
)
= 1 (A.11)

f (1)gq
(
ξp
)
= a(ξp)

(
1 + ξp

)
(A.12)

f (2)gq
(
ξp
)
= 3a2(ξp)

(
1 + ξp

) (
3 + ξp

)
(A.13)

f (3)gq
(
ξp
)
= a3(ξp)

(
1 + ξp

)
(A.14)

f (4)gq
(
ξp
)
= 0 (A.15)

- (qq→ g H)-channel:

f (0)qq
(
ξp
)
= 1 (A.16)
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f (1)qq
(
ξp
)
= 2a(ξp)

(
1 + ξp

)
(A.17)

f (2)qq
(
ξp
)
= a2(ξp)

(
1 + ξp

) (
3 + ξp

)
(A.18)

f (3)qq
(
ξp
)
= f (4)gq

(
ξp
)
= 0 (A.19)

The matching function gab that collects the N-independent contributions has been first
determined in Ref. [227] by comparing the expansion of the threshold resummed ex-
pression with the fixed-order calculations. That is, once the resummed expression and
the fixed-order results are truncated at the same perturbative order, one removes all the
N-dependent terms and collects the rest into the function gab. The expression of gab has
been later recomputed using the definition of kinematics introduced in Sec. (1.1.1). In
momentum space, the matching function is perturbatively defined as

gH
ab = 1 +

∞

∑
n=1

(αs

π

)n
g(n),Hab , (A.20)

where we have made the dependence on the final system H explicit. At the logarithmic
accuracy we are interested in, i.e. NNLL, only the first coefficient g(1),Hab is required. Their
expression for the different channels are given by

g(1),Hgg
(
ξp
)
=

67
36

CA −
5
18

n f + CAζ2 − β0 ln
ξp

1 + ξp
− 1

8
CA ln2 ξp

1 + ξp

+2CALi2

(
1−

√
ξp√

1 + ξp

)
+ CA ln

(
1−

√
ξp√

1 + ξp

)
ln

ξp

1 + ξp

−1
2

CA ln

(
1 +

√
ξp√

1 + ξp

)
ln

ξp

1 + ξp
+

1
2

CA ln2

(
1 +

√
ξp√

1 + ξp

)

+CALi2

(
2
√

ξp√
1 + ξp +

√
ξp

)
−
(

CA − n f

) √ξp
√

1 + ξp
(
1 + ξp

)

6
(

1 + 8ξp + 9ξ2
p

)

+2β0 ln2

(
1 +

√
ξp√

1 + ξp

)
+
(

CA − n f

) 2ξp + ξ2
p

6
(

1 + 8ξp + 9ξ2
p

) (A.21)

g(1),Hgq
(
ξp
)
= −7

4
CF +

134
36

CA −
20
36

n f − 8CFζ2 + 12CAζ2 − 4β0 ln
ξp

1 + ξp

−1
2

CA ln2 ξp

1 + ξp
+ 4 (CF + CA)Li2

(
2, 1−

√
ξp√

1 + ξp

)
+

3
2

CF ln
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1 + ξp

+
2 (CA − CF)

(
1 + 3ξp + 3

√
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√

1 + ξp
)

2
√

ξp
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1 + ξp + 1 + 3ξp
+ 8β0 ln

(
1 +

√
ξp√

1 + ξp
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−3CF ln

(
1 +

√
ξp√

1 + ξp

)
+ 2CF ln

(
1−

√
ξp√

1 + ξp

)
ln

ξp

1 + ξp

+2CA ln

(
1−

√
ξp√

1 + ξp

)
ln

ξp

1 + ξp
− 2CF ln

(
1 +

√
ξp√

1 + ξp

)
ln

ξp

1 + ξp
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−2CF ln2

(
1 +

√
ξp√

1 + ξp

)
+ 4CFLi2

(
2
√

ξp√
1 + ξp +

√
ξp

)
(A.22)

g(1),Hqq
(
ξp
)
= −9

2
CF +

79
12

CA −
5
6

n f + 12CFζ2 − 10CAζ2 −
(CF − CA)

√
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+4CF Li2
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4
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1
4
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CF ln2 ξp

1 + ξp
+ 2CF ln
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3
2

CF ln
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+2β0 ln
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1 +

√
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+ CA ln2

(
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√
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−CA ln

(
1 +

√
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ln
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+ 2CA Li2
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2
√

ξp√
1 + ξp +

√
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)
(A.23)

2.A.2 Vector boson production via DY mechanism

In this section, we describe the approach we took in order to implement the threshold
resummed expressions for the production of a Z boson via DY mechanism. The Born level
cross section for such a process is given by:

σBorn
Z,qq̄ =

Q4

πmZ

ΓZB
(
Z → ℓℓ̄

)
(
Q2 −m2

Z
)2

+ m2
ZΓ2

Z

, (A.24)

where mZ denotes the mass of the Z boson, ΓZ=2.4952 GeV represents the distribution
width, finally B

(
Z → ℓℓ̄

)
represents the branching ratio and depends on the decay mode.

For instance, B (Z → e+e−) =0.03363, B (Z → µ+µ−) =0.03366.
The expressions of the leading-order pT distributions can be extracted from [241]. These

can be used to compute the analytical expression of the C(1)
abc-functions in Mellin space in

the same way as for the Higgs boson case. However, these Mellin space expressions can
also be computed numerically using the DYQT [242, 243] code using similar procedure
as the one described in App. 3.B. In the subsequent studies, we opted for the second
approach.

2.B Process-dependent functions in SIpT

In this section, we write down explicitly the expression of the process-dependent coeffi-
cients that enter into the definition of the soft-improved transverse momentum resumma-
tion as given in Eq. (2.4.42) or Eq. (2.4.48). Specifically, the process-dependent terms are
collected in the perturbative function H̄F

ab→cc̄ which depends on the hard function H̄c and
the coefficient functions Cab. Recall that the partonic functions Cab are process independent
as a consequence of the universality of the QCD collinear radiation. Due to the charge
invariance and the flavour symmetry of QCD, they satisfy the following relations

Cqiqj(z) = Cq̄i q̄j(z) = Cqqδij + Cqq′(1− δij) (B.1)
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Cqi q̄j(z) = Cq̄iqj(z) = Cqq̄δij + Cqq̄′(1− δij) (B.2)

As pointed out in Sec. (2.2.2), the independent determination of the hard function Hc and
the coefficient functions Cab requires the specification of a resummation scheme as the two
functions are not separately computable in an unambiguous way. However, the resulting
Hc×Cac×Cbc̄ must be scheme independent. In the followings, the expression of the hard
and coefficients will be presented in direct space x, their Mellin transform can be computed
either analytically or numerically using various routines. In addition, it was stressed that
the soft-improved transverse momentum resummation is expressed in terms of H̄c instead
of Hc. In the following derivations, however, we will only present results in terms of Hc
taking into account that the difference between the two expressions is only a dilogarithm
function that depend on the impact parameter but vanishes in the large-b limit.

As in the previous section, we are first going to present results for the Higgs boson
production and then afterward present results for the DY case. But first, let us explicitly
present the expressions of the coefficients of the cusp anomalous dimensions that appear
in the (soft-improved) small-pT resummation. We emphasized in the previous descriptions
that those coefficients are closely related to the ones appearing in the threshold resumma-
tion. In the context of transverse momentum resummation, they are related to coefficients
appearing in App. 2.A as follows:

B(1)
c,⋆ = 2B(1)

c , A(3)
c,⋆ = A(3)

c,⋆ −
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[
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+ n f CA

(
89
81
− 7

12
ζ3

)
+

11
162

n2
f

]

B(2)
g,⋆ = B(2)

g −
1
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− n f CA
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108
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27CF + 10n f
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B(2)
q,⋆ = B(2)

q −
1

π2

[
C2

F

(
3
2

ζ3 −
3
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3
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)
+ CACF
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12
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3
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(B.3)

+n f CA

(
5
2

ζ3 +
5

288
ζ2 −

209
6912

)
+ n f CF

(
229
432
− ζ2

3

)]
,

The above expressions represent the relation between the coefficients appearing in the
(soft-improved) small-pT resummation (indicated by the ⋆ subscript) and the the ones
appearing in the threshold resummation as given in App. 2.A.

2.B.1 Higgs production via gluon fusion in HEFT

In the heavy top quark mass limit, the leading order hard and coefficient functions satisfy
the following relation [197, 244]

HH,(1)
ab→gg(x) = δgaδgbδ(1− x)HH(1)

g + δgaC(1)
gb (x) + δgbC(1)

ga (x), (B.4)

whereHH,(1)
ab→gg is the leading order perturbative coefficient of theHH

ab→gg function (given
in Eq. (2.4.61)) which in literature is often referred to as the hard-collinear coefficient func-
tion. The determination of theHH,(n)

ab→gg coefficient is unambiguous as it does not depend
on the resummation scheme. For example, its leading order coefficient gg-contribution is
given by

HH,(1)
gg→gg(x) ≡

[(
5 + π2

2π

)
CA −

3
2π

CF

]
δ(1− x) = δ(1− x)H(1)

g + 2C(1)
gg (x). (B.5)
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We can for instance choose a resummation scheme where the hard function H(1)
g vanishes

in which case the coefficient function is equal toHH,(1)
gg→gg(x). Notice that the leading-order

coefficient of the gq-channel is process-independent and is expressed as C(1)
gq (x) = xCF/2.

This suggests that with the knowledge of the hard-collinear function at O(αn
s ), we can

extract the expression of the coefficients Cab up to O(αn
s ). Neglecting the spin correlations,

the NLO hard-collinear coefficient function is expressed as

HH,(2)
ab→gg(x) = δgaδgbδ(1− z)HH,(2)

g + δgaC(2)
gb (z) (B.6)

+δgbC(2)
ga (z) + HH,(1)

g

(
δgaC(1)

gb (z) + δgbC(1)
ga (z)

)
.

Knowing both Eq. (B.5) and Eq. (B.7) allows one to compute the NLO coefficient functions.
The two coefficients for the gg and gq-channels satisfy the following relations

C(2)
gq (x) +

1
4

xHH,(1)
g CF = HH,(2)

gq→gg(x) +
3
8

xC2
F + CFCA

1
x
× (B.7)

{
(1 + x) ln x + 2(1− x)− 5 + π2

8
x2
}

,

2C(2)
gg (x) + δ(1− x)

{
HH,(2)

g − 3
4

(
HH,(1)
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(
5 + π2)CA − 3CF

4
HH,(1)

g

}
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HH(2)
gg→gg(x)− δ(1− x)

{(
5 + π2)CA − 3CF

4
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+ C2
A

{(
1 + x

x

)
ln x + 2

(
1− x

2

)}
,

where the hard-collinear coefficient functions are expressed as [197]

HH,(2)
qq→gg(x) = −C2

F

{
2(1− x)

x
+

(2 + x)2

4x
ln x

}
(B.9)
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gq→gg(x) =

C2
F

π2

{
1
48

(2− x) ln3 x− 1
32

(3x + 4) ln2 x +
5
16

(x− 3) ln x +
5
8
− 13

16
x

+
1
12

(
1
x
+

x
2
− 1
)

ln3(1− x) +
1
16

(
x +

6
x
− 6
)

ln2(1− x) +
(

5x
2

+
8
x
− 8
)

× 1
4

ln(1− x)
}
+ n f

CF

π2

{
1

24x

(
1 + (1− x)2

)
ln2(1− x) +

1
18

(
x +

5
x
− 5
)

× ln(1− x)− 14
27

+
14

27x
+

13
108

x
}
+

CFCA
π2

{
−
(
1 + (1 + x)2)

2x
Li3

(
1

1 + x

)

+

(
1
2
− 5

2x
− 5

4
x
)

Li3(x)− 3
4x

(
1 + (1 + x)2

)
Li3(−x) +

(
1

12x
+

(1 + x)2

12x

)

× ln3(1 + x) +
(

2− 11
6x
− x

2
+

x2

3
+

(
−1

2
+

3
2x

+
3x
4

)
ln x

)
Li2(x) + Li2(−x)

×
(

x
4
+

(
1 + (1 + x)2)

4x
ln(x)

)
−
(

1
24x

+
(1 + x)2

24x

(
ln2

3
x + ζ2

)
− x2 ln x

)

× ln(1 + x)−
(
1 + (1− x)2))

24x
ln3(1− x) +

6
48x

((
1 + (1− x)2

)
ln x− 5

6
x2
)
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× ln2(1− x)− 22
48x

(1− x) ln2(1− x) +
1

72x

(
−152 + 152x− 43x2 − 132

)

+
6

72x

((
24x− 9x2 + 4x3

)
ln x

)
ln(1− x) +

9 ln2 x
72x

(
1 + (1− x)2

)
ln(1− x)

− 1
12

(
1 +

x
2

)
ln3 x +

1
48

(
36 + 9x + 8x2

)
ln2 x +

1007
108
− 5

2
ζ3 −

π2

3
ln x

×
(
−107

24
− 1

x
+

x
12
− 11

9
x2
)
+

1
x

(
4ζ3 −

503
54

+
11
36

π2
)
+ x2

(
38
27
− π2

18

)

+x
(

π2

3
+ 2ζ3 −

133
108

)}
, (B.10)

HH,(2)
gg→gg(x) =

((
−101

27
+

7
2

ζ3

)
C2

A +
14
27

CAn f

)(
1

1− x

)

+
− δ(1− x)

(
145
24

+
3
4

π2
)

× CACF + δ(1− x)
(

C2
A

(
3187
288

+
157
72

π2 +
13

144
π4 − 55

18
ζ3

)
+

9
4

C2
F −

5
96

CA

− 1
12

CF − CAn f

(
287
144

+
5

36
π2 +

4
9

ζ3

)
+ CFn f

(
−41

24
+

1
2

Lt + ζ3

))
+ 2C2

A

×
((

1 + x + x2)2

x(1 + x)

(
Li3

(
x

1 + x

)
− Li3(−x)

)
+

2− 17x− 22x2 − 10x3 − 12x4

2x(1 + x)

× ζ3 −
5− x + 5x2 + x3 − 5x4 + x5

x(1− x)(1 + x)
(Li3(x)− ζ3) + Li2(x)

ln(x)
1− x

3− x + 3x2

x(1 + x)

+

(
1 + x + x2)2

x(1 + x)

(
ln(x)Li2(−x)− 1

3
ln3(1 + x) + ζ2 ln(1 + x)

)
+ Li2(x)

ln(x)
1− x

× x3 − 3x4 + x5

x(1 + x)
+

1− x
3x

(
11− x + 11x2

)
Li2(1− x) +

1
12

x ln(1− x)− 1
6

ln3(x)
1− x

+ ln2(x)

((
1− x + x2)2

2x(1− x)
ln(1− x)−

(
1 + x + x2)2

2x(1 + x)
ln(1 + x) +

25− 11x + 44x2

24

)

− Li2(x)
ln(x)
1− x

(
2 + 2x− x2)2

1 + x
+ ln(x)

((
1 + x + x2)2

x(1 + x)
ln2(1 + x) +

(
1− x + x2)2

2x(1− x)

× ln2(1− x)− 72 + 773x + 149x2 + 536x3

72x

)
+

517
27
− 449

27x
− 380x

27
+

835x2

54

)
+

n f CF

(
1 + x

12
ln3(x) +

1
8
(3 + x) ln2(x) +

3
2
(1 + x) ln(x)− 1− x

6x

(
1− 23x + x2

))

(B.11)

2.B.2 Vector boson production via DY mechanism

Let us now move to the DY case where as before we consider the production of a vector
boson V (in the subsequent application, V=Z). Similar to the case of the Higgs boson
production, one has to define a resummation scheme in which the hard and coefficient
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functions are determined simultaneously. At leading-order, the two perturbative functions
Hc and Cab fulfill the following relations

HDY,(1)
ab→qq̄(x) = δqaδq̄bδ(1− x)HDY,(1)

q + δqaC(1)
q̄b (x) + δq̄bC(1)

qa (x) (B.12)

from which one can derive the subsequent definitions [201]

C(1)
gq (x) =

1
2

xCF, C(1)
qq (x) =

1
x

CF(1− x), C(1)
qg (x) =

1
2

x(1− x), (B.13)

where the remaining coefficient functions, i.e. qq̄, qq′ and qq̄′ vanish. It is worth empha-
sizing that the expression of the gq-coefficient is exactly the same as for the case of Higgs.
Using the definition ofHDY,(1)

ab→qq̄ found in Ref. [201], it follows directly that the hard function

HDY,(1)
q can be expressed in the following form

HDY,(1)
q = CF

(π

4
− 4
)

. (B.14)

Proceeding exactly as before, the coefficient functions can be computed from the hard-
collinear functions. From the perturbative expansion of H̃DY

ab→qq̄, it was shown that the
second-order contribution satisfy the following relations

HDY,(2)
ab→qq̄(x) = δqaδq̄bδ(1− x)HDY,(2)

q + δqaC(2)
q̄b (x) + δq̄bC(2)

qa (x) (B.15)

+ HDY,(1)
q

(
δqaC(1)

q̄b (x) + δq̄bC(1)
qa (x)

)
+
(

C(1)
qa ⊗ C(1)

q̄b

)
(x),

where the symbol ⊗ is used to denote a convolution that defines the integral

(
C(1)

qa ⊗ C(1)
q̄b

)
(x) ≡

∫ 1

0
dx1

∫ 1

0
dx2 δ (x− x1x2)C(1)

qa (x1)C(1)
q̄b (x2) . (B.16)

One can then recast the expression of the second-order contributions of the hard and
coefficient functions. They can be collected from Ref. [201] and are given by

C(2)
qg (x) +

1
4

HDY,(1)
q x(1− x) = HDY,(2)

qg→qq̄(x)− CF
4
× (B.17)

[
x ln(x) +

1
2

(
1− x2

)
+

(
π2

2
− 4
)

x(1− x)
]

,

2C(2)
qq (x) + δ(1− x)

[
HDY,(2)

q − 3
4

(
HDY,(1)

q

)2
+

CF
4

(
π2 − 8

)
HDY,(1)

q

]
+

1
2

CF× (B.18)

HDY,(1)
q (1− z) = HDY,(2)

qq̄→qq̄(x)− C2
F

4

[
δ(1− x)

(
π2 − 8

)2

4
+
(

π2 − 10
)
(1− x)− (1 + x) ln z

]

Notice that the terms on the right-hand side of the above equations are resummation-
scheme independent. The flavour-off diagonal quark-antiquark channels are given by the
following expressions

C(2)
qq̄ (x) = HDY,(2)

qq→qq̄(x), C(2)
qq′ (x) = HDY,(2)

qq̄′→qq̄(x), C(2)
qq̄′ (x) = HDY,(2)

qq′→qq̄(x) (B.19)
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where the next-to-leading order hard function is given by

H(2)
q = CFCA

(
59ζ3

18
− 1535

192
+

215π2

216
− π4

240

)
(B.20)

+
1

864
CFn f

(
192ζ3 + 1143− 152π2

) 1
4

C2
F

(
−15ζ3 +

511
16
− 67π2

12
+

17π4

45

)
.

For the case of a vector boson production via DY mechanism, the hard-collinear coefficients
of the quark-antiquark initiated processes at NLO is given by five different initial states
coming from the partonic channels qq, qq′, qq̄, qg and qq̄′. They are defined in Refs. [184,201]
and reproduced here for convenience

HDY,(2)
gg→qq̄(x) = − x

2

(
1− x +

1
2
(1 + x) ln(x)

)
(B.21)

HDY,(2)
qq̄→qq̄(x) = CACF

{(
7ζ3

2
− 101

27

)(
1

1− x

)

+
+

(
59ζ3

18
− 1535

192
+

215π2

216
− π4

240

)
δ̃x

+
1 + x2

1− x

(
Li3(x)− Li3(1− x)

2
− Li2(x) ln(x)

2
− Li2(x)

2
ln(1− x)− ln(x)

2
ln2(1− x)

− 1
24

ln3(x) +
π2

12
ln(1− x)− π2

8

)
+

1
1− x

((
3x2 − 11

)

4
ζ3 −

(
12z− x2 + 11

48

)
ln2(x)

−
(

83x2 − 36x + 29
36

)
ln(x) +

π2x
4

)
+ (1− x)

(
Li2(x)

2
+ ln(1− x)

ln(x)
2

)
+

100
27

+
x

27

+
x
4

ln(1− x)
}
+ CFn f

{
14
27

(
1

1− x

)

+
+

(
192ζ3 + 1143− 152π2

864

)
δ(1− x)− 19x + 37

108

+

(
1 + x2)

72(1− x)
ln(x)(3 ln(x) + 10)

}
+ C2

F

[
1
4

(
−15ζ3 +

511
16
− 67π2

12
+

17π4

45

)
δ(1− x)

+
1 + x2

1− x

(
Li3(1− x)

2
− 5Li3(x)

2
+

Li2(x)
2

ln(1− x) +
3Li2(x) ln(x)

2
+

ln(x)
4

ln2(1− x)

+
ln2(x)

4
ln(1− x)− π2

12
ln(1− x) +

5ζ3

2

)
+

(
−Li2(x)− ln(x)

2
ln(1− x) +

2π2

3
− 29

4

)

× (1− x) +
ln3(x)

24
(1 + x) +

1
1− x

((
−2x2 + 2x + 3

) ln2(x)
8

+
(

17x2 − 13x + 4
) ln(x)

4

)

− x
4

ln(1− x)
]
+ CF

{
(1− x)

x

(
2x2 − x + 2

)(Li2(x)
6

+
ln(x)

6
ln(1− x)− π2

36

)
+

(1− x)
216x

(
136x2 − 143x + 172

)
−
(
8x2 + 3x + 3

)

48
ln2(x) +

(
32x2 − 30z + 21

)

36
ln(x) +

(1 + x)
24

ln3(x)

}

(B.22)

HDY,(2)
qq→qq̄(x) = CF

(
CF −

CA
2

){
1 + x2

1 + x

(
3Li3(−x)

2
+ Li3(x) + Li3

(
1

1 + x

)
− Li2(x) ln(x)

2

−Li2(−x) ln(x)
2

− 1
24

ln3(x)− 1
6

ln3(1 + x) +
1
4

ln(1 + x) ln2(x) +
π2

12
ln(1 + x)− 3ζ3

4

)
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+ (1− x)
(

Li2(x)
2

+
1
2

ln(1− x) ln(x) +
15
8

)
− 1

2
(1 + x) (Li2(−x) + ln(x) ln(1 + x)) +

+
π2

24
(x− 3) +

1
8
(11x + 3) ln(x)

}
+ CF

{(
2x2 − x + 2

)(
Li2(x) + ln(1− x) ln(x)− π2

6

)

× 1
12x

(1− x) +
1

432x
(1− x)

(
136x2 − 143x + 172

)
− 1

96

(
8x2 + 3x + 3

)
ln2(x) +

ln3(x)
48

×(1 + x) +
1

72

(
32x2 − 30x + 21

)
ln(x)

}
(B.23)

HDY,(2)
qq̄′→qq̄(x) = CF

{
(1− x)

12x

(
2x2 − x + 2

)(
Li2(x) + ln(1− x) ln(x)− π2

6

)
+
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432x
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(

136x2 − 143x + 172
)
+
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48 ln−3(x)

−
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8x2 + 3x + 3

)

96 ln−2(x)
+

(
32x2 − 30x + 21

)

72 ln−1(x)

}
(B.24)

HDY,(2)
qg→qq̄(x) = CA

{
− (1− x)

12x

(
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)
Li2(1− x)−

(
44x2 − 12x + 3
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)
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8
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+
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4
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+
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(
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216
+

1
72

(
68x2 + 6π2x− 30x + 21

)
ln(x)

+
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(B.25)

Notice that for different quark flavours, H̃DY,(2)
qq′→qq̄ = H̃DY,(2)

qq̄′→qq̄. The above expressions
therefore complete our definition of the soft-improved transverse momentum resummation
for the case of a Vector boson production via DY mechanism. As an important remark, in
addition to performing the Mellin transforms of the above expressions, the change of Hq
into H̄q (or equivalentlyHDY

ab→qq̄ into H̄DY
ab→qq̄) is required.
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The previous chapter introduced a modified transverse momentum resummation–that
we referred to as soft-improved transverse momentum resummation–in which a subclass
of soft logarithms are taken into account. One of the main features of such an improved
resummation is the fact that it reproduces the threshold resummation of the total cross
section upon integration over the transverse momentum. In the following chapter, we
perform phenomenological studies in order to estimate the effects of such a resummation
on transverse momentum distributions. In order for this to be achieved, we have to deal
with issues that arise from the particular construction of the improved resummation. In
the standard approach [140, 166, 168, 195, 196, 200, 208, 227, 245–250] (refer also to Sec. (2.2)
for a brief review) where resummed expressions are formulated in Fourier-Mellin space,
the problem related the Landau pole prevents the existence of an inverse Mellin. The
situation, however, is more complicated in the case of soft-improved transverse momentum
resummation due to the presence of new singularities that arise in the interplay between
the Mellin moment N and the impact parameter b in the argument of the logarithms.
In order to address this issue, we adopt the Borel method that was recently studied in
Refs. [232, 233] in the context of threshold resummation for DY cross sections. As shall be
demonstrated in the sequel, this approach leads to a well-behaved resummed series that
can be implemented numerically.

As alluded in the previous chapter, the improved transverse momentum resummation
formalism does not include all the relevant soft logarithms as it does not account, for
instance, soft gluons that are emitted at large angles. Such contributions can be manually
added to the improved resummation by providing to it the pure threshold resummed
expression using a profile matching function. This ensures that the combined expression
reduces to the threshold resummation in the soft limit for fixed pT up to power corrections
in (1−x) (or respectively 1/N in Mellin space).

The chapter is organized as follows. First, we describe how the inverse Mellin transform
is performed in the context of threshold resummation where a Fourier back transform
is not required. We then introduce the Borel method as a prescription to perform the
inverse Fourier-Mellin in the case of soft-improved transverse momentum resummation.
As a sanity check, we show, using a numerical approach, that the improved resummation
indeed reduces to the standard transverse momentum resummation in the limit b̂→ ∞.
After investigating the soft-behaviour of the new resummation in the small-pT limit, we
finally move to the phenomenological studies in which two processes–namely Higgs
and DY–are considered. The effects of the soft-improved and combined resummations
are separately assessed both at the level of the pure resummed results and matched to
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fixed-order predictions. We close the chapter by presenting results in which the NNLO
transverse momentum distribution of the Higgs boson is approximated using threshold
and high energy resummations.

3.1 From Fourier-Mellin to direct space

We have seen in the previous chapter that resummed formulae are computed in Fourier
and/or Mellin space. Therefore, in order to get physical cross section, one needs to com-
pute the inverse Fourier-Mellin transform of the (N-b̂) space expressions. Because the
resummation of transverse momentum observables corresponds to the asymptotic sum of
a divergent series of pT-space contributions, the Fourier-Mellin integral contains spurious
singularities. While there are vast literatures that describe how to perform the inverse
Fourier-Mellin inverse transform for the case of standard transverse momentum resum-
mation, the situation is a bit a more peculiar for the soft-improved transverse momentum
resummation. Indeed, the improved resummation contains additional singularities due
to the fact that the Mellin moment N and the impact parameter b are jointly resummed
through a single variable χ.

In this section, we examine the origin of these divergencies and present prescriptions
to treat them. In particular, we introduce the Minimal Prescription for the computation
of the inverse Mellin transform and discuss various methods to deal with the Mellin
space computation of the parton densities. Finally, we present the Borel summation as a
prescription to deal with the computation of the inverse Fourier transform.

3.1.1 Minimal prescription

For the sake of discussing the computation of the Mellin integral, let us first assume that
the resummed expression is given in ξp-space and ignore about the Fourier space. The
resummed hadronic cross section in physical space can be written as

dσres

dξp
(τ, ξp, αs) = ∑

a,b

∫ N0+i∞

N0−i∞

dN
2πi

τ−N fa(N + 1) fb(N + 1)
dσ̂res

ab
dξp

(N, αs), (3.1.1)

where for brevity we have omitted all the scale dependence. As briefly introduced before,
the appearance of a branch a branch cut at Re(N) > exp(1/2ᾱs − γE) prevents the
existence of a parameter N0 that is larger than the real part of the rightmost singularity of
the integrand therefore spoiling the convergence.

The Mellin prescription provides a way of tacking this issue of convergence analytically
by simply modifying the path of integration,

dσres

dξp
(τ, ξp, αs) = ∑

a,b

∫

MP

dN
2πi

τ−N fa(N + 1) fb(N + 1)
dσ̂res

ab
dξp

(N, αs), (3.1.2)

where the subscript MP denotes the contour modification. It has to be chosen such that
the parameter N0 seats to the left of the branch cut but to right of all the singularities. As
shown in Fig. 6, a path that guarantees convergence consists in choosing a line that is
rotated counter-clockwise in the upper plane Im(N) > 0 and clockwise in the lower plane
Im(N) < 0. This ensures that the integral in Eq. (3.1.2) is finite.
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N0

NL Re(N)

Im(N)

Figure 6 A possible path in complex Mellin space that can be chosen to evaluate the inverse
Mellin transform. The branch cut related to the Landau pole is plotted in orange while the
path of the Minimal prescription is plotted in blue. N0 is the parameter of the integration.
The path comes at some angle ϕ from negative complex infinity, crosses the real axis at N0,
and goes to positive complex infinity at a symmetric angle.

Given such a choice of a contour, the integral given in Eq. (3.1.2) can be written as

∫ N0+i∞

N0−i∞

dN
2πi

τ−N dσcss

dξp
(N, ξp) = Im

[∫ N0+i∞

N0

dN τ−N dσcss

dξp
(N, ξp)

]
(3.1.3)

= Im

[
(i + r)

∫ 1

0

du
u

τ−N(u) dσcss

dξp
(N(u), ξp)

]
. (3.1.4)

In the first line, we split the contour integral into two pieces, the first above the real axis
and the second below. However, since dσ/dξp(τ⋆)=

(
dσ/dξp(τ)

)⋆, the second piece turns
out to be the negative of the complex conjugate of the first and hence can be combined
to the former. In order to take into account the MP-contour, in the second line, we used
the substitution N(u)=N0 + (r + i) ln u with r > 0 being an arbitrary real and positive
parameter which controls the slope of the path that enhances the numerical convergence.
This parameter must be positive, so that for large imaginary values of N (i.e. small values
of u), the prefactor exp(N(u)) ln(1/τ) converges to zero requiring that the real part of
N(u) to be negative for u→ 0 (i.e. N0 − r ln(1/u) < 0). Notice that the following is also
an equivalent transformation

∫ N0+i∞

N0−i∞

dN
2πi

τ−N dσcss

dξp
(N, ξp) = Im

[
(r− i)

∫ 1

0

du
u

τ−N(u) dσcss

dξp
(N(u), ξp)

]
, (3.1.5)

where in this case8 N(u)=N0 + (r− i) ln u. We highlight that, recently, prescription based
on Borel summation of the divergent series of the order-by-order inverse Mellin transform
has been proposed in Refs. [232–234]. As a matter of fact, a variation of such a prescription
is used in Sec. (3.1.3) for the treatment of divergencies appearing in the soft-improved
transverse momentum resummed expression.
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3.1.2 PDFs in Mellin space

By inspection of Eqs. (3.1.2, 3.1.4, 3.1.5), we notice that the Minimal Prescription is well-
defined if the parton distributions are analytic within the region of integration. Parton
distribution functions are usually available through the LHAPDF [5] as an interpola-
tion over the momentum fraction. This raises some complications since the numerical
evaluation of the their Mellin transform does not converge along the path of integration.
Indeed, while the contour deformation of the Minimal Prescription probes values of N
in the negative real axis, as illustrated in Fig. 6, the numerical Mellin transform of the
parton densities converges only for Re(N) > 0. One may use parton distributions whose
Mellin transform can be computed analytically at the initial scale [69]. Such sets assumes a
functional N-space input form for the parton densities at some initial scale µ0 from which
it starts the evolution of scales. However, doing so significantly restricts the sets of PDFs
that can be used.

One possible solution consists in fitting the parton densities at a fixed scale to a standard
function. One usually chooses a specific generic parametrization

f (x, µ2
0) = Axα(1− x)β(1 + γ

√
x + δx + · · · ) (3.1.6)

with an appropriate number of free parameters. Once the parameters are determined, the
computation of the Mellin transform is straightforward,

f (N, µ0) = A
[

β (N + α, β + 1) + γβ

(
N + α +

1
2

, β + 1
)
+ δβ (N + α + 1, β + 1) + · · ·

]
,

where β(a, b) is the Beta function. It can be clearly seen that the quality of the fit strongly
depends on the choice of parametrization. While having too many degrees of freedom can
be extremely computationally expensive, having too few can run into the risk of loosing
accuracy therefore spoiling the result of the Mellin transform.

Another possible alternative consists in applying the Minimal prescription to the par-
tonic cross-section and then convoluting the result with the parton densities in momentum
space. This is achieved by realizing that the luminosity in Eq. (3.1.2) can be factorized out
from the Mellin integral

dσcss

dξp
(τ, ξp, αs) = ∑

a,b

∫ 1

0

dξ

ξ
Lab(ξ)

∫

MP

dN
2πi

(
x
ξ

)−N dσ̂res
ab

dξp
(N, αs). (3.1.7)

This approach, however, is numerically very unstable due to the fact that the resummed
component oscillates wildly in the region x ∼ 1. In order to get rid of the oscillations, one
needs to resort to some ad hoc prescriptions such as adding and subtracting the results of
the Minimal Prescription evaluated with a fake luminosity.

In the next section, we describe an alternative approach that can be applied to any set
provided by state-of-the-art PDF determination.

Expansion on the basis of Chebyshev polynomials:

An efficient way to approximate the Mellin transform of the parton densities is to expand
the PDFs on a basis of polynomials whose Mellin transform may be computed directly. An
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example of such polynomials, that has shown to yield numerical stability, is the Chebyshev
polynomials [216].

Parton distributions provided through the LHAPDF interface are available in the form
of f̃ (x) = x f (x) as a grid in (x, Q2, a) space. In our derivation, we consider a fixed scale
and since the procedure is also independent of the flavour of the parton, we drop both the
scale dependence and the flavour index. Introducing a new variable u defined in terms
of xmax x = xmaxeu, where xmax is usually set to one, the parton distribution functions is
now expressed as

f̃ (u) = xmaxeu f (xmaxeu) , (3.1.8)

where for the momentum fraction varies between zero and xmax, the new variable u is
mapped into (−∞) to zero. The lower bound of u corresponds to xmin=xmaxeumin . From
the practical point of view, umin can just be chosen to be some finite negative number.
Using Eqs. (A.1, A.5), we can write down the the expansion of f̃ on the basis of the
Chebyshev polynomials

f̃ = (u)
n

∑
k=0

c̃k

(
1− 2

u
umin

)k
with c̃k = −

c0

2
δk0 +

n

∑
i=k

Tik, (3.1.9)

where n and Tik denote the degree and the coefficients of the polynomials respectively.
The coefficients Tik can be determined to all-order using the recursive relations given
in Eqs. (A.1-A.5). The approximation of the proton distribution in x-space can now be
extracted from Eq. (3.1.8) and Eq. (3.1.9) leading to

f (x) =
1
x

n

∑
p=0

(−2)pu−p
min ln

(
x

xmax

) n

∑
k=p

(
k
p

)
c̃k. (3.1.10)

The order-by-order computation of the Mellin transform is now straightforward

f (N) = xN−1
max

n

∑
p=0

2p

umin

(
1

N − 1

)p+1 n

∑
k=p

c̃k
k!

(k− p)!
. (3.1.11)

For consistency check, in Fig. 7, we show a comparison between the approximation given
in Eq. (3.1.10) and a NNLO PDF set with αs=0.118 where we chose n=10, xmax=1, and
umin= − 15 (which is equivalent to x ∼ 10−7). The samples of parton distributions are
shown for Q2=1.65 GeV. It is clear from Fig. 7 that the expansion on the basis of the
Chebyshev polynomials provide a good approximation to the baseline PDFs. Slight
deviations from the baseline PDFs can be seen for vary small values of x. However, since
the PDF errors in that region are large, due to lack of experimental data, these deviations
are not that significant. We have checked the approximation for various PDF sets and
different values of scales and observed that the same conclusions hold. Therefore, in the
subsequent phenomenological analyses, this is the approach that we are going to adopt.

3.1.3 Borel prescription

Fourier inverse transform of resummed transverse momentum distributions generally
involves some complications since the computation of the integral (Eq. (2.4.4) for example)
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Figure 7 Comparison of the baseline set NNPDF3.1 with its expansion on the basis of
the Chebyshev polynomials for the gluon and quark (s, d, d̄) flavours at Q2=1.65 GeV.
The solid blue line represent the central value of the baseline PDF with the blue band
representing its standard deviation 1σ-error. The dashed dark line represent the Cheby-
shev approximation. The lower panels shows the absolute difference, (x fcheb − x f ) /x f ,
between the two central values.

introduces an integration over the region of the impact parameters where the strong
coupling αs is ill-defined due to the existence of the Landau pole. This is because for a
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physical process characterized by a hard scale Q2, the standard resummation of logarithms
of pT , in Fourier space, re-scales the argument of the strong coupling to αs(b2

0/b̂2).

In order to obtain resummed predictions for physical observables, one therefore needs a
prescription to cure this behaviour. To dates, several prescriptions have been proposed to
perform the inverse Fourier transform. The first example of such a prescription is the b⋆-
prescription introduced earlier (see Eq. (2.2.18)) in the context of CSS formalism. This has
been widely used for phenomenological studies. However, the arbitrariness in choosing
the value of bmax can be a drawback. Despite the fact that such a parameter can be used
to estimate non-perturbative effects, it has been shown that truncating the value of the
impact parameter at some bmax leads to numerical instabilities when matching with fixed-
order calculations [189]. Another possibility is an analogue of the Minimal Prescription
introduced in Sec. (3.1.1) in the context of threshold resummation [162, 163, 251]. The
prescription amounts to finding a b̂ contour that avoids the branch cut related to the
Landau pole. Such a prescription leads to a finite results that is free of numerical and
perturbative instabilities. However, in contrast to say the b⋆-prescription, this does not
allow one to estimate the ambiguities related to the resummation procedure. A third
alternative consists in expanding the Fourier-space resummed expression as a series in
αs and compute the Fourier-inverse integral order by order. This procedure, however,
can only consistently resum logarithms at LL since results beyond that accuracy are very
unstable [189, 190]. The final alternative prescription consists in expanding the resummed
expression in b̂-space as powers in αs and resumming the ensuing series using the Borel
summation. The divergence can then be removed in the Borel inversion by the inclusion of
higher-twist terms. This permits the unambiguous computation of the asymptotic result
the series is tending to that is free of numerical and perturbative instabilities.

The prescriptions cited above, however, were mainly studied and applied to the stan-
dard transverse momentum formalism. As a matter of fact, the situation is much more
complicated in the context of soft-improved transverse momentum resummation due to
the interplay between the soft and recoil variables. As shown previously, the argument of
the strong coupling in SIPT is re-scaled to αs(Q2/χ) where again χ = N̄2 + b̂2/b2

0. This
then generates logarithms of the form ln χ. It is clear from this that in addition to the
branch cut related to the Landau pole, soft-improved transverse momentum resummation
contains additional singularities when

Re

(
N̄2 +

b̂2

b2
0

)
≤ 0, and Im

(
N̄2 +

b̂2

b2
0

)
= 0. (3.1.12)

This means that the singularities on N̄ depends on b̂ and vice-versa. As a result, it is
non-trivial to find a contour deformation that avoid all the singularities and branch
cuts. An alternative approach consists in modifying the Borel method introduced in
Ref. [230] in the context of standard transverse momentum resummation and in Refs. [216,
232]. Similar to the original derivations, the steps are as follows. First, we expand the
resummed component as series in ᾱs ln χ and resum the series using the Borel method.
The divergence is then cured when performing the Borel back-transform. This leads to a
N-space expression that can be inverted using the Minimal Prescription.
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Let us start by writing Eq. (2.4.4) in a more intuitive form

dσ̂tr
ab

dξp
(N, ξp, αs) = σ0

(√
1 + ξp +

√
ξp

)2N ∫ ∞

0
db̂

b̂
2

J0

(
b̂
√

ξp

)
Σab (N, λχ, αs) (3.1.13)

where the large logarithms are collected in Σab according to the series expansion

Σab (N, λχ, αs) =
∞

∑
k=0

hk (N, αs) ᾱk
s lnk

(
N̄2 +

b̂2

b2
0

)
. (3.1.14)

The zeroth order coefficient h0 is just a constant and therefore contains terms that are not
logarithmically enhanced when b̂→ ∞. Putting back Eq. (3.1.14) into the resummed par-
tonic expression in Eq. (3.1.13), exchanging the integral and the sum, one can perform the
inverse Fourier transform order-by-order. This can be achieved by defining the following
generating function

M(N, ξp) =

[
∂k

∂ϵk M̃(N, ξp, ϵ)

]

ϵ=0

, (3.1.15)

where M̃(N, ξp, ϵ) =
1

b2ϵ
0

∫ ∞

0
db̂

b̂
2

J0

(
b̂
√

ξp

) (
4N2 + b̂2

)ϵ
. (3.1.16)

For convenience, we have factorized out b0 from the integrand such that the generating
function is a function of N instead of N̄. This allows us to easily perform the integral
in Eq. (3.1.16) and subsequently derive the expression of the Fourier back-transform.
Indeed, Eq. (3.1.16) now reads

M̃(N, ξp, ϵ) =
2

b2ϵ
0

(
N√
ξp

)1+ϵ
K1+ϵ

(
2N
√

ξp
)

Γ(−ϵ)
, (3.1.17)

where K denotes the modified Bessel function of the second kind. The form of Eq. (3.1.17)
is interesting as it shows that in momentum space, the large-b̂ limit at fixed N/b̂ has
been mapped to the small-ξp limit at fixed N

√
ξp. Finally, the derivative and the limit

in Eq. (3.1.15) can be removed by performing a contour integral

M(N, ξp) =

[
∂k

∂ϵk M̃(N, ξp, ϵ)

]

ϵ=0

=
k!

2πi

∮

H

dξ

ξk+1M̃(N, ξp, ξ), (3.1.18)

where H represents a contour enclosing the singularity at ξ = 0.
Having expanded the function Σab as a series in ᾱs ln χ allowed us to perform the inverse

Fourier transform of the resummed expression order-by-order, but it leaves us with a series
representation of the result. From the numerical point of view, it would be convenient to
trade the sum in favor of an integral. This calls for an analytic continuation which in our
case can be achieved by summing the series using the Borel method and subsequently
performing a Borel back-transformation. Writing down the partonic resummed cross
section as

dσ̂tr∗
ab

dξp
(N, ξp, αs) ≡ A(ᾱs) =

∞

∑
k=0

hk (N, αs)
k!

2πi

∮

H

dξ

ξ
M̃
(

N, ξp, ξ
) ( ᾱs

ξ

)k
, (3.1.19)
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where dσ̂tr∗/dξp is just dσ̂tr/dξp without a kinematic factor (
√

1 + ξp +
√

ξp)2N and the
Born level cross section σBorn

F . The corresponding Borel sum is therefore given by

B [A(w)] =
1

2πi

∞

∑
k=0

hk (N, αs)
∮

H

dξ

ξ
M̃
(

N, ξp, ξ
) (w

ξ

)k
(3.1.20)

=
1

2πi

∮

H

dξ

ξ
M̃
(

N, ξp, ξ
)

Σ
(

N,
w
ξ

, αs

)
, (3.1.21)

where again we have interchanged the order of the summation and the integration in
order to recover the form of the resummed function Σab using its definition in Eq. (3.1.14).
The inverse Borel transform can now be defined as

dσ̂tr∗
ab

dξp
(N, ξp, αs) =

∫ C

0
dw e−wB [A (wᾱs)] =

1
ᾱs

∫ ∞

0
dw e−w/ᾱsB [A (w)] (3.1.22)

=
1
ᾱs

∫ ∞

0
dw e−w/ᾱs

1
2πi

∮

H

dξ

ξ
M̃
(

N, ξp, ξ
)

Σ
(

N,
w
ξ

, αs

)
, (3.1.23)

which represents our final resummed expression when adding the kinematic factor and
the Born level cross section that we left out from the beginning. This expression is finite
for arbitrary large values of C which cuts off the w-integration. At the level of the partonic
cross section, the inverse Fourier transform of our soft-improved transverse momentum
resummation can now be written as

dσ̂tr
ab

dξp
=

σBorn
F
ᾱs

(√
1 + ξp +

√
ξp

)2N ∫ ∞

0
dw

e−w/ᾱs

2πi

∮

H

dξ

ξ
M̃
(

N, ξp, ξ
)

Σ
(

N,
w
ξ

, αs

)
.

(3.1.24)

Notice that despite the fact that there is some arbitrariness in choosing the value of the
cutoff C, its value cannot be chosen freely. As a matter of fact, the choice of C gener-
ates correction terms of order O (exp(−1/ᾱs)) that are higher-twist in nature. In other
words, the inclusion or the exclusion of subleading terms in the Borel-resummed expres-
sion Eq. (3.1.24) is regulated by the cutoff C which can be used to asses the ambiguity of
the resummation procedure. The larger the value of C gets, the more we include correction
terms in the series. As the value of C, however, gets very large the integral in Eq. (3.1.24)
becomes unstable and varies a lot eventually spoiling the accuracy of the result. This is due
to the fact that the series in Eq. (3.1.14) is not Borel-summable. That said, the value of the
cutoff C needs to be large enough such that the Borel Prescription is at least leading-twist
but still free of numerical instability. In the context of standard transverse momentum re-
summation, the Borel and Minimal Prescription differ in the way higher-twist behaviours
of the resummed series is handled. However, in practice and as will be demonstrated
in the phenomenological sections, this difference is negligible at collider energies we are
interested in. In particular, we show in Sec. (3.3) that unless one choose an unnaturally
large (or respectively small) value of C, the resummed cross section is independent of the
value of the cutoff.

From the perspective of the numerical implementation, it is convenient to map the
contour integral onto an integral over the domain [0, 1]. This is done by parametrizing the
contour in terms of a new variable φ

1
2πi

∮

H
dξ f (ξ) = R

∫ 1

0
dφ e2iπφ f (ξ(φ)), (3.1.25)
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Figure 8 The integral contour H that encloses the branch cut (plotted in red) and the pole
at the origin ξ=0. The contour is usually taken to be a circle, here centered at ξ0=w/2 and
with radius R=ξ0 + 1/2. In practice, we noticed that the numerical integration converge
faster if instead of a circle one considers an ellipse where the major axis is chosen to be
along the real axis.

where f represents the integrand of the ξ-integration in Eq. (3.1.24). The contour is
parameterized by ξ(φ) = ξ0 + R exp(2iπφ) which is a circle around the real point ξ =
ξ0 ∈ R with a radius R > 0, in the positive direction around ξ0. We can see that the branch
cuts of f are now mapped in terms of the variable ξ into a branch cut on the real axis
from zero to w (see Fig. 8). In practice, we choose ξ0 = w/2 and R = w/2 + ζ (ζ ∈ R∗+).
The value of ζ and the cutoff C must be chosen in such a way that the circle does not
intersect the branch cut in ξ-space. Based on the twist-4 argument [234], the value of the
cutoff should be chosen according to C ≥ 2. Throughout our implementation, we chose
the minimal value for C: i.e C = 2. We, nevertheless, show in the phenomenological
section that various values of C lead to the same results upon taking into consideration
the numerical errors coming from the integration.

3.2 Large-N behaviour at small-pT for SIPT

Before presenting phenomenological results, let us first check that the soft-improved trans-
verse momentum resummation does indeed capture the correct soft behaviour at small-pT ,
i.e. contributions from initial-state soft-gluons that are emitted at very small angles. As
a test case, let us consider the case of the Higgs boson production via gluon fusion. For
simplicity, let us first check the leading-order transverse momentum distribution with
leading-logarithm resummed expression for the gg-channel. Such a check amounts to
expanding the soft-improved resummed expression in Eq. (2.4.48) and compare the result
with the leading-order pT-distribution in Eq. (2.3.20).

As mentioned before, at such an accuracy, we approximate the hard function H̄c and
the coefficient Cgg to one and we only include in the Sudakov exponent the first function
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g1. The parton evolutions that are described by the functions Qr are included up to
LO with the leading anomalous dimension γ

(0)
gg approximated by its large-N behaviour

while the evolution factors that are embodied in R̃ that evolve the coefficient functions
are approximated to one. Thus, the resummed partonic cross section in Eq. (2.4.42) now
becomes

dσ̂tr∗
gg

dξp
(N, χ) =

[
U(LO)

gg

(
N,

Q2

χ
← Q2

)]2

exp (g1(N, χ)) , (3.2.1)

where we recall that dσ̂tr∗/dξp is just dσ̂tr/dξp without the kinematic factor and the Born
level cross section σBorn

H,gg . According to Eqs. (2.4.46, 2.4.47), the large-N limit of the LO
order solution to the DGLAP evolution equation can be written as

U(LO)
gg

(
N → ∞,

Q2

χ
← Q2

)
= − A(1)

g

2ᾱsβ0
λN̄ ln(1− λχ), (3.2.2)

which therefore leads to a simple form of the resummed expression Eq. (3.2.1)

dσ̂tr∗
gg

dξp
(N, χ) = exp





A(1)
g

ᾱsβ0
(λχ + (1− λN̄) ln(1− λχ))



 . (3.2.3)

Expanding the above equation as a series in αs and retaining only the αs-term in the
expansion, we arrive at the following expression

dσ̂tr∗
gg

dξp
(N, χ) = −αs A(1)

g

(
ln2 χ

2
− 2 ln N̄ ln χ

)
. (3.2.4)

Eq. (3.2.4) can now be inserted back into Eq. (2.4.42) by adding the pre-factors that we left
out. The inverse Fourier transform of the ensuing expression can be straightforwardly
computed using the expression of the generating functions in Eq. (3.1.15) for fixed k. The
final leading-logarithms (N, ξp)-space resummed expression is therefore given by

dσ̂tr
gg

dξp
(N, ξp) = σBorn

H,gg
2αs A(1)

g

aN(ξp)

N√
ξp

[
K(1)

1

(
2N
√

ξp

)
−
(

ln
(

N
√

ξp

)
+ γE

)
K1

(
2N
√

ξp

)]

(3.2.5)

where K(1)
1 denotes the first derivative of the modified Bessel function w.r.t its first argu-

ment. Recall that we are here interested to check the large-N behaviour of the soft-
improved transverse momentum resummation while keeping N

√
ξp fixed in which

case the expression above cannot be simplified further. In this case, in order to com-
pare Eq. (3.2.5) with Eq. (2.3.20), we have to simplify the leading-order pT distribution C(1)

gg
in the aforementioned limit. In such a limit, it is enough to consider the most dominant
term, i.e. m = 4. Using the properties of the Gauss Hypergeometric functions, we can
adopt the following form

2F1

(
1
2

, N + 4, N +
9
2

, a2
)
=

1√
1− a2 2 F̃1

(
N +

9
2

;
a2

a2 − 1

)
(3.2.6)
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where for brevity we have defined a ≡ a(ξp) and

2 F̃1

(
N +

9
2

;
a2

a2 − 1

)
≡ 2F1

(
1
2

,
1
2

, N +
9
2

,
a2

a2 − 1

)
. (3.2.7)

In the limit were are interested in, the Hypergeometric function Eq. (3.2.6) can be simplified
further using results from Refs. [252,253] in which the 2 F̃1 is expressed as a sum of Kummer
functions U. The expression is given by

2 F̃1

(
N +

9
2

;
a2

a2 − 1

)
=

Γ(N + 9/2)
Γ(N + 4)

∞

∑
s=0

gs

(
a2

a2 − 1

)
(3.2.8)

Γ(s + 1/2)
Γ(1/2)

lns 1
a2 U

(
s +

1
2

, s + 1,−2N ln a
)

.

We stress that this series expansion only holds if N → ∞ uniformly w.r.t large values of
a2/(a2 − 1), which is indeed the case since a2/(a2 − 1) → ∞ as ξp → 0. In the limit we
are interested in, it is sufficient to only consider the first term in the sum (s = 0) where the
function g0 and the second Kummer function U are defined as

g0

(
a2

a2 − 1

)
=

√
ln
(

1
a2

)
(3.2.9)

U
(

1
2

, 1, 2ã
)
=

1
Γ(1/2)

ã exp(z)K(1)
1 (ã), (3.2.10)

where we have defined ã ≡ −N ln a for brevity. We can now use Eqs. (3.2.9, 3.2.10) to
rewrite the expression of 2F1 in Eq. (3.2.6). Plugging the resulting equation into the LO pT
distribution, we arrive to the following expression

[
C(1)

gg (N, ξp)
]

m=4
= 2αs

σ0

ξp

CA
π

ã(ξp)

aN+2(ξp)

√
2 ln a(ξp)

√
1− a2(ξp)

K(1)
1 (ã(ξp)) (3.2.11)

The aN(ξp) in the denominator comes from rewriting the exponential in Eq. (3.2.10) in
terms of the explicit expression of a(ξp). The limit ξp → 0 can now be taken safely in the
terms that do not depend on N. This yields to the following simplifications

√
2 ln a ∼ 2 4

√
ξp

and
√

1− a2 ∼ 2 4
√

ξp. Finally, the large-N limit just amounts to replacing (N + 2) with
N. Putting everything together, rearranging some terms, and performing some algebraic
simplifications, we get

[
C(1)

gg (N, ξp)
]

m=4
= 4αs

CA
π

σ0

aN(ξp)

N√
ξp

K(1)
1 (2N

√
ξp). (3.2.12)

In the limit N
√

ξp → 0, the above expression is asymptotic to expansion of the modified
resummation in Eq. (3.2.5). In order to generate K1-terms from the leading-order transverse
momentum spectra C(1)

gg , the sum in Eq. (3.2.8) has to be performed beyond s=0. This
is computationally challenging as the form of the Kummer U does not lead directly to
compact Bessel functions. However, as it can be seen from the numerical results in Fig. 9,
the soft-improved transverse momentum resummation captures best the soft behaviours
from the fixed-order calculation while the standard transverse momentum resummation
deviates largely from it. This feature can be noticed both at LO and NLO.
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Figure 9 Ratio between the terms appearing in the expansion of the resummed expressions
(standard and improved transverse momentum resummations) and the fixed-order results.
The plot on the left shows the ratio between the first order term in the expansion and the
LO predictions, while the plot on the right shows the ratio between the second order term
in the expansion and the second order term appearing in the fixed order computations.
The plots were produced with a center-of-mass energy

√
s=13 TeV with a Higgs mass

mH=125 GeV.

3.3 Towards a combined resummation for Higgs and Drell–Yan

In the previous sections, we have presented a resummation formalism for transverse
momentum distributions that takes into account soft behaviours in the small-pT limit.
That is, the soft-improved transverse momentum formalism we presented does not take
into account soft gluons that are emitted at large angles. The need for such a resummed
expression is crucial in order to (a) elucidate the relation between soft and collinear
logarithms that provide the main bulk of the contributions to the transverse momentum
spectrum and the total inclusive cross section in the soft limit and (b) use the knowledge
from resummation to estimate corrections from missing higher-orders. While a consistent
combination of the transverse momentum and threshold resummations seems unreachable
to present day due to the non-commutativity of the large-N and small-pT limits, it is
possible to combine our soft-improved formalism with the pure threshold resummation in
an unambiguous way using some matching function.

In the following sections, we discuss the concept of consistently combining the two
resummations, namely transverse momentum and threshold, using a profile matching
function. We then present detailed phenomenological studies that assess the impact
of the soft-improved transverse momentum and combined resummation in the case of
Higgs and Z-boson production. Specifically, our aim is to estimate the impacts of: (a) the
improved transverse momentum resummation through the inclusion of soft contributions
which we expect to be more apparent in the small-pT region, and (b) the additional soft
resummation at fixed-pT which we expect to improve the matching to fixed-order results in
the intermediate and large-pT regions. In doing so, we first check that, from the numerical
perspective, the improved resummation reproduces exactly the standard formalism. This
will be done using the Borel prescription method which will allow us to check the validity
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of our resummation procedure and to assess the dependence of the resummed cross section
on the cutoff C.

All the results presented here are produced using the NNPDF31 nnlo as 0118 set of
parton distributions from the NNPDF3.1 [8] through the LHAPDF [5] interface by ex-
panding the parton densities in the basis of the Chebyshev polynomials as described
in Sec. (3.1.2) [233, 234]. In order to estimate missing higher-order corrections, we will
perform the commonly used factorization and renormalization scale variations of all the
unresummed, resummed, and matched cross sections. Indeed, by performing scale vari-
ations of a cross section computed at O(αn

s ), one generate subleading terms of O(αn+1
s ).

Specifically, we will use the seven-point envelope prescription where the renormalization
and factorization scales are independently varied by a factor of two around the central
choice which in our case could either be the mass of the Higgs or Z boson. That is, we
compute the combinations of the following choice of scales

µR =
1
2

M, µR = M, µR = 2M (3.3.1)

µF =
1
2

M, µF = M, µF = 2M (3.3.2)

with the requirement that 0.5 ≤ µR/µF ≤ 2 which ensures that the logarithmic terms that
vary with the scales are at most ln 2. The uncertainty bands are then computed by taking
the minimum and the maximum from the possible configuration of scales. As shown in
our previous calculations, varying the scales in this way will modify the strong coupling,
the evolution of parton densities and the partonic cross section which altogether ensures
that no artificially large scale ration are generated. Notice, however, that throughout our
results, scale variations related to the resummation scale are not taken into account.

3.3.1 SIPT in the large–b̂ limit

In this section, let us check that the soft-improved transverse momentum resummation
indeed reproduces the standard resummation when the soft contributions are switched
off. Although this has been analytically verified to be the case, here we perform the check
at the numerical level. Besides being a consistency check, this allows us to verify that our
resummation procedure derived using the Borel prescription agrees with the Minimal
Prescription and does not introduce spurious subleading terms. Taking the large-b̂ limit
means that we should perform the following replacements throughout the expressions
that enter into the resummed partonic cross section in Eq. (2.4.48)

χ =

(
N̄2 +

b̂2

b2
0

)
−→

(
1 +

b̂2

b2
0

)
, and

Q
χ
−→ b2

0
b2 . (3.3.3)

Notice that in order to reduce the impact of unjustified logarithms in the large-pT regions
(similar to the CFG formalism), we replaced N̄ by one. The computation of the inverse
Fourier transform is achieved following Sec. (3.1.2) where the generating function now
has the following form

M̃⋆(N, ξp, ϵ) = 2 exp (2γEϵ)

(
1√
ξp

)1+ϵ
K1+ϵ

(
2
√

ξp
)

Γ(−ϵ)
. (3.3.4)
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Figure 10 Comparison of the Borel and Minimal Prescription for the transverse momentum
distribution of the Higgs (left) and Z boson (right). The dashed lines represent the results
of taking the large-b̂ limit of the soft-improved transverse momentum resummation and
using the Borel method to perform the inverse Fourier transform. The solid lines represent
the results from the standard resummation formalism. The renormalization (µR) and
factorization (µF) scales are set equal to the Higgs (mH) and Z boson mass (mZ) in the
case of Higgs and Z boson production respectively. The lower panel shows the ration
between the two prescriptions.

In addition to performing the above replacements, we need to implement the exact same
procedure as in Ref. [195, 196] by suitably re-adjusting the solutions to the evolution
equation and fixing the integral over ξp in order to recover the total inclusive cross section.
In Fig. 10 we show a comparison of the Borel and Minimal prescription for both the Higgs
and Z boson production. Leaving aside the interpretation of the resummed results for
the time being, let us only focus on the difference between the two prescriptions. The
large-b̂ limit of the soft-improved transverse momentum resummation are represented by
the dashed lines. They are produced using the Borel prescription for the inverse Fourier
transform using as a value of cutoff C=2. The standard transverse momentum results are
plotted as solid lines, they are produced using HQT [195] for Higgs and DYQT [242, 243]
for DY. The results are shown for various logarithmic accuracies, namely LL in orange,
NLL in blue, and NNLL in red. The bottom panels show the ratio between the Minimal
Prescription and the Borel approach with the bands representing the errors from the
numerical integration. We can clearly see that the our resummation formalism is order-
by-order consistent with the standard transverse momentum resummation using the
Minimal Prescription. As shown in the lower panels, the slight discrepancy between
the Borel and Minimal Prescription can be attributed to numerical errors. These results
confirm two things: first, that the soft-improved transverse momentum resummation
indeed reproduces the standard transverse momentum resummation in the large-b̂ limit;
and second that the Borel method is an equivalent valid prescription to perform inverse
Fourier-Mellin transform.

We can now move to the study of the dependence of the resummed expression in
momentum space on the cutoff C. In Fig. 11, we plot the normalized cross section for
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Figure 11 Normalized hadronic cross sections
for different values of the cutoff C. The re-
sults are shown for different logarithmic ac-
curacies, LL (top left), NLL (top right), and
NNLL (bottom). The upper panels show the
absolute values while the lower panel show
the relative difference between the numeri-
cal errors for each value of the cutoff and the
result for the reference value C2, (dσ(Ci)−
dσ(C2))/dσ(C2) for i = 2, 3, 4, 6, 10. We em-
phasize that the contour integration is exactly
the same for all the different values of the
cutoff. In the subsequent analyses, we use as
default the cutoff value C = 2.

different values of C. In the lower panel, we plot the absolute difference between the
cross sections computed at various cutoff C and the reference C = 2. As before, the
bands represent the errors from the numerical integration, in particular, we highlight the
error bands for the reference values. Since we can see a clear decrease in the error as
pT gets bigger, we decided to present results for smaller values of pT . One can see that
all the variations are equivalent for all values of pT except for the first bin in which the
numerical errors are large anyway. It is very interesting to report that as the value of the
cutoff increases, the errors arising from the numerical integration also increase. Similar
observation can also be made as we increase in logarithmic accuracy.
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3.3.2 Finite order truncation of the resummed expression

In order to provide a valid prediction, the resummed results have to be matched to the
fixed-order calculations. As stressed from previous sections, whilst the small-pT region
is dominated by the resummed cross section, the large-pT part is dominated by finite
components computed from fixed-order calculations. This suggests that in the intermediate
pT region, both contributions have to be consistently matched in order to obtain uniformly
sensible theoretical predictions. Such a procedure guarantees the correct behaviour from
perturbative calculations up to a specified order and incorporates the large logarithms
from resummation at higher-orders. In this thesis, we consider the additive matching
scheme which consists on adding to the all-order results the perturbative calculations
truncated at a given order in αs and subtract to the whole the expansion of the resummed
results at the same order. The matching can be performed at the level of the partonic cross
section in which the matched expression can be written as follows

dσ̂M
ab

dξp
(N, χ) =

dσ̂res
ab

dξp
(N, χ) +

[
dσ̂F.O

ab
dξp

(N, χ)

]

O(αn
s )

−
[

dσ̂
exp
ab

dξp
(N, χ)

]

O(αn
s )

, (3.3.5)

where the notations M and (F.O) denote the matched and the fixed-order respectively.
the subscripts O(αn

s ) indicate the order at which both the fixed-order and the expanded
(exp) expressions are truncated. Here and in the sequel, the notation used to denote
the fixed-order accuracy and therefore the matched results refers to the accuracy of the
pT distribution. In particular, the LO refers to the non-trivial order of the transverse
momentum distribution whose integral is the NLO total cross section1. Therefore, LO
and NLO will always refer to the accuracy of the pT spectrum. The terms that result from
the expansion of the resummed expression can be organized into contributions that are
regular and singular in the large-b̂ (or equivalently in the small-pT limit). In Fourier-Mellin
space, they generally take the following form

dσ̂
exp
ab

dξp

(
N, χ,

Q2

µ2
R

,
Q2

µ2
F

)
=∑

c
σLO

F,cc̄δcaδc̄b + ∑
c

σLO
cc̄

∞

∑
n=1

αn
s (Q

2)× (3.3.6)

[
Σ(n)

ab

(
N, χ,

Q2

µ2
R

,
Q2

µ2
F

)
+H(n)

ab→cc̄

(
N, χ,

Q2

µ2
R

,
Q2

µ2
F

)]
,

where both the regular and singular terms depend on the resummation scale. We recall that
the resummation scale has been introduced in Sec. (2.2.2). As stated previously, however,
in our case we always consider the case where Q=M. The perturbative coefficients Σ(n)

ab
are polynomials in the logarithm variable ln χ. They are constructed in a way that they
vanish when ln χ=0 (i.e. b̂= − N̄b0) and lead to the threshold resummation when b̂=0
(formally at the total inclusive level). On the other hand, the functionH(n)

ab→cc̄ contains all
the terms that behave as constants in the large-b̂ limit. Up to NLO, we only need up to

1 In literatures, different way of counting has been used. In Ref. [199], for instance, different counting of the
perturbative order is adopted in which fixed-order labels NLO and NNLO are being used. Such a counting
corresponds exactly to the accuracy of the total inclusive cross section.
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Σ(2)
ab andH(2)

ab→cc̄ terms in the expansion. The general form of the singular contribution can
be written as

Σ(n)
ab

(
N, χ,

Q2

µ2
R

,
Q2

µ2
F

)
=

2n

∑
k=1

Σ(n,k)
ab

(
N,

Q2

µ2
R

,
Q2

µ2
F

)
lnk χ, (3.3.7)

where the functions Σ(n,k)
ab are purely functions of N. Their momentum space versions can

be computed using the generating function in Eq. (3.1.16). That is, for a fixed value of k the
computation of their Fourier inverse transform just amounts to the computation of the
following limit

Jk = lim
ϵ→0

∂k

∂ϵk M̃
(

N, ξp, ϵ
)

, (3.3.8)

with M̃ as given in Eq. (3.1.17). In the case of Higgs boson production for example, the
terms that contribute up to NLO are expressed as follows

I1(N, ξp) =−
2N√

ξp
K1(2N

√
ξp) (3.3.9)

I2(N, ξp) =−
4N√

ξp
K(1)

1 (2N
√

ξp)− 4N√
ξp

(
ln

(
N√
ξp

)
+ γE

)
K1(2N

√
ξp) (3.3.10)

I3(N, ξp) =−
6N√

ξp
K(2)

1 (2N
√

ξP)−
12N√

ξp

(
ln

(
N√
ξp

)
+ γE

)
K(1)

1 (2N
√

ξp)

− 6N√
ξp

(
ln2

(
N√
ξp

)
+ 2γE ln

(
N√
ξp

)
− ζ2 + γ2

E

)
K1(2N

√
ξp) (3.3.11)

I4(N, ξp) =−
8N√

ξp
K(3)

1 (2N
√

ξp)− 24N√
ξp

(
ln2

(
N√
ξp

)
+ 2γE ln

(
N√
ξp

)
− ζ2 + γ2

E

)

K(1)
1 (2N

√
ξp)− 24N√

ξp

(
ln

(
N√
ξp

)
+ γE

)
K(2)

1 (2N
√

ξp)−
8N√

ξp
K1(2N

√
ξp)

(
ln3

(
N√
ξp

)
+ 3γE ln2

(
N√
ξp

)
+ 3

(
γ2

E − ζ2

)
ln

(
N√
ξp

)
− 3γEζ2 + γ3

E + ζ3

)
,

(3.3.12)

where the K(i)
1 are the i-th derivatives of the Bessel function w.r.t. the argument. One can

check that in the small-pT limit–meaning taking N → exp(−γE)–the above expressions
exactly reproduce the standard small-pT expressions given by Eqs. (121)-(124) of Ref. [195].
The equivalence between taking pT → 0 and setting N → exp(−γE) deserves further
comment. On can check that the modified logarithmic variable ln(1 + b̂2/b2

0) of Ref. [195]
is obtained from our modified ln(χ(b̂)) by setting N̄ = 1 which in Eqs. (3.3.9-3.3.12)
translates into taking N → exp(−γE).
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3.3.3 Phenomenological results for SIPT

After checking the robustness of our resummation procedure using the Borel prescription,
we are now ready to present phenomenological predictions. This section is devoted to
the phenomenological studies of the impact of the soft-improved transverse momentum
resummation on the production of a colourless final-system which in our case could be
either the Higgs or Z-boson. The values of the central renormalization, factorization, and
resummation scales is chosen to be either the Higgs mass (mH = 125 GeV) or the Z-boson
mass (mZ = 91.187 GeV) with GF = 1.663× 10−5GeV−2. The perturbative uncertainty
is then computed using the seven-point method by varying the renormalization and
factorization scales by a factor of two in either either direction around the central value.
Whilst the small-pT region (pT ≪ mF) of the transverse momentum spectra is dictated
by the resummation, the region where pT ∼ mF is controlled by smallness of the strong
coupling in which the use of fixed-order calculations is fully justified. In this region, one
therefore needs to switch on fixed-order computations through the matching procedure
explained in Sec. (3.3.2). For the two processes we are interested, the QCD radiative
corrections are fully known at NLO, see Sec. (2.4) and App. 2.B for details.

Higgs boson production at LHC

We begin by studying the Higgs boson produced via gluon-gluon fusion in proton-proton
collision at LHC with a center of mass energy

√
s=13 TeV. In the following, we restrict

ourselves to the region pH
T ≲mT where the HEFT description is appropriate. The fixed-

order results have been obtained using HPT-MON [254] which has been benchmarked
against HQT [242, 250, 255] and NNLOJET [26, 256, 257]. We first comment on results
show in Fig. 12 in which the pure soft-improved transverse momentum and standard
resummations are compared. The top panels show the different order of logarithmic
accuracy (NLL and NNLL) along with the fixed-order results while the lower panels show
the ratio of the various predictions w.r.t. the NNLL results. We see that the NLO results
diverges to (−∞) as pT → 0 and it exhibits an unphysical peak at pT ∼ 10 GeV. This
arises due the non-cancellation between negative (next-to) leading and positive subleading
logarithmic contributions. On the contrary, the resummations lead to a well-behaved
transverse momentum distribution that has a (Jacobian) peak at pT ∼ 10 GeV and vanishes
in the limit pT → 0. The scale dependence of the fixed-order result is about ±10% at
pT = 20 GeV which slightly decrease as the value of pT increases. Comparing the the NLL
and NNLL of the standard transverse momentum resummation, we can highlight two
main observations: first, as obviously expected, one can see that the scale uncertainties are
reduced with the inclusion of NNLL terms, second, the uncertainty bands do not overlap
in the small-pT region. The latter observation suggests that the resummed series poorly
converges and/or the method of scale variations significantly underestimates logarithmic
contributions due to the missing higher-order corrections. Now, comparing the standard
to the soft-improved transverse momentum resummation, we observe a sizeable difference
in the small-pT region. Indeed, we notice that the improved resummation displays faster
perturbative convergence at small pT . This can be understood as coming from the N/b̂
corrections whose effect become less significant as the logarithmic accuracy increases. As
a consequence, in the soft-improved transverse momentum resummation, the NLL result
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Figure 12 Higgs transverse momentum spectra from gluon fusion at
√

s = 13 TeV for
the two types of resummation formalisms, namely the standard CFG (left) and the soft-
improved transverse momentum resummation (right). The top panels show the pure
resummed results at various logarithmic accuracies along with the NLO fixed-order result.
The lower panels show the ratio of the various predictions w.r.t to the NNLL. The central
scale is set to mH . The uncertainty bands are computed using the seven-point scale
variation, and in all cases, Q = mH .

is much closer to the NNLL result that in the standard resummation formalism. As a
matter of fact, the NNLL uncertainty band is mostly contained in the NLL one. But as
demonstrated above, the two resummation formalisms are comparable in the large-pT
region. At NNLL, the difference between the standard and soft-improved transverse
momentum resummation is almost invisible, but with the the latter having a moderately
smaller uncertainty band due to the better convergence of the resummed series. Finally,
one can see that the large-pT predictions of both resummations are completely off w.r.t.
the fixed order results and hence can no longer be trusted. As a side note, unlike in
the standard resummation formalism, the modified resummation does not require any
regulation procedure to get rid of its large-pT behaviour. It instead relies on the fact its
b̂ = 0 limit coincides with the threshold resummed expression at the inclusive level.

As just mentioned above, in order to produce reliable predictions that is valid for
all values of pT , the pure resummed results have to be matched with the fixed-order
calculations according to Eq. (3.3.5). The results are shown in Fig. 13 where the results
using the standard resummation formalism are shown on the left while the results from
the soft-improved resummation are shown on the right. The matching of the standard
resummation to the fixed-order calculations improves the agreement between the NLL+LO,
NNLL+NLO, and NLO predictions, mainly in the intermediate and large-pT region. As a
matter of fact, the contribution of the LO finite component to the NLL+LO result is only
about 2% in the peak and up to 50% in the large-pT region. Similar quantitative behaviour
is observed at NNLL+NLO. Now, we can see that the uncertainty bands of the NLO and
NNLL+NLO in the standard formalism mostly overlap for pT > 20 GeV. In the context of
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Figure 13 Higgs transverse momentum spectra from gluon fusion at
√

s = 13 TeV for
the two types of resummation formalisms, namely the standard CFG (left) and the soft-
improved transverse momentum resummation (right), when matched to fixed-order
predictions. The top panels show the matched results at various logarithmic accuracies
(NLO+LO and NNLL+NLO) along with the NLO fixed-order result. The lower panels
show the ratio of the various predictions w.r.t to the NNLL+NLO result. The central scale
is set to mH . The uncertainty bands are computed using the seven-point scale variation,
and in all cases, Q = mH .

soft-improved transverse momentum resummation, the contribution of the LO and NLO
finite components affect the pure resummed version as in the standard case. The difference
being that the even in the small-pT limit, the NNLL+NLO uncertainty band is contained
inside the NLL+LO band. At NNLL+NLO, the same observation as for the standard case
still holds since both results are almost indistinguishable at a such logarithmic accuracy.
Finally, it is worth emphasizing that in the context of soft-improved resummation, the
matched results have a broadly similar features to the purely resummed ones. That is, in
the small-pT region, the matching of the improved resummation changes the result less
than the matching of the standard resummation.

Z boson production at the Tevatron Run II

Let us know turn our attention to the application of the improved transverse momen-
tum resummation to the case of Z boson production decaying into a pair of leptons. In
particular, we consider the production of a Z boson with mass mz=91.187 GeV a the
Tevatron [258–260] with a center of mass energy

√
s=1.96 TeV. Such a choice is motivated

by the fact that soft contributions for DY processes are expected to be more pronounced
at colliders with lower center of mass energy. In all the subsequent DY analyses, the
fixed-order results are obtained using DYQT [242, 243]. Fig. 14 shows the pure resummed
results in which the soft-improved transverse momentum and standard resummations are
compared. Analogous to Fig. 12, the top panels show the results for the different order of
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Figure 14 Transverse momentum spectra of the Z boson production at Tevatron run II
with

√
s=1.96 TeV for the two types of resummation formalisms, namely the standard

CFG (left) and the soft-improved transverse momentum resummation (right). The top
panels show the pure resummed results at various logarithmic accuracies along with the
NLO fixed-order result. The lower panels show the ratio of the various predictions w.r.t
to the NNLL. The central scale is set to mZ. The uncertainty bands are computed using
the seven-point scale variation method, and in all cases, the resummation scale is fixed to
Q=mZ.

logarithmic accuracy while the lower panels show the ratio of the various predictions w.r.t
the respective NNLL results. In both types of resummation, one sees similar features as for
the Higgs boson production, namely the fact that the resummation yield a well-behaved
transverse momentum distribution in the small-pT region and that the distribution van-
ishes when pT → 0. The distribution then peak at about pT∼2 GeV before vanishing again
at large-pT . Contrary to the case of the Higgs boson production, the resummed series,
even for the standard approach, seem to converge fast: the NNLL uncertainty bands is
almost entirely contained inside the NLL. Both at NLL and NNLL, the soft-improved
transverse momentum resummation is analogous to the standard transverse momentum
resummation at low-pT ; noticeable difference occur at values of large-pT where the im-
proved resummation displays better convergence. It can indeed be seen that not only the
agreement between the NNLL+NLO and fixed order results has improved, but also the
NLL+LO and NNLL+NLO bands overlap although the latter is not entirely contained in
the former. In addition, one can also notice a slight decrease in uncertainties when going
from the standard to the improved transverse momentum resummation.

The results of the resummed predictions when matched to fixed-order calculations are
shown in Fig. 15. As in all the previous cases, the results using the standard resumma-
tion formalism are shown on the left while the results from the soft-improved standard
resummation are shown on the right. Due to the nice convergence of the resummed series,
there is a good agreement between the NLL+LO, NNLL+NLO, and NLO results. Notice
that this can be seen in the two resummation formalisms. As a matter of fact, not only
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Figure 15 Transverse momentum spectra of the Z boson production at Tevatron run II with√
s=1.96 TeV for the two types of resummation formalisms, namely the standard CFG

(left) and the soft-improved transverse momentum resummation (right), when matched to
fixed-order predictions. The top panels show the matched results at various logarithmic
accuracies (NLO+LO and NNLL+NLO) along with the NLO fixed-order result. The lower
panels show the ratio of the various predictions w.r.t to the NNLL+NLO result. The
central scale is set to mZ. The uncertainty bands are computed using the seven-point scale
variation, and in all cases, Q=mZ.

the NNLL+NLO bands are smaller compared to the NLL+LO, but also the latter is also
contained in the former. For both resummation formalisms, the contributions of the finite
components (LO & NLO) to the resummed results are less than 5% in the small-pT region
and between 10-20% in the region where pT is large. The improved transverse momentum
resummation only differs from the standard approach in two ways. First, the uncertainty
bands in the improved resummation is seen to be smaller compared to the standard re-
summation. This is at least true for all values of pT shown on the plots. Second, while
both resummations clearly yield inaccurate predictions in the large-pT regions due to the
presence of non-justified logarithms, the soft-improved resummation seems to converge to
the fixed-order result where the standard resummation appears to deviate from it.

3.3.4 Phenomenological results for the combined resummation

The soft-improved transverse momentum resummation clearly does not account for all the
soft logarithms that appear in the threshold resummation. These are soft gluons emitted
at large angle. Thus, in order to take these soft logarithms into account, one needs to
consistently incorporate the pure threshold resummation into the soft-improved transverse
momentum resummation. While observations suggest that this might be possible, the
non-commutativity of the Mellin and Fourier integrals makes it difficult to construct such
an expression. In the following passage, we briefly expand on the soft contributions
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present in the improved resummation while explicitly referring to the threshold resummed
expressions.

The threshold resummation at fixed ξp consists of four factors: three ξp independent
and one ξp dependent. Two of the ξp independent terms originate from the incoming legs,
while the third originates from the system that recoils against the large-ξp colourless final
state. The ξp dependent term resums both a subclass of soft and recoil contributions.

Let us first start with the soft contributions that are not at all present in the soft-improved
transverse momentum. Soft radiations originating from the outgoing legs that are soft
but not collinear are only present at fixed-ξp and are therefore missing in the improved
resummation. Such contributions can be simply added to the improved resummation with
the logarithmic terms in ξp subtracted from the σF

cc̄C(1)
abc prefactor. This is because threshold

resummation starts one order higher than the (soft-improved) transverse momentum
resummation.

Next, Let us discuss the interference term which simultaneously resums subclasses of
soft and collinear contributions. In ∆abc, soft logarithms are resummed to all order while
logarithms of ξp are only resummed at NLL. That is, only terms of the form αn

s lnm N ln ξp

appears in the interference term while for example term such as α2
s ln N ln2 ξp do not. These

terms, upon expansion of the full threshold resummed expression, will be multiplied by
positive powers of ξp which from the point of the view of the improved resummation are
power suppressed. Based on the renormalization group arguments, such contributions
can be made manifest in the the soft-improved transverse momentum resummation by
replacing q2 with q2/N in the argument of αs in the perturbative function Ac of Eq. (2.4.49).

Lastly, let us comment on the two radiative contributions which originate from the
incoming legs. Subclasses of these contributions are already resummed in the standard
transverse momentum resummation. Indeed, the standard transverse momentum resum-
mation has N independent coefficients provided that the PDF evolutions are evaluated
at the scale 1/b̂ in which case particular classes of soft logarithms are resummed in the
anomalous dimensions. However, at the inclusive level, the total cross section also contains
double soft collinear logarithms which arise when one integrates over the whole range
of ξp. These contributions are not included in the standard resummation approach but
present in the improved formulation of transverse momentum resummation. Indeed, due
to the property that soft-improved transverse momentum leads to the total inclusive cross
section when b̂=0 (equivalent to integrating in ξp), these logarithms which appear at the
total cross section level are taken into account. In addition to these, thanks to the new
factorization, the soft-improved transverse momentum resummation (as in the threshold
resummation) exhibits the 1/

√
N behaviour in the large-N limit. This, however, is only

true at the level of the generating function in Eq. (2.4.6). Upon performing first the Fourier
and then the Mellin integrals, this behaviour is lost. One can indeed check in Eq. (2.4.40)
that such a behaviour is no longer present. Thus, in order to consistently account for these
missing soft logarithms, one needs (at least) to construct an expression of the generating
function where this behaviour in the large-N limit is preserved. Such an expression is not
available at present.

For the sake of phenomenological studies, it suffices to combine the pure threshold
and soft-improved transverse momentum resummations using some suitable matching
function. The matching function must be chosen such that the the combined result
reproduces the soft-improved transverse momentum and threshold resummation at small-
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ξp and large-x respectively. One possible expression for the matching function has been
proposed and studied in Refs. [165, 235] where the combined resummed expression is
defined as follows

dσ̂cmb
ab

dξp

(
N, ξp

)
=
(
1− T

(
N, ξp

)) dσ̂tr
ab

dξp

(
N, ξp

)
+ T

(
N, ξp

) dσ̂th
ab

dξp

(
N, ξp

)
. (3.3.13)

The matching function is defined as T=Nkξm
p /
(

1 + Nkξm
p

)
where the values of k and m

can be chosen arbitrarily provided that m<k. This is because the combined resummation
results that differ from the soft-improved transverse momentum resummation by O(ξm

p )

corrections when ξp → 0, and from the threshold resummation by O(N−1) corrections
when N → ∞. Such a combined resummed expression resums small-ξp logarithms up
to NNLL accuracy while threshold ones are resummed up to NNLL* according to the
counting in Table 1 of Ref. [261].

For the subsequent phenomenological studies of the impact of adding the pure threshold
contribution to the soft-improved transverse momentum resummation, we consider the
exact same settings as in Sec. (3.3.3). In addition to defining a proper value of the cutoff
entering in the Borel prescription, one also has to define the free parameters entering
the matching function in Eq. (3.3.13). The following results are produced by setting k=3
and m=2. There is some arbitrariness in the definition of k and m, however, we did
explicitly check that results do not change provided that k is chosen from 2 to 5 and m<k.
The variation of these parameters can therefore be used to assess the ambiguity of the
combined resummed expression.

Higgs boson production at LHC

Analogous to the previous phenomenological studies, let us first study the impact of
the combined resummation formalism to the Higgs boson production. The results are
shown in Fig. 16 with the pure resummed results on the left and the matched to fixed-
order results on the right. Since the contribution of the pure threshold resummation is
only effective when N is large and b̂ is fixed, soft-improved transverse momentum and
combined resummation are exactly similar up to scales of at least 40 GeV. This is true for
both unmatched and matched results. Comparing the pure combined results with the
pure soft-improved results in Fig. 12, we notice significant difference in the large-pT region.
The inclusion of the threshold contributions leads to a surprising agreement between the
NNLL and the fixed-order result, although noticeable difference persists between the NLL
and the NLO results for larger values of pT . Perhaps the most interesting feature of the
combined resummation is the fact that the even in the absence of a matching procedure,
the resummation computation seems to capture the behaviour of the fixed-order results
in the regions where where standard transverse momentum resummation fails to give
accurate predictions. At the matched level, the combined results are different from the
soft-improved resummation in that the former yield better agreement with the fixed-order
results. When going from the pure combined resummed results to the matched results,
we see some increase in the uncertainty in the intermediate and large-pT regions which
suggests that the uncertainty is underestimated in the case matching is absent. The upshot
here is that the matching of the combined resummation changes the result less than the
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Figure 16 Higgs transverse momentum spectra from gluon fusion at
√

s=13 TeV for the
combined resummation formalisms. The pure resummed results are shown on the left
when the results matched to fixed-order calculations are shown on the right. The top
panels show the absolute results for the various logarithmic orders along with the NLO
fixed-order result. The lower panels show the ratio of the various predictions w.r.t to the
NNLL (+NLO) result. The central scale is set to mH . The uncertainty bands are computed
using the seven-point scale variation, and in all cases, the resummation scale is set to
Q=mH .

matching of the soft-improved resummation, and the latter less than the matching of the
standard transverse momentum resummation.

Z boson production at the Tevatron Run II

Let us finally close the section on the improved and combined resummations by presenting
the numerical results for the Z boson production at Tevatron run II. The settings are exactly
similar to the results presented in previous sections. The results are shown in Fig. 17
with the pure combined resummed results on the left and the results matched to fixed-
order calculations on the right. By comparing the pure combined resummed results with
the pure soft-improved results in Fig. 14, we see similar features as for the Higgs boson
production, namely that the combined resummation yield surprising agreement with the
fixed-order results in the large-pT region. This is even more pronounced in the case of Z
boson production as the the three bands (namely NLO, NLL, and NNLL) now overlap.
This behaviour remains when we match the pure resummed calculations to the fixed-
order results. In particular, we can notice impressive agreement between the NLL+LO,
NNLL+NLO, and NLO results. Not only is the NNLL+NLO band smaller compared to
the NLL+LO but the latter is also contained in the former suggesting a good convergence
of the resummed perturbative expansion. These results suggest that for the transverse
momentum distribution of the Z boson where x is often far from threshold (unity), the
effect of the threshold resummation is less pronounced.
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Figure 17 Transverse momentum spectra of the Z boson production at Tevatron run II with√
s=1.96 TeV for the combined resummation formalisms. The pure resummed results are

shown on the left when the results matched to fixed-order calculations are shown on the
right. The top panels show the absolute results for the various logarithmic orders along
with the NLO fixed-order result. The lower panels show the ratio of the various predictions
w.r.t to the NNLL (+NLO) result. The central scale is set to mZ. The uncertainty bands are
computed using the seven-point scale variation, and in all cases, the resummation scale is
set to Q=mZ.

3.4 Approximating NNLO Higgs pT distributions using resummations

To the present day, the inclusive and transverse momentum distributions of the Higgs
boson production are known to very high precision. The total inclusive cross section
was originally computed at next-to-leading order (NLO) in the heavy-top-quark limit in
Refs. [182, 183, 262] and later on with finite top mass in Ref. [263]. These results were
extended to NNLO in the infinite top mass limit in Refs. [9,69,264] and in Refs. [69,265–270]
for the finite top mass. The N3LO result including the finite top quark mass effect was first
available as an approximation using the knowledge of the singularity structure in Mellin
space of the all-order computations [133]. Recently, several calculations at N3LO with finite-
top quark mass have been available [10, 271–274]. As introduced in previous passages, the
differential distributions for the Higgs boson production is known up to NNLO [23–26].
Since these results are often obtained numerically, reading off the coefficients that are
relevant for the comparison to all-order computations is not practically feasible.

In the following sections, we present a formalism for the construction of the Higgs
transverse momentum distributions beyond NNLO using all-order computations. The
approach is inspired by Ref. [133] in which it was argued at the inclusive level that an
approximation to a N3LO expression can be derived from the knowledge of the singu-
larity structure of the all-order computations in Mellin space. It was suggested that an
approximation to a partonic cross section can be constructed by simply combining the
small and large-N behaviours which can respectively be predicted from the high-energy
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and threshold resummation. Indeed, as we have highlighted many times, threshold resum-
mation embodies to all-order in αs logarithms of the form ln N that drives the transverse
momentum spectra in the limit N → ∞, while the behaviour (N − 1)n for N → 1 is
fully determined to all-order by the small-x resummation. Therefore, for a partonic cross
section known up to NnLO (i.e. O(αn

s )), the approximate expression is constructed as a
combination between fixed-order calculations and an expansion from resummations

[
dσ̂ab
dξp

]Nn+1LO

(N, ξp) =

[
dσ̂ab
dξp

]NnLO

(N, ξp) +
dσ̂ab
dξp

(n+1)

(N, ξp), (3.4.1)

where the last term on the right-hand side is the approximate expression computed by
expanding the all-order computations and retaining only the α

(n+1)
s -term. Its expression is

given as a contribution from the different small-N and large-N behaviours

dσ̂ab
dξp

(n)
(N, ξp) =

dσ̂ab
dξp

he,(n)
(N, ξp) +

dσ̂ab
dξp

th,(n)
(N, ξp). (3.4.2)

Notice that no matching function was introduced here. This means that Eq. (3.4.2) is only
valid if the small-N behaviour controlled by the high-energy contribution is not spoiled
by the threshold component and vice-versa. While in Ref [133], it was shown that better
approximation can be constructed by modifying the pure threshold contribution in such
a way that the singularity structure at small-N is preserved, here we first present results
without modifying the singularity structure of any of the contribution. We stress that the
results presented here are just meant to be a proof of concept and more deeper analyses
will be the subject of forthcoming studies in the context of DY. One might argue that the
construction of such an approximation is doomed to fail since the Higgs production at the
LHC is far from threshold. However, by analyses of the position of the saddle point in
Mellin space [275] it was shown at the level of the inclusive cross section that the bulk of
the contribution to the cross section are controlled by logarithmically enhanced terms. We
expect this statement to hold at the level of transverse momentum distributions.

As a proof of concept, let us mainly focus on the gg-channel. This is justified since the
main bulk of the cross section comes from the gg-channel while the contribution from the
other channels are small. In Fig. 18 we show the contribution of the various (sub) channels
(gg, gq, qq̄, notice that gq and qg are the same) to the full hadronic cross section. We can
clearly see that both at LO and NLO, the gg-channel is by far the most dominant channel
that contributes to the Higgs boson production from gluon fusion. As a matter of fact, at
leading-order the gg-channel contributes to about 70% of the full cross section while at
next-to-leading order it contributes to about 85%. This is even more evident when looking
at the relative difference in the lower panel of Fig. 18 where we see that for all the values of
pT considered, the uncertainty bands of the gg-channel and the full result overlap. Similar
behaviour can be observed by comparing the partonic channels in Mellin space. This is
shown in Fig. 19 where we plot the Mellin space partonic cross section for the various
partonic channels from which we can see that the gg-channel provides the most dominant
contribution.
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Figure 18 Contribution of the various (sub) channels (gg, gq, qq̄) to the full hadronic cross
section at the center of mass energy

√
s = 13 GeV. The full hadronic result (blue) is also for

reference. The results are shown for both the LO (left) and NLO (right). The upper panels
show the absolute results while the lower panels show the ratio between the various
channels and the full hadronic result. the uncertainty bands are computed using the
seven-point scale variation method depicted in Fig. 3. In all cases the mass of the Higgs is
set to mH=125 GeV.

3.4.1 The large-N (large-x) region

Let us first start by describing the large-N approximation of the coefficient function
(or partonic cross section) in Eq. (3.4.1). The threshold resummed expression is given
by Eq. (2.3.20) which can be written in a much simpler form as

dσ̂th
ab

dξp

(
N, ξp,

Q2

µ2
R

,
Q2

µ2
F

)
= C̃ab(N, ξp) exp

{
∞

∑
n=1

αn−2
s gn

(
N, ξp,

Q2

µ2
R

,
Q2

µ2
F

)}
(3.4.3)

where C̃ collects all the non-logarithmic dependence and all the enhanced logarithmic
parts are resummed in the exponent. Notice that C̃ is also a perturbative function in αs
where αs ≡ αs(µ2

R). In our derivation, we showed that the gn functions are known up to
g3. This will allow us to construct an approximation of the NNLO term of the transverse
momentum distribution. Before doing so, let us first analyse Eq. (3.4.3). Its expansion as a
series in the strong coupling can be expressed as

dσ̂th
ab

dξp

(
N, ξp,

Q2

µ2
R

,
Q2

µ2
F

)
= C̃ab(N, ξp)

∞

∑
n=1

αn
s

2n

∑
k=0

g̃n,k

(
N, ξp,

Q2

µ2
R

,
Q2

µ2
F

)
(ln N + γE)

k

(3.4.4)

where the coefficients g̃n,k can be determined to all-order in the strong coupling. One
can immediately see that the appearance of the N-enhanced term on the right-hand side
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Figure 19 Contribution of the various partonic (sub) channels (gg, gq, qq̄) to the partonic
cross section in Mellin space. The results are shown for the Higgs boson production
at the LHC with

√
s=13 TeV for different values of the transverse momentum, namely

pT=5 GeV (top) and pT=150 GeV (bottom). The results have been computed at the central
scale, i.e. the normalization, factorization, and resummation scales have been set to the
Higgs boson mass.

of Eq. (3.4.4) does not exactly correspond to the Mellin transform of the x-space expressions.
Indeed, the Mellin transform of the plus distributions (for k=1) appearing in x-space takes
the following form

∫ 1

0
dx xN−1

(
ln(1− x)

1− x

)

+
=

1
2

(
γ2

E +
π2

6

)
+ γEψ0(N) +

1
2

(
ψ2

0(N)− ψ1(N)
)

, (3.4.5)

where ψn denotes the Polygamma functions. The logarithms of N then arise upon taking
the large-N limit of the digamma function ψ0. Reciprocally, the inverse Mellin transform
of ln N in terms of a plus distribution is given by

M−1 (ln N) ∝
(

ln(ln 1/x)
ln 1/x

)

+
. (3.4.6)

In addition, not only the expanded expression in Eq. (3.4.4) does not exactly correspond
to the ones that appear in the fixed-order calculations but also Eq. (3.4.4) displays an
unphysical singularity. By inspecting the right-hand side of Eq. (3.4.4), one observes that
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the expression exhibits a logarithmic branch cut at N=0. This is not in accordance with
the exact fixed-order results whose singularity is represented by poles at small-N, not
cuts. It is, however, crucial to emphasize that despite this mismatch–which only appear at
small N–the asymptotic behaviour of the fixed-order calculations in the large-N limit is
correctly reproduced by the expansion in Eq. (3.4.4). The correct singularity structure in the
small-N region of the resummed expression can be restored back by carefully exploiting
the analyticity of the Mellin space cross section, as described in Ref. [133]. Here, we
resort to an approach in which the logarithms of N are simply replaced by the digamma
functions [216]. This yields the following expanded resummed expression

dσ̂th
ab

dξp

(
N, ξp,

Q2

µ2
R

,
Q2

µ2
F

)
= C̃ab(N, ξp)

∞

∑
n=1

αn
s

2n

∑
k=0

g̃n,k

(
N, ξp,

Q2

µ2
R

,
Q2

µ2
F

)
(ψ0(N) + γE)

k

(3.4.7)

The distinction between Eq. (3.4.4) and Eq. (3.4.7) is often referred to as N-soft versus
ψ-soft. To better understand the difference between the two soft expressions, we compare
them in Fig. 20 along with the partonic fixed-order result for the gg-channel for various
values of pT . On the y-axis is plotted the coefficient dσ̂

tr,(2)
ab /dξp which contains both the

strong coupling αs and the Born level cross section σ0. Notice that our expressions are
shifted such that the pole is now at N=0 instead of N=1. Since the transverse momentum
distribution of the Higgs gluon production via gluon fusion is largely dominated by large
N terms down to moderately small values of N, we decided to present the results for N
between zero and one in order to clearly see what is happening close to the poles. This
can be seen from the plots where the three curves start to converge from N ∼ 1.5. We
can see that the difference between the N-soft and ψ-soft schemes only lies in the small-N
region. Henceforth, we choose to adopt the ψ-soft approach for the construction of the
approximated expression.

3.4.2 The small-N (small-x) region

The leading logarithmic (LLx) high-energy (or often referred to as small-x) resummation of
transverse momentum distribution has been derived in Ref. [276]. The computations were
performed by keeping the initial-state gluons off their mass-shell, p2

i = |pT,i|2. An impact
factor h is then computed by means of a triple Mellin transform: one Mellin transform
conjugate to the partonic variable x and two Mellin transforms w.r.t the offshellness of the
incoming gluons ξi= |pT,i|2/Q2. For the case of Higgs boson produced via gluon fusion in
the HEFT formalism, the high-energy resummed transverse momentum distribution for
the gg-channel is expressed as

dσ̂he,H
gg

dyHdξp

(
N, b̂, ξp

)
= h

(
0, γ̃−

(
N, b̂

)
, γ̃+

(
N, b̂

)
, ξp

)
(3.4.8)

where the impact factor is defined according to

h
(

N, γ̃−, γ̃+, ξp
)
= σBorn

H,gg
γ̃+γ̃−ξ

γ̃+

p ξ
γ̃−
p

ξpπ(1 + ξp)N R
(
γ̃+
)

R
(
γ̃−
)

(3.4.9)
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Figure 20 Second-order contributions of the Higgs transverse momentum distribution
at the LHC with

√
s=13 TeV. The coefficient includes the strong coupling and the Born

level cross section. The fixed-order result is compared to the two different types of soft
approximations given in Eq. (3.4.4) and Eq. (3.4.7). The results are shown for different
values of the transverse momentum, namely pT=5, 10, 90, 250 GeV. The results have been
computed at the central scale, i.e. m2

H=µ2
F=µ2

R.

∫ ∞

0

dξ1

ξ2
1

ξ
γ̃+

1

∫ (1+
√

ξ1)
2

(1−√ξ1)
2

dξ2

ξ2
2

ξ
γ̃−
2

(1− ξ1 − ξ2)
2

√
2ξ1ξ2 + 2ξ1 + 2ξ2 − 1− ξ2

1 − ξ2
2

.

As described in Ref. [276], the integrals in Eq. (3.4.9) can be computed by introducing
a new variable u defined as ξ2 = 1 + ξ1 − 2

√
ξ1u transforming the (ξ1, ξ2)-integral into

an integration in ξ1 and u. The final result can consequently be obtained in a closed
form by first performing an expansion in powers of u, then performing the integration
term-by-term, and finally summing back the series. This leads to the following expression

h
(

N, γ̃−, γ̃+, ξp
)
= σBorn

H,gg
ξ

γ̃+

p ξ
γ̃−
p

ξp(1 + ξp)N R
(
γ̃+
)

R
(
γ̃−
)
× (3.4.10)

[(
1 +

2γ̃+γ̃−

1− γ̃+ − γ̃−

)
Γ (1 + γ̃+) Γ (1 + γ̃−) Γ (2− γ̃+ − γ̃−)

Γ (2− γ̃+) Γ (2− γ̃−) Γ (γ̃+ + γ̃−)

]
.

The perturbative functions R accounts for the factorization scheme. In MS scheme, the
first non-vanishing orders are given by R(γ̃)=1 + 8ζ3γ̃3/3 + O(γ̃4). The resummed
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anomalous dimensions γ̃± are also perturbative functions and therefore can be written as
a series in the coupling γ̃= ∑∞

n=1 γ̃(n). It has been shown [277, 278] that these anomalous
dimension entirely determine the nature of the small-N singularity of the (differential)
cross sections at the the resummed level. They are expressed in terms of the standard
anomalous dimensions via the following relation

γ̃±(N, b̂) = γ

(
N ± i

b̂
2

)
. (3.4.11)

For the construction of the approximate differential distribution, we are are interested
in the finite order expansion of the resummed expression given in Eq. (3.4.8). Thus, one
can expand the resummed expression in Eq. (3.4.8) as a series in the strong coupling and
perform the integration over the rapidity which is equivalent to setting b̂=0. The NLO
high-energy resummed expression is then written as

dσ̂he,H
gg

dξp

(
N, ξp

)
= σBorn

H,gg

[(αs

π

) CA
N

2
ξp

+
(αs

π

)2
(

2CA
N

)2 ln ξp

ξp

]
+O(α3

s ). (3.4.12)

Higher-order coefficients up to O(α4
s ) are derived by taking the Mellin transforms of

Eqs. (4.12) of Ref. [276]. Eq. (3.4.12) is what we are going to use for the construction of the
approximate transverse momentum distribution.

In order to assess the goodness of the high-energy expressions as an approximate to
the fixed-order result in the small-N (equivalently small-x) regions, we compare the the
high-energy approximation to the known second order coefficient from the fixed-order
computations. The results are shown in Fig. 21 for various values of pT . Since we are
mainly interested in the region where the bulk of the contribution is dominated by small-x
physics, we show the plots for moderately small values of N. In view of combining the
high-energy approximation to the threshold approximation–which provides the large-N
behaviour–one has to make sure that the small-N contributions vanish at moderately
large value of N. In Ref. [133], this is systematically enforced by subtracting from the
high-energy expressions contributions that have the same small-N singularities but vanish
as N → ∞. Such a restriction is not required in our case as the distribution clearly vanishes
when N → ∞. Eq. (3.4.12) indeed shows that as long as the transverse momentum does
not vanish, the transverse momentum distribution always vanish in the large-N limit.
Interestingly, the vanishing point is located in the vicinity of N=1 which coincides with
what has been observed at the inclusive level [133] considering that the singularity in
the plots of Fig. 21 is shifted to the left by one unit w.r.t. the aforementioned reference.
Fig. 21 shows that the high-energy expressions provide a good approximate to the fixed-
order results in the small-N region while not spoiling the large-N singularities. Only for
pT=90 GeV small discrepancies between the two results can be noticed.

3.4.3 Partonic level results at NLO

Before presenting results for the approximate NNLO transverse momentum distribution,
which will be shown in the subsequent section at the hadronic level, let us first compare
the approximate predictions to known exact results, namely NLO. The results are shown
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Figure 21 Second-order contributions of the Higgs transverse momentum distribution at
the LHC with

√
s=13 TeV. The coefficient includes the strong coupling and the Born level

cross section. The fixed-order result is compared to the high-energy approximation given
in Eq. (3.4.12) and considering only the second-order terms. The results are shown for
different values of the transverse momentum, namely pT=5, 10, 90, 250 GeV. The results
have been computed at the central scale.

in Fig. 22 for different values of pT ; similar results but zoomed in the small-N region
are shown in Fig. 23. Each plot compares the exact NLO coefficient functions to the
pure threshold and high-energy approximations, and to the combined small and large-N
approximation. While the absolute results are shown on the top panels, the ratio of each
approximations to the exact result is shown on the bottom panels. The uncertainty bands
are obtained as the envelope from the variation of the renormalization and factorization
scales according to the seven-point method.

Let us first focus our attention at the small-N region (N<1). For all the values of pT , it is
apparent that the combined approximate results reproduce fairly well the exact fixed-order
results. Not only the two uncertainty bands of two results overlap, but in all the cases
except for pT=5 GeV, the uncertainty band of the exact results are contained within the
approximation. This, at least, suggests that the approximations do not underestimate
uncertainties associated to missing higher-order corrections. Moving to the region where
N>1, one notices that discrepancies appear between the exact and approximate results,
as if the latter is the same as the former upon addition or subtraction of a constant term.
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Figure 22 Comparison of the second order coefficient of the Higgs transverse momen-
tum distribution (blue) to the various approximations resulting from the expansion of
the threshold (orange), high-energy (green), and combined threshold and high-energy
resummations (red). The Higgs boson is produced via gluon fusion from a collision of
protons at

√
s=13 GeV. The top panels show the absolute results while the bottom panels

show the ratio of the various predictions to the the exact NLO. The results are shown for
different values of the transverse momentum, namely pT=5, 10, 90, 250 GeV.

This could be due to the fact that, as opposed to Ref. [133], we have not modified the
subleading terms that contribute to the threshold expressions. This difference, however,
reduces as the value of the transverse momentum increases. Indeed, while the combined
small and large-N behaviour provide a reasonable good approximation to the exact result
when pT=90 GeV, the uncertainty band of the approximate result is entirely contained in
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Figure 23 Same as Fig. 22 but zoomed in the small-N region.

the uncertainty band of the fixed-order exact result when pT=250 GeV. This suggests that
the large-N approximation could be improved by supplementing to it a contribution that
vanishes as pT → ∞. These results support the statement made earlier that the impact of
the threshold resummation is more significant for large values of pT .

3.4.4 Hadronic level results

Let us finally turn our attention to the approximate NNLO transverse momentum distribu-
tion. Similar to what was done at the partonic level, for the approximation, we supplement
the known NLO transverse momentum spectra with the α3

s -terms from the expansion
of the threshold and high energy resummations. The inverse Mellin transform is then
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Figure 24 Approximate NNLO Higgs transverse momentum distribution for the gg-
channel by combining threshold and high energy resummations. The NNLO prediction
is represented by the red curve. For comparison, the LO (blue) and NLO (green) are also
shown. The top panel represents the absolute results while the bottom panel represents
the relative difference between the various predictions and the NNLO. As usual, the
uncertainty bands are computed using the seven-point scale variation. In all the plots, the
resummation scale Q is set to the Higgs mass mH .

computed using the same contour deformation used to define the Minimal Prescription as
described in Sec. (3.1.1). In order to alleviate the need of presenting plots with different
values of pT , we present directly the results at the hadronic level. The results are shown
in Fig. 24. For comparison, both the LO and NLO results are also included. As discussed
in the previous section, the results are only shown for the gg channel. As expected, the
uncertainty band of the NNLO prediction is slightly smaller compared to the one from
NLO. In addition, the uncertainty bands of the NLO and NNLO predictions mostly overlap
in the range of pT values considered in which the latter is mostly contained in the former.

3.5 Summary

This chapter focused on the phenomenological studies of the transverse momentum
distributions of two colour singlet objects, namely the Higgs boson and the Z-boson
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decaying into a lepton pair via DY mechanism. In doing so, we discussed the issues of
performing the inverse Fourier and Mellin transforms in the context of soft-improved
transverse momentum resummation. To circumvent such issues, we resorted to the
Borel prescription that has proved to not only yield better control on the subleading
terms but also yield good numerical stability. This allowed us to (separately) assess the
impacts of the soft-improved transverse momentum and combined resummation. It was
shown that while the modified transverse momentum resummation yields perturbative
convergence in the small-pT region, the effect of including the pure threshold contributions
improves the agreement between the fixed-order calculations in the medium and large-pT
regions. In the last part, we explored the idea of combining resummations to approximate
unknown orders. In particular, we used the expansions from the threshold and high energy
resummations to approximate the large and small N respectively. Such an approximation
seem to yield reasonable predictions as attested by the partonic and hadronic results.
However, further works are required in order to fully understand the large N singularities
and improve the predictions in the region where threshold behaviours dominate. As
mentioned before, the main objective will be to eventually apply such procedures to DY
processes that can be used in PDF fit.

3.A Chebyshev polynomials

In this section, we briefly recall the definition of Chebyshev polynomials that we used
in Sec. (3.1.2) to Mellin transform parton density functions. The Chebyshev polynomials
are defined as a series in a parameter x ∈ [−1, 1] whose degree depends on the truncation
of the series. They are defined as follows

Ti(x) =
n

∑
n=k

Tnkxk. (A.1)

The first three coefficients of the above series are given by the following

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, (A.2)

while the higher-order coefficients are defined recursively as

Tn(x) = 2x Tn−1(x)− Tn−2(x). (A.3)

Given the definition above, a generic function f (z) can be approximated in the range
[zmin, zmax] by expanding it on the basis of the Chebyshev polynomials,

f (z) =
n

∑
k=0

c̃k (Az + B)k (A.4)

where n is a positive integer and represents the degree at which the expansion is performed.
The parameters A, B, and c̃k are respectively defined as

A =
2

zmax − zmin
, B =

zmax + zmin

zmin − zmax
, c̃k = −

c0

2
δk0 +

n

∑
i=m

ciTik. (A.5)

The expression given in Eq. (A.4) is analytic in z and its Mellin transform can be easily
computed analytically or numerically. The coefficients ci are best determined using
libraries for scientific calculations such as the GNU Scientific Library.
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3.B Mellin space FO Higgs production as implemented in HPT-MON

In this Appendix, we describe the procedure to perform the numerical Mellin transform of
the momentum space expressions of the transverse momentum distribution of the Higgs
boson produced via gluon fusion. The following procedure is implemented in HPT-MON
that can produced predictions both in momentum and Mellin space either as a single
differential in pT or as a double differential in pT and rapidity yH .

The double differential distribution at the hadronic level is expressed as follows

dσ

dp2
TdyH

(
p2

T
Q2

T

)
= ∑

a,b

∫ 1

0
dxadxb fa(xa, µ2

F) fb(xb, µ2
F)

dσ̂ab

dp2
TdyH

(
p2

T
Q2

T

)
, (B.1)

where Q2
T = Q2 + p2

T with Q being the momentum of the final state partons that balance
the Higgs boson. Notice that for simplicity, we have omitted the renormalization scale
(µ2

R) dependence for simplicity.In some instances, we drop the argument of the cross
sections for brevity. The partonic cross section contains contributions up to next-to-leading
order (NLO). For the reason that will become obvious later, we organize the terms that
contribute to the partonic component in the following

dσ̂ab

dp2
TdyH

(
p2

T
Q2

T

)
=

σLO
gg

ŝ

[
Σδ(Q2)

ab

(
p2

T
Q2

T

)
+ Σab

(
p2

T
Q2

T

)]
, (B.2)

where σLO
gg and

√
ŝ are the usual Born level cross section and the partonic center of mass

energy respectively. The first term Σδ(Q2)
ab contains all the expressions that are proportional

to the δ(Q2) function. It therefore contains the full LO contribution and some part of
NLO. Notice that such terms are singular in the small-pT limit. They are proportional to
logarithms of the form (αm

s /pT) lnn(p2
T/m2

H). The second term Σab embodies contributions
that are free of δ(Q2). It contains both singular and regular terms when pT → 0. The
perturbative expansion of the delta-dependent part can be written as

Σδ(Q2)
ab

(
p2

T
Q2

T

)
=
(αs

π

)
Σδ(Q2),(1)

ab

(
p2

T
Q2

T

)
+
(αs

π

)2
Σδ(Q2),(2)

ab

(
p2

T
Q2

T

)
. (B.3)

The leading-order coefficient corresponds exactly to the LO contribution whose expression

is simply given by Σδ(Q2),(1)
ab = gijδ(Q2) where the sub-partonic channels are defined as

follows [279]

ggq = CF

(
t̂2 + ŝ2

−û

)
(B.4)

gqq̄ = 2C2
F

(
t̂2 + û2

ŝ

)
(B.5)

ggg = Nc

(
m8

H + ŝ4 + t̂4 + û4

ût̂ŝ

)
. (B.6)
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Due to crossing symmetry, the qg-channel can be read-off from the expression of gq by a
swap of t̂ and û. Recall that t̂ and û are the Mandelstam variables which in terms of the
rapidity can be expressed as

t̂ = m2
H −
√

s xbm⊥eyH (B.7)

û = m2
H −
√

s xam⊥e−yH (B.8)

and they satisfy the relation Q2= ŝ + t̂ + û−m2
H . The NLO contribution is more compli-

cated as takes contributions from three different sources: the real corrections that arise
from the Higgs plus two-partons at the Born level, the virtual corrections that arise from
the interference of the Born and one-loop amplitudes, and the Altarelli-Parisi corrections
that arise from the definition of the parton densities at NLO in MS scheme. Isolating the
terms that are proportional to δ(Q2), we have

Σδ(Q2),(2)
gg = δ

(
Q2
)
(∆ + δ + NcU) ggg +

(
Nc − n f

)
× (B.9)

× Nc

3
δ
(

Q2
) [(m4

H
ŝ

)
+

(
m4

H
t̂

)
+

(
m4

H
û

)
+ m2

H

]

Σδ(Q2),(2)
gq = δ

(
Q2
)
(∆ + NcV1 + CFV2 + V3) ggq (B.10)

+ (Nc − CF)

[
ŝ2 + t̂2 + û2 − ûm2

H
−û

]
CFδ

(
Q2
)

Σδ(Q2),(2)
qq̄ = δ

(
Q2
)

δ
(

Q2
)
(∆ + NcW1 + CFW2 + W3) gqq̄ (B.11)

+ δ
(

Q2
) [ t̂2 + û2 + ŝ2 − ŝm2

H
ŝ

]
(Nc − CF) 2C2

F

Notice that the quark-antiquark with different flavours Σδ(Q2),(2)
qq′ do not contain terms

that are proportional to δ(Q2). The functions U, V and W do not explicitly depend on the
transverse momentum. In fact, they are functions of the Mandelstam variables, the Higgs
mass mH , the number of active flavours n f , and the QCD factor Nc. The function δ, in
addition to the aforementioned variables, depends on the renormalization scale µR while
∆ = 11 in n f = 5 (which is the case we are interested in). Their expressions are explicitly
given in Ref. [279]. For convenience, we write their expressions here

δ =
3β0

2

(
ln

µ2
R
−t̂

+ ln
µ2

R
−û

)
+

(
67
18

Nc −
5
9

n f

)
(B.12)

U =
1
2

ln2 −û
−t̂
− ln

ŝ
m2

H
ln
−t̂
m2

H
− ln

ŝ
m2

H
ln
−û
m2

H
− ln

−t̂
m2

H
ln
−û
m2

H
+ ζ2

+ ln2 m2
H

ŝ
+ ln2 m2

H
m2

H − t̂
+ ln2 m2

H
m2

H − û
(B.13)

+ 2 Li2

(
ŝ−m2

H
ŝ

)
+ 2 Li2

(
m2

H
m2

H − t̂

)
+ 2 Li2

(
m2

H
m2

H − û

)
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V1 =
1
2

ln2 −û
−t̂

+
1
2

ln2 ŝ
−û
− 1

2
ln2 ŝ
−t̂

+ ln
ŝ

m2
H

ln
−t̂
m2

H
− ln

ŝ
m2

H
ln
−û
m2

H
(B.14)

− ln
−t̂
m2

H
ln
−û
m2

H
+ 2 Li2

(
m2

H
m2

H − û

)
+ ln2 m2

H
m2

H − û
+ 3ζ2

V2 = ln2 m2
H

ŝ
+ ln2 m2

H
m2

H − t̂
− 2 ln

ŝ
m2

H
ln
−t̂
m2

H
− 7

2
(B.15)

+ 2 Li2

(
ŝ−m2

H
ŝ

)
+ 2 Li2

(
m2

H
m2

H − t̂

)
− 2ζ2

W1 = ln
−û
m2

H
ln
−t̂
m2

H
− ln

ŝ
m2

H
ln
−û
m2

H
− ln

ŝ
m2

H
ln
−t̂
m2

H
(B.16)

+ 2 Li2

(
ŝ−m2

H
ŝ

)
+ ln2 m2

H
ŝ
− 1

2
ln2 −û
−t̂
− 5ζ2

W2 =
3
2

(
ln

ŝ
−t̂

+ ln
ŝ
−û

)
+ ln2 −û

−t̂
− 2 ln

−û
m2

H
ln
−t̂
m2

H
+ ln2 m2

H
m2

H − û
(B.17)

+ ln2 m2
H

m2
H − t̂

+ 2 Li2

(
m2

H
m2

H − û

)
+ 2 Li2

(
m2

H
m2

H − t̂

)
− 7 + 6ζ2

W3 =
β0

2

(
4 ln

µ2
R
ŝ

+ ln
µ2

R
−û

+ ln
µ2

R
−t̂

)
+

(
67
6

Nc −
5
3

n f

)
(B.18)

Let us now turn to the δ(Q2)-independent part. The LO order term does not contain
terms proportional to δ(Q2), therefore only next-to-leading terms contribute to the expres-
sion of Σab. Its expression can be decomposed into a singular and regular contribution.
Therefore, we can write Σab as

Σab

(
p2

T
Q2

T

)
= ΣS

ab

(
p2

T
Q2

T

)
+ ΣR

ab

(
p2

T
Q2

T

)
. (B.19)

The singular contribution can in turn be organized in terms of the classes of plus distribu-
tions. We explicitly give here the expressions for all the various (sub) partonic channels

ΣS
gg

(
p2

T
Q2

T

)
= f0

(
M, m2

H , Q2,
p2

T
Q2

T

)
+ ∑
P

{(
ln 1− za

1− za

)

+

[
pgg(za)

−t̂
ggg(zaxa, xb)

+

(
za

−t̂

)
f1

(
M, m2

H , Q2
)]

+

(
1

1− za

)

+

[
1
t̂

pgg(za)ggg(zaxa, xb) ln

(
zaµ2

F
−t̂

)

−
(

za

−t̂

)
ln

(
zaQ2

T
−t̂

)
f1

(
M, m2

H , Q2
)
+
( za

t̂

)
f2

(
M, m2

H , Q2
)]

(B.20)

×
(2n f

t̂

)
gqg(zaxa, xb)−

(2n f

t̂

)
pqg(za)gqg(zaxa, xb) ln

(
µ2

F
Q2

)
+ Cqg(za)

}
,

ΣS
gq

(
p2

T
Q2

T

)
= g0

(
M, m2

H , Q2,
p2

T
Q2

T

)
+

(
za

−t̂

)((
ln 1− za

1− za

)

+
− ln

(
Q2

Tza/(−t̂)
)

(1− za)+

)
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×g1

(
M, Q2

)
+

(
1
−û

)[
−Pqq (zb) ln

µ2
Fzb

(−û)
+ pqq (zb)

(
ln 1− zb

1− zb

)

+
+ Cϵ

qq (zb)

]

×ggq (xa, zbxb) +

(
1
−t̂

)[
−Pgg (za) ln

µ2
Fza

(−t̂)
+ pgg (za)

(
ln 1− za

1− za

)

+

]
ggq (zaxa, zb)

+

(
1
−û

)[
−Pgq (zb) ln

µ2
F

Q2 + Cϵ
gq (zb)

]
ggg (za, zbxb) + gqq̄ (zaxa, zb) (B.21)

×
(

1
−t̂

)[
−Pqg (za) ln

µ2
F

Q2 + Cϵ
qg (za)

]
−
(

zb
−û

)(
1

1− zb

)

+

3
2

C2
F

(
t̂2 + ŝ2

−û

)
,

ΣS
qq̄

(
p2

T
Q2

T

)
= h0

(
M, Q2,

p2
T

Q2
T

)
+ ∑
P

{(
za

−t̂

)((
ln 1− za

1− za

)

+
− ln

(
Q2

Tza/(−t̂)
)

(1− za)+

)

×h1 (M) +

(
1
−t̂

)[
−Pqq (za) ln

µ2
Fza

(−t̂)
+ pqq (za)

(
ln 1− za

1− za

)

+
+ Cϵ

qq (za)

]
(B.22)

× gqq̄ (zaxa, zb) +

(
1
t̂

)[
Pgq (za) ln

µ2
F

Q2 − Cϵ
gq (za)

]
−
(

za

−t̂

)(
t̂2 + û2

ŝ

)(
β0C2

F
1− za

)}

ΣS
qq̄′

(
p2

T
Q2

T

)
=

2C2
F

p2
T

ln
p2

T
Q2

T

[(
ŝ−Q2)2

+
(
û + t̂− 2Q2)2

ŝ

]
+ ∑
P

{(
1
−t̂

)
− pgq(za)

(1− za)+

× ln
µ2

F
Q2 +

(
1
−t̂

)
Cϵ

gq(za)gqg(zaxa, xb)

}
, (B.23)

where P=
(
(t̂, q)↔ (û, b)

)
andM denotes the set of Mandelstam variables. The dimen-

sionless variable za is defined in terms of the Mandelstam variables as

za =
−t̂

Q2 − t̂
, zb =

−û
Q2 − û

. (B.24)

The functions pab instead are defined in terms of the splitting functions, whose expressions
are given in App. 1.D, through the following relations

pgg(za) =(1− za)Pgg(za) (B.25)

pqq(za) =(1− za)Pqq(za) (B.26)

with the other splitting terms being the same, i.e pab=Pab (for a ̸= b). The functions
gab(zaxa, xb) are defined in terms of the gab functions, that were introduced at the leading-
order, through a shift in the argument in the Mandelstam variables. They are defined in
terms of the Mandelstam variables as follows

ggq(zaxa, xb) = CF

(
t̂3 + z2

a ŝ2 t̂
−za ŝp2

T

)
(B.27)

gqq̄(zaxa, xb) = 2C2
F

(
t̂4 + z2

a ŝ2 p4
T

za ŝt̂2

)
(B.28)
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ggg(zaxa, xb) = Nc

(
m8

H + z4
a ŝ4 + t̂4 + (za ŝ/p2

T)
4

(z2
a/p2

T)ŝ
2 t̂

)
. (B.29)

The functions gab(xa, zbxb) that arise from the permutation can be derived in an analogous
way. Finally, we list below the functions that enter into our definition of ΣS

ab. The functions
entering into ΣS

gg are given by:

• f0

(
M, m2

H , Q2,
p2

T
Q2

T

)
=

N2
c

p2
T

ln
p2

T
Q2

T

(
f (1)0

(
M, m2

H

)
+ f (2)0

(
M, m2

H ,
p2

T
Q2

T

))
(B.30)

with

f (1)0

(
M, m2

H

)
=

2m4
H

ŝût̂

((
m2

H − t̂
)4

+
(
m2

H − û
)4

+ û4 + t̂4
(
m2

H − û
) (

m2
H − t̂

)
)

(B.31)

f (2)0

(
M, m2

H ,
p2

T
Q2

T

)
=
(

Q2 + Q2
T

)(m8
H + ŝ4 + Q8 + (û/zb)

4 +
(
t̂/za

)4

ŝ2Q2Q2
T

)
(B.32)

• f1

(
M, m2

H , Q2
)
=

N2
c

2

(
f (1)1

(
M, m2

H , Q2
)
+ f (2)1

(
M, m2

H , Q2
))

(B.33)

with

f (1)1

(
M, m2

H , Q2
)
=

(
m8

H + ŝ4 + Q8 + û4 + t̂4)

ŝût̂
(B.34)

f (2)1

(
M, m2

H , Q2
)
= zazb

(
m8

H + ŝ4 + Q8 + (û/zb)
4 +

(
t̂/za

)4

ŝût̂

)
(B.35)

• f2

(
M, m2

H , Q2
)
= Nc

β0

2




m8
H + ŝ4 + zazb

(
(û/zb)

4 +
(
t̂/za

)4
)

ŝût̂


 (B.36)

For the functions that enter into the definition of ΣS
gq, they are expressed as follows:

• g0

(
M, m2

H , Q2,
p2

T
Q2

T

)
= Nc

CF

p2
T

ln
p2

T
Q2

T

(
g(1)0

(
M, m2

H , Q2
)
+ g(2)0

(
M, Q2

))
(B.37)

with

g(1)0

(
M, m2

H , Q2
)
= −2m4

H
ŝû

((
m2

H − t̂
)2

(
m2

H − û
) +

t̂2
(
m2

H − û
)
)

(B.38)

g(2)0

(
M, Q2

)
=
(

Q2 + Q2
T

)(−ŝ3 (t̂za
)
− ŝ

(
t̂/za

)3 −Q6 (û/zb)−Q2 (û/zb)
3

ŝ2Q2Q2
T

)
(B.39)

• g1

(
M, Q2

)
= NcCF

(
g(1)1

(
{M}, Q2

)
+ g(2)1

(
M, Q2

))
(B.40)
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with

g(1)1

(
M, Q2

)
=
−ŝ3 t̂− ŝt̂3 + Q6 t̂ + Q2 t̂3

ŝût̂
(B.41)

g(2)1

(
M, Q2

)
= zazb

(
−ŝ3 (t̂/za

)
− ŝ

(
t̂/za

)3 −Q6 (û/zb)−Q2 (û/zb)
3

ŝût̂

)
(B.42)

Finally, the functions that enter into the definition of ΣS
qq̄ are expressed as follows:

• h0

(
M, Q2,

p2
T

Q2
T

)
= 2

C2
F

p2
T

ln
p2

T
Q2

T

((
ŝ−Q2)2

+
(
û + t̂− 2Q2)2

ŝ

)
(B.43)

• h1

(
M, Q2

)
= (2CF − Nc)C2

F

(
t̂2 + û2 +

(
t̂/za

)2
+ (û/zb)

2

ŝ

)
(B.44)

The regular terms ΣR
ab embody contributions that are not logarithmically enhanced

in the small-pT limit plus O(ϵ) corrections from the collinear singularity (ϵ comes from
the dimensional regularization). For the various partonic channels, their expressions are
exactly the same as those appearing in Ref. [279] and are given by

ΣR
gg =

1
ŝ2 p2

TQ2

(
N2

c

(
A0 + A(1234) + A(2341) + A(3412) + A(4123) + A(1324) (B.45)

+A(2413) + A(3241) + Aϵ

)
+ n f CF

(
B1(+−) + B1(++)

)
+ n f Nc

(
B2(+−) + B2(++)

)

ΣR
gq =

1
ŝ2 p2

TQ2

(
C2

F

(
C1(+−) + C1(−+) + C1(++) + C1(−−)

)
(B.46)

+NcCF

(
C2(+−) + C2(−+) + C2(++) + C2(−−) + C2ϵ

))

ΣR
qq̄ =

1
ŝ2 p2

TQ2

(
2C3

F

(
D1(+−) + D1(++)

)
+ 2NcC2

F

(
D2(+−) + D2(++)

)
+ EQ

)
(B.47)

ΣR
qq̄′ =

C2
FE2

ŝ2 p2
TQ2

, ΣR
qq =

1
ŝ2 p2

TQ2

(
C2

FE2 +
C2

F
Nc

E4

)
(B.48)

where the the A(ijkl) terms come from the (gg→ gg) colour-ordered amplitudes squared
in which the projection of the spins are take for outgoing momenta while the B, C and D
terms come from the (qq̄→ gg) amplitudes squared. The E1, E2 and E3 fully depend on
Born kinematics, they respectively arise from the s, t and u channel diagrams. All of these
expressions are explicitly given in Appendix A of Ref. [279].

Let us recall that the expression of the partonic cross section we are dealing with, as
expressed in Eq. (B.2), is doubly differential in transverse momentum and in rapidity. In
order to derive an expression of a transverse momentum distribution in Mellin space, we
need to integrate the differential distribution over the rapidity yH . It is then clear that
based on the way we organized the cross section in Eq. (B.2), there are two main classes of
integration that we have to deal with, namely the terms that are proportional to δ(Q2) and
the terms that δ-independent. In the subsequent sections, we describe how to deal with
the δ-term in the integration and the plus prescriptions.
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Integration variable and δ(Q2) terms

The integral we are interested to solve is the following

dσ̂ab

dp2
T

(
p2

T
Q2

T

)
=
∫ ymax

ymin

dyH
dσ̂ab

dp2
TdyH

(
p2

T
Q2

T

)
, (B.49)

where (ymin, ymax) defines the rapidity range and usually taken to be ymax = −ymin. In
order to deal with the δ(Q2) terms, one option would be to keep yH as the integration
variable and change the variable that is the argument of the delta functions. As suggested
in [280], a more convenient variable for integration is the momentum Q2. The relation
between yH and Q is given by

sinh yH = ±

√(
ŝ + m2

H −Q2
)2 − 4ŝ

(
p2

T + m2
H
)2

2
√

ŝ
(

p2
T + m2

H
) , (B.50)

and the Jacobian corresponding to this transformation writes as

J(Q2 ← yH) =
(
−2mT

√
ŝ sinh (yH)

)−1
=

1√(
ŝ + m2

H −Q2
)2 − 4ŝ

(
p2

T + m2
H
) . (B.51)

For numerical purposes, it is convenient can re-scale the integration boundaries to be
between zero and one. This can be done by introducing a new variable q = Q2/Q2

max
where Q2

max corresponds to the momentum of the partons at yH = 0. Solving Eq. (B.50)
for Q2 and subsequently setting yH = 0 leads to the following

Q2
max = m2

H + ŝ− 2
√

ŝ
(

p2
T + m2

H
)
. (B.52)

Using q as the integration variable introduces the following Jacobian

J(q← yH) =
Q2

max√(
ŝ + m2

H −Q2
)2 − 4ŝ

(
p2

T + m2
H
) . (B.53)

Using the above changes of variables, the transverse momentum distribution can now be
written in the following form

dσ̂ab

dp2
T

(
p2

T
Q2

T

)
=
∫ 1

0
dq J(q← yH)

[
dσ̂ab

dp2
TdyH

(û, t̂) +
dσ̂ab

dp2
TdyH

(t̂, û)

]
(B.54)

where the permutation of û and t̂ inside the brackets is due to the fact that there are tow
possible choices for the rapidity as illustrated in Eq. (B.50). The above transformation also
implies that the Mandelstam variables û and t̂ also need to be expressed in terms of the
new integration variable. Doing so yields to the following expression

t̂± =
1
2

[
Q2 + m2

H − ŝ±
√(

ŝ + m2
H −Q2

)2 − 4ŝ
(

p2
T + m2

H
)]

(B.55)
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û± =
1
2

[
Q2 + m2

H − ŝ∓
√(

ŝ + m2
H −Q2

)2 − 4ŝ
(

p2
T + m2

H
)]

(B.56)

where again the (±) reflects the fact that there are two possible choices for the rapidity.
Putting aside the plus distributions, the integration of all terms proportional to δ(Q2),

namely the Σδ(Q2)
ab -functions is now straightforward. As a matter of fact, there is no need

at all to perform the integration over yH since fully transverse momentum distribution
can be computed by simply setting q = Q2 = 0,
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. (B.57)

Change of variables in Plus distributions

We have seen how a convenient choice of variable simplifies the integration of the terms
that are proportional to δ(Q2) but we have not commented yet on how this impact the
plus distributions. Large logarithmic terms appear in the form of plus distribution

( f (za))+ =

(
lnk(1− za)

1− za

)

+

(B.58)

where k = 0, 1 for the next-to-leading contributions we are considering. The above plus
distributions can be expressed in terms of the integration variable q
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(B.59)
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, (B.60)

where the square brackets indicate that the pole is at q = 0 as opposed to the pole being
at za = 1. Analogous expressions can be derive for ( f (zb))+ by just replacing t̂ with û
in Eqs. (B.59, B.60). Therefore, The integration of the terms in which plus distributions
appear is now straightforward as they are given by

∫ 1

0
dq [ f (q)]+ g(q) =

∫ 1

0
dq f (q) (g(q)− g(1)) (B.61)

where g is just an analytic function multiplying the plus distributions.

Mellin transform of the full FO predictions

Once the integration over the rapidity has been performed, one can compute the Mellin
transform of the ensuing expression. Whilst the exact analytical computation of a few sets
of terms appearing in the cross section is feasible both for the rapidity integration and
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the Mellin transform, most of the terms have to be integrated numerically. As usual, the
Mellin transform of the cross section is computed via

dσ̂ab

dp2
T

(
N,

p2
T

Q2
T

)
=
∫ 1

0
dx xN−1 dσ̂ab

dp2
T

(
x,

p2
T

Q2
T

)
(B.62)

where the Mellin transform is taken w.r.t the partonic variable x = Q2/ŝ. The procedure
described above is what is implemented in HPT-MON [254]. This allowed us to perform
checks on the approximate Higgs NNLO distribution in Mellin space.
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4

G E N E R A T I N G N E W F E A T U R E S W I T H D E E P L E A R N I N G
M O D E L S

In recent years, the field of deep generative modellings have received considerable atten-
tion due to the explosion of numerous machine learning techniques that provide various
degree of generation capability. If trained successfully, deep generative models can be used
to estimate the likelihood of a given data and to create new samples that follow the same
underlying probability distribution. One of the most popular classes of deep generative
models is known as Generative Adversarial Networks (or in short GANs). Applications of
deep generative models, especially GANs, have reached a wide range of area such as com-
puter visions [281–286], language and speech synthesis [287, 288], cryptography [289, 290],
stenography [291–293], et cetera.

Owing to the complexity of the simulations (required for the event construction and
data analysis), the field of high energy physics has not been spared. As a matter of fact,
some of the shortcomings arising in standard modelling have been overcome by deep
generative models, and to the present day, variants of deep generative models have been
applied to various areas of LHC searches such as parton showers, detector simulation, and
searches for physics beyond the standard model [66, 294–333].

The purpose of this chapter is not to present a detailed review of deep generative mod-
els (to which a vast amount of literatures already exists), nor an extensive comparative
analyses of the different variants, but rather to illustrate broadly the concept of deep gen-
erative modelings and their applications. Particular attention will be given to generative
adversarial neural networks which Chapter 5 will rely on.

4.1 Basics of Deep Learning

Neural network, also referred to as Artificial Neural Network (ANNs), generally assumes
feed-forward structure in which the neurons are stacked into layers, with each of the
neurons receiving inputs from the previous layers. One example of a widely used archi-
tecture is known as Multilayer Perceptron that is comprised of an input layer, one single
hidden layer, and an output layer, with pairs of successive layer being fully connected
(as illustrated in Fig. 25). If we denote by X⃗ the vector which contains as elements the
values of the perceptrons in the input layer, then the hidden and output layer compute the
following

X⃗H = f1(W1X⃗P + B⃗1) (4.1.1)

X⃗O = f2(W2X⃗H + B⃗2) (4.1.2)
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Figure 25 An example of a multilayer perceptron model. The right network represents
how the input data are fed to the perceptrons, traverse through one single hidden layer
and results into a prediction Y⃗. The left network describes how a perceptron is activated
with an input vector X⃗, weights w⃗, bias w0, and an activation function f .

where W1,2 and B⃗1,2 represent the weight and bias vectors of the multilayer perceptron
layer respectively, and f1,2 represent some activation functions. If the neural network
contains more than one single hidden layer, then they are called Deep Neural Networks
(DNNs). Whilst the universal approximation theorem [334] states that a Neural Network with
one single hidden layer is capable of approximating any Borel-measurable function, in
practice, deep neural networks can substantially improve the training. Indeed, due to
their modularity, deep neural networks are more capable of learning complex features by
hierarchically composing (simple) non-linear functions.

In order to train (deep) neural networks, two key elements are required: initialization
and optimization. In turn, the latter is composed of several components which consists in
computing the loss (or cost) function and updating each parameter of the networks using
the gradients according to an optimization algorithm. For the sake of pedagogical clarity,
let us briefly expand on these elements.

Initialization

The initialization procedure is one of the most crucial steps when training neural networks
as it can significantly impact the model’s performance. A properly (or conversely poorly)
initialized neural network can lead to a substantially good (or conversely bad) performance.
In order to illustrate this, consider a deep neural network where all the bias are zero
and all the activation function are linear, i.e. X⃗n=WnWn−1 · · ·W1X⃗P . It can be easily
argued that a too-large initialization of the weights leads to exploding gradients. As an
illustration, consider the case where every weight is initialized with the identity matrix
times some positive constant ε>1 that makes the values on the diagonal larger than unity,
i.e. W1=W2 · · · =Wn=εI. The output layer is then given by X⃗O= (εI)n X⃗P suggesting
that X⃗ℓ increases exponentially with ℓ where ℓ denotes the ℓ-th layer. When propagated
backward, the the gradients of the loss function w.r.t the parameters of the deep neural
network are too big, leading to an exploding gradient problem. Conversely, a too-small
initialization of the deep neural network yields vanishing gradients. Following the same
line of thought as before, but instead considering ε̃>1 such that the values of the diagonal
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weights are smaller than unity. In this scenario, the output layer is given by X⃗O= (ε̃I)n X⃗P
suggesting that X⃗ℓ decreases exponentially with ℓ. As a result, the gradients of the (deep)
neural network are too small leading to a vanishing gradient problem.

In order to prevent the gradients of the loss functions from vanishing or exploding, it is
suitable to keep the mean of the activation (here also noted X⃗ℓ due to the linearity of the
activation function) around zero and with variance staying the same across all the layers.
In a generic case where no assumption about the (deep) neural network is made, this can
be translated into the following constraints:

E
[
WnX⃗n−1 + B⃗n

]
= E

[
Wn−1X⃗n−2 + B⃗n−1

]
(4.1.3)

Var
(

WnX⃗n−1 + B⃗n

)
= Var

(
Wn−1X⃗n−2 + B⃗n−1

)
. (4.1.4)

This suggests that the weights should be sampled from a carefully chosen probability
distributions. In practice, the most common used distributions are uniform (Wℓ∼U (−x, x))
and normal (Wℓ∼N (0, σ)). In particular, it has been shown that variants of the Xavier
initializer generally lead to better performance [335].

Optimization

Once the weights of the (deep) neural network are properly initialized, samples from
the training set are fed into the neural networks and forward-propagated through all
the layers, resulting in some predictions Y⃗=DNN(X⃗, θ). The parameters of the neural
networks are then fine-tuned by comparing the predictions to the ground truths Y⃗p. This

is usually done by computing a differentiable loss function L
(

Y⃗O , Y⃗p

)
. The choice of loss

function depends on the problem at hand, for simple regression problems for instance,
one may use the mean squared error LMSE

(
Y⃗O , Y⃗P

)
=1/N ∑N

n=1 |YO,i −YP ,i|2.
In the case where the training set is large, which is often the case for deep learning

studies, the loss function L is most appropriately optimized using Mini-Batch Stochastic
Gradient Descent (SGD) or its variants in which only a small batch m of the training samples
is considered at each iteration. The gradient of the objective loss functions w.r.t. the
neural network’s parameters θ are then computed using a backpropagation algorithm. The
backpropagation enables the gradients to be propagated backwards from the output to
the input layers. Such computations involve repeatedly applying the chain rule of partial
derivatives. For each step of gradient descent, the parameters θ is updated according to
the following transformation

θ ←− θ − η∇θLm

(
g
(

X⃗, θ
)

, Y⃗
)

, (4.1.5)

where η denotes the learning rate and ∇θLm represents the gradient w.r.t. the parameter θ
over the mini-batch m. The choice of a learning rate is vital to the stability and convergence
of the (deep) neural network. For instance, due to the small changes brought to the weights
during the update, smaller learning rate may require a large number of epochs in order
to reach convergence. Whilst large value of learning rate could lead to a fewer training
epochs, it can cause the neural network to converge quickly to a suboptimal solution. The
issue associated to the choice of learning rate can be overcome by resorting to an adaptive
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optimizer where the learning rate is updated throughout the training. Such a dynamically
adjusted learning rate is implemented for example in the Adaptive Momentum Stochastic
Gradient Descent, also known as Adam. The fine-tune of the neural network’s parameters in
the Adam optimization is performed using the following expression

θ ←− θ − γ
m̂1√

m̂2 + ϵ
, (4.1.6)

where γ≡10−3 is the magnitude of the stepsize that is progressively adjusted during the
training by the first and second moments m̂1 and m̂2. At the beginning of the training, the
moments m̂1 and m̂2 are set to zero, and therefore in order for the gradients to not blow
up, a small parameter ϵ=10−8 is introduced. Throughout the training, both moments
are updated according to the gradient of the loss function. Mathematically, this reads as
follows

m̂1 ←− (1− β1)∇θLm

(
g
(

X⃗, θ
)

, Y⃗
)
+ β1m̂1 (4.1.7)

m̂2 ←− (1− β2)∇θLm

(
g
(

X⃗, θ
)

, Y⃗
)
+ β2m̂2. (4.1.8)

The constants β1 and β2 are called exponential decay rates for the moment estimates. Their
default values, as proposed by Ref. [336], are given by β1=0.9 and β2=0.999. At every
update, before entering in Eq. (4.1.6), the moments are normalized according to

m̂1 =
m̂1

1− βt
1

, m̂2 =
m̂2

1− βt
2

, (4.1.9)

where t represents the timestep. Eq. (4.1.9) is known as bias correction and prevents the
stepsize from becoming too large. Two optimization methods that are closely related to
Adam are RMSprop [337] and AdaGrad [338].

Overfitting

Due to the fact that deep neural networks are typically overparametrized, they are more
prone to overfitting. However, there exists regularization procedures that can prevent a
model from learning noises. In short, regularization provides constraints to the space of
parameters accessible by the deep neural networks. From the efficiency point of view, it
is actually preferable to have a large model that may require regularization during the
training than a model with too little generalization capacity to learn the problem at hand.
In most deep learning applications, the former approach has indeed proved to lead to
faster optimization resulting in an overall better performance.

- L2 Regularization. Also known as Ridge Regression, the L2 regularization is one
of the most standard ways to avoid overfitting. This regularization relies on the
assumption that the weight of the deep neural networks should not deviate far from
zero. Such a constraint in enforced by adding a regularization term (based on L2
norm) to the loss function. That is,

L ←− L+
λ

2
||W||2 (4.1.10)



136 G E N E R AT I N G N E W F E AT U R E S W I T H D E E P L E A R N I N G M O D E L S

where λ is a constant that penalizes the weights. This parameter has to be chosen
carefully because choosing λ to be large, for instance, will lead to an underfitting.
In the particular case where λ=0, we get back the original definition of the loss
function.

- Batch normalization. What can render the training of deep neural networks difficult
is a phenomenon known as internal covariate shifts where the distribution of each
layers input (activations) changes during the training. In order to improve the
training stability, one must seek to reduce the internal covariate shift through a
procedure known as batch normalization. This can be done by normalizing the output
batches. For the sake of clarity, let us focus only at a particular activation Xℓ,k in a
hidden layer ℓ (where here we over-use the notation Xℓ,k to also represent a given
activation) and Consider a mini-batch Bm of size m. We then have m values of
the activation Xℓ,k in the mini-batch Bm={X(1)

ℓ,k , · · · , X(m)
ℓ,k }. The batch normalization

algorithms [339] normalizes the activation as follows

µB ←−
1
m

m

∑
i=1

X(i)
ℓ,k , σ2

B ←−
1
m

m

∑
i=1

(
X(i)
ℓ,k − µB

)
, (4.1.11)

X̂(i)
ℓ,k ←−

X(i)
ℓ,k − µB√
σ2
B + ϵ

, X(i)
ℓ+1,k ←− γX̂(i)

ℓ,k + β (4.1.12)

where ϵ is a small parameter and γ, β are learnable parameters. Several studies have
shown that the batch normalization approach can circumvent the training instability
due to poor initialization [339, 340].

4.2 Supervised vs. Unsupervised learning

Within the field of machine learning and artificial intelligence, there are two main tasks,
namely the supervised and unsupervised learning. In the following section, we briefly
describe the aims of each task and the differences between them.

Supervised learning:

It belongs to the class of machine learning that uses labelled data sets. As a matter of
fact, this is mainly what sets supervised learning apart from unsupervised learning. The
purpose of labelling the data sets is to train in a supervised manner an algorithm into
accurately classifying data or predicting outcomes. This indeed allows the algorithm
(model) to measure its accuracy and learn over time. Problems that require supervised
learning can be categorized into classification and regression. Classification problems arise
when one wants to map input to output labels, while regression problems arise when
one wants to map input into continuous outputs. In both classification and regression
problems, the main objective is to find specific structure in the input data that allows one
to effectively produce correct output data. To dates, the most common algorithms on
supervised learning include logistic regression, support vector machines, artificial neural
networks (ANNs), and random forests.
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X Z

Figure 26 Given a complicated distribution X , a deep generative model Gθ is trained
to map samples from a simple distribution Z defined over Rm to a more complicated
distribution Gθ(Z) that is similar to X defined over Rn. If the deep generative model is
inverible as is the case for Invertible Neural Networks (INNs) such as Normalizing Flows, an
inverse mapping is also possible. Notice that this is not the case for generative adversarial
models.

Unsupervised learning:

It belongs to the class of machine learning algorithms that discovers hidden patterns
in a data set without the need of a supervision. As opposed to supervised learning,
unsupervised learning methods are designed to problems where the data sets are not
labelled. In other words, the approach of unsupervised learning is suitable for problems
that require the algorithm to identify and extract the inherent feature of a given input
data set. The most common tasks within unsupervised learning include: clustering,
representation learning, density estimation, and (some classes of) generative modelling.
Some common unsupervised learning algorithms include K-means clustering, kernel
density estimation, (variational) autoencoders, and normalizing flows. Some of these
algorithms will be described in details or partially in the subsequent sections.

Semi-supervised learning:

Supervised and unsupervised learning can be combined together into a single training
approach known as semi-supervised learning. Such an approach is suitable for problems
where the target labels for all the samples in the data set are not available. One of the most
well-known examples of semi-supervised learning is the Generative Adversarial Training.
Details of such a training is amply detailed in the next Chapter.

4.3 Generative Models

In the following section, we give a pedagogical introduction to a particular class of
unsupervised learning known as Generative Modelling. The problem deep generative
models are concerned with is the following: given a target distribution that follows
a probability distribution pR, we would like to generate new samples following some
probability distribution pθ such that pθ is very close to pR, i.e. the Kullback-Leibler
divergence

KL(pR||pθ) =
∫

x
dx pR(x) ln

(
pR(x)
pθ(θ)

)
(4.3.1)
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is minimal. Thus, the goal is to construct a function Gθ : z −→ xg that maps a latent
variable z with fixed probability distribution pz to a sample xg with probability pθ . The
construction of the function Gθ from the first principle is infeasible for most of the data
sets of interest. The fundamental design concept of deep generative models is to define
Gθ in terms of a deep neural network function. By optimizing the parameters θ (which
now defines the parameters of the deep neural networks), one can modify the probability
distribution pθ to resemble pR. There exists various machine learning techniques to define
Gθ , examples of the most used techniques are briefly described below. For reasons that
shall be explained in the next sections, the technique that we adopt in the present thesis is
known as generative adversarial model, which is amply detailed in Sec. (4.4).

Variational Autoencoders (VAEs)

Variational Autoencoders [341] are one of the widely used likelihood-based generative
models whose basic idea consist in setting two deep neural networks known as encoder
and decoder and to learn the best encoding-decoding scheme using iterative optimization
process. Roughly speaking, the encoder takes an input data and compresses it down to
a smaller representation with fewer dimensions. This consists in either selecting only a
subset of the initial features or by combining a subset of them into a reduced number
of features. The decoder then takes the low representation of the input data and tries to
reconstruct new data sample that is similar to the ground truth. In more practical terms,
at each iteration, the encoder is fed with some data, then the encoded-decoded output
is compared to the input data and the error is backpropagated through the architecture
to update the weights and biases. In order to avoid underfitting or overfitting, VAEs
implements regularization procedures that ensures that the latent space has the relevant
properties to enable generative process. The loss function that is minimized in VAEs is
given by the following expression

LVAE = E
qϕ(z|z)

[ln (pθ(x|z))]−KL
[
qϕ(z|z)|pθ(z)

]
, (4.3.2)

where x as usual represents the true data distribution, ϕ and θ represents the parameterized
distributions for the VAE probabilistic encoder-decoder networks. The first term in the
above equation represents the reconstruction likelihood while the second term represents
the non-negative divergence between the true and approximate posterior. The latter
ensures that the learned distribution is similar to the prior distribution. One of the main
drawbacks of the VAEs is that, despite the fact that they can learn feature representation,
they have intractable marginal likelihoods.

Normalizing flows

Normalizing flows belong to the class of generative models that are invertible. That is, the
function Gθ used to model the posterior probability distribution is a bijective function. They
are constructed as a series of invertible functions which map complex data to a simple
Gaussian distribution, or vice-versa. A stark difference between VAEs and normalizing
flow models is that the latter converge faster than the former. However, samples generated
using normalizing flow are not that rich in features as other models.
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4.4 Generative Neural Networks (GANs)

In the following section, we describe how distributions can be modelled using generative
adversarial neural networks by implicitly learning the representation of the probability
density. We first present a methodological review by following the original description
[342] (often referred to as Vanilla-GAN). In Sec. (4.4.2), we briefly expand on the challenges
in training generative adversarial models, and provide in Sec. (4.4.3) (in addition to the
ones mentioned in Sec. (4.1)) regularization procedures and GAN architecture variants to
overcome those challenges in order to improve the training stability.

4.4.1 Theoretical framework

As mentioned in Sec. (4.3), the main idea that underpins all deep generative models
is the construction of a function Gθ that generates new samples following a particular
probability distribution. In the case of generative adversarial models, the function Gθ

is a deep neural network function whose training over time is controlled by differential
deep neural networks. The two neural networks are commonly known as Generator and
Discriminator. The generator Gθ is a differentiable function represented in our case by a
multilayer perceptron whose job is to deterministically generate samples xg from a latent
variable z. The discriminator Dϕ is also a multilayer perceptron whose main job is to
distinguish samples from real and synthetic PDF replicas.

The generator Gθ and discriminator Dϕ are then trained in an adversarial way: Gθ tries
to capture the probability distribution of a given data set and generates new samples
following the same probability distribution (therefore minimizes the objective such that
pR= pθ), and Dϕ tries to distinguish whether the sample came from an input data set
rather than from the generator (therefore maximizes the objective pR ̸=pθ). This adversarial
training allows both models to improve to the point where the generator is able to create
synthetic data such that the discriminator can no longer distinguish between synthetic
and original sets. This is a sort of min-max game where the GAN objective function is
given by following expression [342]:

min
θ

max
ϕ

V
(
Gθ , Dϕ

)
= E

x∼pR

[
ln Dϕ(x)

]
+ E

z∼pz

[
ln
(
1− Dϕ (Gθ(z))

)]
. (4.4.1)

For a fixed generator Gθ , the discriminator performs a binary classification by maximizing
V w.r.t. ϕ while assigning the probability one to samples from the prior PDF replicas
(x∼pR), and assigning probability zero to the synthetic samples (x∼pθ). Therefore, the
discriminator is at its optimal efficiency when:

D⋆(x) =
pR(x)

pR(x) + pθ(x)
. (4.4.2)

If we now assume that the discriminator is at its best (D(x)=D⋆(x)), then the objective
function that the generator is trying to minimize can be expressed in terms of the Jensen-
Shannon divergence JSD(pR, pθ) as follows:

V
(

Gθ , D∗ϕ
)
= 2 JSD(pR, pθ)− 2 ln 2, (4.4.3)
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x ∼ pR

z Gθ(z)
xg ∼ pθ

Dφ(x)

Real

Fake

Figure 27 Diagrammatic structure of a generative adversarial neural network. Both neural
networks are represented in terms of deep convolutional neural networks (DCNNs). The
discriminator is expressed by Dϕ while the generator is expressed by Gθ . Both the true
input data and the generated samples are fed into the discriminator which evaluates
whether or not the generated samples are similar to the true data.

where the Jensen-Shannon divergence satisfies all the properties of the Kullback-Leibler
divergence and has the additional constraint that JSD(pR, pθ)=JSD(pθ , pR). We then see
from Eqs. (4.4.1-4.4.3) that the best objective value we can achieve with optimal generator
and discriminator is (−2 ln 2).

The generator and discriminator are generally trained in the following way: the gener-
ator generates a batch of synthetic samples that along with the samples from the input
data sets are provided to the discriminator 1 (see Algorithm 1). Algorithm 1 is a typical
formulation of a generative-based adversarial strategy. The adversarial training of both
the discriminator and generator neural networks are described in Fig. 27. The training
goes as follows. On the one hand, the generator takes as input a vector of random noises
and outputs fake data which then get fed into the discriminator. During the training of the
Generator, it is important that the discriminator is freezed, otherwise equilibrium might
never be reached. On the other hand, the discriminator model takes as input both the true
and fake data. The model then outputs predictions as to whether the samples are real
with labels ones or fake with labels zeros. However, as we will discuss in the next section,
working with such an implementation in practice is very challenging and often leads to
poor results.

4.4.2 Challenges in training GANs

Training generative adversarial models can be very challenging due to the lack of stopping
criteria that estimates when exactly GANs have finished training. Therefore, there is
no guarantee that the equilibrium is reached. In addition, GANs have common failure

1 It is important that during the training of the generator, the discriminator is not trained. As it will be explained
later, having an over-optimized discriminator leads to instabilities.
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Algorithm 1: Algorithm describing the stochastic gradient descent training of a
standard generative adversarial networks [342].

for epochs 1, · · · , N do
for Discriminator steps 1, · · · , k do

- Sample minibatch of size m from the real sample: {x(1)r , · · · , x(m)
r }

- Sample minibatch of size m from the latent space: {z(1), · · · , z(m)}
- Perform gradient ascent on discriminator:

∇ϕV
(
Gθ , Dϕ

)
=

1
m
∇ϕ

m

∑
i=1

ln Dϕ

(
x(i)r

)

+
1
m
∇ϕ

m

∑
i=1

ln
(

1− Dϕ

(
Gθ

(
z(i)
)))

end
for Generator steps 1, · · · , ℓ do

- Sample minibatch of size m from the latent space: {z(1), · · · , z(m)}
- Perform gradient descent on generator:

∇θV
(
Gθ , Dϕ

)
=

1
m
∇θ

m

∑
i=1

ln
(

1− Dϕ

(
Gθ

(
z(i)
)))

end
end
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modes due to inappropriate choices of network architecture, loss function or optimization
algorithm. Several solutions have been proposed to address these issues which is still a
topic subject to active research. For a review, we refer the reader to Refs. [343–345]. In
this section, we briefly describe these challenges before providing some solutions in the
next section. The most encountered limitations of GANs in our case are: non-convergence,
vanishing gradients, and mode collapse.

It is often the case that during optimization, the losses of generator and discriminator
continue to oscillate without converging to a clear stopping value. Although the existence
of an equilibrium (Nash Equilibrium) has been proved in the original GAN paper [342], there
is no guarantee that such an equilibrium will be reached in practice. This is mainly due to
the fact that the generator and discriminator are modelled in terms of neural networks,
thus restricting the optimization procedures to the parameter space of the networks rather
than learning directly from the probability distributions [344]. On the other hand, this
non-convergence could happen even if the model has ventured near the equilibrium
point. In this case, when the generated samples are far from the target distribution, the
discriminator pushes the generator towards the true data distribution while at the same
time increasing its slope. When the generated samples approaches the target distribution,
the discriminator’s slope is the highest, pushing away the generator from the true data
distribution [346]. As a result, depending on the stopping criteria, the GAN optimization
might not necessarily converge to a Nash equilibrium [342] in which the performance of
the discriminator and generator cannot be improved further (i.e. optimal conditions). In
such a scenario, the generated samples are just collections of random noise.

The vanishing gradients occur when the discriminator is over-optimized and does not
provide enough information to the generator to make substantial progress [343]. During
backpropagation, the gradient of the generator flows backward from the last layer to the
first, getting smaller at each iteration. This raises some complications since, in practice, the
objective function of a discriminator close to optimal is not given by 2 JSD(pR, pθ)−2 ln 2
as stated in Eq. (4.4.3), but rather close to zero. This then pushes the loss function to zero,
providing little or no feedback to the generator. In such a case, the gradient does not
change the values of the weights in the initial layers, altering the training of the subsequent
layers.

Finally, the mode collapse occurs when the generator outputs samples of low diver-
sity [347], i.e, the generator maps multiple distinct input to the same output. This is the
case where the generated samples from the GAN capture only a few of the modes of the
input data set. Mode collapse is a common pathology to all generative adversarial models
as the cause is deeply rooted in the concept of GANs.

The challenges mentioned above contribute to the instabilities that arise in training GAN
models. What often complicates the situation is that these obstacles are linked with each
other and one might require a procedure that tackles all of them at the same time. As we
will briefly describe in the next section, there exist various regularization techniques, some
specific to the problem in question, that could influence the stability during the training.

4.4.3 Training stability & Regularization

Apart from the regularization procedures introduced in Sec. (4.1), there exists alternative
procedures and techniques more suitable for generative adversarial models that can
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alleviate the challenges described in Sec. (4.4.2). Whilst some of the procedures can be
imposed on already defined GAN architecture, some are defined in terms of different
model variants. Here, we just list some of the most used and widespread techniques.

- Gradient Penalty:

One of the first line of defence against instabilities in training GANs is a technique
known as gradient penalty. This consists in imposing a penalty on the gradient of the
discriminator Dϕ(x) in order to enhance its sensitivity in the regions Dϕ(x)→ 0 and
Dϕ(x)→ 1. The gradient penalty is applied to the logit of Dϕ(x) as follows

D̃ϕ(x) = ln
(

Dϕ(x)
1− Dϕ(x)

)
−→ ∇D̃ϕ(x) =

∇Dϕ(x)
Dϕ(x)

(
1− Dϕ(x)

) . (4.4.4)

The penalty on the discriminator is applied in the regions where the predictions
are wrong, i.e. the discriminator assigning labels zero to true data, or conversely
assigning labels one to fake data. The gradient penalty loss is therefore defined by

LGP = E
x∼pR

[(
1− Dϕ(x)

)2 |∇D̃ϕ(x)|2
]
+ E

z∼pz

[
Dϕ (Gθ(z))

2 |∇D̃ϕ(x)|2
]

. (4.4.5)

In the case where the discriminator is perfectly well-trained the prefactors
(
1−Dϕ(x)

)

and D2
ϕ(x) vanish. The gradient penalty loss given in Eq. (4.4.5) can then be added to

the discriminator’s loss function L̃D=LD+λLGP with λ a properly chosen variable.

- Architecture variants:

In order to alleviate the challenges associated with the training of GANs, various
modifications on the architecture (including loss function) have been proposed. For
instance, it has been studied in Ref. [348, 349] that the generative capabilities of the
Generator is inherently bounded by the size of the discriminator’s architecture. This
has motivated the use of large discriminator networks. On the other hand, the use
of overparametrized discriminator may saturates the generator and hence ruin the
training. However, this can be easily circumvented by restricting the weight updates
of the discriminator using for example the gradient penalty described above. These
eventually led to the use of deep convolutional neural network to represent both the
discriminator and generator’s. There exists thus far various GAN variants, examples
are DCGAN [350, 351], INFOGAN [352], BIGGAN [353], et cetera. For the study of
PDFs, that will be presented in the next Chapter, we use a variant called WGAN [354].

- Hyperparameter Optimization:

One of the most robust ways to come up with stable networks that do not suffer
from the issues mentioned before is the hyperparameter tuning in which a space of
parameter is scanned in order to find the optimal values given the metrics of interest.
The choice of model (or variants) could even be regarded as a hyperparameter.
Details on such a procedure are described in the next Chapter.

4.5 Summary

In this chapter, we reviewed the fundamentals of deep learning, explaining in details the
various pieces that enter into the training of a deep neural network. We then provided a
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brief description of what deep generative models are and how efficient they are in terms
of modelling posterior distributions. In particular, we focused on generative adversarial
neural networks, which differ from the other families of generative models in that GANs
are likelihood-free. The challenges related to GANs were then discussed in details, as well
as the standard regularization procedures used to tackle them. Two possible applications
of the GANs to parton densities are presented in the next chapter.
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It has been strongly emphasized in Chapter 1 that Parton Distribution Functions (PDFs) are
crucial ingredients for all predictions of physical observables that are of interest at hadron
colliders such as LHC, and efforts to make their determination accurate with smaller
uncertainties have become increasingly relevant. In current phenomenology studies, apart
from the theoretical uncertainties arising from missing higher-order corrections, they are
one of the dominant sources of uncertainty in precision measurement. A striking example
of such a limitation is the role that PDFs play in the extraction of the Higgs coupling from
data [132]. It is therefore clear that for the sake of doing precision physics (an important
path toward a deep understanding of the physics beyond the Standard Model), PDFs need
to be accurate at a percent-level [4]. The road toward reaching such an accuracy manifests
at two distinct levels: (i) the determination of the PDFs through a fitting procedure, and
(ii) the a posteriori treatment of the fitted results such as the reduction of the number
of Monte Carlo (MC) replicas (or number of eigenvectors in the case of Hessian PDFs).
Recently, spectacular advancement has been seen at the level of the PDF determination
thanks to the inclusion of new (LHC) datasets and more importantly to the improvement
in methodology, see Ref. [4] for ample details. In the following chapter, what we are
interested is the latter, specifically the compression of a Monte Carlo PDF replicas into a
smaller set that replicates all the statistical properties of the starting PDF set (henceforth
referred to as prior).

Originally, the compression of Monte Carlo PDFs has been introduced in the context
of Combined PDF Sets. The idea consists in combining various PDF sets determined
by different PDF fitter groups that implement different methodologies. As mentioned
before, to the present date, there exists various PDF fitter groups that implement different
methodology and provide different estimation of the PDF errors [34–68, 68–73, 355, 356].
As a consequence, even when benchmarking the different methodologies with the same
input datasets, it has been shown that the resulting PDF sets still differ with a reasonable
agreement [357]. Therefore, from the practical point of view, it seems reasonable to combine
the different PDF sets and evaluate the combined uncertainty in order to obtain estimates
of the PDF error that take into account the various methodologies.

Apart from its relevance for the combination of Monte Carlo PDF sets, the compression
methodology is also useful for native Monte Carlo PDF. In the NNPDF fitting methodol-
ogy where the PDFs are represented in terms of Monte Carlo replicas, a large number of
such replicas are required in order to give an accurate representation of the underlying
probability distribution. Indeed, there has been considerable evidence that one might
require O(103) (or even O(104)) Monte Carlo replicas in order to converge to the asymp-
totic result [358, 359]. Putting aside the practical limits that arise with the fitting of such
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a large ensemble of Monte Carlo replicas, dealing with a large PDF set when producing
phenomenological studies or Monte Carlo simulations is not ideal. In order to circumvent
such issues, one could compress down the large sample of Monte Carlo replicas into a
smaller set. However, when going from O(103) to say O(100), one has to make sure that
all the various statistical properties such as correlations between pairs of flavours are
preserved. This is where the compression approach comes into play as a mean to select
a subset of Monte Carlo replicas that provides an accurate representation of the prior
distribution.

A compression methodology has been introduced in Ref. [358]. The basic conceptual
idea of the compression lies on the search of a subset of replicas that reproduces best the
statistical features of the original Monte Carlo PDF set. It has been shown at the PDF
level using NNPDF3.0 sets that a compressed set with Nc=100 replicas is reasonably
equivalent to a prior with Np=1000 replicas. We would like to propose a new compression
strategy [360] that aims at providing a compressed set with an even smaller number of
replicas when compared to the standard approach of Ref. [358], while providing a similar
representation of the original probability distribution. The framework we would like
to propose is based on the generative adversarial neural networks that was introduced
in Sec. (4.4). The idea is to enhanced the statistics of a given input Monte Carlo PDF set
by generating what we call synthetic replicas. These synthetic replicas are new replicas
generated from the GANs and to some extent follow the same probability distribution as
the prior. The motivation behind this is based on the following observation: large samples
of Monte Carlo replicas contains fluctuations that average out to the an asymptotic limit;
in the standard compression approach, the is idea is just to select samples that present less
fluctuations and contain the bulk of the statistical information present in the prior. This
suggests that it should be possible to generate samples that contain less fluctuations and
once combined with the samples from the prior can lead to a more efficient compressed
representations of the full result.

This chapter is organized as follows. In Sec. (5.1), we review the mathematical framework
of the compression methodology while at the same time introducing a new implemen-
tation that is faster and most importantly can incorporate the GANs framework. The
GANPDFS framework is introduced in Sec. (5.2.1) in which we present the GAN architec-
ture used in our implementation. We also comment on some regularization procedures
that are specific to our problem in order to circumvent the issues related to the training
stability described in Sec. (4.4.2). The concept of hyperparameter optimization is then
introduced in order to fit the methodology by scanning the hyperparameter space. The
efficiency of the new framework is then assessed in Sec. (5.3) by comparing it against the
standard approach based on some statistical estimators. In Sec. (5.4), we further validate
our methodology by producing phenomenological results for LHC observables both at the
total inclusive and differential levels. In Sec. (5.5), we give an outlook on the potential of
using the GANPDFS framework to tackle the issue of the finite size effect by by-passing
the need of fitting Monte Carlo replicas of O(104), or even beyond. Finally, in Sec. (5.6),
we discuss why the GAN-based compression might not be relevant for NNPDF4.0 PDF
sets and why that can be interpreted as an indication of the robustness of the NNPDF4.0
methodology.
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5.1 Compression: methodological review

Let us briefly review the compression methodology for Monte Carlo PDF sets introduced
in Ref. [358]. The following closely follows the description provided in the aforementioned
reference. One can summarizes the main idea behind the compression of (combined)
Monte Carlo PDFs as finding a subset of the original PDF set such that the statistical
distance between the original and the compressed is minimal. This ensures that the loss of
statistical information is as low as possible. In this sense, the compression methodology has
to rely on two main ingredients: a proper definition of the distance metric that quantify the
distinguishability between the prior and the compressed distributions, and an appropriate
minimization algorithm that explores the space of possible combinations of PDF replicas
that leads to such a minima.

It was originally proposed in Ref. [358] that a suitable figure of merit to measure the
difference between two parton distribution functions is the error functio

ERF =
1

NEST
∑
k

1
Nk

∑
i

(
Ck(xi)− Pk(xi)

Pk(xi)

)2

, (5.1.1)

where k runs over a set of statistical estimators with Nk the associated normalization
factor, Pk(xi) is the value of the estimator k computed at a given point i in the x-grid
for the prior set, and Ck(xi) is the corresponding value of the same estimator but for the
compressed distribution. Finally, NEST denotes the total number of statistical estimators
involved in the minimization. The scale dependence is not explicit shown in Eq. (5.1.1)
since the scale at which the the PDFs are evaluated is the same for all estimators. As in the
original compression methodology, we include as statistical estimators lower moments
(such as mean and standard deviation) and standardized moments (such as Skewness and
Kurtosis). In addition, in order to preserve higher-moments and PDF-induced correlations,
which are crucial for phenomenology studies, we also include the Kolmogorov-Smirnov
distance and the correlation between multiple PDF flavours. For each statistical estimator,
the normalization factor has to be defined properly as it compensates for the various
orders of magnitude in different regions of (x, Q)-space that is mainly apparent in higher
moments. Here, we rewrite their definitions:

Lower and higher moments:

Since the statistical properties of a PDF is mainly dominated by lower moments, they
should be reproduced with higher accuracy in the compressed set. Let us denote
by Pr

i (xj) and Cr
i (xj) respectively the prior and compressed sets of replicas r for

a flavour i at the j-th position in the x-grid. The expression of the central value,
standard deviation, Skewness, and Kurtosis for the prior are defined as

PCV
i (xj, Q0) =

1
NR

NR

∑
r=1

Pr
i (xj, Q0) (5.1.2)

PSTD
i (xj, Q0) =

√√√√ 1
NR − 1

NR

∑
r=1

(
Pr

i (xj, Q0)− PCV
i (xj, Q0)

)2 (5.1.3)
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PSKE
i (xj, Q0) =

1
NR

NR

∑
r=1

(
Pr

i (xj, Q0)− PCV
i (xj, Q0)

PSTD
i (xj, Q0)

)3

(5.1.4)

PKUR
i (xj, Q0) =

1
NR

NR

∑
r=1

(
Pr

i (xj, Q0)− PCV
i (xj, Q0)

PSTD
i (xj, Q0)

)4

(5.1.5)

where Q0 denotes the initial scale at which the prior PDF set is computed and NR
represents the total number of replicas. The expressions for the compressed set can
be computed analogously by replacing P with C and changing the total number
of replicas to size of the compressed set. Notice that in the summation the central
replicas r=0 is not considered. From these definitions, one can therefore define the
error function for the moment estimators. For each estimator k, the error function is
defined as

ERFk =
1

Nk

n f

∑
i=−n f

Nx

∑
j=1

(
Ck

i (xj, Q0)− Pk
i (xj, Q0)

Pk
i (xj, Q0)

)2

(5.1.6)

for k = CV, STD, SKE, KUR. The number of active flavour is denoted by n f while
the size of the x-grid is denoted by Nx. The above equation is only valid if the
denominator is non-zero, hence we only consider the case where Pk

i (xj, Q0) ̸= 0.
The normalization factor Nk for a statistical estimator k is defined as the lower 68%
confidence-level of Nrd random selections. This can be expressed as

Nk =
1

Nrd




Nrd

∑
t=1

n f

∑
i=−n f

Nx

∑
j=1

(
Rt,k

i (xj, Q0)− Pk
i (xj, Q0)

Pk
i (xj, Q0)

)2



68%

(5.1.7)

where Rt
i(xj, Q0) represent the t-th random selection extracted from the prior and

contains the same number of replicas as the expected compressed set. This ensures
that the value of the error function ERFk for an estimator k is below 1.

Kolmogorov-Smirnov distance:

Since PDFs are continuous probability distributions, despite the fact that they are
only available as an interpolation on the grid of x-points, the Kolmogorov-Smirnov
test [361] (or its refinement, the Anderson-Darling test [362]) is a sensible estimator.
In the context of PDF compression, the Kolmogorov-Smirnov distance is computed
as follows [358]: for the prior set (resp. compressed), we count the number of replicas
that falls within a given region and then normalize by the total number of replicas
in the prior (resp. compressed). As in the original compression, we consider six
different regions which are defined in terms of the standard deviation

[
−∞,−2PSTD

i (xj),−PSTD
i (xj), 0, PSTD

i (xj), 2PSTD
i (xj),+∞

]
. (5.1.8)

The contribution to the error function from the Kolmogorov-Smirnov can therefore
be defined in the following way

ERFKS =
1

Nk

6

∑
z=1

n f

∑
i=−n f

Nx

∑
j=1

(
Cz

i (xj, Q0)− Pz
i (xj, Q0)

Pz
i (xj, Q0)

)2

, (5.1.9)
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Figure 28 Flowchart describing the methodology for the compression of Monte Carlo PDF
replicas. It takes as input a prior PDF set constructed as a grid in (NR, n f , x)-space and
additional parameters such as the size of the compressed set and the choice of minimization
algorithm. The output is a Monte Carlo replicas with a reduced size that follows the
LHAPDF [5] grid format.

with z running through the six regions defined in Eq. (5.1.8). The normalization
factor is then defined as

NKS =
1

Nrd

6

∑
z=1

Nrd

∑
t=1

n f

∑
i=−n f

Nx

∑
j=1

(
Rt,z

i (xj, Q0)− Pz
i (xj, Q0)

Pz
i (xj, Q0)

)2

, (5.1.10)

where all the remaining symbols carry the same meaning as for the moments.

Correlations between PDFs:

As mentioned previously, it is important that the compressed set preserve PDF-
induced correlations in physical cross sections. They play an important role in
phenomenological studies. As a matter of fact, one of the main differences between
a fit with 100 and 1000 replicas is that correlations between pairs of flavours are
reproduced more accurately in the latter. In order to define the error function for the
correlation, we introduce the correlation matrixM whose elements are defined as

Mij =
NR

NR − 1
⟨ij⟩ − ⟨i⟩⟨j⟩

ΣiΣj
. (5.1.11)

The brackets in the above equation are defined as follows

⟨i⟩ = 1
NR

NR

∑
r=1

f r
i (xi, Q0), ⟨ij⟩ = 1

NR

NR

∑
r=1

f r
i (xi, Q0) f r

j (xj, Q0) (5.1.12)

where f r
i (xi, Q0) denotes the replicas r from either the prior or compressed set with

flavour i and computed at the j-th position in the x-grid. The Σi represents the
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Figure 29 Speed benchmark comparing the old and new compression codes using the GA
as the minimizer. The prior set is a NNPDF3.1 set with Np=1000 replicas. On the y-axis
is shown the time (in minutes) that it takes to perform a compression while the x-axis
represents the various size of compressed sets. For the purpose of these benchmarks, the
parameters entering the Genetic Algorithm (GA) are chosen to be exactly the same across
both implementations.

standard deviation and its expression is exactly similar to Eq. (5.1.3). We can now
define the contribution of the correlation to the error function as

ERFCR =
1

NCR

(
c− p

p

)2
(5.1.13)

with the prior and compressed components respectively defined as

p = Tr
(
P · P−1

)
, c = Tr

(
C · P−1

)
, (5.1.14)

where P and C respectively represent the correlation matrix of the prior and com-
pressed set computed according to Eq. (5.1.11) and P−1 the inverse of P . The
normalization factor NCR is computed analogously to the previous definitions, i.e.
computed from a certain number of random selection.

Once the set of statistical estimators and the target size of the compressed set are defined,
the compression algorithm can start the minimization procedure by searching for the
combination of replicas that leads to the minimal value of the total error function defined
in Eq. (5.1.1). In order to select the replicas entering into the compressed set, various
minimization algorithms can be implemented. However, due to the discrete nature of the
compression problem, it is convenient to use minimization based on Evolution Algorithm
(EA) [363, 364] such as the Covariance Matrix Adaptation (CMA) strategy [365, 366] or
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the Genetica Algorithm (GA) [367–369]. It is important to emphasize that no matter the
choice of minimization algorithm is, one can never run into the risk of overfitting since the
absolute minimum always exists. In Fig. 28, we show a diagrammatic representation of
the compression workflow. It goes as follows: we first compute a grid of the prior PDF set
for all replicas, flavours, and all points of the x-grid; then we choose a random subset from
the prior in order to compute the value of the total error function; this process is repeated
for a certain number of iterations making sure that the minimizer selects a better sample
at every next iteration. The x-grid is constructed such that the points are distributed in
the region where experimental data are available. That is, one choose x to lie within the[
10−5, 0.9

]
-region such that the points are logarithmically spaced between

[
10−5, 10−1]

and linearly spaced in the
[
10−1, 0.9

]
-region.

The methodology described above was first implemented in a C++ code [358] and
later revised in Ref. [360, 370] using state-of-the-art python development. The new imple-
mentation was required in order to accommodate for the generative models as will be
discussed in the next section. Here and henceforth, we referred to the new implementation
as PYCOMPRESSOR. An important benefit of the new implementation is also the gain in
performance. Indeed, we observed that the new implementation is significantly faster as
compared to the old one. In order to quantify such a gain, we compress a Monte Carlo PDF
set with Np = 1000 replicas into various sets with smaller sizes using the GA minimizer.
The tests were run on a consumer-grade CPU1 with 16 GB of memory. The results are
presented in Fig. 29: on the x-axis are shown the various sizes of compressed sets while
the required time for both compression codes to complete the same compression is shown
on the y-axis. We can see that the new implementation is up to six times faster than the
old one. One can also notice that the speed gain depends on the size of the compressed
set. Not surprisingly, the difference between the two implementations increases as the the
size of the compressed set gets bigger. This is due to the fact that PYCOMPRESSOR takes
advantage of the multicore capabilities of modern computers2.

5.2 Compressing PDF sets with GANs

This section is devoted to the description of our generative adversarial model, henceforth
referred to as GANPDFS, and its incorporation into the compression methodology. In
particular, we address the issue of instability when generating synthetic replicas. Sec. (4.4.2)
introduced the general complexities of building a generative adversarial model in which
we also discussed about various regularization procedures that can be used to alleviate
such issues. Here, we specifically describe regularization procedures that are specific to
our problem.

5.2.1 The GANPDFS methodology

Let us first restate again what we are trying to achieve. The problem we are concerned
with is the following: suppose that the prior Monte Carlo PDF replicas follow a probability

1 AMD Ryzen 5 2600 with 12 threads boosted at 3.4 GHz.
2 Notice that the gain in speed due to the parallelization comes at the expense of a slightly higher memory usage.

Although this is a very minor issue, this can become significant if the both he sizes of the prior and compressed
sets are very large.
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Figure 30 Illustration of non-convergence (left) and mode collapse (right) when generating
Monte Carlo PDF replica. Here, we show the PDF for the d̄-quark. The priors are rep-
resented by the green curves while the synthetic replicas are represented by the orange
curves. The two plots we generated using the vanilla implementation of the generative
neural network.

distribution pR, we would like to generate synthetic replicas following a probability
distribution pθ such that pθ is as close as possible to pR. One way to achieve this is by
defining a latent variable z with a fixed probability distribution pz. The latent variable z
can then be passed as an input to a function Gθ : z→ xg which is generally defined to be a
neural network in order to generate samples that follow a probability pθ . By optimizing
the parameter θ, one can modify the distribution pθ to approach the target distribution pR.
Here, we propose to model the function Gθ in terms of a generative neural network and
assess the goodness of the output using a discriminative neural network, hence the idea of
generative adversarial neural networks (GANs).

The GANPDFS framework & Regularization

By adopting the standard variation (Vanilla) GANs introduced in the previous section, it
is very likely that one ends up with the problem of instabilities described in Sec. (4.4.2).
For the generation of synthetic replicas, the most likely scenarios are the non-convergence
and mode collapse (see Fig. 30 for illustrations). Whilst the non-converging result must
definitely be disregarded, the mode-collapse could still provide replicas that can be used
for compression. Ideally, one would like the samples of synthetic replicas to reproduce the
overall distribution of the prior, not only some part of it. It was argued in Sec. (4.4.2) that
one of the main causes leading to unstable optimization during the training of a GAN is
the low dimensional support of generated and target distribution. This means that the
generator can only generate scarce samples from the input latent variable z and does not
allow for any improvement at all. As suggested in Ref. [346], this could be overcome by
providing to the latent variable z additional information. That is, one needs to supply
the input latent variable with some relevant features from the real sample. In our case,
this could be done by taking a linear combination of the input PDF replicas, adding on
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top of it Gaussian noises, and using it as the input latent variable. This has been proved
to improve significantly the stability of the GAN training and addresses the problem of
non-convergence.

On the other hand, it was also discussed in Sec. (4.4.2) based on Refs. [371, 372] that the
objective function that the standard (original) GAN minimizes is not continuous w.r.t the
generator’s parameters. One can immediately see the shortcoming of this. Indeed, this
can lead to both vanishing gradients and mode collapse. Such shortcomings were already
perceived in the original GAN paper [342] where it was shown that the Jensen-Shannon
divergence under idealized conditions contributes to oscillating behaviours. Several
research papers have devoted to finding a suitable objective function in order to circumvent
these particular problems (See Refs. [343, 344, 346] for a review). In our implementation,
we resort to a loss function that was briefly introduced in Sec. (4.4.2): the Wasserstein
or Earth’s Mover (EM) distance. This objective function was subsequently implemented
in Wasserstein GAN (WGAN) [354, 373, 374] as application to image generation and has
proved to not only yield more stability but also more variety in the generated sample. The
EM loss function is defined as follows

min
θ

max
ϕ

V = E
x∼pR

[
Dϕ(x)

]
− E

x∼pθ

[
Dϕ(xg)

]
, (5.2.1)

where we recall that xg = Gθ(z) with z following a probability distribution pz. The
EM is effective in solving vanishing gradients and model collapse as it is continuously
differentiable w.r.t the generator and discriminator’s parameters. That is, GAN-based
Wasserstein models result in a discriminator function whose gradient w.r.t its inputs is
better behaved than in the standard GAN approach. This means that the discriminator
can be trained until optimality without worrying about vanishing gradients.

Despite the fact that the Wasserstein distance measure yields non-zero gradients every-
where for the discriminator, the resulting GAN architecture can still be unstable when
the gradients of the loss function are large. This can straightforwardly be addressed by
clipping the weights of the discriminator to lie within a compact space defined by [−c, c]
where c is just some finite not-so-large number. Based on all of this, the default GANPDFS

architecture is a modified version of a WGAN and is described in Algorithm 2. If the needs
arise, the GANPDFS codes allow the users to straightforwardly define a new architecture
from an input file.

The hyperparameter optimization

We have just described a possible architecture for our generative models that can alleviate
the issues related to stability during the training, however, there is still some arbitrariness
in choosing the parameter that each neural network (generator or discriminator) can take.
Indeed, one of the main factors that influence the training of a GAN is the architecture of
the neural networks. The choice of (hyper) parameters could scale up significantly the
GAN’s performance. However, coming up with values for hyperparameters such as the
size of the network or the number of nodes in a given layer is particularly challenging as the
parameter space is very large and obviously trying blindly various hyperparameters does
not appear to be a suitable solution. A heuristic approach to tackle this problem–which
is widely regarded as the best option within the machine learning community–is known
as hyperparameter scan or hyperparameter optimization. This approach consists in searching
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Algorithm 2: Default stochastic gradient descent training algorithm imple-
mented in GANPDFS for the generation of synthetic replicas.

for epochs 1, · · · , N do
for discriminator steps 1, · · · , k do

- Sample minibatch of size m from the original input sample:
{x(1)r , · · · , x(m)

r }
- Sample minibatch of size m from the custom latent space: {z(1), · · · , z(m)}
- Perform gradient ascent on discriminator:

∇ϕV
(
Gθ , Dϕ

)
=

1
m
∇ϕ

m

∑
i=1

(
Dϕ

(
x(i)r

)
− Dϕ

(
x(i)g

))

- ϕ = ϕ + RMSProp(ϕ,∇ϕV)
- Clip weights within [−c, c]

end
for generator steps 1, · · · , l do

- Sample minibatch of size m from the custom latent space: {z(1), · · · , z(m)}
- Perform gradient descent on generator:

∇θV
(
Gθ , Dϕ

)
=

1
m
∇θ

m

∑
i=1

Dϕ

(
x(i)g

)

- θ = θ − RMSProp(θ,∇θV)
end

end
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Figure 31 Flowchart describing the GANPDFS framework. The discriminator receives as
input the prior PDF set computed as a grid in (Np, n f , xLHA)-points while the generator
receives as input the latent variable constructed as Gaussian noise of linear combination of
the prior set. In addition to the real sample, the output of the generator also goes through
the discriminator. The simoultaneous training of both neural networks goes on until a
certain number of epochs is reached. The final output is an enhanced PDF following the
LHAPDF grid format.

the best set of hyperparameters through an iterative search of the parameter space. In
our implementation, we rely on the Tree-structured Parzen Estimator (TPE) [375] as an
optimization algorithm. The TPE consists in building a probability model of the objective
function and use it to select the most promising hyperparameters to evaluate the true
objective function. Such a method outperforms by a significant amount any random search.
The main challenge in performing such a hyperparameter optimization, however, is the
definition of a figure of merit to hyper-optimize on. Indeed, there is no established figure
of merit for generative models that can be used to assess the faithfulness of the generated
samples. One possibility is to use one of the statistical estimators described in Sec. (5.1),
but in doing so we restrict ourselves to only a particular feature of the distribution. In our
generative model, we decide to use the Fréchet Inception Distance (FID) [376] as the figure



156 E F F I C I E N T C O M P R E S S I O N O F P D F S E T S U S I N G G A N S

of merit to hyperoptimize on. For a target distribution with mean µr and covariance Σr
and a synthetic distribution with mean µs and covariance Σs, the FID is defined as:

FID =
1

2n f + 1

n f

∑
i=−n f

∥∥∥µ
(i)
r − µ

(i)
s

∥∥∥
2
+ Tr

(
Σ(i)

r + Σ(i)
s − 2

√
Σ(i)

r Σ(i)
s

)
(5.2.2)

where the index i refers to the parton flavours. This suggests that the smaller the value
of the FID is, the closer the generated samples are to the target distributions. For the
implementation of the TPE hyperoptimization procedure in our GAN framework, we rely
on a third party library called HYPEROPT [377].

We can now proceed to the description of our GANPDFS workflow. In Fig. 31 we
show a diagrammatic summary of the training. Let us first mention that our implemen-
tation is based on the machine learning framework TENSORFLOW [378] using KERAS as
a backend [379, 380]. Focusing now on Fig. 31, we see that in order to train, the GAN-
PDFS receives as input a grid of shape (Np, n f , xLHA) where Np represents the number
of input replicas and xLHA denotes the size of the x-grid which corresponds exactly to
the internal LHAPDF-grid. The input grid is then passed to the discriminator and will
be used to assess the generated replicas from the generator. Separately, the generator
takes as input the latent variable z and outputs a grid of shape (Ns, n f , xGAN). Notice that
xGAN does not have to be the same as xLHA. This is because it has been observed that the
generator trains better when provided with a large size of x-grid. In such a case, an inter-
polation is required in order to produce a LHAPDF-like grid. By default, xGAN is a grid
of Nx=500 points logarithmically spaced in the small-x region

[
10−9, 10−1] and linearly

space in the large-x region
[
10−1, 1

]
. The output of the GANPDFS is then a LHAPDF grid

with (Np + Ns)-replicas at a starting scale Q0=1.65 GeV which can then be evolved using
APFEL [381]. Notice that physical constraints such as positivity of the PDFs or sum rules
are not enforced but rather inferred from the underlying distribution.

5.2.2 The GAN-enhanced compression methodology

Having separately introduced the concepts of compression and generative adversarial
model for Monte Carlo PDF replicas, we now provide a description on how these two
components can be incorporated into one single framework. In Fig. 32, we present a
schematic diagram describing how the two frameworks are interfaced together. The
workflow goes as follows: the input PDF grid is computed for a given Monte Carlo PDF
set containing Np replicas at fixed Q0 (which by default is set to Q0=1.65 GeV) and at
some value of the Bjorken x. If enhancing the statistics of the prior with the GAN is not
required, then the reduction strategy follows the standard compression methodology
introduced in Sec. (5.1). If, on the other hand, the GAN-enhancement is required, the
GANPDFS is used to to generate Ns synthetic replicas. The synthetic replicas combined
with the prior, which henceforth we call enhanced set, has now a total size NE=Np + Ns.
As mentioned before, since the x-grid of the output of the GAN does not necessarily have
to be the same as for the prior, an interpolation might be required in order to combine the
two. The enhanced (or combined) set is then passed to the PYCOMPRESSOR . It is crucial
to emphasize that in the context of GAN-enhanced compression, the samples of replicas
that will end up in the compressed set are drawn from the enhanced set rather than from
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Figure 32 Flowchart describing the combined GANPDFS-PYCOMPRESSOR framework. The
workflow starts with the computation of the prior MC PDF as a grid of (Np, n f , xLHA). If
GAN-enhanced is required, the prior replicas are supplemented with synthetic replicas.
If not, the compression follows the standard methodology. The output is always a com-
pressed set containing smaller numbers of replicas.

the prior only. However, since the main goal is still to construct a compressed set that
reproduces the probability distribution of the prior, the minimization has to be performed
w.r.t the input Monte Carlo PDF replicas. In this sense, the expression of the total error
function in Eq. (5.1.1) has to be modified such that the value of the estimator Ck for the
compressed set has to be computed using samples from the enhanced distribution. We
stress that the expression of the normalization factors does not change, i.e. the random
sets of replicas have to be extracted from the prior.

Adiabatic minimization

Performing a compression from an enhanced set can be very challenging due to the
large number of replicas to be considered. Indeed, the factorial growth of the number
of replicas can probe the limit of the minimization algorithm and may potentially spoil
the minimization procedure. In other words, the vast nature of the space of replica
that could be explored increases the odd of the compression to be stuck in some local
minima. However, if results from the standard compression are already provided, the
compression code provides a more efficient compression procedure from the enhanced set
with the means of an adiabatic minimization. The adiabatic minimization for the enhanced
compression consists on taking as a starting point the space of replicas where the best from
the standard compression was generated and start from there. Such a minimization not
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Figure 33 Graphical representation of an hyperparameter scan for a few selected param-
eters. The results were produced with a certain number of trial searches using the TPE
algorithm. On the y-axis is represented the different values of the FID while the various
hyperparameters are represented on the x-axis. The violin plots represent the behaviour
of the training for a given hyperparameter and violins with denser tails are considered
better choices due to their stability.

only yields faster convergence but also prevent the minimization algorithm to be trapped
in some local minimum in case the generated replicas from the GAN contains fluctuations.

Hyperoptimized architecture

In this section, we present the GANPDFS architecture that has come out as the result of
an hyperparameter optimization. The setup in which we performed the hyperparameter
optimization is as follows: we considered as a prior a Monte Carlo PDF replicas with
Np=1000 replicas fitted using the NNPDF3.1 methodology [49]. We then use the GAN-
PDFS to generate Ns=2000 synthetic replicas for a total of NE=3000 enhanced replicas.
This procedure is repeated for a certain number of iteration through the hyperparameter
scan by minimizing the FID. In Fig. 33, we plot an example of a hyperparameter scan in
which a few selected parameters are shown. These are results after performing a certain
number of trials. For each hyperparameter, the values of the FID are plotted as a function of
the different parameters. For the initialization of the discriminator’s weights, for instance,
there are two choices, namely the Glorot Uniform and the Random Uniform. The values
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Generator Discriminator
Network depth 3 2
kernel initializer glorot uniform glorot uniform
weight clipping - 0.01

optimizer None RMSprop
activation leakyrelu leakyrelu

steps 1 4
batch size 70%

number of epochs 1000

Table 2 Parameters on which the hyper-parameter scan was performed are shown in the
first column. The resulting best values are shown for both the generator and discriminator
in the second and third column respectively.

of the FIDs are represented by the gray points and the violin shapes represent the density
of gray points within a particular region. In this sense, the violin plots represent a visual
illustration of how a given parameter behave during the training. That is, violins with
denser tails are considered better choices as they yield more stable training. For instance,
we can see that 1000 epochs lead to a slightly more stable results as opposed to 1500 or
2000. For a complete summary, the list of hyperparameters with the corresponding values
are shown in Table 2.

5.3 Efficiency of the new GAN-enhanced compression

In the following sections, we quantify the performance of the GAN-enhanced framework
over the standard approach by subjecting both methodologies on various statistical tests.
As for the hyperparameter scan, all the analyses presented here were produced with the fol-
lowing setup: the prior contains Np=1000 replicas fitted with the NNPDF3.1 methodology
which then gets enhanced with the GANPDFS framework in order to generate NE=3000
replicas (i.e. Ns=2000 replicas). The compression of the native prior and GAN-enhanced
replicas are both handled by the PYCOMPRESSOR.

5.3.1 Validation of the GAN methodology

First, we would like to see, for a given compression from the enhanced set, how many
replicas are selected from the synthetic samples. In order to do so, we perform two types
of compression: one with the GAN-enhanced methodology and one with the standard
approach. In Fig. 34, we show the disparity between the standard and GAN-enhanced
compressed sets, i.e. the number of replicas that are present in the GAN-enhanced com-
pressed sets (including synthetic replicas) but not in the standard sets. The results are
shown for different sizes of the compressed sets. The green histograms represent the
number of replicas that are not present in the final set of the standard approach but present
in the GAN-enhanced compressed sets. The orange histograms represent the number
of synthetic replicas out of that disparity. We can see that for smaller compressed sizes
(smaller than Nc=200), the percentage of synthetic replicas that compose the compressed
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Figure 34 Histograms representing the number of disjoint replicas that are present in the
GAN-enhanced compressed set but not in the standard. That is, the green histograms are
constructed by counting the number of replicas from the GAN-enhanced compression that
are not seen after the standard compression. Out of these numbers, the green histograms
represent the number of replicas that are coming from the synthetic replicas. The results
are shown as a function of the size of the compressed set.

set exceeds 10% and this percentage decreases as the size of the compressed set increases.
This is explained by the fact that as the size of the targeted compressed set approaches the
size of the prior Monte Carlo PDF replicas, the probability distribution of the reduced real
samples get closer to the prior such that fewer synthetics are required.

Now, we turn to the validation of the GAN-enhanced compression methodology by first
looking at the PDF central values and luminosities. In Fig. 35 we show the absolute central
values resulting from the GAN-enhanced compression at an energy scale Q=1.65 GeV. The
results are shown for various PDF flavours (g, s, d̄, s̄) and for different size of compressed
sets (Nc=50, 70, 100). The results are normalized to the the central value of the prior Monte
Carlo PDF replicas. In order to qualitatively assess whether or not compressed sets with
size Nc=50, 70, 100 are good representations of the prior probability distribution, we also
plot the 68% and 1-sigma bands. We see that, for all the three sets, the PDF uncertainties
are much larger than the fluctuations of the central values, indicating that a compressed
set with Nc=50 captures the main statistical properties of the prior. In Fig. 36, we plots
the luminosities for the g-g, d-ū, and d-ū combinations as a function of the invariant mass
of the parton pair Mx for two different sizes of compressed sets, namely Nc=50, 70, 100.
As previously, the hatched bands represent the 68% confidence interval while the the 1-
sigma bands are represented by the dashed lines. The compressed sets Nc=50, 70 slightly
deviate from the underlying probability distributions at lower values of Mx in which
PDFs are known to be non-Gaussian. However, one can notice that the deviations are
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Figure 35 Comparison of the PDF central values resulting from the compression using
the GAN-enhanced methodology for different values of Nc=50, 70, 100 and different PDF
flavours (g, s, d, u, d̄). Results are normalized to the central value of the prior set. The 68%
confidence interval is represented by the green hatched band whole the 1-sigma band is
represented by the dashed green lines. The PDFs are computed at Q=1.65 GeV. Plots
produced using REPORTENGINE-based VALIDPHYS [6] suite.

very small compared to the uncertainty bands. For Nc=100, we see very good agreement
between the prior and the GAN-enhanced compressed set. These plots further strengthen
the observations made at the level of central values. The above results confirm that
compressed sets constructed from the GANPDFS-PYCOMPRESSOR methodology fully
preserve the PDF central values and luminosities between pairs of PDFs. In particular, we
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Figure 36 Comparison of the PDF luminosities between the prior and the GAN-enhanced
compressed sets at LHC with

√
s=13 TeV. The results are shown for different sizes of

compressed sets, namely (Nc=50, 70, 100) and for different PDF luminosities (g-g, d-ū,
and d-ū). The hatched error bands and the region envelopped with the dashed lines
represent the 68% confidence level and 1-sigma deviation respectively. Plots produced
using REPORTENGINE-based VALIDPHYS [6].

conclude that about Nc=50 replicas sufficient enough to reproduce the main statistical
properties of a prior Monte Carlo PDF with Np=1000 replicas. Next, we quantify how
efficient is the generative-based compression methodology compared to the standard
approach of Ref. [358].
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5.3.2 Performance of the generative-based compressor

In order to qualitatively quantify the performance of the new generative-based compres-
sion methodology, we evaluate the compressed sets resulting from the new and standard
methodologies on various statistical estimators. We consider the same settings as in the
previous sections in which the results of the GAN-enhanced compression are compared to
the results from the standard approach where the samples of replicas are selected directly
from the prior Monte Carlo PDF.

Let us start by comparing the two methodologies at the level of the error functions.
In Fig. 37, for each compressed set, we show the contribution of each of the statistical
estimator (see in Sec. (5.1) for details) that contribute to the total value of the ERF using
the standard (green) and GAN-enhanced (orange) approach as a function of the size of the
compressed set. Notice that the ERFs shown in the plot are non-normalized. This is indeed
irrelevant when comparing the two methodologies since the normalizations are the same
in both approaches. For reference, we also show the mean (purple) and median (light
blue) computed by taking the average ERF values from NR=1000 random selections. To
provide an estimate of how representative of the prior distribution a random compressed
set is, the confidence intervals (50%, 68%, 90%) computed from the random selections are
also shown as error bars of varying colours.

First of all, as expected, we see that as the size of the compressed set increases, the
ERF values of all the estimators tend to zero. The fact that the correlation present some
fluctuations support our claim that as opposed to the lower and higher moments, cor-
relations are difficult to preserve. On the other hand, it is clear that both compression
methodologies outperform quite significantly any random selection of replicas. But in
addition, by comparing the results from the standard and GAN-enhanced approach, we
observe that the estimators for the GAN-enhanced compression, are in all cases except for
a very few, below those of the standard compression. Indeed, it could happen that the
error function for a given estimator for the standard approach is lower than the GAN while
the total value of the error function is still lower for the latter. Overall, this suggests that
the GAN-enhanced approach will result in a total value of the ERF that is much smaller
than the one from the standard compression methodology.

In terms of efficiency, these results imply that the new generative-based methodology
outperforms the standard compression approach by providing a more adequate represen-
tation of the probability distribution of the prior thanks to the synthetic replicas. This is
particularly illustrated in Fig. 38 in which we plot in solid black line the total value of the
error function for the standard compression as a function of the size of the compressed
set. The vertical dashed lines represent the size of the compressed set Nc=70, 90, 100
while the horizontal solid lines represent the respective ERF values for the GAN-enhanced
compressed sets. The intersection between vertical dashed lines and horizontal solid
lines being below the black line strongly indicate that the generative-based compression
outperforms the standard approach. For instance, we see that Nc=70 from the enhanced
compressed set is equivalent to about Nc=110 from the standard approach, and Nc=90
from the enhanced set provides slightly more statistics that Nc=150 from the standard
compression methodology.

In addition to the above checks, one can also verify that correlations between PDFs
are well preserved after the compression. It is important to emphasize that one of the
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Figure 37 Comparison of the best ERF values for the compression of a Monte Carlo PDF
set with Np=1000 replicas for various sizes of the compressed sets. For each compressed
set, we show the contribution of the statistical estimators (see Sec. (5.1)) that contribute to
the total error function using the standard compression (green) and the GAN-enhanced
compression (orange) methodology. Notice that the ERFs on the plot are non-normalized.
For illustration purposes, the mean (purple) and median (light blue) resulting from the
average of NR=1000 random selections are shown. The resulting confidence intervals
from the random selections are represented by the blue (50%), green (68%), and red (90%)
error bars.

main differences between a fit with 100 and 1000 Monte Carlo replicas is that correlations
are reproduced more accurately in the latter [358]. This is one of the main reasons why
the compression methodology is important. Here, we show that for the same size of
compressed set, the resulting compression from the GAN-enhanced methodology also
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Figure 38 Comparison of the performance of the new generative-based compression algo-
rithm (GANPDFS) and the previous methodology (standard). The normalized ERF values
of the standard compression are plotted as a function of the size Nc of the compressed
set (solid black line). The dashed blue, orange, and green lines represent Nc=70, 90, 100
respectively. The solid lines represent the corresponding ERF values of the enhanced
compression.

reproduces more accurately the correlations from the prior than the standard compression.
One way of checking this is to plot the correlations between two given PDFs as a function
of the Bjorken variable x. In Fig. 39, we show the correlation between a few selected
pairs of PDFs (g-u, g-ū, and d-ū) for Nc=50, 100 at an energy scale Q=100 GeV. The
results from the GAN-enhanced compression (orange) are compared to the ones from
the standard approach (green). For illustration purposes, we also show PDF correlations
from sets of randomly chosen replicas (dashed blue lines). We see that both compression
methodologies capture very well the PDF correlations of the prior distribution. Specifically,
in the case Nc=100, we see small but noticeable differences between the old and new
approach, with the new approach approximating best the original Monte Carlo PDF
replicas. Although moderate, such a difference is also noticeable for compressed sets with
Nc=50 replicas.

An analogous way to verify that the compressed sets resulting from the GAN enhanced
methodology reproduce more accurately the correlations of the prior PDF replicas is to
compute the difference in correlation matrices. That is, compute the correlation matrix
for each set (prior, standard, enhanced) and then compute the difference between the
correlation matrix of the prior and the standard (or enhanced respectively). Such studies
are shown in Fig. 40 where the matrices are defined in a logarithmic x grid with size Nx=70
points for each of the n f =8 light partons. The first column represents the difference
between the correlation matrix of the prior and the standard results while the second
column represents the difference between the correlation matrix of the prior and the
GAN-enhanced compressed results. The first, second, and third row shows the result for
Nc=50, Nc=70, and Nc=100 respectively. As we go from the top to bottom, we see that



166 E F F I C I E N T C O M P R E S S I O N O F P D F S E T S U S I N G G A N S

10 5 10 4 10 3 10 2 10 1

x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

Gluon-Up correlation (Compression to 50 @ Q=100 GeV)

Prior
Random
Standard
Enhanced

10 5 10 4 10 3 10 2 10 1

x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

Gluon-Up correlation (Compression to 100 @ Q=100 GeV)

Prior
Random
Standard
Enhanced

10 5 10 4 10 3 10 2 10 1

x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

Down-Antiup correlation (Compression to 50 @ Q=100 GeV)

Prior
Random
Standard
Enhanced

10 5 10 4 10 3 10 2 10 1

x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

Down-Antiup correlation (Compression to 100 @ Q=100 GeV)

Prior
Random
Standard
Enhanced

10 5 10 4 10 3 10 2 10 1

x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

Gluon-Antiup correlation (Compression to 50 @ Q=100 GeV)

Prior
Random
Standard
Enhanced

10 5 10 4 10 3 10 2 10 1

x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

Gluon-Antiup correlation (Compression to 100 @ Q=100 GeV)

Prior
Random
Standard
Enhanced

Figure 39 Comparison of the correlations between various pairs of flavours. The results are
shown for different size of the compressed sets, namely Nc=50, 100. The energy scale Q
has been chosen to be Q=100 GeV. The correlation extracted from the results of the GAN-
compressor (orange) is compared to the results from the standard compressor (green).
For a comparison, the results from the random selection are also shown in purple. Plots
produced using REPORTENGINE-based VALIDPHYS [6].

the correlation matrix is becoming lighter, indicating an increase in similarity between
the PDF correlations of the prior and the compressed sets. This feature is seen on both
compression methodologies. However, as we look from left to right, we can also see that
the correlation matrices on the right sides are lighter than the ones on the left. Although
this is barely seen in the case Nc=50, a minor difference can be seen at Nc=70 while the
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Figure 40 Difference between the correlation matrices of the prior and the compressed
set resulting from the standard (first row) or enhanced (second row) compression. The
correlation matrices are shown for different sizes of the compressed set.

difference is clearly significant for Nc=100. These confirm the results shown in Fig. 37 in
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which it was shown that the values of the error function for the correlation are smaller in
the case of a GAN-enhanced compression.

5.4 Phenomenological implications

We have argued in the previous section based on various statistical estimators at the
PDF level that the GAN-enhanced compression methodology outperforms the standard
compression approach. In the following section, we provide the implications of such a
performance for hadron collider phenomenology both at the level of the integrated and
differential cross sections. Specifically, we consider the production of the Higgs boson
production through the VBF (Vector Boson Fusion), top-quark pair production, and DY
production decaying into leptons. The enhanced Monte Carlo PDF replicas are generated
using the exact same setting as in the previous sections. In particular, here, we primarily
focus on compressed sets with size Nc=50 and Nc=70.

Description of the theory predictions

All the theory predictions presented in the following sections have been computed for
proton-proton collision at a center-of-mass energy

√
s = 13 TeV using next-to-leading

order theory generated using Monte Carlo Generators [120, 121, 123, 382] interfaced to
APPLGRID [126]. The APPLGRID grids are converted into a PINEAPPL [7] grid that
provides more functionalities and flexibility. The theory predictions are then folded with
the parton densities (prior or compressed set) using again PINEAPPL. For completeness,
we list below the values of the input parameters:

mW = 80.352GeV, ΓW = 2.084GeV, mt = 172.5GeV

mZ = 91.1535GeV, ΓZ = 2.4943GeV, Γt = 1.37758GeV

mH = 125.0GeV, ΓH = 4.07468× 10−3GeV

(5.4.1)

For the aforementioned processes, we first present results for the total cross-sections.
As will be shown later, one observes that at the level of integrated cross sections, the
difference between a prior Monte Carlo PDF replicas and a compressed set (either be from
the standard or GAN-enhanced approach) is extremely tiny. This is because, integrated
cross sections are dominated by a specific region of the phase space where the bulk of the
contribution is coming from, making them sensitive to PDFs in a very specific range of x
and Q. For this reason, we also present phenomenological results for differential distri-
butions. Specifically, we consider distributions that are differential in rapidity (namely,
rapidity of the Higgs boson, rapidity of the W boson, and rapidity of the top-quark). The
different distributions used in the following sections are listed in Table 3 along with the
range spanned by each distribution with the number of bins. Notice that no acceptance
cuts are imposed for all distributions.

Integrated cross sections

Using the theoretical predictions constructed according to the procedure described above,
we show in Fig. 41 the results of the integrated cross sections. The plots describe the total
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Process Nbin Rapidity Range

H-VBF 10 ηH
min = −2.5, ηH

max = 2.5

W 10 ηW
min = −4.0, ηW

max = 4.0

Z 10 ηZ
min = −4.0, ηZ

max = 4.0

tt̄ 10 ηt
min = −2.5, ηt

max = 2.5

Table 3 List of differential distributions for which the theory predictions are computed.
The distributions are all differential in the rapidity of the final-state system. For each
distribution, the rapidity range and the number of bins are also shown. All the processes
have been computed at the LHC energy, i.e. at a center-of-mass energy

√
s=13 TeV.

LHC cross section at
√

s=13 TeV for the W and Z boson production via DY mechanism
(1st and 2nd row respectively), top-quark pair production (3rd row), and Higgs boson
produced via VBF (4th row). The results are shown for two compressed sets Nc=50 (left
column) and Nc=70 (right column). For each process and each size of the compressed
set, we compare the integrated cross section resulting from the prior PDF (with Np=1000
replicas) with the standard (CMC) and GAN-enhanced (GAN) compression methodologies.
For comparisons, we also plot the 1-sigma (dark blue) and 2-sigma uncertainty bands of
the prior. As a general comment, we observe that the compressed sets resulting from the
two different methodologies yield excellent compatibility with the prior.

For the W production, we observe very good agreement between the three different PDF
sets at the 1-sigma level with the central value of the GAN-enhanced compressed set being
closer to the prior than the standard. This can be observed both for Nc=50 and Nc=70.
Going from Nc=50 to Nc=70, we notice that there is significant decrease in uncertainty
for all three PDF sets. Whilst similar observation can be made for the Z boson production,
no reduction in the error bars are seen when going from Nc=50 to Nc=70. For top quark
pair production, there is basically no change between the results with Nc=50 and Nc=70.
Notice that this pattern is the same across the three types of PDF sets. Finally, we turn
to the case of the Higgs boson produced via the VBF mode. The same conclusions as
for the previous processes still hold, namely, the compressed set from the standard and
GAN-enhanced methodology are both equally compatible with the prior. This is valid
both at Nc=50 and Nc=70 where no obvious distinctions can be observed due to the
perfect agreement.

While in some cases, compressed sets resulting from the GAN-enhanced methodology
are closer to the prior than the compressed sets resulting from the standard approach,
these results suggest that integrated cross sections are not suitable quantities to assess the
phenomenological implications of the new methodology. Indeed, as mentioned previously,
the sensitivity of the integrated cross sections to the parton densities are only restricted to
a narrow range of x and Q. In order to assess the impact of the PDFs in the phase space
region that does not provide the bulk of the result, in the next section, we look into the
differential distributions shown in Table 3.
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Figure 41 Integrated LHC cross sections at
√

s=13 TeV for W production (1st row), Z
production (2nd row), top pair production (3rd row), and Higgs via VBF (4th row). The
left column compares the prior with the Nc=50 compressed sets while the right column
compares the prior with the Nc=70 compressed sets. Plots produced using PINEAPPL [7]
scripts.
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Differential distributions

Let us turn to the differential cross sections of the processes discussed in the previous
section. For each process, we consider the NLO rapidity distribution with the rapidity
range defined as in Table 3. In Fig. 42, we show the results for the W and Z boson
production while results for the top pair and Higgs boson production are shown in Fig. 43.
For each individual process, we show the results for a compressed set with size Nc=50 (left
column) and Nc=70 (right column) using the standard (red line labelled CMC) and GAN-
enhanced (orange line labelled GAN) methodology. Common to all plots, the top panel
show the absolute differential cross sections with the uncertainty bands computed using
seven-point scale variation. The middle panel compares the relative PDF uncertainties
between the prior and the compressed Monte Carlo sets. Finally, the bottom panel shows
the pull in units of the PDF uncertainty between the result found using the prior Monte
Carlo PDF set and the compressed sets generated using the old and new methodology.
The pull is defined in terms of theory predictions as [4]

P
(
Σc,i, Σp,i

)
=

Σ(0)
c,i − Σ(0)

p,i√
(δΣc,i)

2 +
(
δΣp,i

)2
(5.4.2)

where Σp,i and Σc,i represent the central values of the theory predictions using the prior
and compressed set respectively at the i-th bin (for i = 1, · · · , Nbin) and δΣp,i, δΣc,i the
corresponding PDF uncertainties. Let us now inspect each result starting with the W
production with a compressed set of size Nc=50 replicas (top-left plot in Fig. 42). Whilst
it is difficult to distinguish between the various PDF sets from the absolute plots, no-
ticeable differences can be seen at the relative PDF uncertainties. Indeed, we can see
that while discrepancy persists between the prior and the standard compressed set, good
agreement can be seen between the prior and the compressed set generated using the GAN-
PDFS methodology. This is more marked for large rapidity bins (|ηW | > 2). Looking now
at the pull, we notice that pull with the GAN-enhanced compressed set is largely below
zero while the pull with the standard approach is always positive. For both compression
methodologies, the largest pulls are observed for small rapidity bins. Going from Nc=50
to Nc=70 (top-right plot), we can see that the same conclusion still holds but in a more
pronounced way, i.e. compressed sets generated using the new methodology is closer to
the prior than compressed sets generated using the standard approach. For the Z boson
production, both at Nc=50 and Nc=70, the predictions from the standard compression
approach is performing as good as the GAN-enhanced methodology. Similar to the W
boson case, the largest pulls appear for small rapidity bins for Nc=50 while for Nc=70
the pulls are largely zero.

Let us now turn to the top pair production shown in the first row of Fig. 43. Looking at
the relative PDF uncertainties, we observe the same pattern as before, namely, the results
from the GANPDFS approach is generally closer to the prior than the results from the
standard methodology. For both Nc=50 and Nc=70, the pulls with the standard and GAN
approach exhibit inversely opposite behaviour, i.e. whilst the GAN result is closer to the
prior in the large rapidity bins, the standard result is closer to the prior in the small rapidity
bins. Finally, for the case of Higgs boson production via VBF mechanism, we observe
for Nc=50 that the prediction from the standard compression approach is performing
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Figure 42 Differential distributions in rapidity ηX (where X=W, Z) during the production
of a W (top) and Z bosons (bottom). The heading in each plot represents the decay mode of
the corresponding weak boson. As previously, the results are shown for Nc=50 (left) and
Nc=70 (right). The top panels show the absolute PDFs with the seven-point scale variation
uncertainties, the middle panel show the relative uncertainties for all PDF sets, and the
bottom panels show the pull defined in Eq. (5.4.2) between the prior and the compressed
sets generated using the standard (red) and GAN-enhanced approach (orange). Plots
produced using PINEAPPL [7] scripts.
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Figure 43 Same as Fig. 42 but for top-quark pair production (top) and Higgs boson pro-
duction via VBF (bottom). Similar as before, the results are shown for Nc=50 (left) and
Nc=70 (right)Plots produced using PINEAPPL [7] scripts.

as good as the prediction from the GANPDFS approach both at the level of the pull and
relative PDF uncertainties. For Nc=70, we see slightly better prediction from the new
methodology, especially in the small rapidity bins.
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Gaussianity vs. Accuracy of the predictions

One of the advantages of representing PDF errors as an ensemble of Monte Carlo replicas is
the fact that one does not have to assume Gaussian approximation. Non-Gaussian features
are important when experimental measurements are limited and PDF uncertainties are
driven by theoretical constraints. However, in the case where experimental measurements
are abundant and the distribution is dominated by Gaussian properties (such as mean and
central value), it is convenient to use the Hessian representation of errors. In the particu-
lar context of compression of Monte Carlo replicas, situations might happen where the
Gaussianity deteriorate in favour of the accuracy of the compression, or reciprocally, the ac-
curacy of the compression is prioritized over the Gaussian behaviour. In the following, we
quantify the Gaussianity of the new GAN-enhanced compressed results when compared
to the prior and the results from the standard compression approach. Here, we follow the
approach introduced in Ref. [383] that consists of two steps: first, transform the Monte
Carlo samples into continuous probability distributions using the Kernel Density Estimate
(KDE), and second compare the probability distribution of the prior with the Gaussian
approximation and with the compressed sets resulting from the two methodologies. The
former is done by computing the Kullback-Leibler (KL) divergence. For two continuous
probability distributions, the KL-divergence is defined as

KL(P|C) =
∫ ∞

−∞
dx
(

P(x)
ln P(x)
ln C(x)

)
, (5.4.3)

where P(x) and C(x) respectively represents the probability distribution of the prior and
compressed set. We emphasize that here we use the same prior and compressed sets
investigated in the previous sections. For the computation of the cross sections, in addition
to the integrated and rapidity distributions studied earlier, we also include azimuthal,
missing energy, invariant mass, and transverse momentum distributions. Summary of all
the observables included in the following studies are shown in Table 4. For the computation
of the cross sections, we use the SMPDF [384] package.

In Fig. 44, we show, for each class of observable, the KL distance between the prior
Monte Carlo PDF with Np=1000 replicas and (a) Gaussian sets that have the same central
value and standard deviation as the prior (b) compressed sets from the old (green) and
new (orange) methodology for Nc=50 replicas. For reference, the Hessian representation
of the prior (MCH) with N=50 eigenvectors is also shown in blue. We can see on the
x-axis the KL divergence between the prior and its Gaussian approximation while the
y-axis represents the KL distance between the prior and the reduced sets (Hessian and
MC compressed sets). Apart from the Higgs boson production, all the points are clustered
on the left-hand side of the plots, exhibiting Gaussian behaviours. It indeed appears that
a significant fraction of the Higgs boson production cross sections are more sensitive to
non-Gaussian behaviour. By inspection of the Hessian results, it is clear that the loss of
accuracy in the reduction is much bigger than the non-Gaussianity. This is more apparent
in the case of W and Z boson production where the KL divergence fluctuates a lot. This
suggests that a Hessian representation with N=50 eigenvectors is not ideal enough to
capture the underlying probability distribution of the prior when the distribution is not
Gaussian. In order to get a more accurate representation of the underlying probability
distribution, a moderate number of eigenvectors are required.
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Process (via pp collision) Diff. In Nbin Range

W− + X → ℓv̄ℓ + X

ηW 10 ηW
min = −4.0, ηW

max = 4.0
ηℓ 10 ηℓ

min = −2.5, ηℓ
max = 2.5

ϕ 10 ϕmin = −1.0, ϕmax = 1.0
pT,W 10 pT,W

min = 0, pT,W
max = 200 (GeV)

pT,ℓ 10 pT,ℓ
min = 0, pT,ℓ

max = 200 (GeV)
MT 10 MT

min = 0, MT
max = 200 (GeV)

Emiss 10 Emiss
min = 0, Emiss

max = 200 (GeV)

Z + X → ℓℓ̄+ X

ηZ 5 ηZ
min = −4.0, ηW

max = 4.0
ηℓ 10 ηℓ

min = −2.5, ηℓ
max = 2.5

η ℓ̄ 10 η ℓ̄
min = −2.5, η ℓ̄

max = 2.5
pT,ℓ 10 pT,ℓ

min = 0, pT,ℓ
max = 200 (GeV)

pT,ℓ̄ 10 pT,ℓ̄
min = 0, pT,ℓ̄

max = 200 (GeV)
pT,Z 10 pT,Z

min = 0, pT,Z
max = 200 (GeV)

pT,ℓℓ̄ 10 pT,ℓℓ̄
min = 0, pT,ℓℓ̄

max = 200 (GeV)
Mℓℓ̄ 10 Mℓℓ̄

min = 0, Mℓℓ̄
max = 130 (GeV)

tt̄ + X

ηt 10 ηt
min = −2.5, ηt

max = 2.5
η t̄ 10 η t̄

min = −2.5, η t̄
max = 2.5

ηtt̄ 12 ηtt̄
min = −3.0, ηtt̄

max = 3.0
pT,t 40 pT,t

min = 40, pT,t
max = 400 (GeV)

pT,t̄ 10 pT,t̄
min = 40, pT,t̄

max = 400 (GeV)
pT,tt̄ 10 pT,tt̄

min = 20, pT,tt̄
max = 200 (GeV)

MT,tt̄ 10 MT,tt̄
min = 300, MT,tt̄

max = 1000 (GeV)

gg + X → H + X
ηH 10 ηH

min = −2.5, ηH
max = 2.5

pT,H 10 pT,H
min = 0, pT,H

max = 200 (GeV)

Htt̄ + X
ηH 10 ηH

min = −2.5, ηH
max = 2.5

pT,H 10 pT,H
min = 0, pT,H

max = 200 (GeV)

VBF: Hjj + X
ηH 10 ηH

min = −2.5, ηH
max = 2.5

pT,H 10 pT,H
min = 0, pT,H

max = 200 (GeV)

HW + X → Hℓν̄ℓ + X
ηH 10 ηH

min = −2.5, ηH
max = 2.5

pT,H 10 pT,H
min = 0, pT,H

max = 200 (GeV)

HZ + X → Hℓℓ̄+ X
ηH 10 ηH

min = −2.5, ηH
max = 2.5

pT,H 10 pT,H
min = 0, pT,H

max = 200 (GeV)

Table 4 List of differential distributions for which the theory predictions for the Gaussian
studies are computed. The distributions are all differential in the azimuthal angle, invariant
mass, missing energy, and transverse momentum.
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Figure 44 The KL distance as expressed in Eq. (5.4.3) between the prior Monte Carlo PDF
replicas and the compressed sets resulting from the standard (green) and GAN-enhanced
(orange) approach. For reference, the KL distance between the prior and its Hessian
representation with N=50 eigenvectors (blue) is also shown. For each class of observables,
the various production modes are detailed in Table 4.

Let us now compare the KL distances w.r.t the prior of the compressed sets using the
standard and GANPDFS methodology. While the results from the two methodologies
exhibit the same degree of Gaussianity, one can clearly see that the KL divergences between
the prior and the GAN-enhanced compressed set are generally lower. This can be seen in
all the processes except for the Z boson production where a few green points lie below
the orange ones. From this observation, we conclude that for all the observables we are
considering, it is always more advantageous to use the GAN-enhanced compressed set.

In Fig. 45 where we show results for Nc=70 replicas, we can immediately see that the
fluctuations mainly present in the W and Z boson productions have disappeared. Now,
the points are mainly clustered on the diagonal. For the particular case of the Hessian
conversion, we can see that while the Gaussian features are still present, the accuracy of
the reduced set has improved significantly. By comparing the compressed sets from the
two methodologies, the same conclusion as for Nc=50 still holds, namely, the compressed
set resulting from the GAN-enhanced methodology outperforms the standard approach
both in terms of preserving the Gaussianity and the accuracy during the compression.
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Figure 45 Same as Fig. 44 but for compressed sets with Nc=70 replicas.

These results confirm at the cross section levels (both for integrated and differential cross
sections) the conclusions that were drawn at the level of the parton densities described
in Sec. (5.3). Indeed, these results provide strong indications that a compression method-
ology based on generative models (here in particular GAN) outperforms the standard
compression approach.

5.5 GANs for finite size effects

In the previous sections, we only focused on the roles that generative-based adversarial
models play in the improvement of the compression methodology. It was shown that, for
all the statistical estimators we considered (including lower and higher moments, various
distance metrics, and correlations), the new generative-based approach outperforms the
standard compression. However, one main question persists as to whether the generative
based adversarial PDF model can be used to bypass the fitting of a large number of Monte
Carlo PDF replicas. As mentioned before, in order to converge to the asymptotic the
PDF is tending to, a large number of Monte Carlo replicas is required. Despite the fact
that the new N3FIT methodology [385] greatly improves over the previous NNFIT, one
cannot generate as many PDF replicas as one wants. As a matter of fact, even with the
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Figure 46 Positivity constraints for the prior (green) and synthetic (orange) Monte Carlo
PDF replicas. The constraints correspond to the positivity of a few selected observ-
ables from Eq. (14) of Ref. [8], namely Fu

2 (x, Q2), Fd
2 (x, Q2), dσ2

dd̄/dM2dy(x1, x2, Q2), and
dσ2

uū/dM2dy(x1, x2, Q2).

current N3FIT methodology, generating more than 1000 replicas is still computationally
very expensive. If the answer to the previous section turns out to be true, then one can
generate a fit with N0=1000 and use the GANPDFS to generate a fit with say NE=5000
synthetic replicas that contains the same statistical properties as a real fit.

Before proceeding to address the problem at hand, let us first have a closer look at
the synthetic replicas generated from the GAN. First, we verify that despite the fact
that physical constraints such as sum rules and positivity of the PDFs are not enforced
when constructing the synthetic set, they are automatically inferred during the generation.
In Fig. 46, we compare the positivity of the real and synthetic samples for four observables.
Here, the prior is the same as before (containing Np=1000 replicas) while the synthetic
set contains only GAN-generated sample with Ns=2000 replicas. We see from Fig. 46 that
not only the positivity of the observables are satisfied but also the the results are closely
similar to the prior. Similar observation can be made by looking at the results of the sum
rules shown in Table 5.

Now, in an attempt to address the posed question above, we assess the goodness of
the generated samples by comparing the results to a real fit. Such an evaluation could
be done by considering: two disjoint sets of N fitted replicas (say S1 and S2), and a set
of synthetic replicas (S3) with the same size but determined from GANPDFS using a
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Prior mean standard deviation

momentum 0.9968 7.315× 10−4

uv 1.985 3.122× 10−2

dv 0.9888 3.764× 10−2

sv 3.249× 10−3 3.547× 10−2

Synthetic mean standard deviation

momentum 0.9954 1.907× 10−3

uv 1.992 3.788× 10−2

dv 0.9956 3.796× 10−2

sv 2.073× 10−4 4.833× 10−2

Table 5 Table comparing the values of the sum rules between the real Monte Carlo repli-
cas (prior) with Np=1000 and the synthetic replicas with Ns=2000 generated using the
GANPDFS . For each replicas sample, the results are shown for the central value and the
standard deviation for the various valence quarks.

starting set N0 (with N0 ≪ N) of fitted replicas. Then, using various statistical estimators
and distance metrics, one can measure the distance between S1 and S3 and compare the
result with the measure of the distance between S1 and S2. Ideally, the uncertainty from
such a measurement should be computed by repeating the exercise several time, each
time picking different sets of replicas. However, not only this is computationally very
expensive but also time consuming. As an alternative approach for the estimation of
the uncertainty from such a study, we opt for two resampling strategies: the (delete-1)
jackknifing [386–389] and the logically similar (non-parametric) bootstrapping [390–392].
Both methods provide reliable estimates of the dispersion when the statistical model is not
adequately known. More complete description of these techniques may be found in the
following references [393–397], here we summarize the methods in the context of parton
density functions:

Delete-1 Jackknife

As the name suggests, the delete-1 Jackknife resampling strategy consists in deleting
one replicas from the entire PDF set. The remaining (N−1)-sized samples are called
(delete-1) Jackknife samples. Hence, for a prior PDF with N-sized replicas, the i-th
Jackknife sample is given by the following set:

S[i]k =
{

S(1)k , · · · , S(i−1)
k , S(i+1)

k , · · · , S(N)
k

}
. (5.5.1)



180 E F F I C I E N T C O M P R E S S I O N O F P D F S E T S U S I N G G A N S

We can then define the Jackknife replicate D(i) as the distance between two Jackknife
samples S[i]1 and S[i]2 (or S[i]3 for the synthetics). The delete-1 Jackknife standard error
can then be written as:

SEJack-1 =

√√√√N − 1
N

N

∑
i=1

(
D(i) −D(•))2, (5.5.2)

where D(•)= ∑N
i=1 D(i)/N denotes the empirical average of the Jackknife replicates.

Notice that in Eq. (5.5.2), there are N unique D(i) Jackknife samples.

Bootstrap

The bootstrap method also belongs to a class of non-parametric resampling strategies
for estimating distribution of an estimator. As opposed to the delete-1 Jackknife
method, the bootstrap resampling is done through independently sampling the
original sample for a certain number of times with replacement. In terms of resources,
this results in a much more intensive computation.

As just mentioned above, the bootstrapping strategy consists in randomly sampling
with replacement the Monte Carlo PDF replicas, with each sample set being the iden-
tical size as the original (in our case, N). The larger is the size of the random sampling
or the bootstrap size, the more accurate our uncertainties are. For a given measurement
of the distance D, the bootstrap statistical error is given by the following expression:

SEB =

√√√√ 1
NB − 1

NB

∑
i=1

(
D(i) −D(•))2, (5.5.3)

where NB and D(i) respectively denote the bootstrap size and the distance between
the i-th resampled S1 and S2 (or S3 for the synthetics). The empirical average over
the bootstrap sampling is given by D(•)= ∑NB

i=1 D(i)/NB.

In the following studies, we consider two disjoint real fits generated using the NNFIT

methodology, each with size N=500 replicas. The synthetic PDF replicas, that is of the
same size as the real fits, were generated from a prior of N0=100 replicas using the GAN
methodology. The results from the two resampling methodologies are shown in Fig. 47.
The histograms are constructed by simply measuring the distance between the two real
fits S1-S2 (green) and the real and synthetic fits S1-S3 (orange) based on the statistical
estimators we have introduced in Sec. (5.1). The error bars are computed either using
the Jackknife resampling (see Eq. (5.5.2)) or the bootstrap method (see Eq. (5.5.3)). By
inspecting the Jackknife results (left), we first observe that for some of the statistical
estimators we considered, the synthetic PDF replicas yield lower values of the distances.
Second, we see that all the error bars for the real and synthetic fits overlap except for the
standard deviation. The results from the bootstrap resampling confirm the observations
from the delete-1 Jackknife method, i.e. the error bars for the real and synthetic fits overlap
in all but a few statistical estimators such as the standard deviation and Kurtosis.

The above results suggest that the probability distributions of the two sets of PDFs S2
and S3 are closely similar, indicating that the GAN could potentially be used to bypass the
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Figure 47 Comparison of the real and synthetic fits for various statistical estimators. The
histograms are constructed by computing the distance between the two subsets of real
replicas S1-S2 (green) and the distance between the synthetic replicas and one of the
original subsets S1-S3 (orange). The error bars are computed by performing the delete-1
Jackknife (left) and the bootstrap (right). In the bootstrap resampling, the results have
been evaluated by performing NB=100.

need of fitting a large sample of Monte Carlo PDF replicas. This is at least the case for a
smaller sample of Monte Carlo replicas (here N=500). We therefore hypothesize that this
would also be the case for larger sets. If true, the present framework could be used in any
of the ways proposed at the beginning of this section.

5.6 GANPDFS for NNPDF4.0 sets

It was shown in the previous section that the generative-based compression methodology
significantly outperforms the standard approach when tested on a PDF set generated
using the NNPDF3.1 methodology which besides of exhibiting non-Gaussian behaviour
contains fluctuations. In the following section, we test the GANPDFS approach on the new
fitting machinery implemented in NNPDF4.0 [385]. Hereinafter, the new settings are as
follows: we consider as prior a Monte Carlo PDF with Np=1000 replicas generated using
the NNPDF4.0 methodology, which is then enhanced using the GANPDFS to generate
Ns=2000 leading to an enhanced set with a total of NE=3000 replicas. Notice that the
following analyses were performed before the official releases of the NNPDF4.0 sets,
hence slight differences are present w.r.t to the PDF sets available on LHAPDF [5]. As
before, both the compression using the standard and the GAN-enhanced approach are
handled by the PYCOMPRESSOR [360, 370] package.

In Fig. 48 we show the same error function plots as in Fig. 37. Similar to the previous
case, one can see that both the old and new methodologies still outperform by a significant
amount any random selection. Whilst the value of the total error function of the GAN-
enhanced methodology is always smaller than the standard approach, looking at the
individual contributions in Fig. 48 there are some instances in which the standard yield
smaller errors. This is, for example, the case for the skewness estimator. In addition,
it seems that the difference between the orange and green points are no longer that
significant. By inspection of the correlation plots, one can also observe similar patterns.
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Figure 48 Same as Fig. 37 but using as a prior a Monte Carlo PDF set generated using the
NNPDF4.0 methodology.

The differences in correlation matrix are shown in Fig. 49 where, as before, the results
are shown for various sizes of compressed set (from top to bottom: Nc=50, Nc=70,
and Nc=100) using the standard (left) and GAN-enhanced approach (right). While it is
clear that the differences in correlation matrix between the prior and the GAN-enhanced
compressed sets are smaller (lighter) than the differences in correlation matrix between
the prior and the standard compressed sets, it is also evident that the difference between
the left and right plots are no longer that significant.

In order to add more clarification, we can look at the equivalence and disparity plots
similar to Fig. 38 and Fig. 34 respectively. The results where the prior used was generated
using the NNPDF4.0 are shown in Fig. 50. On the left plot, we compare the performance
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Figure 49 Same as Fig. 40 but using as a prior a Monte Carlo PDF set generated using the
NNPDF4.0 methodology.



184 E F F I C I E N T C O M P R E S S I O N O F P D F S E T S U S I N G G A N S

0 25 50 75 100 125 150 175 200
Size of Compressed Set

0.00

0.05

0.10

0.15

0.20

0.25
ER

F
compressor vs. pyCompressor performance

Standard ERFs
Synth. Nc=70
Synth. Nc=90
Synth. Nc=100

20 30 40 50 60 70 80 90 100 200 300 400
Size of Compressed Set

0

5

10

15

20

25

30

35

nu
m

be
r o

f r
ep

lic
as

4
5

8
9

8

11
12

24

20

35

21
20

3
4

6
7

6
7

8

12
13

20

17

15

Disparity rates between Standard and Enhanced

extra-replicas
synthetic replicas

Figure 50 The left plot compares the performance of the generative-based compression
algorithm and the standard approach. The plot on the right represents the number of
disjoint replicas that are present in the GAN-enhanced set but not in the standard. These
plots are resepectively similar to Fig. 38 and Fig. 34 with the difference that the prior was
generated using the NNPDF4.0 methodology.

of the generative-based compression methodology with the standard approach for various
sizes of the compressed set. The description of each line is understood from Fig. 38. In
contrast to the previous results, now a GAN-enhanced compressed set with Nc=90 is
equivalent to the standard compressed set with just under Nc=100; similarly, a GAN-
enhanced compressed set with Nc=100 is only equivalent to a standard compressed
set with Nc∼125 replicas. These comparisons clearly demonstrate that, in the case of
NNPDF4.0 set, the results from the generative-based compression model are not that
notably different from the results from the standard compression. This is consistent with
the disparity plot where both the number of disjoint replicas (defined to be the number
of replicas that are present in the GAN-enhanced but not in standard) and the number of
synthetic replicas ending up in the final compressed set are small.

The fact that the generative-based compression is not significantly impressive when
compared to the standard methodology for NNPDF4.0 Monte Carlo PDF set can be
attributed to the quality of the fit. Indeed, the more stable and Gaussian are the Monte
Carlo PDF replicas, the less synthetic replicas are needed. The degree of stability and
Gaussianity can be studied further by comparing the central value and the standard
deviation of each probability distribution at the level of the cross sections with respectively
the median and the minimum 68% confidence interval [359]. The deviation of minimum
68% confidence interval from the standard deviation is a measure of the presence of outliers
while the deviation of the median from the central value is a measure of the asymmetry of
the distribution. The deviations from the central value and standard deviation are defined
according to Ref. [359] as follows

∆µ ≡
Median− µ

Σ
, ∆Σ ≡

R− Σ
Σ

, (5.6.1)

where µ and Σ respectively denotes the central value and standard deviation respectively,
and the minimum 68% confidence intervalR is defined as

R ≡ 1
2

min [xmin, xmax] where
∫ xmax

xmin

dxP(x) ≡ 0.683. (5.6.2)
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Figure 51 Measure of the degree of Gaussianity for all the differential distributions listed
in Table 4. The x-axis represents the shifts between the central value and the median
as represented in Eq. (5.6.1) while the y-axis represents the shift between the standard
deviation and the 68% interval as represented in Eq. (5.6.1). The color map represents
the KL divergence between the priors (NNPDF3.1 top and NNPDF4.0 below) and their
respective Gaussian approximations.

It is therefore clear from Eq. (5.6.1) that in the case of a Gaussian in the limit of infinite
sample size, both deviations vanish. In the presence of outliers, instead, R ≤ Σ and
∆Σ is negative. Fig. 51 plots the two deviations for a NNPDF3.1 (top) and NNPDF4.0
(bottom) PDF set for all the differential distributions listed in Table 4. The shifts between
the central value and the median are plotted on the x-axis while the shifts between the
standard deviation and the minimum of the 68% confidence interval are plotted on the
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y-axis. The density of colors represent the different values of KL divergence between the
priors (either NNPDF3.1 or NNPDF4.0) and their Gaussian approximations. Looking at
the results using the NNPDF3.1 PDF set, one can see that both the shifts in median and
standard deviation are strongly correlated to the degree of non-Gaussianity. Indeed, for a
few fractions of the observables, the shifts and the non-Gaussianity are significantly large.
This mainly happens for the production of Higgs boson, consistent with Fig. 45. Looking
at the results using the NNPDF4.0 instead, we see that not only the points are mainly
clustered around the center (0, 0) but also the KL distances are very small. This indicates
that both the shifts in median and standard deviation are small. In addition, it is clear that
the shift in median is not correlated with the degree of non-Gaussianity and the shift in
standard deviation, and vice-versa.

5.7 Summary

In this chapter, we applied the generative adversarial neural networks to the problem of
compression of Monte Carlo replicas. Conceptually, this approach consisted in enhancing
the statistics of a given PDF set prior to compression. This resulted in a compression
methodology that is able to provide a compressed set with smaller number of replicas
and a more adequate representation of the original probability distribution. For PDF
sets of the family of NNPDF3.1, the efficiency of the new GAN-based compression
has been extensively verified by comparing the results with the standard compression
methodology. For Monte Carlo PDF sets generated using the NNPDF4.0 methodology,
while the GANPDFS still provides better accuracies for smaller sets, the results were no
longer that impressive. This is mostly explained by the fact that the replicas in NNPDF4.0
PDF sets present less fluctuations and exhibit more Gaussian features. We also entertained
the idea of using the GANPDFS to address the issue of finite size effects. The analyses
performed in the present thesis seem to support the idea that the GANPDFS methodology
could be used to bypass the fitting of a large number of PDF replicas. However, more
in-depth knowledge are required for this study to be fully conclusive.



187

C O N C L U S I O N S

The main theme of the present thesis centered around the theory of strong interactions,
ranging from fixed and all-order perturbative computations of observables that are of
interests at hadron colliders such as LHC, to its non-perturbative aspects such as the
determination of parton density functions. In more specific terms, the unifying idea has
been to improve analytical and numerical computations aiming at providing accurate
predictions in QCD phenomenology. The following passage summarizes three distinct yet
complementary areas studied in this thesis.

The first study focused on curing logarithmic divergences appearing in fixed-order
perturbative computations using techniques from resummation. In particular, we focused
on the resummation of logarithmic terms that are enhanced at small transverse momen-
tum and at partonic threshold. The two resummations were then combined into a single
formalism in which small-pT logarithms are resummed up to NNLL while threshold
ones are resummed up to NNLL*. The interest in providing results for such a combined
resummation was threefold. First, the results could provide a resummation of transverse
momentum that is valid for the entire range of pT . Second, the results could be used to im-
prove our understanding of the relation between soft and collinear divergences that drive
the transverse momentum spectra. And third, the expansion of the resummed expressions
in the running of the perturbative coupling αs may be used as a tool to approximate
higher-order corrections that are not accounted for. The formulation of this combined
resummation relied mainly on two ingredients: first, a modified transverse momentum
resummation–referred to as soft-improved transverse momentum resummation–which leads
to the threshold resummed expression upon integration over the transverse momentum,
and second, a combination of the improved transverse momentum resummation and the
pure threshold expression using some profile matching function that takes into account all
the logarithmic enhanced terms in the soft limit for finite pT . Based on these formulations,
one of the main results of this thesis was a detailed phenomenological studies assessing
separately the impacts of the improved and combined resummation on transverse mo-
mentum distributions. As a test case, we studied the transverse momentum spectra of
the Higgs boson produced in gluon fusion in the HEFT picture and the Z boson produc-
tion via DY mechanism. It was shown that while the the soft-improved resummation
improves the convergence in the small-pT and reduces the effects of unjustified logarithms
in the medium pT regions, the inclusion of the pure threshold resummation improves the
agreement with fixed-order calculations in the medium and large-pT regions. Whilst these
effects are more pronounced in the case of Higgs boson production, which is known to
have slower perturbative convergence, small but yet noticeable improvements are seen in
the DY case.

Another main result from this thesis concerns the construction of an approximate
NNLO transverse momentum distribution for the Higgs boson production in the infinite
top-quark mass limit. As a proof of concept, our studies focused only on the gluon
partonic channel which provides the main bulk of the contribution to the differential
cross section. Nevertheless, the procedure described here can be easily applied to other
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(sub) partonic channels. The approximate expression relied on the combination of the
threshold and high-energy resummations in which the small-x logarithms are resummed
to the leading-logarithmic (LLx) accuracy. The results of such an approximation seemed
promising, at the very least the procedure described here can be used as a robust method to
estimate theoretical uncertainties associated with missing higher-order corrections. In the
context of PDF determination, such an approximation can be applied to the study of DY
processes in order to provide theoretical predictions that can be compared to experimental
measurements. In this case, all the partonic channels involved in the process have to be
taken into account. These are currently ongoing works.

The last part of the thesis consisted in developing a machine learning framework that can
compress Monte Carlo PDF replicas with as little loss of accuracy as possible. The method
we proposed here is based on generative adversarial networks (GANs). Conceptually, the
idea was to enhance the statistics of a given Monte Carlo PDF by generating posterior
distributions that resemble the original PDF. Only then, the enhanced Monte Carlo PDF
passes through a compression procedure. This has proved to yield compressed sets with
smaller number of replicas and a more adequate representation of the original probability
distribution. Indeed, it was shown that with the same size of compressed set, the GAN-
based methodology achieves a more accurate representation of the underlying probability
distribution than the standard compression. Whilst this is clearly the case for PDF sets
of the family of NNPDF3.1, the results are less impressive with PDF sets generated
with the NNPDF4.0 methodology. One possible application of the GANPDFS to PDFs
is the problem of finite size effect. This has been briefly touched in this thesis where
we compared replicas generated from GANPDFS to replicas generated from a fit using
various resampling strategies. Our studies showed that there is little difference between
replicas generated by the GAN and a fit. However, due to computational limitations, the
studies carried on here were done with a moderate number of Monte Carlo replicas. That
is, in order to reduce statistical fluctuations, large samples of Monte Carlo replicas are
required. This could be a topic for future studies. The exploration of this idea might lead
to important insights into a better understanding of not only the probability distribution
functions but also the generative capabilities of GANs.
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of Novel Convolutional 2D Architectures for Speeding Up High Energy Physics
Simulations. EPJ Web Conf., 251:03042, 2021.

[330] Thabang Lebese, Bruce Mellado, and Xifeng Ruan. The use of Generative Adversarial
Networks to characterise new physics in multi-lepton final states at the LHC. 5 2021.



212 B I B L I O G R A P H Y

[331] Raghav Kansal, Javier Duarte, Hao Su, Breno Orzari, Thiago Tomei, Maurizio Pierini,
Mary Touranakou, Jean-Roch Vlimant, and Dimitrios Gunopulos. Particle Cloud
Generation with Message Passing Generative Adversarial Networks. 6 2021.

[332] Ramon Winterhalder, Marco Bellagente, and Benjamin Nachman. Latent Space
Refinement for Deep Generative Models. 6 2021.

[333] Florian Rehm, Sofia Vallecorsa, Kerstin Borras, and Dirk Krücker. Validation of
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[355] A. Accardi, W. Melnitchouk, J. F. Owens, M. E. Christy, C. E. Keppel, L. Zhu, and
J. G. Morfin. Uncertainties in determining parton distributions at large x. Phys. Rev.
D, 84:014008, 2011.

[356] Pedro Jimenez-Delgado and Ewald Reya. Delineating parton distributions and the
strong coupling. Phys. Rev. D, 89(7):074049, 2014.

[357] Jon Butterworth et al. PDF4LHC recommendations for LHC Run II. J. Phys. G,
43:023001, 2016.
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• CHAPTER 3:

HPT-MON: � github/N3PDF/HpT-MON

Stands for Higgs pT Distribution in Momentum and N space. As its name suggests, it
computes the partonic and hadronic Higgs cross sections from a gluon fusion (in pp
collision) up to NLO both in the momentum x and Mellin N space.

HPT-N3LO: � github/N3PDF/HpT-N3LO

Implements the expansion of the small-pT and large-x resummation. Interfaced with HPT-
MON, it approximates the NNLO higgs pT distribution by approximating the extra-order
with the consistent matching of both resummations (will be extended to DY).

• CHAPTER 5:

GANPDFS: � github/N3PDF/GanPDFs

Given an input Monte Carlo PDF replicas, it can generate synthetic replicas that follow
the same underlying probability distribition as the prior. It relies on machine learning
techniques based on adversarial generative models.

PYCOMPRESSOR: � github/N3PDF/pyCompressor

Given an input Monte Carlo PDF replicas, it extracts a smaller subsets that reprocudes
best the statistics of the prior. Interfaced with GANPDFS, it can enhances the statistics of
the input Monte Carlo prior to compression.
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