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Why PDFs?

• Compare SM predictions to LHC data e.g. W, Z, H, t ҧ𝑡 , etc

• Extract physical parameters e.g. 𝛼𝑠, 𝑚𝑞, 𝑚𝑊, 𝑠𝑖𝑛2θ𝑊 etc

• Search for new physics e.g. SUSY, SMEFT

Currently: dominant uncertainty often PDF + 𝛼𝑠 (few %)

Ultimate aim: 1% PDF uncertainties, to make the most of (HL)-LHC 

Need accurate and precise PDFs to compute SM (and BSM) processes at LHC



PDF Determination



Factorization and Universality

• hard partonic cross-sections: process dependent: perturbative 

• PDFs: process independent: nonperturbative

• Scale dependence:                                : P process independent: perturbative

So PDFs                   nonperturbative, but universal: 

extract from global experimental datasets (DIS + Hadronic)

DIS: Hadronic:



Global Datasets

Kinematics: wide range of x and 𝑄2Wide range of SM processes:

from 𝑒±p, 𝜈𝑁, pp, p ҧ𝑝 collisions

Fixed Target

HERA

LHC

Tevatron



Likelihood

Easy! - just compute (at LO, NLO, NNLO, etc)

Note: if 𝑓0 is ‘true’ PDF:

• ‘accuracy’ of the data, A 

• ‘precision’ of the data, P 

• data are ‘faithful’ if 𝐴 ∼ 𝑃, i.e. 

‘Likelihood’

But we can never know 𝑓0 : the best we can hope for is  

Then compare theory 𝑇[𝑓] to experimental data 𝐷:

C is experimental covmat

Moreover mapping                      is ill-defined: 𝐷 are discrete, 𝑓 𝑥 is a function



Bayes Theorem

Two fundamentally distinct approaches to finding the prior: 

• ‘Modelling’: e.g. assume 

and that 𝑃 𝑓 = 1 in this space of functions, zero outside

fit parameters {𝑎, 𝑏} by maximising the likelihood 

• ‘Machine Learning’: NN + CV + MC (+ CT) + HO

no model: use data to also infer probable ‘smoothness’ of 𝑓 𝑥

and thus infer 𝑃 𝑓 throughout the space of functions

Bayes, c.1760

Likelihood: we 

can compute this

How can we determine                ? 

‘Prior’: how can 

we possibly find this???



Modelling PDFs

Choose the prior by hand



Parametrising PDFs

Typically:

• Assume 𝑃 𝑓 has uniform support in this space of functions     

• Maximise                by maximising                : Maximum Likelihood

• Gives ‘best fit’ PDF : minimises             in parameter space {𝑎, 𝑏, … }

‘Poly’ = quadratic, Chebyschev, Bernstein 

Martin, Roberts and Stirling (MRS), c.1993

CDF incl jets 

c.1995

NLO, VFNS, ∼ 20 free parameters

Need PDF Uncertainties!

BSM???

‘Art’ : choose suitable functions: not too many parameters, not too few 



Hessian Uncertainties

Propagate data uncertainties into PDF parameters: 

Solution: inflate exp unc by a factor T:

so that precision ∼ accuracy

Call T ‘Tolerance’. Typically 𝑇 ∼ 5 − 10

More sophisticated: ‘Dynamical Tolerance’: 

tune each evec separately

NLO, NNLO: GMVFNS:
∼ 30 − 40 free parameters

Thorne, 

PDF4LHC 2005

MSTW, 2008

- gives Gaussian 

Problem: precision ≪ accuracy : PDF unc. not faithful

Reasons: 

• data inconsistent (exp unc too small)?

• modelling overconstrains 𝑃[𝑓]:

reduces PDF uncertainty

CTEQ, 2002



Machine Learning PDFs

Let the data choose the prior



Step 1: Neural Networks

Basic idea: choose a parametrization so 

large that it can fit any conceivable PDF

Eliminates bias: if see any sign parametrization too 

small, just make the network even bigger!

Old NN architecture (up to NNPDF3.1):

296 free parameters (37 for each PDF)
New NN architecture (NNPDF4.0): 763 free parameters 

Forte, Latorre et al, 2002



Fit NN to experimental data using

Problem: NN can fit anything! 

– large number of redundant parameters 

– must avoid fitting random data  fluctuations

Solution: ‘Cross-validation’:  

:  ‘training’ set and ‘validation’ set

Step 2: Cross-Validation

• ‘Optimal’ fit is not the ‘best fit’: stop before         is too low, to avoid overfitting

• ‘Optimal’ fits are not unique: space of NN very big. ‘Functional Uncertainty’

• ‘Optimal’ fit is smoother (and thus closer to ‘truth’) than overfits



Propagate data unc into PDF unc

Hessian not much use (redundant parameters): instead

Step 3: Monte Carlo Replicas Giele & Kosower, 1998

• Generate random ‘data replicas’ {𝐷𝑟}:

• Fit NN to each data replica: 𝐷𝑟 → 𝑓𝑟 ‘PDF replicas’

using cross-validation: random tr/val split, random initial seed

• Each data replica equally likely, so each PDF replica equally likely:

The PDF replicas 𝑓𝑟 give importance sampling of  

Importance sampling of 𝜒2

Total Uncertainty vs Functional Uncertainty 

Uncertainties ~ 100 replicas:  Correlations ~ 1000 replicas

Importance sampling in plane of H and Z tot xsecs



Closure Testing: Trust but Check!

• Choose a ‘prior PDF’ 𝑓0 : anything you like, within reason: assumed truth

• Generate ‘perfect data’ 𝐷0 from 𝑓0 : 𝐷0 = 𝑇[𝑓0] : no theory inconsistencies

• Generate perfect data replicas 𝐷0
𝑟 using experimental covmat 𝐶: no data inconsistencies

• Fit NN in usual way, with CV: 𝐷0
𝑟 → 𝑓0

𝑟

• Check PDFs faithful, i.e. that accuracy ∼ precision:

Note: closure test does not determine whether the precision is optimal! – only that it is faithful 

Better methodology can always give more precise PDFs… 

Can also do ‘future tests’

– test uncertainties in extrapolation

i.e. A/P              i.e. fraction within 1𝜎



Evolution?

18/19th century:

‘Phenomenology’

Middle ages:

‘Religion’

20th century:

‘Science’

21st century:

ML/AI ???



Current Global PDFs



Global Data Sets

• Fixed Target DIS: SLAC/BCDMS/NMC

• Neutrino DIS: CCFR/CHORUS/NuTeV

• HERA: H1/ZEUS (NC,CC,c,b)

• Fixed Target DY: E605/E866/E906

• Tevatron: CDF/D0 (W, Z, incl jets, top)

Increasing use of LHC datasets, from Run I and now Run II: DY, W, Z, top, incl jets,  dijets,… 



Global PDFs

• MRS/MRST/MMHT/MSHT: Hessian + dynamical tolerance : ‘MSHT20’

• MT/CTEQ/CT: Hessian + tolerance :                                          ‘CT18’

• NNPDF: NN+CV+MC (+CT) :                                                   ‘NNPDF3.1’

PDFs (normalised to MSHT) ~ consistent PDF uncertainties ~ few %



Consistency, Precision, Combination

Compare e.g. predictions for total cross-sections: 𝑊±, 𝑍, 𝐻

All consistent, but 𝜎 𝐶𝑇18 > 𝜎 𝑀𝑆𝐻𝑇20 > 𝜎 𝑁𝑁𝑃𝐷𝐹3.1

Combination: PDF4LHC21 = CT18 ⊕ MSHT20 ⊕ NNPDF3.1            300 replicas each

Gives conservative estimate of overall PDF uncertainty ~ few %

Performed using various tools: Hessian → Monte Carlo, MC2HESSIAN, META-PDF, CMC

PDF4LHC 2021

Thorne & Watt, 2012

Gao & Nadolsky, 2014

Carrazza et al, 2015



Towards 1% Precision



Step 4: Hyperoptimization

Hyperparameters: not data, or theory, or the PDF: rather the ‘technical’ parameters:

• NN architecture (number & size of layers), activation functions, intitialization,etc

• Fitting parameters: optimizer, learning rate, stopping parameters, etc

Traditionally hyperparameters chosen by hand (fiddled).

Better to choose objectively, optimising 𝜒𝑣𝑎𝑙
2 (hyperopt)

Hyperparameters highly correlated: need thousands of   

fits to explore full space

Test set: choose independent data set (not fitted)

Result: smoother, more precise PDFs

K-folding: divide data into many independent data sets:

test on random subsets: assures generalisability

Result: even smoother, more precise PDFs!

Also much faster (more efficient):

• NNFit (NNPDF3.1): 18hr/replica 

• N3fit (NNPDF4.0):  38min/replica 

N3fit: Carrazza, 

Cruz-Martinez, 2019



NNPDF4.0

NNPDF3.1 (2017) and NNPDF4.0 (2021)

consistent, both faithful (closure test), but 4.0 

much more precise:

• better methodology (hyperopt)

• more LHC data, new processes

• better theory (positivity, sum rules, nucl unc)

NNPDF4.0 most precise set to date

Snowmass 2021



NNPDF is not a black box!

DIY global fitting is at last possible….  and encouraged                    



Missing Higher Order Uncertainties (MHOU)

Theory Uncertainties: PDFs extracted from experimental data using theory (eg NNLO QCD)

So PDFs have theoretical uncertainties as well as experimental uncertainties

Problem: how do we incorporate theory uncertainties in PDF determination?

Solution: the ‘theory covariance matrix’ 𝑆

Assumes experimental and theoretical unc are Gaussian and independent, so 𝐶 → 𝐶 + 𝑆

Tested in NNPDF4.0 on nuclear uncertainties: data with nucl unc deweighted in the fit

MHOU: estimate for every data point in the fit by scale variation:

• 𝜇𝐹 variation  - estimates MHOU in parton evolution (correlated across all processes)

• 𝜇𝑅 variation  - estimates MHOU in hard processes (correlated only within process)

Data with 𝑆 ≫ 𝐶 deweighted in fit: shift towards NNLO: modest increase in PDF unc

NNPDF4.0 + NNLO MHOU coming soon!



EWK corrections

For 1% precision, need EWK corrections:

𝛼𝑠
2 ∼ 𝛼 so   NNLO QCD ~ NLO EWK

Currently ad hoc (corrns vs cuts): need systematic treatment

Double counting Problem: sometimes experimentalists 

subtract ISR, add FSR

Subtracting ISR problematic: can’t be unfolded

e.g. DY:

Photon PDF 𝛾 𝑥, 𝑄2 can be computed

in terms of elastic FF and inelastic SF data, 

and PDFs :  LUXqed Manohar, Nason, Salam, 

Zanderighi (2016)

NNPDF4.0 + NLO EWK coming soonish! 



N3LO corrections

Exact hard xsecs for DIS, DY, Higgs

Partial results for splitting functions: large 𝑛𝑓, large x, small x, moments 

MSHT (2022),

Magni (NNPDF), 2022

NNPDF4.0 @ N3LO coming soon!

Notes: use theory covmat for N3LO unc

if have estimates for MHOU, can combine NNLO processes and N3LO processes in global fit

Large uncertainties 

at small x, as expected



Parametric Uncertainties

‘Physical parameters’: not data, or theory, or the PDF, or hyper: rather 

𝛼𝑠, 𝑚𝑐 , 𝑚𝑏, 𝑚𝑡 ,𝑚𝑊, sin
2 𝜃𝑊 , 𝑚𝐻 , 𝑆𝑀𝐸𝐹𝑇 parameters , etc

Determinations of these will generally be correlated: with each other, and with the PDFs

Several methods of dealing with this:

• PDF ‘profiling’ (Hessian only):  e.g. ATLAS 𝑚𝑊

• Simultaneous Hessian fits: e.g. MSHT, CT 𝛼𝑠, H1 EWK

• Correlated replicas (NN only): e.g. NNPDF 𝛼𝑠
• Simultaneous NN fits (SIMUnet): e.g. SMEFT 

• Theory covariance matrix: extract parameters from uncertainty in fit              

BSM is not BSM if it can be absorbed in PDFs!

Searching for Z’ using DY Forward-Backward Asymmetry

Ubiali et al (2021)

PDF sets disagree at very large x



Intrinsic Charm





GM-VFNS: ቊ
𝑄 ≃ 𝑚𝑐: threshold effects, need mass dependence

𝑄 ≫ 𝑚𝑐: large ln 𝑄2/𝑚𝑐
2 ; need to resum (DGLAP)

ACOT/FONLL

In 𝑁𝐹 = 4 scheme, charm PDF 𝑓𝑐
4(𝑄2) evolves perturbatively

In 𝑁𝐹 = 3 scheme, charm PDF 𝑓𝑐
3 does not evolve: ‘intrinsic’

Notes: 𝑓𝑐
3 is leading twist 

if 𝑓𝑐
3=0 all charm is perturbative: no intrinsic charm                 

Intrinsic Charm?

Standard PDF Paradigm:

• Light partons: 𝐿 = 𝑔, 𝑢, ത𝑢, 𝑑, ҧ𝑑, 𝑠, ҧ𝑠 : 𝑚𝐿 ≪ 1 𝐺𝑒𝑉 : nonpert: fit PDFs

• Heavy partons: 𝐻 = 𝑐, ҧ𝑐, 𝑏, ത𝑏, 𝑡, ҧ𝑡 : 𝑚𝐻 ≫ 1 𝐺𝑒𝑉 : use pert QCD

But 𝑚𝑐 ≃ 1.5 𝐺𝑒𝑉 : 

nonperturbative (‘intrinsic’) charm?

Brodsky et al (1980)Test empirically: fit the charm PDF!

(in a global PDF fit, e.g. NNPDF4.0)

Matching conditions (N3LO)



3𝜎 Evidence for Intrinsic Charm NNPDF (2022)

𝑁𝐹 = 4 𝑁𝐹 = 3

MHOU large

MHOU large

MHOU small



𝑐 + ҧ𝑐 𝑐 − ҧ𝑐

Evidence for Valence Charm???

In NNPDF4.0, we assume 𝑐 = ҧ𝑐
What happens if we release this constraint?



Summary & Outlook

• PDFs: very active at LHC… and EIC

• Towards 1% uncertainties:

• Opensource code

• N3fit methodology (NN+CT+MC+HO)

• MHOU

• EWK      

• 𝛼𝑠 , 𝑚𝑐 , 𝑚𝑏 ,𝑚𝑡 ,𝑚𝑊, … etc, etc….         

Leading to NNPDF4.1

• NNPDF is not a black box!

• DIY fitting



Gargnano (Aug 2022)



The Hopscotch Paradox

Courtnoy et al  (2022)

• Take linear combination of NNPDF 

replicas : 𝑓𝐻𝑆 𝑥 = Σ𝑐𝑘𝑓𝑘(𝑥)

• 𝑓𝐻𝑆 𝑥 is a perfectly good PDF

• Minimise 𝜒2 𝑓𝐻𝑆 on 𝑐𝑘
• Then 𝑓𝐻𝑆 𝑥 has better 𝜒2 than 

any NNPDF replica, but can lie

outside NNPDF uncertainty!

Hopscotch PDFs too wiggly: overfitted (by construction) But Subtle!


