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Abstract

The focus of this thesis is the accurate determination of parton distribution functions
(PDFs), with a particular emphasis on modern machine learning tools used within
the NNPDF approach. We first present NNPDF4.0, currently the most recent and
most precise set of PDFs based on a global dataset. We then provide suggestions for
improvements to the machine learning tools used for the NNPDF4.0 determination,
both in terms of parametrization and model selection. We discuss different sources of
PDF uncertainty. First, we elucidate the nontrivial aspects of averaging over the space
of PDF determinations by explicitly calculating the data-driven correlation between
different sets of PDFs. Then, we lay out certain fundamental properties of the sampling
as performed within NNPDF methodology through explicit examples, and discuss how
one may gain insight into the results of a neural network fit despite it being a black
box model. Finally, we show how the flexibility of the NNPDF methodology allows for
it to be applied to problems other than PDF determination, in particular we present
a determination of neutrino inelastic structure functions.
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Introduction

The successful operation of the Large Hadron Collider (LHC) at CERN enables us
to test the fundamental laws of nature at a high precision across a large kinematic
range. In July 2012 this led to the detection of the final missing piece in the Standard
Model, the Higgs boson, by both the ATLAS [1] and CMS [2] experiments. Despite
the great successes of the Standard Model, there are strong theoretical arguments
pointing towards beyond the Standard Model (BSM) physics. Currently one of the
main focuses of the particle physics community is the determination of properties of
the Standard Model to a high enough precision such that deviations from experimental
measurements become evident. In particular, the precision of theoretical predictions
has to keep up with that of the corresponding experimental measurements.

Experiments in particle physics at the LHC aim to probe the fundamental building
blocks of nature through high energy proton collisions. As such, the interpretation
of their results requires a precise understanding of the constituent particles — the so-
called partons — of the proton. Collisions probing these partons happen at high energy
scales where the dynamics of the partons can be described within the theoretical
framework of perturbative quantum chromodynamics (QCD). However, a description
of the low energy, long range interactions needed for a complete understanding of the
initial state of the proton cannot be obtained from perturbative QCD. This makes its
accurate determination challenging.

The theoretical predictions corresponding to the experimental data rely on collinear
factorization arguments, allowing for the separation of the short distance, perturbative,
contributions from the large distance, non-perturbative, contributions. In the
framework of collinear factorization a longitudinal cross-section o can be written as

c=0QR f,

where G is a partonic cross-section describing the short distance dynamics which is
convoluted with a PDF f encoding the partonic structure of the proton. While PDFs
cannot be calculated from first principles in the framework of perturbative QCD,
they may be extracted from experimental data, and since the PDFs are a universal
quantity, they can then be used for the calculation of predictions for other experimental
observables. This is why PDFs are a fundamental ingredient to test the faithfulness
of the Standard Model.

Because of its important role in theoretical predictions of the Standard Model, a
precise determination of the PDFs is the subject of ongoing research with various
groups regularly releasing sets of PDFs. One such group is the NNPDF collaboration
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which uses a methodology that differs from the standard approach in a number of
important ways, leading to a PDF determination with a reduced parametrization bias.

It is now generally accepted that the frontiers of high-energy collider physics require
percent-level accuracy from both experiment and theory. To achieve this it is critical
for the PDF uncertainties to decrease, while ensuring all factors that impact their
determination are well understood and the final PDF uncertainty is accurate. This
thesis focuses on the determination of a new set of PDFs, NNPDF4.0, and in particular
the methodology used in its determination. It aims to provide a better understanding
of the impact of various sources of PDF uncertainties in the NNPDF determinations,
and proposes several improvements to the methodology along the way.

Outline of the thesis

Chapter 1: Parton distribution functions
We provide an introduction on parton distribution functions mainly based on
Refs. [3-5]. It reviews the theoretical formalism of QCD and in particular
how parton distribution functions emerge in the calculation of deep inelastic
structure functions and Drell-Yan cross-sections. We also discuss theoretical
aspects relevant for the determination of PDFs, in particular the evolution of
PDFs with respect to their energy scale and further theoretical constraints.

Chapter 2: NNPDF/.0: towards PDFs with percent-level accuracy

We present NNPDF4.0 [6], the latest set of PDFs released by the NNPDF
collaboration. We focus on the methodological framework underpinning the
determination, and in particular the use of a gradient descent based optimization
algorithm and an automated selection of the model hyperparameters resulting
in a significantly improved efficiency of the fitting algorithm. We then discuss
the experimental dataset and some of the important features of the NNPDF4.0
PDF set. Finally, we present the open-source NNPDF code [7] and list the main
packages with their corresponding functionalities included in the code.

Chapter 3: Advanced machine learning tools
We highlight certain aspects of the NNPDF4.0 methodology and propose
how they may be improved upon for a potential future release of NNPDF
PDFs. First, we propose an alternative data-based scaling of the momentum
fraction z first presented in Ref. [8]. This scaling facilitates the removal
of a preprocessing prefactor present in the NNPDF parametrization of the
PDFs, thereby significantly simplifying the methodology without a loss of
efficiency. Then we propose an extension to the hyperoptimization framework
used to determine the model hyperparameters in NNPDF4.0. The proposed
methodology relies on the automated construction of representative subsets of
data to improve test of the methodology’s generalizability, as well as a statistical
measure for the detection of overfitting.

Chapter 4: Methodological uncertainties in PDFs
We discuss different sources of PDF uncertainties with a particular focus on
methodological uncertainties. In the first part of the chapter we study correlation
between different sets of PDFs and examine the extent to which the correlation
between them is due to the underlying data. We then discuss how this knowledge
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can be used to assess the efficiency of methodologies used for PDF determination.
We also show that the use of data-driven correlations for the combination of
different PDF sets can lead to inconsistent results. In the second part of
this chapter we clarify certain fundamental aspects of the statistical framework
underpinning the sampling as performed within the NNPDF methodology.

Chapter 5: The neural network approach for neutrino structure functions
We demonstrate how the NNPDF methodology can be applied to problems
closely related to, but fundamentally different from, PDF determination. In
particular, we present a determination of neutrino inelastic structure functions
for a wide range of scattering energies.

Much of the work in this thesis has been done in collaboration with colleagues from
the NNPDF collaboration. Where results are presented, I tried to emphasize the parts
where I believe that I have made a significant contribution. Unless otherwise stated
in the caption I have generated the figures for this thesis or they have appeared in
previous publications co-authored by me.






Chapter 1

QCD and parton distribution functions

This chapter introduces parton distribution functions, a fundamental component of
QCD, factorizing the non-perturbative long range dynamics corresponding to the
hadronic states. When convoluted with the perturbative, partonic cross-sections they
allow for the calculation of predictions of LHC processes.

We start by providing a brief overview of some of the fundamental properties of
QCD, the gauge theory of the strong interaction. We then explore how PDFs arise in
the framework of perturbative QCD, and in particular we discuss collinear factorization
theorems in QCD using the case of the deep inelastic scattering (DIS) of a lepton off
a hadronic target as a basic example. We will finally review some properties of PDFs
exploited in their determination from experimental data.

1.1 Basics of quantum chromodynamics

The observation of a symmetry corresponding to the special unitary group of degree
3, SU(3), in the spectrum of mesons and baryons lead to the idea of quarks whose
interactions are described by quantum chromodynamics, a gauge quantum field theory
based on the non-Abelian gauge group SU(3) [9-11]. The classical Lagrangian of
QCD is fully determined from the requirement to satisfy the SU(3) symmetries and
renormalizibility, it reads’

ny
. 72 1 v
L= 0 (i9" Dy — mi) ¥} — ZFA“ Fa,. (1.1)
=1

This term describes the interactions of the massless spin-1 gluons, as well as the spin—%
quark fields 1§ of mass m;, where the label ¢ runs over all ny flavors. The index a is the
color index for the fundamental triplet representation ¢, while A is the color index in
the adjoint representation corresponding to the eight color degrees of freedom of the

IThe Lagrangian of Eq. (1.1) can be extended with another gauge invariant term proportional to
EMV.YPFA‘“’FA . This can be written as a total derivative leaving the Euler-Lagrange equations
unchanged. In reality there are some additional subtleties to this argument [12], but for the
discussion in this chapter the term will be ignored.
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gluon field Aﬁ. The index p is the Lorentz index running over the four dimensions of
spacetime. The gamma matrices v* satisfy the anti-commutation relation

{7} = 29", (1.2)
with g"” the Minkowski metric. The covariant derivative is defined as
Dy = 0y +igs(ALt?). (1.3)

where g5 is the gauge coupling representing the strength of the interaction between
colored states, it is a free parameter of the theory. t4 are the generators of the group
in the fundamental representation satisfying the commutation relations

[t4,¢5] = i fABC, (1.4)

where fABC are the structure constants of the SU(3) group. A representation for the
generators t* is given by

th = %AA, (1.5)

with A4 corresponding to the eight 3 x 3 Hermitian traceless Gell-Mann matrices, with
the normalization of the generators conventionally chosen as

1
Tr (t4¢5) = Tré*B, Tx = 3 (1.6)
Finally, Flf‘y is the field strength tensor and can be defined in terms of the gluon fields
and the structure constant as

Fo, =0, A0 — 0,A} — g, fAPCABAC. (1.7)

Tt is worth pointing out that the final term in Eq. (1.7) corresponds to the gluon self-
interaction. An equivalent term is not present for the virtual photon fields in quantum
electrodynamics (QED) as it is a feature of non-Abelian gauge theories. In QCD this
leads to the important property of asymptotic freedom to be discussed below.

From the Lagrangian of Eq. (1.1), it is now possible to calculate observables such as
cross-sections or decay rates in terms of expansions in the strong coupling constant a,
which is defined in terms of the QCD gauge coupling from Eq. (1.7) as o, = g2 /4.
However, radiative quantum corrections introduce divergences beyond leading order
in the calculation of a physical observable. These divergences are treated by a
renormalization procedure to remove ultraviolet (UV) divergences, which requires
that the coupling must be redefined to absorb the dependence on the renormalization
scale. This dependence of the running coupling a(u?) on the scale y? at which the
subtraction of the ultraviolet poles is performed is given by the renormalization group
equation:

s (1
Tl) 5 (s (). (18)
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Figure 1.1: An overview of measurements of o, as a function of the energy scale Q.
The perturbative order of the QCD calculation used in the extraction is indicated in
the parentheses. The figure is taken from Ref. [16]

where the 3 function can be calculated as a series in ay(u?)

B (as (1%)) = —a2 (1?) (Bo + Bras (1°) + O (a3)) , (1.9)
with 332 153 — 19
_ 33 -2ng N — 19n;
bo=—gr > P=g; (33— 2ny)" (1.10)

While, for illustrative purposes, the g function is only explicitly shown up to NLO, it
is known up to five loops [13].

The solution to the renormalization group equation Eq. (1.8) at leading log in the
expansion of the inverse powers of log (/LQ) can be written as

)

LQ?
)log 12

o (1) as (p

= 1.11
1+ Boas (/’L ( )

2
0
2
0
where p3 is an arbitrary initial scale. This highlights an important property of
QCD. Namely, since g is positive for ny < 17, the value of the running coupling
as(p?) decreases logarithmically to 0 as the energy scale of the process increases.
This property is called asymptotic freedom, and makes QCD an asymptotically free
theory [14,15].

Perturbative QCD thus tells us how the coupling constant depends on the scale,
but it does not provide us with its value. This has to be obtained experimentally.
Commonly the value of the coupling constant is quoted at the mass of the Z boson,
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thus as(M2). Using Eq. (1.11), the value of the coupling constant at any other scale
can then be obtained. Fig. 1.1 shows an overview of different measurements of the
strong coupling a,(u?) for a range of scales.

In Eq. (1.11) the fixed coupling still depends on the arbitrary scale pp. In some
cases we may wish to remove this dependence, which is commonly done by replacing
it with a dimensionful parameter A roughly corresponding to the point at which the
theory becomes strongly coupled. It is defined as

2 o
I dx
log — = —/ —_— 1.12
g A2 o (22) B(x) ( )

and allows us to write Eq. (1.11) as

oy (1) = ——— (1.13)
Bolog &>

Its value is around 200 MeV, though its precise definition depends on the choice of
renormalization scheme. Along with the RGE equations describing the running of the
coupling, A allows us to replace the dependence on the dimensionless parameter g,
which — as we have just seen — is not a constant.

Asymptotic freedom is the fundamental property of QCD that allows us to perform
calculations perturbatively in the limit > A, since there we have that a,(u?) < 1
and the dynamics of the quarks can be approximated by that of free particles. However,
the same scaling relation tells us that for low energies the theory is strongly coupled
and thus perturbation theory cannot be applied reliably in this regime.

1.2 Collinear factorization and the parton model

A description of the low energy bound state of the hadrons is required to make
predictions for collisions involving hadrons. However, as we have just seen, at low
energies the running coupling becomes large and thus perturbative QCD is not
accurate in this regime. Here we will discuss the collinear factorization theorems
that allow for the factorization of the short distance effects that can be computed
perturbatively, and the long distance effects that have to be extracted from data. We
will consider as an example the process of deep inelastic scattering. In particular we
will see how PDFs arise in this framework.

1.2.1 Kinematics of deep inelastic scattering

Deep inelastic scattering is the process of colliding a lepton with a hadronic target,
destroying the target in the process (compared to elastic or slightly inelastic scattering,
where the target is not destroyed). This is a very clean way of testing QCD
since it allows us to probe the hadron (commonly a proton) with a structureless
probe (commonly an electron). Historically, DIS experiments have played a vital
role in obtaining a deeper understanding of perturbative QCD, and currently these
measurements still play an important role in the determination of PDFs. Important
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Figure 1.2: Schematic representation of the deep inelastic scattering of a charged
lepton [ off a hadronic target H.

of such measurements are those performed at SLAC [17], BCDMS [18], and HERA
(H1 [19] and ZEUS [20]).

Fig. 1.2 shows a schematic representation of a DIS process where a charged lepton
! with momentum £ probes a hadron H with momentum P thereby breaking it apart
into a hadronic final state X:

I(k) + H(P) — I(K') + X. (1.14)

Let us here consider the case of a proton probed by an electron, which involves
neutral current (NC) scattering through a virtual photon. We will consider only the
contribution associated to the photon exchange, which is a valid assumption for energy
scales well below Mz. To describe this process we need to parametrize the interaction
of the photon with the proton. As such, a sensible choice for the parametrization of
the cross-section would be to describe it in terms of the momentum of the proton P
and the momentum of the photon ¢ = k — k’. The center of mass energy is denoted
by

s=(P+k)? (1.15)

while the invariant mass of the final state X is given by
W2 = (P+q)>. (1.16)

Then, we define the standard DIS kinematic variables:

@ = (117)
QQ

I:2P-q’ (1.18)

y=(P-a)/(P-H)=L. (1.19)



Chapter 1 QCD and parton distribution functions

In the kinematic domain where the scales @2 and W2 are both much greater than the
mass of the proton, the mass of the electron and the quarks can be neglected. Here
y is the relative energy loss, and can alternatively be written as y = 1 — E'/E, with
E energy of the incoming electron and E’ the energy of the outgoing electron. The
variable x, known as the Bjorken x scaling variable, can take values between 0 and 1,
where x = 1 corresponds to elastic scattering. The deep inelastic scaling region then
corresponds to Q2 > A? for fixed z and sufficiently small 2. As will be discussed in
more detail below, the Bjorken x is of fundamental importance in the understanding
of DIS processes in QCD.

The idea of this parametrization is that by measuring the kinematics of the outgoing
electron, the structure of the proton can be obtained in terms of the characteristics of
the probe such as =, Q% and y.

The leading order matrix element corresponding to the DIS process of Fig. 1.2 can
be written in Feynman gauge as

o g v
M =ie*u (k') v u(k) (zéﬁ) (X |JV|H), (1.20)
where spin labels have been omitted. Here |H) represents the state of the incoming
hadron, | X) represents the hadronic final state, and J, is the electromagnetic current.
It is worth noting that the hadronic states cannot be computed in perturbation theory
as a result of the large value of the coupling constant discussed in Sect. 1.1 above.

If we want to describe the cross-section of a DIS process, a natural starting point is
thus to separate the both the phase-space factor and the Feynman amplitude into a
leptonic and a hadronic part as

>k ME
P=—"0 —dby = —ydydrdd 1.21
@ryiapy 10X = gz vdyded®y, (1.21)
1 9 et v
ZZW” = @L“ hx (1.22)

spin

with a leptonic tensor L, and the hadronic part of the amplitude denoted by hx . .
The leptonic tensor can be calculated explicitly in QED and reads

L = iZ a (k") u(k)a(k)y u (k')

spin
1 . (1.23)
=t [%v”k"y ] :
= kMK + KPR — gk K

The hadronic part of phase space and the amplitude can be combined into a hadronic

tensor
W = / A®hx ., . (1.24)
X

10



1.2 Collinear factorization and the parton model

Then, by requiring Lorentz symmetry and gauge invariance we find that a general
formulation of the hadronic tensor can be written as

oV
W (P,q) = — (g“” + qqg) P (2,Q?)

P.q P.q 1 9
Pt ) (P ¢ F.
+< q q2>( q q2>Pq Q(xaQ)7

(1.25)

where the functions F} and F; are called structure functions. More general structures
including a third structure function F3 can be found if we allow for parity violating
interaction mediated by a W or Z boson as will be discussed in Chapter 5.

The cross-sections corresponding to the DIS process can be calculated using

B 1 1 )

spin
where combining the expressions collected above gives

do 2ma? 2(1 —y)
x

- 1+ (1 —19)?] Fr (z,Q?
dzdQ? Q* {[ ( y) ] T(x Q )+
with o = €?/(47m) the fine structure constant quantifying the strength of the
electromagnetic interaction, and the transverse structure function Fr and the
longitudinal structure functions F, defined as

Fr, (z,Q%) ], (1.27)

F = Fy — 22F,, (1.28)
Fr =2F,. (1.29)

Note that the distinction between Fy and Fy (or Fp, and Fr) can be made based on
the y dependence of the prefactor.

Thus far the only assumptions that we have made about the W,,, tensor is that it
satisfies both gauge and Lorentz invariance. Let us now also assume that the proton is
formed as a bound state of constituent particles. If we then consider the DIS process
in a reference frame where the hadron moves very fast and the energy of the process is
large, it will be Lorentz contracted in the direction of the collision and the lifetime of
particles inside the hadron increases. What this means in practice for a DIS process, is
that upon probing the hadron with an external lepton, the interaction can be though
of as the interaction between a lepton and a single, pointlike, particle while the other
particles inside the hadron do not interfere. Interactions happening in the final state,
however, for similar reasons occur on large timescale therefore not interfering with the
hard scattering process either.

This is the basic intuition leading to Feynman’s parton model [21], which assumes
that the proton is formed as a bound state of constituent spin—% objects called partons.
It suggests that short distance physics describing the electron-parton interactions can

11
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be separated from long distance physics describing the hadron. Using the parton
model, the DIS cross-section can then be written as

e
dxd@? / 2 5(8) dmd@? (s’Q2>’ (130)

where f;(£) represents the probability of finding a parton of flavor ¢ inside the hadron
carrying a momentum fraction £ of the total momentum of the proton (and thus the
parton carries momentum ¢ P), and d?6/(d2dQ?) is the cross-section for the scattering
of the electron with a parton. Such a factorized expression is accurate up to corrections
that are suppressed by powers of A2/Q? corresponding to so-called higher twist terms.

We now have the tools needed to discuss scale dependence in the parton model.
To this end, let consider the leading order cross-section of the scattering of a lepton
off a parton, e"q — e~ ¢q. Using the DIS variables we can express the cross-section
differential in Q? and z as

d*s dra® 1
——=—— - [1+(1-y)?] oz - 1.31
implying that the Bjorken variable x is equal to the momentum fraction £ at leading
order. From Eq. (1.31) we can read the expressions for the partonic structure functions

Ey = 22F) = 2e?5(x — ). (1.32)

Finally, if we compare the cross-section as described in terms of structure function in
Eq. (1.27) to the cross-section as described in the parton model of Eq. (1.30) with
Eq. (1.31), we find

F()—233F1—x2/ defi(€ eéac— —;CZ 2f1 (1.33)

1=q,9 1=q,q

Eq. (1.33) shows how DIS experiments can probe the structure of the proton in terms
of its quark and gluon constituents. It further explicitly shows that the structure
functions in the limit of large Q2 only depend on x and not on Q2. This is known
as Bjorken scaling [22] and establishes that DIS must be described in terms of the
scattering process of the parton with a photon. It also shows that Fj, = F» —2xF; =0
holds at leading order. This equation is known as the Callan-Gross relation [23], and
is a consequence of the fact that for a longitudinally polarized photon scattering off a
spin-3 particle the cross-section vanishes [24].

It is also worth highlighting that here the quark ¢ and antiquark ¢ are
indistinguishable, hence to independently determine the corresponding PDFs, charged
current (CC) processes are required.

1.2.2 Deep inelastic scattering in QCD

Early DIS experiments showed good agreement with the parton model, thereby
providing strong support for QCD as a theory for the strong interaction, and
Feynman’s partons were soon associated with the quarks in the model based on the
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Figure 1.3: Measurement of the Fy(x,Q?) structure function from various different
experiments. To the Fy values for each z a scale term ¢(z) = 0.6(¢ — 0.4) has been
added, where ¢ is the bin number in x starting at ¢ = 1 for x = 0.13. The figure is
taken from Ref. [25]

SU(3) gauge symmetry by Gell-Mann in 1964 [10]. However, in our discussion so far
we have neglected higher order QCD corrections. Such corrections would correspond
to logarithms of the scale of the process @2, and thus introduce a dependence
on @Q? ignored by the large Q? assumption leading to the observation of Bjorken
scaling. Indeed, measurements of the F5 structure function such as those by the H1
Collaboration [25] shown in Fig. 1.3 reveal a violation of the Bjorken scaling of the
structure function. We will now extend the parton model to include the first order of
QCD corrections.

We have seen how the idea of the parton model without QCD corrections allowed
us to obtain the result of Eq. (1.33). The inclusion of higher order QCD corrections is
then obtained through a generalization of this result to all orders in QCD motivated
by the factorization theorem [4]. We can then write any structure function F in a
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Chapter 1 QCD and parton distribution functions

LK

Figure 1.4: Feynman diagrams describing QCD corrections to the ggv* vertex. The
first three Feynman diagrams correspond to ay corrections to the LO process, while
the final (right-most) diagram corresponds to photon-gluon fusion.

factorized form where the partonic structure functions, also called Wilson coefficients,
Ci(z,Q?) are weighted by the PDFs as

Fe@)= ¥ [ %o () no,

1=¢,q,9

S c( >®f¢(£),

1=9,4,9

(1.34)

where ® denotes the Mellin convolution product defined as

fa)o g = [ dj (;”) o). (1.35)

The Wilson coefficients encode information about the high energy process and can
be calculated as a perturbative series in .

Let us now explicitly consider QCD correction by again studying the case of the
qqv* vertex. The leading order diagram is the same as in the parton model, while at
NLO we find both virtual corrections of the self-energy diagram and real corrections
corresponding to the gluon emission from the incoming or outgoing fermion line. We
also find a diagram corresponding to photon-gluon fusion. The corresponding Feynman
diagrams are shown in Fig. 1.4 and contain both infrared (IR) and UV divergences.

The infrared divergences cancel between the real and virtual corrections, since the
Standard Model is perturbatively infrared finite [26,27]. Nevertheless, a regulator
is introduced to accommodate intermediate steps of the calculation which is later
removed. The infrared divergences originate from the treatment of partons as massless
particles, as such one may regulate these divergences by introducing a small mass for
the partons. In practice, dimensional regularization is generally preferred (in particular
for calculations beyond NLO), but for illustrative purposes we will introduce quark
masses m, and the gluon mass my.

Accounting for the contribution to the LO vertex corresponding to the Feynman
diagrams of Fig. 1.4 gives

Hg 2 ag Q2 q
F =ejx [6(1 — )+ - P,q(x)log p +Ci(x)| |, (1.36)

g
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1.2 Collinear factorization and the parton model

where the 6(1—x) term corresponds to the LO vertex while the O(a;) term corresponds
to the first three diagrams in Fig. 1.4. The final diagram of Fig. 1.4 then gives

Q?

S = q elx Z‘S{ o(z)log =5 +Cg( )| - (1.37)

The P;; in Eq. (1.36) and Eq. (1.37) represent the Altarelli-Parisi splitting functions
describing the probability that a parton j splits into a parton ¢ and another parton
carrying a momentum fraction x of the incoming parton j. The splitting functions are
universal and can be calculated perturbatively in QCD. Currently they are known up
to NNLO [28,29], with parts of the splitting functions known at N3LO [30-32].

The presence of large logarithms of Q?/m? in Eq. (1.36) and Eq. (1.37) indicate that
not all UV and soft divergences have canceled. Namely, a collinear divergence remains
in the case where an emitted gluon is collinear to the incoming quark. These large
logarithms now contain all the residual long-range physics left after resumming the real
and virtual corrections. While these infrared divergences appear at the parton level,
a physical observable should not be sensitive to infrared divergences. The physical
observable can be obtained using Eq. (1.34) to give

Fi(z,Q%) ==z Z e

1=q,q

<[otor+ 52 [ Ewte [ () e T w2 (7))

where f; 0 are the bare PDFs. We may also define renormalized PDFs

(1.38)

2
fq (xa,U/F) qu( ) 277 ;fqo(f) <§>10gm + Zqq, (1'39)

)

where we have introduced a factorization scale ppr defining the threshold between long
and short distance physics, and the dependence on the IR cutoff has been absorbed into
the definition of f, ¢ (x, ur). This is possible because the divergences are universal and
thus so are the renormalized PDFs. The finite term z4, depends on the factorization
choice and is a calculable quantity.

Finally, this allows us to write the structure function as a factorized expression:

quQQ—JSZ /5 f/iF

i=q.a (1.40)
<Jo(-g) e [ (§) e +ex (3) - =

This is an important expression for understanding DIS in QCD, and some point
are worth stressing here. In particular, all long distance effects are encoded in the
PDFs f; (5 , u%) which depend on a factorization scale up in such a way as to exactly
cancel the dependence at all orders in perturbation theory. Since the final result is
given as an expansion in «y, it does depend on the choice of the renormalization scale
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proton

proton

Figure 1.5: A diagrammatic representation of a neutral current Drell-Yan process in a
proton-proton collision.

wr. The short distance effects are encoded in the factorization scale dependent wilson
coefficients and can be calculated perturbatively.

1.2.3 Hadron-hadron collisions

So far we have only considered the factorization for DIS processes where we have only
a single hadron in the initial state, however the formalism may be extended [33-35] to
processes with two hadrons in the initial state. This allows us to study processes at
proton-proton colliders such as the LHC. Arguably the most relevant process in proton-
proton collisions is the neutral current Drell-Yan (DY) process shown in Fig. 1.5, in
which a quark from one proton and an antiquark from the other proton annihilate,
creating a Z boson or virtual photon which finally decays into a lepton pair 71~

The collinear factorization theorem for a process involving two incoming hadrons
reads?

1
7x(5.Mx) =3 [ dordaat (w1.163) i (a2.13)
0

a,b (1.41)

: Q* @

X Ogb—X (331, T2,08 (M%{) s 9y o |

HE HR
Here 6,5 x is the partonic cross-section for the production of a hadronic final state
X, and it encodes the short-distance behavior for incoming quarks or gluons of flavors

a and b that can be calculated as an expansion in «g.

Eq. (1.40) and Eq. (1.41) tell us how to connect calculations of hard scattering
cross-sections in perturbative QCD with two partons in the initial state to observables
resulting from collisions with hadrons. Since PDFs encode the initial state of hadrons
and are by definition non-perturbative, they cannot be calculated using perturbation
theory. Instead they have to be extracted through the analysis of experimental collider

21t should be noted that the factorization theorem has not been formally proven for all processes
considered at the LHC, but even in those cases factorization is generally treated in the same way.
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1.3 Scale dependence of PDFs

data. This is only possible because PDFs are universal objects, and thus the PDFs
appearing in Eq. (1.40) are the same as those appearing in Eq. (1.41).

1.3 Scale dependence of PDFs

The observables calculated using the factorized expressions correspond to measurable
quantities, and must therefore be independent of the factorization scale up introduced
in a renormalization procedure as a way of treating initial state divergences. This
observation leads to the renormalization group equation for the structure functions

dF2 ({E Q2)
p— A A 1.42

while the renormalization group equation for the quark distributions reads

d s 2 ld
ittty ) = ) [ (20 (i) nent). 0w

which are again expressed in terms of the Altarelli-Parisi splitting functions.

These expressions are known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equations [36-38] and describe how the PDFs evolve with respect to the
factorization scale. The DGLAP equations allow us to define PDFs at a given scale
Qo and evolve them up to the scale @ of a hard process. This is why processes at
different energy scales can all be used to constrain the PDF that is parametrized at
an initial scale Qg

Due to the flavor symmetries present in QCD in the limit where quark masses are
neglected, it is possible to define a basis of flavor states that are preserved under
evolution with the matrix Pj;. One such basis can be constructed by dividing the
system of equations into two subsystems known as the singlet and non-singlet sectors.

Given a system with thirteen partons with ny = 6 consisting of six quarks f; =
{u,d, s, c,t,b}, their anti-quarks, as well as the gluon, we define
f[Fehth (1.44)

Here we make the distinction between valence f~ commonly denoted by?

Vi= [, (1.45)

3 Another common notational convention that will appear in this thesis to denote a valence quark is
by writing a subscript V, e.g. the valence up quark is written as uy = u — .
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Chapter 1 QCD and parton distribution functions

and the triplet states

Ty =ut —dT,

Ts=ut4+dm —2sT,
Tis=ut +d" +st —3cT, (1.46)
Tog=ut +d +sT +cT —4bT,

Tos=u" +d" + st +ct +b7 —5tT.

The valence and triplet states comprise the non-singlet sector and evolve according to

d s 2 1 d
bt ) = U [ pcag po (L),

where valence states evolve with P_ and the triplet states with P,. At leading order
the splitting functions read

POz) = PO (z) = Cr (1 + x2> . (1.48)
+

T ox 1—=z

For the singlet sector we define the singlet distribution

ny
DS (1.49)
i=1

which couples to the gluon PDF, and the evolution equations of the corresponding
system read

L (Do) | _esl) [P P ) (Zfer))
MFd'u% ( g (m,u%) 27 /a; 3 Paq  Pyg ) (57#%") - (150)

The convolution of Eq. (1.34) can be written in a more convenient way that will
allow us to find an analytic solution for the DGLAP equation by performing a Mellin
transform defined as

1
f(N) = /O deaN 1 f (). (1.51)

Namely, by performing a Mellin transform of a convolution it can be written as a
simple product:

o [ s ()

1 1 1
/defo /0 dy/o dzd(x — zy) f(y)g(2)
o 1 N .
= [t [ asten rate)
= f(N)g(IN)

(1.52)
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1.4 Treatment of heavy quarks

Using Eq. (1.34), and noting that from the parton model we have F5 o< ), [0 F, we
find that the Mellin transform of the renormalization group equation for the structure
functions reads

dEy (N, %F)

=0 1.53
oz ir 7 (1.53)

dfq(Na,UF)F <N HE
dlog up " Q

where we can separate the PDF and structure function coefficient terms as

)+fq (N, 1)

A Q
dlog I <N7H7) _ dlog fq (N, py)
dlog(Q/pur) dlogpp

Here ;;(N) denote the anomalous dimensions, which are the Mellin transforms of the
corresponding splitting functions F;;.

The solution of the evolution equation in Mellin space Eq. (1.54) can then be written
as

= —7Yqq(N). (1.54)

F(N.Q) = f, (N, Qo) e eV 1e5(5) (1.55)

These evolution equations can be used to evolve the PDFs from an initial scale @)y to
a general scale Q.
The full DGLAP equations in Mellin space then become

2

d ( (N,Q%) ) _ osliF) ( Yag  21f%ag ) ( = (N, Q%) )

du? \ g (N,Q?) 27 Yea  TVag g(N.Q%)

In practice the DGLAP equations are solved using iterative numerical procedures.
For this purpose several codes have been developed that either solve the evolution
equations directly in momentum space such as HOPPET [39], QCDNUM [40] and
APFEL [41], or in Mellin space such as PEGASUS [29] or EKO [42]. The Mellin space
approach has also been used by the internal NNPDF evolution code FASTKERNEL
discussed in Refs. [43-45].

An example of the result of PDF evolution is shown in Fig. 1.6 where we show PDFs
evolved from the initial scale Q3 = 1.65GeV to Q = 3.2GeV (left) and @ = 100 GeV
(right). PDF evolution is fundamental to the extraction of PDFs from data, namely it
allows us to parametrize the PDFs at an initial scale and evolve to the experimental
scale in order make predictions that can be compared to measurements.

2
S (.Q7) = SN (N 0y (1) 155 (N, Q7)
. (1.56)

1.4 Treatment of heavy quarks

This section is based on the discussion in Ref. [5].

Quarks are conventionally divided into light quarks with a mass well below A, and
heavy quarks with a mass greater than A. Following this definition, the up, down and
strange quark are considered light quarks, and for these quarks the approximation
leads to accurate results. For the other quarks the argument becomes more subtle, in
particular the approximation is no longer accurate when treating processes with a hard
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Figure 1.6: The NNPDF4.0 PDFs [6] evolved from the initial scale Q% = 1.65GeV to
Q = 3.2GeV (left) and @ = 100 GeV (right).

scale @@ that is close to a quarks mass. In those cases a mass independent scheme can
no longer be applied reliably and contributions coming from mass dependent terms
should be accounted for, in particular when the evolution crosses a scale equal to a
quark mass. Because of this, variable flavor number (VFN) schemes are used to obtain
an accurate treatment of datasets with a large range in the hard scale.

When considering VFN schemes generally a distinction is made between three
kinematic regions:

e Q < my: The mass of the heavy quark is much larger than the hard scale of
the process. In this case the heavy quarks can be decoupled [46-48] and treated
as a purely final state particle. The scheme accurate in this region is the fixed
flavor number (FFN) scheme.

e @ ~ mp: The mass of the heavy quark is of the same order as the hard scale of the
process, and should be treated as a large parameter. Heavy quark contributions
contribute to the Wilson coefficients or in renormalizations such as in the case
where the heavy quark is decoupled.

e @ > my: The mass of the heavy quark is much smaller than the energy scale of
the process. In this region the heavy quark is neglected in the Wilson coefficients
and instead a heavy quark PDF is introduced. The scheme accurate in this region
is the so called zero mass variable flavor number (ZM-VFN) scheme.

To ensure both the decoupling at low scales as provided by the FFN scheme and
resummation of logs of Q?/m? at high scales as provided by the ZM-VFN scheme, so-
called general mass variable flavor number (GM-VFEN) schemes have been constructed
to interpolate between the FFN and ZM-VFN schemes.

Fixed flavor number scheme

Let us first consider the region where the mass of the heavy quark is roughly equal
to the hard scale (the threshold region) or larger than the hard scale of the process,
@ < myp. In this region only the light quarks are treated as partons while the heavy
quarks are treated as a purely final state particle. Under these assumptions we only
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1.4 Treatment of heavy quarks

need to consider the light quarks and the gluon in the theory. Setting the factorization
and normalization scales equal to a scale p allows us to write the calculation of the
structure function of Eq. (1.34) as

2 2
F (nl,ngmh ZC (nlv Q2 5 Lvﬁ > ®fz (nl7 )7 (157)
h

where the index 7 runs over the n; light quarks, and = dependence has been omitted.
We can then separate the structure function into a part corresponding to contributions
that only involve light quarks F'* and a part corresponding to the contributions that
involve heavy quarks F' as

F(leQ,mh) :FL (nlaQ)+FH (nl7Q7mh)' (158)

FH first contributes at O (o) through the production of a quark anti-quark pair from
the splitting of a gluon.

Zero mass variable flavor number scheme

Although the FFN scheme is accurate in the region where @ < my, this scheme does
not resum logs of Q?/ m,% that become large in the region much larger than the heavy
quark mass. This can be resolved by using the ZM-VFN scheme in which the heavy
quark is treated as a parton at scales above the heavy quark mass, allowing for the
resummation of the logs of @%/m3? through DGLAP evolution. This scheme differs
from the FFN scheme only through the additional parton, and thus the equation for
the structure function analogue to Eq. (1.57) can be written as

n;+1

F(nl+1,x,Q ZC(nl—i-lQ)@fz(nH—lu) (1.59)

In this scheme, the heavy quark PDFs are set to zero at scales below the quark mass,
and evolved using DGLAP on the same footing as the light partons above the quark
mass. This resolves the problem at large scales of the unresummed logs of Q2/ms3.
However, since it assumes the heavy quarks to be massless, the mass contributions to
the coefficient functions C; are not accounted for. As a result, the accuracy of the
ZM-VFN scheme decreases in regions where my/Q becomes large.

General mass variable flavor number scheme

Thus far we have introduced the FFN scheme suffering from unresummed logs of
Q?/m3 spoiling the accuracy of the scheme outside the region Q@ < my, and the
ZM-VFN scheme suffering from missing correction in powers of my /@ that spoil the
accuracy of the scheme outside the region @ > my. Let us now discuss the GM-
VFEN schemes that interpolate between the FFN scheme and the ZM-VFN scheme to
provide a single scheme which reduces the impact of missing corrections when heavy
quark masses are involved.

A requirement of a GM-VFN scheme is that the FFN scheme and the ZM-VFEN
scheme match at very large scales, () > my,, where the heavy quark mass dependence
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Chapter 1 QCD and parton distribution functions

of Eq. (1.58) in the FFN scheme can be neglected. As such, PDFs in the two schemes
are related through a perturbative transformation in the matching point at threshold
= my,. Specifically, the n; flavors up to the matching point are related to the n; + 1
flavors above the matching point through a n; x (n; + 1) transformation matrix A

ng 9
filn+1,p%) =) " Ay (nl, “2> @ f; (i, 1?) (1.60)
i=1 "h
where A;; are known up to NNLO [49,50]. To ensure continuity across the matching
point any VFN scheme needs to satisfy the condition

ny
FOM () = 3 CM () & i (m)
=1
n;+1
=Y M (n+1,m3) @ fi (n +1) (1.61)
=1
ni+1 nyg

i=1 j=1

where to obtain the last line we used Eq. (1.60).
From this matching condition follows a minimal description of a GM-VEN
scheme [51]:

ny+1
CJGM (ru,mj) = Z CEM (ng + 1,m}) ® Ayj (e, mj) . (1.62)

Here it should be noted that the definition of the GM-VFN is not unique. Specifically,
the matrix A;; transforms a n; + 1 dimensional vector into a n; dimensional vector
there is a single degree of freedom that allows for terms proportional to powers of
myp,/Q to be included in either of the Wilson coefficients in Eq. (1.62).

This freedom allows one to make a scheme choice, which has led to the introduction
of a number of GM-VFN schemes. Some of these include:

o The ACOT scheme [52] provided the first GM-VFENS. It ensures Eq. (1.62) is
satisfied by including the mass dependence in the Wilson coefficients. It has since
been superseded by the simplified-ACOT, or S-ACOT, scheme [53, 54] which
uses the freedom in the definition of the transition matrix A;; to allow for a
simpler calculation of observables. This is build on the realization that heavy
quarks Wilson coefficients can be computed in the massless limit since massive
contributions to the Wilson coeflicients do vanish in the limit Q < mj; and
therefore do not spoil the interpolation.

o The TR scheme [55] instead uses the freedom of the definition of the massive
Wilson coefficient to constrain the threshold point by ensuring that derivatives
of structure functions are continuous. The TR scheme has later been extended
to NNLO in the so-called TR’ scheme [56].
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1.5 Constraints on PDFs

o The FONLL scheme [57, 58], which is the scheme used within the NNPDF
determinations, is based on the idea of summing the observables calculated in the
n; flavor scheme and (n; + 1) flavor scheme, and subtracts the double counting
terms.

1.5 Constraints on PDFs

Having now discussed how PDFs at a scale () can be determined from a PDF at an
initial scale Qg through the DGLAP evolution equations, and by exploiting one of the
various heavy mass schemes for the treatment of heavy quark distributions, let us now
turn to the determination of the x dependence of the PDFs at an initial scale f(z, Qo).

From the kinematics of the factorized expressions for processes with a single proton
in the initial state in Eq. (1.40) or with two protons in the initial state described in
Eq. (1.41), it is clear that experimental measurements of the DIS structure function or
cross-sections can provide constraints on the PDFs. Nevertheless, beyond constraining
the PDFs with data, there are some general statements that can be made about PDFs
that will aid us in their determination.

The analysis of DIS experimental data made it possible to obtain the first insights
of the structure of the proton. In particular, since the PDFs must yield the quantum
numbers that characterize the proton, that it consists of one valence down-quark

/ da (d (x,QQ) — cf(x,c.f)) = / dzd,(xz) =1, (1.63)
0

0

and two valence up-quarks

/0 dz (u (2, Q%) —u(2,Q%)) = /o dzu,(z) = 2, (1.64)

carrying the proton charge and baryon number, and a so-called sea of light quark pairs
qq. These relations are known as the valence sum rules (VSR).

By definition, the sum of the longitudinal momenta of the constituent partons of a
hadron must be equal to the total longitudinal momentum of the hadron. This leads
to the following relation which is known as the momentum sum rule (MSR):

Z /0 drx fi(r, Q%) = 1. (1.65)

1=¢,4,9

A further requirement on the PDFs, suggested by the momentum sum rules, is that
they should vanish as x — 1:

filz =1,Q) =0, (1.66)

since no intrinsic partons can exist with > 1. At the same time, the valence sum
rules require the corresponding distributions to be integrable on the entire range in x.

These three constraints can each aid in the determination of the PDFs and lead to
the universally applied parametrization choice of the valence-like, singlet and gluon
PDFs:

fi(2,Qo) = Aiw™* (1 — 2)P Py(y(x)). (1.67)
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Chapter 1 QCD and parton distribution functions

Here the o and 8 exponents control the functional form outside the data region, while
N is an overall normalization. « and 8 thus need to be chosen such that the three
constraints can be satisfied, while the normalization is enforced via A. Finally, P;(y(z))
is a parametrization choice that mainly determines the PDFs in the data region. This
part of the parametrization is an important subject of current research and much of
this thesis is dedicated to its determination.
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Chapter 2

NNPDF4.0: towards PDFs with
percent-level accuracy

In the previous chapter we have seen how, using collinear factorization theorems,
short distance physics corresponding to parton level events where the cross-section
can be calculated using perturbative QCD can be separated from the long distance
physics encoded in universal structures called parton distribution functions. We have
furthermore seen how a PDF at any scale Q2 can be obtained from a PDF parametrized
at a scale Q2 through DGLAP evolution. In this chapter we will discuss how, in the
NNPDF4.0 PDF determination [6], the 2 dependence of the PDFs has been extracted
from experimental measurements.

NNPDF4.0 is, at the time of writing of this thesis, the latest set of PDFs released
by the NNPDF collaboration and supersedes the previously released NNPDF3.1 [59].
With respect to NNPDF3.1 it includes a wealth of new data from 44 different
(mostly LHC) datasets. The methodology has seen some significant improvements,
including a novel fitting algorithm based on stochastic gradient descent [60]. Further
improvements include a systematic implementation of positivity constraints [61] and
integrability of sum rules

Here we provide a summary of the NNPDF4.0 determination, with an emphasis
on the fitting methodology. We start by discussing the NNPDF4.0 methodology
in Sect. 2.1, in particular we discuss the propagation of data uncertainties, the
parametrization of PDFs using neural networks, their training, and the determination
of the model hyperparameters. In Sect. 2.2 we present the experimental data on
which the NNPDF4.0 determination is based, we emphasize the datasets that have not
been included in earlier releases and discuss the stability of PDFs upon the removal
or inclusion of individual datasets. Finally, in Sect. 2.3 we list some of the main
characteristics of NNPDF4.0.

2.1 Methodology

The determination of PDFs from discrete data is an example of a pattern recognition
problem where the aim of a PDF fitter is to provide an accurate representation of
an unknown underlying function. This while only the very limited information of
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Chapter 2 NNPDF4.0: towards PDFs with percent-level accuracy

their functional form discussed in Sect. 1.5 is known. Furthermore, the problem
of PDF determination has certain characteristic features that should be taken into
consideration when developing a fitting framework. First, in most standard pattern
recognition problems the output of the model is directly compared to data, instead for
PDFs one cannot associate a pair consisting of an input and an output of the model
with a single data point. Rather, as can be observed from Eq. (1.40) and Eq. (1.41),
each observable depends in a non-linear way on the multiple output PDF functions in
the full range of x. The second characteristic is that in order for PDFs to be useful
in calculating predictions of observables, it is necessary to provide a description of
the full PDF correlations. PDF uncertainties need to reflect the various sources of
uncertainty affecting the experimental data, and in practice PDF uncertainties are
often the dominant source of uncertainty when calculating predictions of observables
in scattering processes [62]. It is further interesting to note that, unlike most pattern
recognition problems, PDFs correspond to probability distributions of observables.
This is because the observables correspond to stochastic events as a result of the
quantum mechanical nature of the interactions.

In this section we will review the general strategy that NNPDF employs for PDF
fitting and the propagation of the data uncertainties to PDF uncertainties. Many
of the main principles that will be discussed here are not unique to the NNPDF4.0
release and have instead been used within the NNPDF framework for many years.
Nevertheless, the release of NNPDF4.0 introduces a number of major methodological
improvements with respect to NNPDF3.1. In this section we will mainly focus on
these improvements.

2.1.1 Monte Carlo method for error propagation

Various PDF fitting groups aiming to extract the proton PDFs from data employ
different techniques to achieve this goal. Of the most commonly used modern PDF sets,
MSHT20 [63], CT18 [64], and ABMP16 [65] have been determined using the so-called
Hessian method whereby the PDF are parametrized using a polynomial functional form
and the PDF uncertainties are represented by symmetric eigenvectors. The NNPDF
collaboration on the other hand parametrizes the PDFs using a neural network. This
replaces the functional form used within the Hessian method, thereby removing a
potential source of bias in the determination of the unknown PDFs from data. Then,
to make a faithful estimation of the data uncertainties NNPDF uses the concept of
artificial Monte Carlo pseudodata replicas for error propagation.

The result of a PDF determination using the NNPDF framework is a set of Nyep
Monte Carlo PDF replicas f(") with r = 1,..., Nyp that provide an importance
sampling of the probability distribution of the PDFs. Each replica is equally probable,
so replicas are statistically uncorrelated, and estimators of functions of the PDFs are
given by simple averages over the replicas:

1 N
X [fm] . (2.1)

Tep .1

(X1 =
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Figure 2.1: A distribution of 100 PDF replicas (left) and the corresponding 1o interval
and 68% confidence level as computed using Eq. (2.1) and Eq. (2.2) with X the identity
operator (right). Both are shown for the gluon distribution at 1.65 GeV.

The contribution of the PDFs to the variance of such an estimator is then

Var [X [/]] = Nl NZ (x [r] - ) (2:2)

In this way the uncertainty bands corresponding to any confidence level can be
computed from the posterior Monte Carlo distribution, where it can be checked that
indeed the 68% confidence interval and the 1o uncertainty band are in agreement.
This is shown explicitly for the gluon PDF in Fig. 2.1 which were computed using
Eq. (2.1) and Eq. (2.2) with X the identity operator.

To understand why the PDF replicas are equally probable, it is necessary to
understand that they are obtained by performing N,e, fits to a corresponding set
of Nyep independent and identically distributed pseudodata replicas that provide
a faithful description of the statistical properties of the experimental dataset.
Specifically, the pseudodata replicas are generated in a standard way [44] by shifting
the original dataset with a multigaussian distribution given by the covariance matrices
corresponding to this dataset.

Producing pseudodata replicas thus provides a way of propagating the experimental
uncertainties to the PDFs. As will be discussed in detail in Sect. 4.1, the uncertainty
of the experimental data is not the only source of uncertainty present in the PDFs.
Other sources of uncertainty include theoretical uncertainties related to the missing
contributions of higher orders in the perturbative calculations, tensions between
datasets, and uncertainties as the result of an imperfect optimization strategy.

2.1.2 PDF parametrization

The core problem of PDF determination is the extraction of a continuous function from
a discrete set of data. This is in itself an ill-defined problem, though by constructing
a prior the problem becomes tractable. The PDFs as a function of x only have to be
parametrized at a single parametrization scale Qo using Eq. (1.67), where the PDFs at
any other scale () can be obtained by solving the DGLAP evolution equations discussed
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in Sect. 1.3. One thus needs to choose a parametrization with a level of complexity
that allows for a faithful description of the underlying data. A parametrization that is
not sufficiently complex will introduce a bias in the resulting PDFs. One place where
this problem is still apparent today is in the parametrization of PDFs using a fixed
functional from. Namely, within the Hessian approach mentioned before, uncertainties
on the fit parameters are determined by performing a least square fit to the data
where the PDFs are parametrized using different functional forms constructed from
a polynomials in z and /z, followed by a standard error propagation [66,67]. The
uncertainties obtained in this naive way generally underestimate the uncertainties of
the corresponding predictions, therefore an inflation of the chi-squared distribution
(to be discussed in more detail below) corresponding to 1o is introduced a posteriori
using a “tolerance” factor. An important reason for the underestimated uncertainties
observed before applying tolerance is that using a fixed functional form provides a
PDF parametrization that is too restrictive and thereby introduces a bias.

To address this shortcoming of PDF determination, the idea of employing a neural
network parametrization for to the problem of PDF fitting was suggested back in 2002
in Ref. [68]. In this work a neural network was first applied to the determination of
the DIS structure function F5. The relevant underlying principle leading to the idea
of applying neural networks to solve the problem of a biased functional form is that,
in the limit of an infinite number of parameters, neural networks can reproduce any
differentiable function as per the universal approximation theorem [69].

After this initial study, the NNPDF collaboration continued to further develop
the idea in Ref. [70], and expand it to the problem of fitting the non-singlet
quark distributions in Ref. [43]. Over time more PDF determinations based on the
NNPDF methodology were released, for each subsequent release gradually improving
the methodology and expanding the dataset. The main intermediate releases were
presented in Refs. [44,45,59, 71-73], before releasing NNPDF4.0 [6] in 2021.

The parametrization used in the NNPDF4.0 determination can be written as
zfi (2,Qo) = Az ) (1 — 2)PNN; (x), (2.3)

which is a specific variant of the parametrization in Eq. (1.67) in Sect. 1.5 where NN, ()
represents a single neural network with a different output parametrizing each flavor
i. The neural network is supplemented with a prefactor A; a polynomial prefactor
z(1=@)(1 — 2)P to improve convergence and ensure the constraints as discussed in
Sect. 1.5 are satisfied.

Let wus briefly review the neural network model used in the NNPDF4.0
determination. For an extensive review on the subject of neural networks and machine
learning, the reader is referred to references such as Ref. [74]. A neural network
provides a non-linear mapping from an input space (in this case x) to an output
space (in this case the space of PDFs). It does this by utilizing a directed graph
structure consisting of multiple layers where the nodes of the consecutive layers are
fully connected. A schematic representation of the graph — though without explicitly
denoting the direction of the edges — used for the NNPDF4.0 determination is shown
in Fig. 2.2. In this figure the blue circles correspond to the nodes of the graph, of
which each has an associated function called an activation function. Here the input to
each activation function corresponds to the set of all outputs of the previous layer as
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Figure 2.2: neural network parametrization of the PDFs used in NNPDF4.0

represented by the edges. As such, if we know the activation functions of each node,
we can evaluate the neural network explicitly and obtain a the function encoded by
the neural network.

To obtain this function for the NNPDF4.0 neural network shown in Fig. 2.2, we
note that the nodes of the input layer are set as x and logx. This is because PDFs
are believed to scale logarithmically at small « and linearly in the large x region [68].
The output of the i-th node in the I-th is then given by

€0 =g [ S wle b 4] (2.4)
J

where g(z) is the activation function, and the weights wg-) and biases bl are the free

parameters of the neural network. Note that, as mentioned, the output of the node in
the [-th layer is obtained by taking a weighed sum of the outputs of the nodes in the
(I — 1)-th layer. Different choices can be made for the activation function, though it
needs to be nonlinear and monotonic. A neural network constructed with only linear
activation functions would reduce to a simple linear regression model. A common
choice for the activation function is the sigmoid function g(z) = H% This function
has an two asymptotes: g(z) = 1 as x — oo and g(x) = 0 as x — —oo, as such it
can be thought of as a differentiable function that approximates a step function. The
idea of the activation function as a step function provides an intuitive illustration of
the connection with neurons in a biological brain, which, depending on the inputs to
a neuron either send a signal or not.

Finally, it should be noted that the parameters defining the model — commonly
referred to as the models’ hyperparameters — such as the number of layer and the
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number of nodes per layer, are determined through a semi-automated procedure to be
discussed in Sect. 2.1.4.

To prevent the polynomial prefactor of Eq. (2.3) from restricting the functional
form and therefore lead to underestimated uncertainties, the o and § exponents are
randomly sampled from a range that is determined in a self-consistent manner [71,75].
Specifically, upon making a change to the methodology or dataset, an initial fit is
performed for which the effective exponents are calculated for each distribution using

ot a() = I gy = 108

log1/x’ ~ log(1—x)° (25)

Then for a subsequent fit, the sampling distribution for the o and 8 exponents is taken
to be uniform on the interval determined by taking twice the 68% confidence interval
of the corresponding effective exponent. This process is iterated until the sampling
domain stabilizes.

The output nodes are parametrized in the evolution-basis defined to simplify
evolution, per the discussion in Sect. 1.3, as

Y=utu+d+d+s+35+2c
V= (u—u)+(d—d)+ (s —5),

Vi = (u—u)—(d—d),
Ve=(u—-u+d—d)—2(s—35),

Ty = (u+u+d+d) —2(s+3),
Tis=(u+u+d+d+s+35) —3(c+e),
c+:c—|—6,

g=9

Alternatively one may consider performing a PDF fit in the flavor basis, in which
the PDFs are parametrized as f; = u,4,d,d,s,5,¢,g. It has however been tested
explicitly that the resulting PDFs remain largely unchanged upon changes to the
choice of parametrization basis in section 8.4 of Ref. [6]. To perform this check two
sets of PDFs were generated, one corresponding to a fit using each basis, it was then
observed that the resulting PDFs agree within 1o. One may then wonder whether, to
obtain a conservative estimate of the PDF uncertainty, one should combine the PDFs
determined from a fit in both bases. This can be checked by explicitly performing
a combination of the two PDF fits using the PDF4LHC15 prescription [76]. The
combination method used by the PDF4LHC working group is described in section 4.2
of Ref. [76], and consists of adding the replicas of multiple PDF sets into a single
PDF set whereby each replica is given equal weight. This is believed to be the most
reliable method of combining PDF sets [77], and will be discussed in more detail
in Sect. 4.1. The result of this combination is shown in Fig. 2.3 for the antidown
and gluon PDFs, where it is clear that the uncertainties remain unchanged upon
performing this conservative combination of the PDFs. The behavior of these two
PDFs is representative for the full basis of PDFs.
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Figure 2.3: The antidown and gluon PDFs from the published NNPDF4.0 baseline set
fit in the evolution basis compared to a PDF4LHC-like combination of the baseline fit
and a fit in flavor basis.

2.1.3 Fitting framework

After selecting the experimental datasets and defining a model, the free parameters,

wg) and bgl), of the neural network discussed in Sect. 2.1.2, need to be optimized to

obtain a faithful description of PDFs.

A diagrammatic representation of the fitting framework used to train the neural
network is shown in Fig. 2.4. The framework takes three external inputs. First,
FK tables encoding the partonic cross-sections and evolution equations in a pre-
computed format, possibly extended with QCD or electroweak K-factors. Second, a
configuration of the hyperparameters determined through a hyperoptimization routine
to be discussed in Sect. 2.1.4 below. Finally, the experimental data along with
covariance matrices as stored in a common format. This is used to optimize a figure
of merit in a computational loop shown in more detail in Fig. 2.6. After the fit has
completed the APFEL [41] package is used to determine the PDFs at different Q? scales.
Then, a post fit selection is applied to filter replicas of insufficient quality, before finally
storing the replicas that pass the post fit filter in the LHAPDF6 format [78].

Evaluating cross-sections and the modular code structure

Fig. 2.5 shows a schematic representation of the part of the NNPDF fitting code that
evaluates the cross-sections and by extension the loss functions. In Fig. 2.4 this is the
part enclosed in the blue box.
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Figure 2.4: Diagrammatic representation of the NNPDF fitting framework. The blue
box contains the minimization of the x? figure of merit, whose computation is
illustrated in Fig. 2.5.

It takes as input a matrix in  denoted by {x%k)}, where n denotes the experimental
dataset, and k labels the nodes in the corresponding z-grid. This matrix is passed
to the model presented in Eq. (2.3) consisting of the neural network along with
preprocessing and a normalization prefactor. The outputs of the neural network
correspond to PDFs fi(xglk)) of flavor ¢ at an input scale ()g. The output can be
presented in different linearly dependent bases, though for convenience the evolution
basis of Eq. (2.6) is commonly used. The outputs of the neural network are then
convoluted with FK tables encoding the theory calculations and the evolution from the
parametrization scale to the scale of the hard process. This convolution provides the
corresponding observable O,,. For hadronic observables the corresponding calculation
is

On = FK}, fi (2, Qo) £ (2, Qo). (2.7)

while for DIS observables it reduces to
Op = FK fi((, Qo). (2.8)

Finally, these predicted observables can be compared to the corresponding
experimental values. The distance between the two is expressed using the chi-squared
distribution of Eq. (2.9).

In the final step shown in Fig. 2.5, the observables are separated into a training
and validation set, resulting in corresponding training loss xZ, and validation loss x2,.
This is part of the cross-validation technique used to regularize the fitting procedure
of which a detailed discussion follows below.

It should be noted that the fitting code — as presented in Ref. [60] — is designed
to have a modular structure. This means that each block in Fig. 2.5, as well as the
backend used to initialize and train the neural network, can be adjusted independently
of the others. An example of this where the default Tensorflow backend is replaced
by the evolutionary_keras package will be discussed below. Another example
can be found in Ref. [79]. Here the neural network parametrization is replaced
with a simulated quantum circuit implemented using the Qibo package [80], and
optimization is performed using the L-BFGS-B algorithm [81] as implemented in the
scipy package [82].
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Figure 2.5: Diagrammatic representation of the calculation of the x? in the NNPDF

fitting framework as a function of the values of {xgc)} for the different datasets. Each
block indicates an independent component.

The target loss function

Since it is assumed that the experimental uncertainties are Gaussian, a natural choice
for the target function is the chi-squared statistic defined as

Naata

X*=Y_ (Di—P)cov;; (D; — P)), (2.9)
3,j=1

where D; are the experimental values of datapoint i, P; the corresponding prediction
of the NNPDF model, and cov;; denotes the covariance between the datapoints with
label ¢ and j. The experimental covariance matrix reads

(uncorr) _(uncorr)

(COVexp)ij :(52’_]’0'2- 0;
Nmuie (210)
+ < Z O_l()ri;)lrm) norm) + Z (corr) (Corr ) D; D
m=1
where a(uncm) are the uncorrelated uncertainties obtained by adding the uncorrelated

systematic uncertainties and statistical uncertainties in quadrature, m runs over the

(norm)

Nhorm multiplicative normalization uncertainties, o; , and [ runs over the Ncopr

other correlated systematic uncertainties, U(Clorr)

The agreement of a fit to the data is expressed in terms of the experimental x2, which
is defined as Eq. (2.9) with the covariance matrix Eq. (2.10). This agrees with the usual
measure adopted by the community to assess the quality of a fit. However, to avoid
the so-called D’Agostini bias [83] that would ensue in the presence of multiplicative
uncertainties (such as the luminosity uncertainty) if the covariance matrix as published
by experimental collaboration were used for minimization, the ¢y prescription [84] is
applied when performing a fit.
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In this prescription a so-called ¢y x2 is minimized which is defined by a corresponding
to covariance matrix that reads

Nnortn
=5 (uncorr) ](uncorr) + Z (norm) (norm)P(O)P(O)

(covey)i; =0ijo;

(2.11)

Neorr

+ Z o! (corr) corr)D D

where PZ-(O) corresponds to the central value of a theoretical prediction computed before
the fit using as input PDFs the best fit of the previous iteration.

This procedure thus introduces the need for an iterative determination of the tg
covariance matrix, where the input PDF — sometimes called the ¢ty PDF — is iterated
until the covariance matrix stabilizes!. In practice it has been observed that usually
two or three iterations suffice to obtain stability.

Early stopping and post-fit criteria

As discussed before, the commonly used Hessian method of PDF determination
applies regularization by relying on a functional form that aims to accommodate the
complexity of experimental data without being too flexible. A neural network, on the
other hand, removes the need to enforce a specific functional form, and instead the
flexibility of a neural network allows for the effective functional form to be determined
by the optimization algorithm during the fit. A (sufficiently large) neural network,
however, is able to optimize on the experimental data to such an extent that also
noise present in the data is learned by the methodology, as opposed to limiting the
extraction of information from the data to only genuine features of the data. This is a
phenomenon called overfitting, and a regularization procedure is required to prevent
overfitting from taking place.

In the NNPDF framework this regularization procedure mainly relies on an early
stopping algorithm based on cross-validation as represented by the flowchart shown
in Fig. 2.6. The purpose of the stopping algorithm is twofold: determining the best
instance of the neural network parameters encountered during training, and deciding
when to stop looking for a better instance and instead stop the training.

To identify the best instance of the neural network — this being the instance that
generalizes the best to unseen data — a cross-validation method is applied. With
cross-validation the full global NNPDF4.0 dataset is divided into a validation dataset
and a training dataset, where per experimental dataset a random fraction of 75% of
the datapoints is placed in the training set, and 25% is placed in the validation set.
Fig. 2.7 illustrates how this split into a training and a validation set is used to identify
the optimal instance of the neural network. Namely, during fitting the training set
is used to define a training error function y2 which is the target of the optimizer,
and thus in principle can be reduced indefinitely as it vanishes asymptotically. This
corresponds to the blue curve shown. The validation set, on the other hand, is not
seen by the optimizer but nevertheless the corresponding error function X%ral to this

1 These iterations can be performed simultaneous with the iteration of the sampling range of the «
and (8 exponents discussed in Sect. 2.1.2.
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Figure 2.6: Flowchart describing the early stopping algorithm used in NNPDF4.0 to
determine the optimal stopping point of the fit based on the look-back cross-validation
method.

subset of the data is evaluated at each training epoch. Its value is represented by the
orange line. As can be seen, after reaching a minimum value for the x2,, just before
6000 epochs, it increases again. This can be understood as a result of overlearning,
where the optimizer is fitting even the noise present int he training data but no longer
generalizes well to unseen data. The final result of the fitting procedure corresponds to
the instance at which x?2,, has the smallest value. In Fig. 2.7 the epoch corresponding
to the best instance of the neural network is highlighted by the vertical dashed line.

To recognize when a neural network has completed its training, a counter is started
when the validation loss x2,, drops below a certain threshold value. From this point
the counter keeps track of the number of epochs that have passed and the training
ends if the validation loss has not improved for a given number of epochs. This
number is a hyperparameter. If this happens, the training is ended and the model
is reset to the instance with the best validation loss. If at no point during training
this threshold value for the validation loss is reached, the fit is not considered to be
in sufficient agreement with the data and is therefore discarded. Furthermore, for an
instance to be considered acceptable, it is checked wether certain positivity criteria [6]
are satisfied to ensure that the up, down and strange quark and antiquark PDFs, and
the gluon PDF are positive. These constraints follow from Ref. [61] in which it was
shown that for PDFs for the individual quark flavors and the gluon as defined in the
MS factorization scheme are non-negative. Finally, there is a hard threshold for the
number of epochs for which the model is allowed to be trained. If the model was still
improving by the time it reaches this threshold, the training will be ended nonetheless.

Once the training of the full set of replicas has completed, certain post-fit criteria
are checked and those replicas that do not satisfy all of the post-fit criteria are
discarded. As a result, any replica with an arc-length, or x? value as calculated
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Figure 2.7: Idealized profile of the training (dotted, blue) and validation (dashed,
orange) loss in a typical PDF fitting. For ilustration purposes the profiles have been
smoothed out and loss penalties applied to the training loss have been removed. The
optimization algorithm continues improving the training loss, however, by monitoring
the validation loss it is possible to stop the training at the optimal point before we
enter in the overfitting domain.

to the experimental data, that is more than 40 away from the central value of their
distribution are discarded. The post-fit check also ensures that integrability of the
solutions is satisfied by checking that the inequality

-

is fulfilled for f; = V, Vs, Vi, T3, Ty, o) € {107°,1078,10"7} and the PDFs are

evaluated at Q2 = 5GeV2. The cumulative effect of all post-fit criteria described
here is that roughly 1% of the replicas are discarded.

1
i fi (x(ft) 2)‘ <3 (2.12)

Impact of gradient descent based minimization

Since the methodological update between NNPDF3.1 and NNPDF4.0 includes a
complete re-writing of the fitting framework, many changes occurred simultaneously
making it challenging to assess the impact that each individual feature that was
changed has on the resulting PDFs. One of the main differences though, is the choice
of optimization algorithm. Where in NNPDF3.1 a nodel genetic algorithm (NGA) was
used to train the neural network, in NNPDF4.0 this has been replaced by stochastic
gradient descent (SGD) based algorithms. In particular, as backend to initialize the
model and perform the optimization for NNPDF4.0, the TensorFlow [85] package
provides the necessary tools. This also means that any of the optimization algorithms
implemented in TensorFlow — such as RMSprop [86], Adagrad [87], and Adam [88] —
can be used in the NNPDF framework. As will be discussed in Sect. 2.1.4, for the
NNPDF4.0 release the Adam optimizer has been used.
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Figure 2.8: Left: comparison of two PDFs generated using the NNPDF4.0 framework,
and fitted using the nodal genetic algorithm (orange) and Adadelta (green).

Right: comparison of a fits performed with the nodal genetic algorithm in the
NNPDF3.1 framework (orange) and the NNPDF4.0 framework (green).

All fits are performed to the DIS-only dataset as defined in Tab. 1 of Ref. [59].

To assess the impact of the change of optimization algorithm a library named
evolutionary_keras [89,90] has been developed. It extends the Model class of the
Keras [91] interface to the TensorFlow library with genetic based algorithms and
allows for the easy implementation of further custom genetic algorithms. It does this
while retaining compatibility with Keras and can be used in the same way any of the
standard gradient descent based optimizers would.

Fig. 2.8 contains plots showing the impact of the gradient descent based algorithm
used in NNPDF4.0 compared to the nodal genetic algorithm used in NNPDF3.1.
In the left plot of Fig. 2.8 it can be observed that the gradient descent algorithm
Adadelta [92] results in much smoother and more Gaussian PDFs than the NGA. This
difference in smoothness is in fact the main qualitative difference observed between the
new NNPDF4.0 framework and the old NNPDF3.1 fitting framework. In Fig. 2.8 it can
clearly be seen that the increased smoothness obtained with the NNPDF4.0 framework
can — at least for the main part — be attributed to the change in optimization algorithm.

Another genetic optimization algorithm that has been used with the NNPDF
framework is the covariance matrix adaptation evolution strategy (CMA-ES) [93,94].
The CMA-ES has been applied to the determination of structure functions NNFF1.0
[95], and also tested within the NNPDF3.1 framework [96]. In Ref. [95] it was observed
that the CMA-ES obtained improved agreement with data, improved consistency, and
reduced complexity when compared with the NGA.

evolutionary_keras also provides support for the CMA-ES allowing us to check
whether fits with the CMA-ES will show similar features compared to its NGA
counterpart when it is applied within the NNPDF4.0 framework. Fig. 2.9 shows a
comparison between a fit performed using the CMA-ES and a fit performed using the
NGA, both within the NNPDF4.0 framework. In this plot a number of differences
between the NGA and CMA-ES algorithms can be observed. In particular the PDFs
produced using the CMA-ES is are smoother and have larger uncertainties in the
large-x region than of those found with the NGA. Furthermore, the number of outliers
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Figure 2.9: Comparison of a fit performed with the nodal genetic algorithm (orange)
and the covariance matrix adaptation evolution strategy (green), both using the
NNPDF4.0 fitting framework

is reduced, indicating greater consistency, and the agreement with data as measured
in terms of the x2? has improved.

While the results obtained with the CMA-ES share many features with those
obtained with SGD based algorithms, computational costs are much larger and thus
it should not be considered an alternative to the SGD based algorithms. This is
particularly relevant because the decreased computational cost of the SGD based
algorithms allow for the quick and convenient investigation of various setups. An
example of what this reduced computational costs makes possible, is the testing of
many different combinations of hyperparameters as will be discussed in Sect. 2.1.4.

2.1.4 Hyperoptimization

An important aspect of the NNPDF4.0 methodology involves the determination of the
model’s hyperparameters. Where in previous NNPDF releases these were determined
through a manual, and labour intensive, process of trial and error, for NNPDF4.0
this has largely been replaced by an algorithmic hyperoptimization procedure. In
short, the automatic hyperoptimization routine makes use of the improved efficiency
achieved with the TensorFlow framework. This enables us to test O(10?) different
hyperparameter setups by performing fits with them and ranking the setups through
a k-folds cross-validation algorithm, to be discussed below.

The scan over hyperparameter setups is implemented using the hyperopt [97]
package which employs a Bayesian algorithm [98] to determine the best combination
of hyperparameters.

The output of such a scan is a ranking of the tested setups based on how well
they generalize to unseen data as quantified using a figure of merit, Eq. (2.13), to be
discussed below. An example of the output of such a scan of around 1500 setups is
shown in Fig. 2.10, where each dot corresponds to a different setup. It shows the loss
— which is the figure of merit Eq. (2.13) — for a subset of the model’s hyperparameters:
the number of hidden layers model, the distribution for the initialization of the
neural network parameters, the learning rate of the optimizer, and the optimization
algorithm. A lower loss corresponds to better model performance. It should be
noted that setups with a loss value above 2.5 do exist but correspond to such poor
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Figure 2.10: Graphical representation of the hyperoptimization loss function L
corresponding to a subset of the hyperparameters in a scan based on 1500
configurations. Note that here we only show the subset of parametrizations with
L <25.

performance that they are not included in these figures. While these figures are not
used to make the ranking, as this is done purely based on the loss values, it can
provide us with some intuition about how different parameters impact the fit. For
example, if we look at the plot comparing the optimization algorithms in the right
bottom of the figure, it can be observed that the Nadam [99] (which extends the Adam
optimizer [88] by adding a Nesterov-accelerated adaptive moment [100]) is not only
able to obtain a lower loss than any of the other optimizers, but the width of the
violin plot also indicates it is able to achieve low losses more consistently than any
of the other optimizers. For similar reasons it can be observed that the choice of
distribution used for the initialization of the neural networks parameters — as shown
in the top right plot — does not seem to have a significant impact on the model
performance. It should however be stated that this figure gives a rather naive view of
the impact of different hyperparameters. In particular, where this figure shows each
hyperparameter in isolation, the performance of the model depends on the combination
of hyperparameters and correlations between them, therefore one should be careful
when drawing conclusions from the plots in Fig. 2.10.

Hyperparameter correlation

An important motivation for using the hyperopt package as opposed to manually
tuning the hyperparameters is that best value for a given hyperparameter depends on
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Figure 2.11: Comparison between the results for the antistrange (left) and charm
(right) PDFs in two fits, one with all hyperparameters optimized and another where
the clipnorm value is not optimized.

the settings of the other hyperparameters and cannot be determined independently.
To shows this explicitly we will consider the tuning of the clipnorm hyperparameter
as an example. The value of the clipnorm parameter indicates the maximum allowed
value for the L2-norm of a tensor corresponding to the gradient calculated during
optimization. If the L2-norm of the gradient tensor is less than, or equal to the
clipnorm value, nothing changes. If, on the other hand, the L2-norm of the gradient
tensor is greater than the clipnorm value, the tensor is normalized such that the
L2-norm is equal to the clipnorm value.

Clipping of the gradients is a regularization technique preventing large updates
to the neural network parameters as this can cause a numerical overflow leading to
instabilities in the training of a neural network. However, one should be careful when
setting the value of the clipnorm parameter, since a too large value can lead to
an insufficiently regularized fit and by extension to overfitting while a value that
is too small can prevent convergence. Fig. 2.11 shows a comparison between the
antistrange PDF in the large-x region fitted with two different hyperparameter setups
(left), and a corresponding comparison for the small-x charm PDF (right). During
the determination of one PDF (green), all hyperparameters shown in Table 2.2 are
optimized, while for the other PDF (orange), the value of the clipnorm parameter
is fixed to a large value before optimizing the other hyperparameters. While in both
cases the training and validation losses are similar, the resulting PDFs are different
and the setup with the fixed clipnorm value clearly leads to an overfitted result. This
example illustrates the importance of considering all possible hyperparameters when
defining the model.

Figure of merit and stability

A sensible choice for the figure of merit is vital for a reliable hyperoptimization routine.
Specifically, the figure of merit should quantify the quality of the fit. An obvious choice
might be to the validation loss as the figure of merit during hyperoptimization, that
is L = X?,ap However, because of the stopping algorithm shown in Fig. 2.6, it is
already the target of the fitting algorithm itself. Using the validation loss as both a
target and a measure of quality is risky, since a target can be obtained in ways that
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do not necessarily mean that the outcome is of a high quality, this is also known as
“Goodhart’s law” [101]. In practice, what this means for us, is that if we were to use
validation loss as a measure of quality, the algorithm will select for setups that result
in overfitting.

Instead, the validation of a model is performed using k-folds cross-validation (see e.g.
chapter 7 of Ref. [102]) schematically represented in Fig. 2.12. The main idea of k-folds
cross-validation is to divide the dataset not only into training and validation subsets,
but to instead also define a separate test set. The fit will still be performed in the
usual manner using the training and validation sets along with the stopping algorithm,
but the figure of merit relevant for hyperparameter selection will be defined based on
the agreement of the fit to the test set. Since the test set has not been used during the
training of the neural network, this provides a way of testing how well the methodology
generalizes to unseen data.

The k-folds cross-validation algorithm does not use only a single test set, but instead
divides the full dataset into k subsets of data. These subsets are also called folds. Here
it is important that each subset is representative of the full dataset both in terms of
kinematic range and scattering processes. Because of this, subsets have to be carefully
selected, where the k = 4 folds used in the NNPDF4.0 determination are shown in
Table 2.1. For the NNPDF4.0 release this task has been performed manually, though
in Sect. 3.2.1 we propose a method to automate the construction of the folds. Then,
k — 1 of these folds are divided into training and validation datasets that are used
to do a fit, while leaving out a k-th fold that will be used as a test set. This is
repeated k times, resulting in k fits where for each fit a different fold is used as the
test set. Here a fit is a single replica fit to central values of the experimental data,
as opposed to the usual fits performed to artificial pseudodata. This is to save on
computational costs since the aim of hyperoptimization is to test a large (order 10%)
number of hyperparameters, so testing each hyperparameter setup by performing fits
to many pseudodata replicas is not feasible.

As a proxy for the quality of the fit, the target function of the hyperoptimization
algorithm is defined as
k
2
> X (2.13)
i=1

where x? is the x? evaluated to the datasets in the i-th fold using the PDF obtained
with the i-th fit, where for the determination of the i-th PDF, the i-th fold was left
out. The optimal hyperparameter setup is the setup for which L is minimized.

L =

T =

Alternative definitions of the figure of merit may also be used, though if two figures
of merit are equally well motivated the result should be the same in both cases. For
example, instead of defining the loss as the average value of the x?, one could consider
defining it as the worst X7 obtained with a given hyperparameter setup:

L=max (X3, X3 X3, -» X2) - (2.14)

This has been checked explicitly, Fig. 2.13 shows a comparison between a setup found
by optimizing for the “average” as defined in Eq. (2.13) and a setup found by optimizing
for the lowest “max” loss as defined in Eq. (2.14). The specific hyperparameter setups
for both cases are shown in Table 2.2. It is clear from Fig. 2.13 that the results in
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Fold 1
CHORUS %, HERA I+1I 0%, e (920 GeV) BCDMS F?
LHCb Z — ee 7 TeV ATLAS W, Z 7 TeV (£ =35 pb™!)  CMS Z pr 8 TeV
E605 o? CMS DY 2D 7 TeV CMS 3D dijets 8 TeV
ATLAS single t 7 TeV (1/odo/dy;) ATLAS single t R, 7 TeV CMS tt +jets 8 TeV (1/odo/dy,;)
CMS single t Ry 8 TeV
Fold 2
HERA I+11 0% e~ HERA I+11 0% ¥ (460 GoV) HERA I+1I o
NMC oN¢P NuTeV o5 LHCb Z — ee 8 TeV
CMS W electron asymmetry 7 TeV ATLAS Z pr 8 TeV (pr,mee) D0 W muon asymmetry
E866 o” (NuSea) ATLAS isolated v prod. 13 TeV ATLAS dijets 7 TeV, R=0.6
ATLAS single ¢t 8 TeV (1/odo/dy;) CMS o}9* 7,8 TeV CMS single t oy + of 7 TeV
Fold 3
HERA I+11 0%, e* HERA I+11 0% e (575 GeV) NMC Fy/FY
NuTeV o LHCb W, Z — p 7 TeV LHCb Z — ee 13 TeV
ATLAS o}?" 7,8 TeV ATLAS W +jet 8 TeV ATLAS high-mass DY 7 TeV
CMS W muon asymmetry 7 TeV E866 0?/20P (NuSea) CDF Z differential
_ —1
ATLAS W, Z 7 TeV (£ = 4.6 fb™7) ATLAS single t 8 TeV (1/0do/dy:) CMS 09" 5 TeV
central bt
CMS tt 2D 20 8 TeV
(1/odo /dy:dm.;)
Fold 4
CHORUS ¢% HERA T+I1 03 o et (820 GeV) LHCb W, Z — pu 8 TeV
ATLAS single t R; 13 TeV LHCb Z — pp 13 TeV ATLAS W™ +jet 8 TeV
ATLAS low-mass DY 7 TeV ATLAS Z pr 8 TeV (pr,yz) CMS W rapidity 8 TeV
DO Z differential CMS dijets 7 TeV ATLAS single t 8 TeV (1/odo/dy:)

ATLAS W, Z 7 TeV (£ = 4.6 tb™ 1)

forward CMS single t R; 13 TeV

Table 2.1: The four folds in which the NNPDF4.0 dataset is divided for the k-folds
hyperoptimisation procedure represented in Fig. 2.12.

both cases are equivalent, even though the hyperparameters are completely different.
This shows the stability of the hyperoptimization routine.

It should be noted however, that the value of L for each individual hyperparameter
setup tested in this way is susceptible to non-negligible random fluctuations and hence
it is ill-advised to select the model with lowest L without a second thought. While the
hyperoptimization routine is useful in producing a ranking of good hyperparameter
configurations, the configuration ranked first is not necessarily the best. To confidently
identify the best setup among those with hyperparameter configurations that resulted
in a low loss L, the hyperoptimization routine is followed by a production of PDFs with
the default sample size of 100 replicas. As a final step of the hyperparameter selection,
these PDFs consisting of 100 replicas are closely studied to identify the preferred
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Figure 2.12: Diagrammatic representation of the k-fold algorithm used for the
hyperparameter optimization. Here the number of folds equals four, i.e. k = 4.

setup and discard those in which more subtle features of overfitting or underfitting
are recognized. Indeed, the procedure is still not fully automated and even though
the selection of hyperparameters has been greatly improved, human experience is still
needed in the final step.

An improvement to the hyperoptimization routine is proposed in Sect. 3.2, which
includes a quantitative measure for the detection of overfitting which will be introduced
in Sect. 3.2.2.

Baseline hyperparameters for NNPDF4.0

A k-folding hyperoptimization, as described above, has been performed to determine
the best values of the hyperparameters that have been used for the NNPDF4.0
determination. These are listed in Table 2.2. The hyperparameters include the
network architecture, the type of activation function, the Glorot-type [103] initializer,
the optimizer, the values of the learning rate and of clipnorm, the maximum number of
iterations and the stopping patience, and the initial values of the Lagrange multipliers
for the PDF positivity and integrability constraints (see Sect. 3.1 of Ref. [6] for a
discussion on the implementation of integrability and positivity constraints using
Lagrange multipliers). The ranges of the hyperparameters that are sampled by
the hyperoptimization algorithm are chosen empirically: we start out conservatively
with very wide ranges, and once we are confident that the optimal value of a given
hyperparameter falls within a sub-domain of this (conservative) range, we adjust the
sampled domain accordingly to limit the runtime and computational resources of the
hyperparameter scan.

In Table 2.2 we show both the optimal hyperparameters for our default
methodology, based on the hyperoptimization loss defined in Eq. (2.13), as well as the
hyperparameter values obtained with the different choice of loss function Eq. (2.14).
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Figure 2.13: Comparison between the gluon (left) and antidown (right) PDFs at Q =
1.65 GeV found by using methodologies in which hyperparameters are selected based
on the “average” loss function Eq. (2.13) (green) or the “max” loss function Eq. (2.14)
(orange).

As mentioned, both different choices of loss function (see Fig. 2.13) lead to equivalent
results, but the corresponding hyperparameter values can be quite different. For
instance, the optimal architecture for fits based on the alternative loss function
Eq. (2.14) has more than twice the number of neurons in the hidden layers compared
to the baseline settings.

We now specifically discuss the hyperoptimization and its results for our
default choice. Concerning the network architecture, until NNPDF3.1, each PDF
was parametrized with an individual neural network.  While the number of
independently parametrized PDFs was gradually increased, this remained unchanged
since NNPDF1.0 [44]. Now the hyperoptimization scan is run with a single network
which outputs the value of all PDFs. So while in all NNPDF fits up to and including
NNPDF3.1 NN;(z) in Eq. (2.3) denotes the i-th neural network, in NNPDF4.0 it
indicates the activation state of the i-th neuron in the last layer of the neural net. The
architecture selected by the hyperoptimization is 2-25-20-8 with hyperbolic activation
functions except for the final linear layer, and it is shown in Fig. 2.2.

The NNPDF4.0 architecture has 763 free parameters, to be compared to a total of
296 parameters for the NNPDF3.1 neural nets. We emphasize however that a larger
network does not necessarily imply better performance, and that for a given dataset
there exists a lower bound to the number of required free network parameters but
probably not an upper one. Given comparable performance, smaller networks are
preferred in order to reduce the computational costs.

Hyperoptimization stability

The main goal of the hyperoptimization procedure is to identify the best optimization
settings for the current problem of determining the PDFs. This raises the question
of deciding in which cases a new hyperoptimization would be required. Our
current understanding encompasses changes to the experimental data, the theoretical
description, and methodological choices (such as the choice of PDF basis).
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Parameter NNPDF4.0 L as in Eq. (2.14)
Architecture 2-25-20-8 2-70-50-8
Activation function hyperbolic tangent hyperbolic tangent
Initializer glorot_normal glorot_uniform
Optimizer Nadam Adadelta
Clipnorm 6.0x1076 5.2x107°
Learning rate 2.6x1073 2.5x1073
Maximum # epochs 17x10° 45x103

Stopping patience 10% of max epochs 12% of max epochs
Initial positivity A(P°%) 185 166

Initial integrability A" 10 10

Table 2.2: The baseline hyperparameter configuration (left) selected using the k-folds
hyperoptimization procedure with hyperoptimization loss Eq. (2.13) and used to
perform the NNPDF4.0 fits in the evolution basis. We also show an configuration
selected using the alternative hyperoptimization loss Eq. (2.14) (right).

We have checked that the procedure is quite stable upon reasonably small changes
of the dataset. In particular, the datasets included in Table 2.1 do not correspond
exactly to the datasets included in the final dataset as listed in App. A, since the final
appraisal of the data to be included was performed after the methodology was set.
Furthermore, when removing datasets the given methodology remains viable, though
in principle there might be a computationally more efficient one giving the same results
for the small datasets. Of course in principle the only way of being absolutely certain
whether a new hyperoptimization is needed or not is to actually perform it.

On the other hand, a substantial change in methodology or dataset generally needs
a new hyperoptimization. An example of this is the flavor basis plot included in
the combination using the PDF4ALHC15 prescription shown in Fig. 2.3. Likewise,
the addition of a large number of new datasets affecting kinematic regions or PDF
combinations for which currently there is little or no information might have an impact
on the fit sufficient to warrant a new run of the hyperoptimization procedure.

Note that the need for a re-hyperoptimization upon large changes to the dataset
does not imply that the uncertainties obtained with the methodology are not robust.
The hyperparameters are selected to accurately fit a given dataset; for example if
a specific subset of data were to be removed such that the dataset spans a smaller
kinematic range, presumably a less ‘aggressive’ methodology is required to accurately
describe the data (though likely at the cost of an increase in uncertainty). Likewise,
the inverse would be true for a dataset spanning a much larger kinematic range; in
such a scenario, if the methodology were not updated, likely not all features of the
data would be fitted to the same precision as could be obtained with a more aggressive
methodology. This then leads to a less precise — though generally not less accurate
— determination of the PDFs than could be obtained upon a re-hyperoptimization of
the hyperparameters. These are hypothetical scenarios to sketch a picture of how the
hyperparameters can depend on changes to the dataset, for this reason the definition
of aggressiveness of the methodology is intentionally left arbitrary.
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2.2 Experimental data

Having discussed the methodology employed for the NNPDF4.0 determination, we
continue by providing a brief overview of the global dataset that is the basis for
the NNPDF4.0 release, as well as the theoretical calculations corresponding to the
datasets.

The kinematic coverage in the (z,Q?) plane of the NNPDF4.0 dataset entering
the default NNLO fit is shown in Fig. 2.14. For hadronic data the corresponding
kinematic values have been determined using LO kinematics. Whenever an observable
is integrated over rapidity, the center of the integration range is used to compute the
values of z. The datapoints corresponding to datasets that are new in NNPDF4.0 are
indicated with a black edge.

In essence, the baseline NNPDF4.0 dataset is largely a superset of the baseline
NNPDF3.1 dataset, extending the NNPDF3.1 global dataset with 44 new datasets.
There are a few exception to this rule, namely, the single-inclusive jet data in
NNPDF3.1 have been replaced with corresponding dijet datasets, and various
minor changes have been made to certain datasets already present in NNPDF3.1,
or their theoretical treatment. This includes datasets being replaced by more
recent measurements of the same cross-sections, and in some cases more differential
distributions of the same process have been included due to correlations becoming
available. In terms of theoretical treatment some minor changes have been made as
well, for example, the fixing of a bug in APFEL affecting the computation of the NLO
charged current structure functions, and updating the branching ratio of charmed
hadrons into muons with the value from PDG 2020 [104]. For a detailed discussion of
changes made regarding datasets also included in the NNPDF3.1 determination, the
reader is referred to Chapter 2 of Rev. [7].

We will briefly go over the datasets that have not been included in earlier
determinations by NNPDF. For the first time, this includes data from the LHC Run
IT at a collision energy of 13 TeV. While some of these new measurements correspond
to processes already present in the baseline NNPDF3.1 dataset, they also include data
from direct photon production, single top production, dijet production, and gauge
boson production with jets which have not been included in any previous NNPDF
determination.

In particular, the new datasets with respect to NNPDF3.1 are the following:

DIS. The ration R,, of dimuon to inclusive neutrino-nucleus CC DIS cross-sections
from NOMAD [105] as a function of the neutrino beam energy. The H1 [106]
and ZEUS [107] measurement of charm and bottom production cross-sections in
DIS have been replaced with the combined measurement of Ref. [108].

DIS jet. DIS single-inclusive jet and dijet production data from ZEUS [109-111] in
the high-@ region and H1-Herall [112,113] in the high- and low-Q regions.

Fixed-target DY. The recent SeaQuest [114] measurement of the production of a Z
boson decaying into muon pairs.

Incl. W and Z. The ATLAS measurements of the W and Z differential cross-section
at /s = 7 TeV in the central and forward rapidity regions [115], of double
and triple differential DY lepton pair production at /s = 8 TeV [116,117], of
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Figure 2.14: The kinematic coverage of the NNPDF4.0 dataset in the (z,Q?) plane.
Points with a black edge around it are new in NNPDF4.0 and were not included in
any previous NNPDF release.
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W production and decay at /s = 8 TeV [118], and of W and Z decay into
leptons at /s = 13 TeV [119]. The LHCDb measreument of the Z cross-section
at /s = 13 TeV [120].

Wjet. The measurement of W boson production with additional jets from
ATLAS [121] at /s = 8 TeV. The measreuments of W production with a charm
jet from ATLAS [122] at /s = 7 TeV and CMS [123] at /s = 13 TeV.

Top pair. The ATLAS [124] differential and CMS [125] double differential normalized
cross-sections measured at /s = 8 TeV. The ATLAS total cross-section [126]
and the CMS absolute differential distributions in the lepton+jets channel [127]
and in the dilepton channel [128].

Dijet. Single-inclusive jet production from ATLAS [129] and CMS [130] at /s =
8 TeV. Dijet production from ATLAS [131] and CMS [132] measurements at
Vs =7 TeV and the CMS measurement [133] at /s = 8 TeV.

Direct photon. Isolated photon production measurements from ATLAS at /s =
8 TeV [134] and /s = 13 TeV [135).

Single top. Single top production from ATLAS [136-138] and CMS [139-141]
measurements at /s = 7, 8 and 13 TeV.

Of these processes, jet production in dis, top pair production, dijet production,
direct photon production and ¢-channel single top production have not been included
in previous NNPDF releases. For an exhaustive list of all included datasets in the
NNPDF4.0 determination we refer the reader to App. A. For a description of how the
theoretical predictions corresponding to the measurements are obtained, we refer the
reader to Sect. 2 of Ref. [6].

2.2.1 The impact of datasets with tension

The baseline dataset described above is constructed to be maximally consistent, this
is discussed in detail in section 4 of Ref. [6]. However, here we will briefly assess
the sensitivity of the resulting PDF upon the exclusion of those datasets where some
indication of inconsistency was found but that were eventually included in the baseline
dataset.

To identify possible dataset inconsistencies, three quantities are used. First is the
total x2 per datapoint, second is the distance in terms of standard deviations that the
x? per datapoint evaluated for a given dataset differs from its expected value:

21 21
ng = X =X (2.15)

g [X2] vV 2/Jvdat7

and third is the inverse of the smallest eigenvalue of the experimental correlation
matrix. This provides a proxy for the stability of the experimental covariance matrix.
For each of these quantities a threshold value is decided, and for those datasets where
the threshold is crossed, additional checks are performed. In particular this involves
giving additional weight to the identified datasets one-by-one, and seeing how this
impacts the fits.
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Since the decision of whether to include a given dataset or not is not a simple one,
but rather is based on a combination of many different factors, one may wonder how
much these decisions impact the PDFs. One way to observe that these decisions do not
have a significant impact is shown in Fig. 2.15. Here seven new PDF determinations
have been performed, each one by removing one of the datasets with particularly large
values for the estimators described above, these are ATLAS 7TeV dijets [131], NMC

» [142], BCDMS FY [18], HERA I+II charm [108], CMS 7 TeV dijets [132], HERA
inclusive [143], and E866 o, [144]. These seven PDFs are then combined using the
PDF4LHC15 prescription, which means that the combined PDF is an unweighted
combination of the seven different PDF sets.

Fig. 2.15 compares the up, antiup, gluon and down quark PDFs and their
uncertainties of the NNPDF4.0 baseline determination to this combination of the seven
PDF sets where different datasets have been omitted. From this it can be concluded
that the results are stable and changes are comparable with statistical fluctuations.

2.3 Important features of NNPDF4.0

Here we will discuss some of the main features of the NNPDF4.0 determination.
So far in this chapter we discussed two main sources of changes to the NNPDF4.0
determination with respect to the earlier NNPDF3.1 determination: the dataset and
the methodology. Here we will study the impact of the new methodology, as well as
the impact of the new dataset, independently. We will then study the implications of
the NNPDF4.0 PDF set for hadron collider phenomenology. Finally, we will discuss
the implications of the independent determination of the charm PDF.

2.3.1 Impact of the new data

As discussed above in Sect. 2.2, the NNPDF4.0 dataset is not a pure extension of
the NNPDF3.1 dataset. Instead, also some changes have been made regarding the
treatment of data already included in the NNPDF3.1 determination. These updates
mostly consist of updated measurements of the same observable, and updates to
the theory calculations. The global dataset that incorporates these updates to the
NNPDF3.1 dataset has been dubbed the NNPDF'3.1-like dataset, which is the dataset
that we will compare the full NNPDF4.0 dataset to here.

To assess the impact of the new data — and also the impact of the new methodology
in Sect. 2.3.2 — we study a quantity relevant for LHC physics, namely, the parton
luminosities as a function of the invariant mass of the final state mx at /s = 14 TeV.
While various definitions of the parton luminosity as a function of the invariant mass
can be used, here we will define it as

Chdnnels

i (Mx, /5 Z / O M) £ (M) (2.16)

where i and j are the parton flavor indices, and 7 = M2 /s.
The impact of the new data is assessed by comparing the luminosity of the baseline
NNPDF4.0 PDF set to a PDF set determined using the same NNPDF4.0 methodology,
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Figure 2.15: The NNPDF4.0 baseline PDFs and their relative uncertainties compared
to a combination of PDFs where in their determination datasets with poor statistical

estimators have been omitted one-by-one. The combination is performed using the
PDF4LHC15 prescription.
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Figure 2.16: A comparison of the gg and gq luminosities Eq. (2.16) as a function of the
invariant mass (top) and their relative 1o uncertainties (bottom), between the baseline
NNPDF4.0 PDF set (green) and a PDF set determined using the same NNPDF4.0
methodology but fitted to the NNPDF3.1-like dataset (orange).

but instead fitted to the NNPDF3.1-like dataset. In Fig. 2.16 we compare the gluon-
gluon and quark-quark channel luminosities of both PDF sets along with their 1o
uncertainties. Even though the uncertainties remain largely unchanged there is a
clear shift of the central value that, for some values of the invariant mass, at the 20
level. From this it can be concluded that while the extended NNPDF4.0 dataset does
not improve the precision of the PDF fit, the NNPDF4.0 dataset does result in an
improved accuracy as a result of the larger amount of information included in the
NNPDF4.0 dataset.

2.3.2 Impact of the new methodology

Similar to the assessment of the impact of the new data above, here we will again
study the luminosities as a function of the invariant mass for two different PDF sets.

In Fig. 2.17 we compare the luminosities of the baseline NNPDF4.0 PDF set to a
PDF set determined using the NNPDF3.1 methodology and the NNPDF4.0 dataset.
From these plots it is clear that while the two methodologies are in perfect agreement,
the PDF set obtained with the NNPDF4.0 methodology achieves a much higher
precision that that obtained using the NNPDF3.1 methodology.
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Figure 2.17: Same as Fig. 2.16, but here the baseline NNPDF4.0 PDF (green) set
is compared to a PDF set determined using the NNPDF3.1 methodolgy and the
NNPDF4.0 dataset (orange).

Combining this observation with the previous observation about the impact of the
new data, it can be concluded that while the change in central value of any predictions
is due to the change in dataset, the change in uncertainty is entirely due to the change
in methodology.

2.3.3 Implications for phenomenology

To demonstrate precision that NNPDF4.0 provides, we study here a quantity that is
relevant for LHC phenomenology: the PDF uncertainty on the luminosity differential
in rapidity y at an energy scale of /s = 14 TeV. This can be written as

channels
~ 1 Mxe¥ Mxe™¥
Li; (MX,y» \/g) = E gfl <\)/(§’MX> fi <)\(/§,MX> ) (2.17)
ij

from which Eq. (2.16) can be obtained by integrating over rapidity:

channels  .log \/s/Mx _
Lij (Mx,/s) = Z / dyLi; (Mx,y,/s). (2.18)
ij —log Vs/Mx

52



2.4 Open-source code

In Fig. 2.18 the relative PDF uncertainty on the luminosity differential in rapidity
is presented as a function of both the invariant mass mx and the rapidity y of the
final state. Here the impact of the decrease in uncertainty as previously observed
in Sect. 2.3.2 is clearly visible. In particular it can be seen that where NNPDF3.1
reaches uncertainties of around 1% in a limited range of phase space, for NNPDF4.0 a
precision of around 1% is obtained for a much larger kinematic domain and for several
parton channels.

2.3.4 The charm PDF

In the baseline NNPDF4.0 determination the charm PDF is treated on the same
footing as the light quark PDFs and fitted independently. Such a treatment has
various advantages [145], among with is the fact that it allows for a non-perturbative
intrinsic charm component.

Fig. 2.19 compares the independently determined charm PDF at the parametrization
scale of Qp = 1.65GeV to the perturbatively calculated charm PDF at the same
scale. The two PDFs are very different, and in particular the uncertainties of the
perturbatively generated charm PDF do not seem faithful. The independently fitted
charm PDF is less sensitive to the choice of the charm mass m. and the uncertainties
are significantly larger. Nevertheless, the independently determined charm PDF shows
a clear valence-like bump around x > 0.1 approaching 3¢ significance.

Discovery of an intrinsic charm contribution to the proton however cannot be
claimed based on this PDF determination since it is given in a four-flavor-number
scheme with in which up, down, strange and quark are sensitive to radiative corrections
and mix with each other and the gluon. To accurately determine the intrinsic
component of the charm PDF, it needs to be determined in the three-flavor-number-
scheme in which only the three light quarks are sensitive to radiative corrections.
Note though, that the valence-like peak is found at large values of x where charm is
radiatively generated only at a low rate and thus one would not expect the scheme
change to have a major impact on the valence-like bump. This exercise was performed
explicitly in Ref. [146], where indeed the valence-like peak remained largely unchanged
upon this transformation of flavor number scheme and thereby provides evidence for
intrinsic charm.

2.4 Open-source code

Along with the release of the NNPDF4.0 PDF sets, also the NNPDF code [7] has been
made publicly available under the GNU General Public License v3.0, allowing for the
freedom to run, study, share and modify the software . It can be found on the Github
page of the NNPDF collaboration

https://github.com/NNPDF/,
along with user-friendly, and continuously updated documentation
https://docs.nnpdf.science/.

This release contains not only the NNPDF fitting framework, but also the codes
needed to transform experimental data into a common format, to produce FK-tables,
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Figure 2.18: The relative PDF uncerainty on the luminosities Eq. (2.17) for NNPDF3.1
(left) and NNPDF4.0 (right) plotted as a function of the invariant mass mx and
rapidity y of the final state.
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Figure 2.19: A comparison between the baseline NNPDF4.0 charm PDF (green) which
has been parametrized independently, and the charm PDF determined by perturbative
matching (orange). The charm mass is m. = 1.51 GeV in both cases.

and to perform the data analysis and visualization. In addition to the codes, the public
release includes the original and filtered experimental data, the fast NLO interpolation
grids for the computation of hadronic observables, and whenever available the bin-by-
bin NNLO QCD and NLO electroweak K-factors.

For previous releases of NNPDF only the PDF sets produced with the framework
were made publicly available as through the LHAPDF framework [78] as LHAPDF
interpolation grids, while the code itself remained private. As a result, the code itself
could not be scrutinized and results could not be reproduced by external parties. It also
meant that the only method of obtaining variations of existing PDFs — for example
a PDF set determined using a reduced dataset — was by requesting them from the
NNPDF authors. In practice this was a limitation to benchmarking studies such as
those performed by the PDF4LHC working group [147]. In such a benchmarking study
the differences between PDF determinations from the different fitting collaborations
are attempted to be understood, but often differences are the result of a complex
combination of various factors. Studies such as these are therefore aided by the code
being open access.

The NNPDF code consists of the following main packages:

e The buildmaster code for handling experimental data is a C++ code that can
be used to take experimental as provided by experimental collaboration — for
example through the HEPData interface [148] — and generate files containing
information about the data and the treatment of uncertainties in a format that
can conveniently be used within the rest of the NNPDF framework.

e The APFELcomb code for the generation of FK-tables. It does this by taking
matrix elements, such as those obtained from APPLgrid, FastNLO for hadronic
observables or APFEL for DIS observables, and combining them with DGLAP
evolution kernels from APFEL.
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e The validphys framework for the analysis and visualization of data related
to PDF determinations. The validphys framework is build on top of the
reportengine framework [149], which is a data science framework supporting
declarative inputs in YAML format and checks constraints at initialization time
while building a computational graph. Most of the plots in this thesis have been
produced entirely with validphys, and in many other cases the validphys API
has been used to obtain data about the PDFs.

e The n3fit fitting framework that takes as input the experimental data and
FK-tables, and produces the PDF replicas as has been discussed in detail in
Sect. 2.1.3.

The public availability of the NNPDF code opens up a number of possibilities for
users to perform their own analysis of PDFs using the NNPDF framework or extensions
thereof. Examples of possibly interesting applications for users that the NNPDF code
allows are the assessment of the impact of a specific dataset or group of datasets by
producing fits based on a reduced dataset, or by implementing a dataset that has
not yet been included in the NNPDF framework. The open-source code also allows
users to perform fits with different settings of the theory calculations. This enables
for example the study of as dependence by performing fits to theories with different
values of a; [150], the estimation of missing higher order uncertainties (MHOU) by
varying the factorization and renormalization scales [151,152], study the sensitivity to
heavy quark masses by varying those. Finally, since the open-source code is public,
users can extend its functionality. For example, one can extend the framework to allow
for the simultaneous determination of PDFs and Wilson coefficients in the Standard
Model Effective Field Theory framework [153], or even apply it to the determination
of other non-perturbative QCD quantities such as nuclear PDFs [154], fragmentation
functions [155], or polarized PDFs [156].

It should be noted that some of the functionality described above is already available
in the xFitter framework [157,158]. However the NNPDF framework provides some
complementary functionalities, specifically by offering a PDF parametrization based
on state-of-the-art machine learning tools, a more extensive experimental dataset, and
a great number of tools for the statistical analysis and visualization of data.
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Chapter 3

Advanced machine learning tools

In the previous chapter we introduced the NNPDF4.0 PDF determination. We
observed how an increase in data quality, in particular as a result of the large number
of new processes, resulted in more accurate PDFs with no significant impact on
their precision. We then observed how the improved methodology instead resulted
in a significant reduction of the PDF uncertainties. Thus, while both NNPDF3.1
and NNPDF4.0 provide an accurate determination of the PDFs, NNPDF4.0 is an
improvement over NNPDF3.1. Similarly, in this chapter we discuss two main directions
of improvements to the methodology that may be utilized for future releases.

In Sect. 3.1 we present a method that allows us to replace the (x,logx) splitting
in the first layer of the neural network with a data-based scaling, and we will
see how this further enables us to remove the preprocessing prefactor, and by
extension the corresponding iterative procedure for their determination, present in
the parametrization Eq. (2.3). In Sect. 3.2 we propose a way to further automate
the hyperoptimization routine thereby reducing the need for human intervention. In
particular, we propose a method to optimize the selection of folds for the k-folds cross-
validation, and a measure to quantify the degree of overfitting that occurred during
the fitting of the PDFs. In this way, we address two main directions for improvement
of the hyperoptimization routine discussed in Sect. 2.1.4.

3.1 Improved PDF parametrization

All of the most used PDF sets are parametrized at some input scale Qg by a function
of the form in Eq. (1.67)

xfi (x,Qo) = Aix(k“i)(l - x)ﬁiPi(x), (3.1)

where the indices i correspond to the type of parton, and P; is a functional form that
is different between PDF fitting groups. This is a generalization of Eq. (2.3) for the
parametrization employed by the NNPDF collaboration in which P; is represented by
a single neural network. As also mentioned before, for other modern PDF sets such as
MSHT20 [63], CT18 [64], and ABMP16 [65], P; represents a polynomial in functions
of x, such as /.
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The PDFs are kinematically constrained at = 1 per Eq. (1.66) which is enforced
through the (1 — x)% component in Eq. (1.67) by all PDF fitting collaborations .
The motivation for this term stems from the constituent counting rules [159]. In the
fitting methodologies this component not only ensures that the condition of Eq. (1.66)
is satisfied, but it partially controls the large-x extrapolation region where data is
unavailable. The small-z behavior instead is controlled by the prefactor 2(1=®#). The
introduction of this factor was inspired by Regge theory [160]. While enforcing this
behavior implies a methodological bias [58], studies on the extrapolation behavior of
PDF determinations confirm both Regge theory and counting rules for the valence
distributions [161]. Regardless, the effect of the exponents «; and f; as a source
of bias [44] is mitigated in the NNPDF methodology by independently and randomly
sampling them from a uniform distribution per replica, and freezing their values during
the fit. This is to be contrasted with the approach of other collaborations where
the a; and (; are treated as parameters that are to be optimized during the fit.
The boundaries defining the distributions from which the exponents are sampled in
the NNPDF approach are determined through the iterative procedure described in
Sect. 2.1.2.

Despite its generalized use in PDF determination, the fixed functional form is a
part of the methodology that leaves room for improvement. Namely, if we are able
to remove the preprocessing entirely, this provides two main benefits. First, and
perhaps most obviously, if we are able to remove this preprocessing from the NNPDF
methodology this also reduces the need for the iterative procedure to determine the
ranges of the exponents. Second, the required sampling of the exponents corresponds
to an additional source of data-independent replica-by-replica fluctuations. This
may affect the hyperoptimization procedure of Sect. 2.1.4, namely a relatively poor
methodology may perform well on the hyperoptimization metric if the randomly
sampled preprocessing exponents result in a better agreement of the fit to the data
than the expected performance of that methodology. Inversely, a relatively good
methodology may perform poorer during hyperoptimization as a result of the same
fluctuations in the preprocessing exponents. Finally, it is worth mentioning that the
PDFs are only based on data in the domain 107> < z < 0.75 while PDF grids are
delivered in the domain 107° < z < 1 and as a result the preprocessing impacts
the extrapolation behavior of the PDFs. While there are theoretical arguments [162]
that suggest the power-like behavior of PDFs in the limits of z — 1 and x — 0 as
described by the preprocessing function, it is not clear that this is also true for the
finite region in which the PDF is provided through the LHAPDF6 interface. Though,
even if we assume that this is indeed the case, it is still not clear at which scale Q?
the exponential scaling should hold given that it is not preserved under the evolution
equations discussed in Sect. 1.3.

Another aspect of the PDF parametrization that is the result of an explicit human
choice is the (z,log x) split in the first layer of the neural network as shown in Fig. 2.2.
The choice for this splitting of the input results from the observation that typically
PDFs show logarithmic behavior at small-z (z < 0.01) and linear behavior at large-
z (z = 0.01) [68], and together with the prefactor it ensures convergence of the
optimization algorithm in the small-z region.

In what follows we will show, in Sect. 3.1.1, how the scaling of the z-grids that are
given as input to the neural network can be automated to replace the (z,logz) split
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in a way that allows for a more flexible parametrization. Then, in Sect. 3.1.2, we show
how this scaling allows to remove the preprocessing from the parametrization entirely.

3.1.1 A data-based scaling of the input z-grids

Often, in machine learning problems, the input data can be unbalanced or span several
orders of magnitude. Such is the case of PDF fitting, where the input is concentrated
at small-z.

This can be a problem because, as we will explicitly show below, having input
features of different magnitudes introduces an artificial impact on the importance of
each feature within the network. This problem is exacerbated for gradient descent
based algorithms where the issue propagates to the learning rate of the weights of
the network. Thus, even if the algorithm is still able to find the global minimum,
the rate of convergence is not equal for all features. In the case we are interested in
(the NNPDF methodology with an early stopping algorithm) this can lead to locally
overfitted or underfitted results in different regions of the kinematic domain. Ideally
the fitting methodology should result in a uniform rate of convergence across all input
scales.

In short, the problem is that while the data spans multiple orders of magnitude,
the fitting methodology requires the inputs to be of the same length scale. Below we
discuss the impact of the input scaling on the PDFs, and provide a methodology that
takes an arbitrary input grid and scales it such that the optimizer always has a good
resolution across the entire input grid.

At this point one may note that the input z-grids of the neural network are the
grids defined in the FK-tables as shown in Eq. (2.7) and Eq. (2.8), which may differ
from the z-values of the corresponding experimental datasets. While this is true, from
the perspective of the fitting methodology, the grid choice is arbitrary and thus the
problem remains.

In NNPDF fits, the input variable is mapped to (z,logz) in the first layer of the
neural network which facilitates the methodology in learning features of the PDF that
scale either linearly or logarithmically in x. As mentioned before, these scales are
carefully chosen in accordance with the typical scaling of PDFs which is logarithmic in
the small-z region while it is linear in the large-x region. In the structure function fit
presented in Ref. [68] it was further noted that the choice of input scales could affect
the rate of convergence but not the final result. However, the (z,logx) split can have
an effect on the shape of the PDFs when determined using the modern framework.
This is seen in Fig. 3.1, where we compare the gluon PDF of the NNPDF4.0 fit to
a PDF generated using the same data, theory and methodological settings, but with
the (z,logz) input scaling replaced with only an (z) input. While the NNPDF4.0
methodology was sensitive to the small-z region (where the logarithmic behavior is
expected) when we remove (logz) from the input we can observe a hint of saturation
in said region. Despite the fact that the (x) and (logx) variables contain the same
information the split has a noticeable effect on the fit. We will now present an
alternative data-based scaling and show that this scaling finds agreement with the
results found using the (x,log x) scaling, thereby providing evidence that the (z,log z)
does not introduce an inefficiency in the methodology.
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Figure 3.1: Comparison between the gluon PDF generated with the standard
NNPDF4.0 methodology (green) and our modification in which we have removed the
splitting layer of x to (z,log x) (orange). While we observe good compatibility between
both PDFs in the large-z region, as we enter in the small-z region our modified PDF
saturates. This is evident also in the x? of the modified fit which was blocked at
x? = 1.20 while NNPDF4.0 is able to get it to x? = 1.16.

In order for the optimization algorithm to be able to easily learn features across
many orders of magnitude we can perform a feature scaling of the training input z
such that the distances between all points are of the same order of magnitude. In
particular, we can consider mapping the combined training input z-grid from the FK-
tables of all datasets as discussed in Sect. 2.1 to an empirical cumulative distribution
function (eCDF) of itself. The eCDF is defined as a step function that starts at 0
and increases by 1/N, at each point of the input z-grids, with N, the total number
of nodes in the z-grids. If the z-grids of n FK-tables share a common point in =z,
the step-size corresponding to this point is instead n/N,. This results in a function
whose value at any z corresponds to the fraction of points in the x-grids that are less
than or equal to z. In other words, while the x values present in the FK table are not
uniformly distributed on the domain 0 < z < 1, applying the eCDF makes it that they
are. A density plot of the distribution of input points without scaling, logarithmically
scaled, and after applying the eCDF is shown in Fig. 3.2. This figure also clearly shows
that both inputs to the neural network as used in NNPDF4.0 [6] have a high density
of points on the same scale.

Applying the eCDF results in a distribution on the domain 0 < x < 1. However,
for the results presented in this paper the eCDF transformation is followed by a linear
scaling, resulting in a total transformation of the input & = 2 - eCDF(x) — 1, meaning
that the input values to the neural network are in the range —1 < & < 1. This is done
to ensure that the input is symmetric around 0 which results in improved convergence
for many of the commonly used activation functions in neural networks.

Since using the eCDF means that we apply a discrete scaling only for values present
in the input z-grids, we need to also add both an interpolation and an extrapolation
function to extract PDF values at values of the momentum fraction that do not coincide
with the input x-grids. Here it is important to note that the PDFs are made publicly
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Figure 3.2: Histograms showing the distribution of the unscaled x points in the FK-
table a-grids (top-left), as well as the distribution of the input points after scaling
with log z (top-right) and eCDF (bottom).

available through the LHAPDF interface, and that they are correspondingly stored in
the LHAPDF grid format [78]. Because LHAPDF grids are provided on the domain
1072 < z < 1, the problem of extrapolation can be turned into an interpolation
problem by including the points z = 1072 and = = 1 in the input z-grid before
determining the eCDF, and defining a methodology for interpolation.

The simplest option for an interpolation function is a “nearest neighbor” mapping,
whereby we map any input on the continuous domain 0 < x < 1 to the nearest node in
the z-grids of the FK-table. We can nevertheless improve this simple mapping by using
instead a continuous function. A requirement of any such interpolation function is that
it needs to be monotonically increasing. However, if we determine the interpolation
between each two points of the FK-table z-grids the optimization algorithm will be
agnostic to the existence of this interpolation function as it is never probed. Ideally,
in particular for the evaluation of validation data of which the corresponding FK-
tables were not included when defining the eCDF scaling, we want the optimizer to
probe the interpolation functions such that it is able to learn its properties and as
a result provide a more accurate prediction in the interpolation region as well. As
such, the interpolation functions are not defined between each neighboring pair of
values in the input x-grid, but rather we select Nj,; evenly distributed points (after
the eCDF transformation) between which to define interpolation functions. Here Ny
is a new hyperparameter, though not necessarily one that needs to be free during
hyperoptimization of the methodology. To obtain a monotonic interpolation function,
we propose determining the interpolation functions using cubic Hermite splines [163].

By scaling the input in this way, we remove any restrictions on the PDF resulting
from the input features while simultaneously simplifying the model architecture by
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Figure 3.3: Comparison between the gluon and up PDFs determined using the
NNPDF4.0 methodology (green) and a PDF determined using input scaling based
on the eCDF (orange) with all other parameters the same.

getting rid of the mixing of two different orders of magnitude in the first layer. In
Fig. 3.3 we compare the gluon PDF generated using the NNPDF4.0 methodology, to a
PDF generated using the same data and theory settings, but with the (x,log ) input
scaling replaced with the eCDF input scaling as described above. This comparison
of the gluon PDF is representative for all flavors, and shows that the PDFs produced
with this new scaling are in agreement with those found using the (z,logz) input. If
the PDFs had not been in agreement that would have suggested that the PDFs have
a component that scales neither linearly nor logarithmically, and was therefore missed
when enforcing the (z,logz) scaling.

3.1.2 Removing the prefactor

In the previous section we discussed a new way of treating the input for the PDF
fitting by rescaling the input in a systematic way that depends only on the fitted data
itself. This is a purely data-driven approach and thus free of sources of bias due to
the choice of functional form. As explained, the data-based scaling of the input grid
in z will also allow us to remove the prefactor entirely.

In what follows we will discuss the consequence of removing the prefactor.
Specifically, by “removing the prefactor”, we understand a treatment which is
equivalent to setting a;; = 1 and 8; = 0 in Eq. (2.3), while enforcing the condition of
Eq. (1.66). As a result the PDF model is simply written as

A similar model, without the model-agnostic input scaling, has previously been applied
to the study of fragmentation functions [95]. We will focus on the effects of the change
in the small-z and large-z extrapolation regions where the lack of data makes the fit
particularly prone to methodological biases.

Earlier we mentioned that the motivation to include the prefactor in NNPDF is
to improve convergence during optimization and that its effect as a source of bias
in the extrapolation region was mitigated by randomly sampling the exponents «;
and (; from a uniform distribution and keeping their values fixed as opposed to
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allowing the optimizer to determine their values. However, removing the preprocessing
entirely not only has the advantage of avoiding bias, but also removes the replica-by-
replica fluctuations introduced by the different values of the exponents used for each
replica. These fluctuations are an inefficiency of the fitting methodology, which may
in particular affect the hyperoptimization routine discussed in Sect. 2.1.4. The reason
for this is that the performance of each hyperparameter configuration is tested by
performing k = 4 fits, hence the sample size (and thus potential impact of random
fluctuations) is non-negligible.

The improvements in efficiency achieved with the NNPDF4.0 with respect to the
NNPDF3.1 methodology discussed in Sect. 2.1 allow us to remove the prefactor
without a significant change in computational costs. Therefore any possible benefit
of the prefactor in terms of convergence no longer outweighs its disadvantages. As
an example of where fluctuations between replicas as a result of the randomized
exponents of the prefactor can limit the development of the methodology, one can
consider the hyperoptimization procedure previously discussed in Sect. 2.1.4. Namely,
in the current scenario an otherwise good hyperparameter setup with poor exponents in
the prefactor can return a worse figure of merit during hyperparameter optimization
than a relatively poorer hyperparameter setup with very suitable exponents. As a
result many more hyperparameter combinations need to be tested to overcome the
statistical noise. Removing the replica-by-replica random sampling of the exponents
removes this effect from hyperoptimization.

The uncertainties of the fit in the extrapolation region are closely related to
the ranges the prefactor exponents are sampled from. Removing them from the
parametrization also removes the random sampling. Therefore, we will next validate
the obtained small-x and large-z uncertainties.

For brevity and clarity, we will from now on refer to the proposed methodology
without the prefactor and with the eCDF input scaling as the “feature scaling”
methodology.

3.1.3 Validation of the updated parametrization

After any significant change to the fitting methodology, it is important to re-evaluate
the choice of the hyperparameters of the model. The model parameters obtained
through the hyperoptimization procedure applied to the feature scaling methodology
are given in Tab. 3.1. Note that the selected activation function does not saturate
asymptotically for large or small values of z, thus preventing saturation outside
the data region. The choice of activation function was however not fixed during
the selection of hyperparameters, this activation function has been selected by the
hyperoptimization algorithm among a selection of both saturating and non-saturating
activation functions.

Having identified the best settings for the hyperparameters, we can analyze the
effect that changing the parametrization has on the PDFs and the predictions made
with them. The y? values obtained with the updated methodology are shown in
Fig. 3.4 where they are compared to those of NNPDF4.0. From this it is clear that
the feature scaling methodology is able to find agreement to the data that is as good
as NNPDF4.0.
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Architecture

Activation function

1-59-49-48-42-8

|z| tanh(z)

Initializer glorot_normal
Optimizer Nadam

Clipnorm 1.5x107°

Learning rate 4.3x1073
Maximum # epochs 19x 103

Stopping patience 24% of max epochs
Initial positivity A(P°®) 34

Initial integrability A"t 10

Nint 40

Table 3.1: The hyperparameter configuration used to perform the feature scaling fits.
The configuration has been selected using the hyperoptimization routine of Sect. 2.1.4.

In what follows we will study the implications of the methodology in more detail,
in many cases by comparing it to a PDF based on the same experimental dataset
and theory setting, but produced using the NNPDF4.0 methodology. Specifically, we
will perform various tests to validate the PDFs both in the extrapolation regions, as
well as in the data region. These tests comprise the validation of the NNPDF4.0
methodology, and we will show that the performance of feature scaling is very similar
to that of NNPDF4.0.

Validation of the small-z extrapolation region

To begin with, we need the PDFs to accurately describe the kinematic domain from
which the methodology has not seen data during training. If we are able to determine
the x2 for this unseen data, that would provide some insight into the generalization
of our methodology in the extrapolation region.

By definition, testing the accuracy in a region where there is no data to test against
is impossible. Given that waiting for a future collider to become operational could
take decades, the next best thing we can do is to perform a fit to a “historic” dataset
representing the knowledge available at an earlier point in time. To this end we
utilize the “future test” technique introduced in Ref. [164], and used to validate the
extrapolation region of the NNPDF4.0 PDFs. For consistency we keep the same
datasets as presented in the original future test paper (pre-HERA and pre-LHC).
In short, the test goes as follows: if the prediction from our methodology is able to
accommodate (within uncertainties) currently available data that was not included in
the fit, then the test is successful and we consider the generated uncertainties to be
faithful.

Since the aim of doing a future test is to determine the ability of a methodology
for PDF determination to provide a generalized fit, we need to take into account not
only the uncertainty of the experimental data but also the uncertainty of the PDF
itself. This is done by redefining the covariance matrix in the chi-squared-distribution
Eq. (2.9) as

(cOViot)ij = (COVexp)ij + (cOVpdt)i, (3.3)
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Figure 3.4: A comparison of the x? per process type between NNPDF4.0 (green) and
feature scaling (orange), the total x? of feature scaling is 1.17 while that of NNPDF
is 1.16.

where covey, corresponds to the covariance matrix defined in Eq. (2.10) without
the ¢y prescription applied, while covpqs corresponds to the covariance matrix of the
observables calculated from PDF predictions:

rep rep rep
(covpat)ij Nre Z PrP; — N Z PTN Z Pk (3.4)
P r=1 rep r=1 rep k=1

where P/ is the prediction of the i-th datapoint using the r-th PDF replica.

As can be seen in Fig. 3.5, where we compare the gluon and upquark PDFs of the
NNPDF4.0 fit, to a PDF generated using the feature scaling methodology, the plots
show good agreement between the two PDFs. While only the two partons are shown,
this is representative of all flavors. The prediction of the feature scaling methodology
in the extrapolation region is validated by performing a future test of the feature
scaling methodology. The results of this future test results shown in Tab. 3.2. Each
column corresponds to a fit perform using all previous datasets (for instance, the pre-
LHC fit includes all the data in pre-HERA as well). Instead, each row corresponds to
the partial dataset used to compute the x2. We make a distinction between x? inside
parentheses with the experimental covariance matrix, and the x? without parentheses
corresponding to a covariance matrix as defined in Eq. (3.3). Before seeing these
results one may wonder whether, because all datasets are sensitive to the same large-z
region, the datasets are consistent and thus the test is trivial. The answer to this
becomes clear by looking at the x? values inside the parentheses which indicate that
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Figure 3.5: Comparison of the gluon and upquark PDFs between a fit performed with
the NNPDF4.0 methodology (green), and one with the feature scaling methodology
(orange).

when the PDF uncertainties are not considered the fit quality is very poor for unseen
data.

We can analyze the result starting on the third row corresponding to the NNPDF4.0
dataset. For the fit that included the entire dataset (third column) it makes virtually
no difference whether or not the PDF uncertainties are taken into account. This is
quite different for the pre-HERA fit (first column): even though the central PDF is off
(x? = 7.23), once its uncertainties are considered, the quality of the fit is comparable
to that of NNPDF4.0 with with a x? of 1.29 compared to 1.21. In the second row
instead the pre-LHC dataset is considered. Both the NNPDF4.0 and the pre-LHC
fit, where the dataset is included, produce a trivially good x? for their fitted data.
When we compute the prediction using the pre-HERA fit instead the number is much
worse. Once again, upon considering the PDF uncertainties, the number is of order
one, though still significantly larger than the corresponding values in the fits with pre-
LHC or NNPDF4.0 data. This suggests that qualitatively good agreement is obtained
but stability upon changes to the dataset can still be improved.

It should be noted that in all cases the methodology used has been hyperoptimized
for the full NNPDF4.0 dataset. While one may argue that the fits to the historic
datasets require re-hyperoptimization and to redo the iteration required for the tg
procedure discussed in Sect. 2.1.3, the main purpose of the exercise performed here is
to compare the future test results obtained with the feature scaling methodology to
those obtained with the NNPDF4.0 methodology in Ref. [6].

If we compare these results as presented in Tab. 3.2 for the feature scaling
methodology, to the results for the NNPDF4.0 methodology shown in Tab. 3.3, we
observe much the same properties. Indeed, even in cases in which the out-of-sample
x? differs greatly between both methodologies, the results are compatible once the
PDF uncertainties are considered. This confirms that, when PDF uncertainties are
considered, the agreement to out-of-sample data is of a similar level as that of fitted
data where the PDF uncertainty is not considered.

We must note however a deterioration of the results in Tab. 3.2 with respect to
those of Tab. 3.3 which points to a greater dependence on the considered dataset with
the feature scaling methodology. In part this may be a consequence of the fact that
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Dataset Naat pre-HERA fit pre-LHC fit NNPDF4.0 fit
pre-HERA 2076 0.87 (0.92) 0.91 (1.03) 0.98 (1.08)
pre-LHC 1273 1.35 (5.61) 1.17 (1.27) 1.18 (1.20)
NNPDF4.0 1269 1.29 (7.23) 1.22 (4.72) 1.21 (1.29)

Table 3.2: x¥? values per datapoint as obtained during a future test of the feature
scaling methodology. The columns correspond to fits based on a given dataset, while
the rows correspond to the datasets for which the x? values are shown. While for
the fit the dataset are inclusive (i.e., the NNPDF4.0 fit includes also the pre-LHC
and pre-HERA datasets) the x? is computed in an exclusive manner (i.e., the x? as
calculated for the NNPDF4.0 dataset only uses “post-LHC” data). The values in bold
represent the performance on datasets that were not part of the training. The values
inside parentheses correspond to a x? defined with o as defined in Eq. (3.3), while
those without parenthesis are defined with only the experimental covariance matrix.

the datasets used in the NNPDF4.0 determination have been carefully selected by
analyzing their impact on PDF fits using the NNPDF4.0 methodology (see Sect. 4 of
Ref. [6]), while those same datasets have here been used to validate the feature scaling
methodology instead of performing again the appraisal of the datasets for the feature
scaling methodology. Nevertheless, in Sect. 2.2.1 we analyzed the impact of seven
datasets which all had particularly large values for measures used to determine whether
or not to include the corresponding dataset in the PDF fit, and the results obtained
there suggest that no significant impact is to be expected upon the removal of these
datasets from the fit. However, a more likely explanation for this difference is related to
the fact that the preprocessing ranges of the NNPDF4.0 methodology are determined
using the global NNPDF4.0 dataset. Some information on the full NNPDF4.0 dataset
may thus be encoded in the preprocessing exponents and therefore be present in the fits
performed using the NNPDF4.0 methodology, even if the data used during training was
the pre-LHC or pre-HERA subset of the global dataset. Thus, while the preprocessing
ranges of the fits with the NNPDF4.0 methodology have been determined using the
NNDPF4.0 dataset, one of the main improvements provided by the feature scaling
methodology is that it is able to accommodate directly different datasets without
the need to determine the range of preprocessing exponents. This may also explain
why the out-of-sample x? of feature scaling is actually better than that achieved by
NNPDF4.0. One may explicitly check this hypothesis by determining the ranges of the
preprocessing exponents one would obtain through the iterative procedure described
in Sect. 2.1.2 if only the pre-HERA or pre-LHC datasets were available, and repeating
the future test using the resulting methodologies. This however is left for future work.
Here it suffices to note that, when considering the PDF uncertainties, the x? of the
PDF predictions and the “future datasets” excluded from the corresponding fit is close
to one.

Finally, having removed the preprocessing, one may consider further constraining the
small-z region using different methods. One such possibility is proposed in Ref. [165]
where a Gaussian Process is used to sample pseudodata in the extrapolation region
by explicitly learning the correlation of the DIS data in the small-z region.
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Dataset Naat pre-HERA fit pre-LHC fit NNPDF4.0 fit
pre-HERA 2076 0.87 (0.91) 0.94 (1.01) 1.01 (1.06)
pre-LHC 1273 1.22 (26.1) 1.18 (1.21) 1.17 (1.20)
NNPDF4.0 1269 1.28 (22.6) 1.28 (2.15) 1.23 (1.29)

Table 3.3: Same as Tab. 3.2 for the NNPDF4.0 methodology.

Evaluation of large-z extrapolation

Upon removing the prefactor, we not only affect the small-z extrapolation region of
the PDFs, but also the large-z extrapolation region. It is difficult to apply the idea of
the future test to also validate the faithfulness of the predictions in the large-z region
due to the limitations of the datasets that do not contain any large-z datapoints
(irrespective of how we define large-z precisely). For example, removing all datasets
which contain a point in & 2 0.3 leaves a set of datasets which do not provide sufficient
constraints on the PDF to perform the future test. Nevertheless, here we will assess
the large-z extrapolation behavior of the PDF produced with feature scaling.

To do so, let us visually inspect the PDFs themselves in this region, and see how
the PDFs based on the NNPDF4.0 methodology compare to those that have been
produced with feature scaling. A comparison of the gluon and strange PDF in the
domain 0.6 < = < 1 is shown in Fig. 3.6. Note here that there is no data available
for x > 0.75, meaning that what is shown is mostly extrapolation region, and these
representative examples show a good agreement between the NNPDF4.0 PDF and
the feature scaling counterpart. We further want to point out that due to the lack of
data in this region different parametrization choices can lead to significantly different
results. In particular this can be seen by comparing the NNPDF4.0 PDFs to those
produced by MSHT or CT, where the observed difference may be related to the more
flexible PDF parametrization used by NNPDF4.0 [166].

As a more rigorous check of the large-x extrapolation region one could create
pseudodata based on predictions corresponding to PDFs that have a different
(exponential) behavior in the extrapolation region, e.g. a change of the /3; exponent
outside the data region. One can then perform a future test to this pseudodata, to
quantify how well the PDFs generalize in the extrapolation region. The development
of such a test, however, is left for future work.

Validation of the data region

Where previously we performed a future test to validate the faithfulness of the PDFs in
the extrapolation region where the PDFs are not constrained by data. Here, instead,
we will validate the faithfulness of the PDFs in the data region by performing a closure
test as first introduced in Ref. [75] and extended in the NNPDF4.0 paper and Ref. [167].
Below we repeat the closure test as performed in Sect. 6.1 of the NNPDF4.0 paper,
but this time for the feature scaling methodology. Unless stated otherwise, the same
settings are used.

When fitting experimental data we are subject to complexities in the data such as
inconsistencies between datasets or limitations of the theoretical calculations. These
complexities make it more difficult to assess the performance of a fitting methodology
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Figure 3.6: Comparison of the large-z extrapolation regions of the gluon (top) and
the strange (bottom) PDFs between NNPDF4.0 (green), feature scaling (orange),
CT18 [64] (blue), and MSHT20 [63] (pink).

by analyzing the result of a fit to experimental data. This realization is what led to the
idea of a closure test, where, instead of fitting to experimental data, a fit to pseudodata
is performed. This pseudodata is generated by taking a fitted PDF as input, and from
that calculating the observables corresponding to those in the experimental datasets,
thereby creating a dataset with an associated, and known, underlying PDF. This allows
us to test whether our methodology is able to faithfully reproduce the underlying PDF.
To test whether our methodology was successful, a number of statistical estimators
are considered that we will discuss next. For a detailed motivation of these estimators
we refer the reader to section 6 of Ref. [6]. As underlying truth we use one non-central
replica from a feature scaling fit.
A first statistical estimator to consider is the A,-

Ayz = P[] = P[], (3.5)

where x2[f(¢?)] is the loss evaluated for the expectation value of the fitted model
predictions, while x2[f (“l)} is the loss evaluated for the predictions of the PDF used as
underlying law. The latter loss does not vanish, because the pseudodata includes
a Gaussian random noise on top of the central value predictions made using the
underlying law. As such, A,2 can be understood as an indicator for overfitting
or underfitting: if A,» > 0, that indicates underfitting, while A,> < 0 indicates
overfitting. For the feature scaling methodology, the average A,2 as evaluated over
observables corresponding to the full NNPDF4.0 dataset is A 2 = —0.002 (compared
to Ay2 = —0.009 for NNPDF4.0), which is at the per mille level indicating a negligible
amount of overfitting. The A,» estimator has some shortcomings as will be discussed
in Sect. 3.2.2. It is included here to provide a validation using the all the metrics that
have been used for the NNPDF4.0 determination.

Let us estimate the faithfulness of the PDF uncertainty at the level of observables.
For this we use the bias over variance ratio as defined in Eq. (6.15) of Ref. [6]. Here bias
can be understood as a measure of the fluctuations of the observable values with respect
to the central value prediction of the fitted PDF, while variance can be understood as
the fluctuations of the fitted PDF with respect to its central value prediction. Thus
if the methodology has faithfully reproduced the uncertainties in the underlying data
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(bias), this uncertainty should be equal to the uncertainty in the predictions of the
PDFs (variance), and hence the bias to variance ratio Ry, is expected to be one. To
test this, the value of R}, is determined for out-of-sample data. Specifically, we fit the
PDFs to the NNPDF3.1-like dataset as defined in Ref. [6], and then evaluate the value
of Ry, for the data that is part of the NNPDF4.0 dataset but has not already been
included in the NNPDF3.1-like dataset. This allows us to test how well the predication
made using a PDF fitted with a given methodology generalizes to unseen data. The
value of the bias to variance ratio found for the new, feature scaling, methodology
is Rpy, = 1.03 + 0.04 (compared to Ry, = 1.03 £ 0.05 for NNPDF4.0), where again
the uncertainty corresponds to a 1o bootstrap error, meaning the agreement to the
expected value of Ry, = 1 is at the 1o level.

To estimate the faithfulness of the PDF uncertainty at the level of the PDF we
calculate a quantile estimator in PDF space §1p ) This quantity corresponds to the
number of fits for which the 1o uncertainty band covers the PDF used as underlying
law. This is determined for fits performed to pseudodata covering the full NNPDF4.0
dataset. The result is f%gdf) = 0.70 £ 0.02 (compared to £§§df) = 0.71 £ 0.02
for NNPDF4.0), where the uncertainty is a lo uncertainty determined through

bootstrapping [168,169]. Thus the observed §(p 4 Value is in agreement with the
expected value of 0.68 within 1o.

An analogous estimator can be calculated for the theory predictions in data space
as opposed to PDF space, providing a generalization to quantile statics of the bias of
variance ratio Ry,. Similar to the bias over variance ratio, also for this estimator the
values are calculated on out-of-sample data, where the PDFs have been determined
using NNPDF3.1-like data. The expected value of this quantile estimator depends on
the bias over variance ratio is erf( Ry, /v/2) = 0.6740.02 (compared to erf( Ry, /v/2) =

0.6740.03 for NNPDF4.0), which is in agreement with the calculated value of &;,, (exp) _

0.69 & 0.02 (and £\°"”) = 0.68 + 0.02 for NNPDF4.0).

The validation tests carried out show that the feature scaling methodology produces
faithful results. This way the feature scaling methodology achieves two important
objectives. First, it validates the NNPDF4.0 determination by removing two possible
sources of bias or inefficiencies without a significant change of the results. Second,
it simplifies the PDF parametrization by automatizing steps that until now required
human intervention and it removes a source of statistical fluctuations that interferes
with the hyperoptimization routing. As such it provides a vital step towards the
improvement of the hyperparameter selection protocol which we further develop in
the next pages.

3.2 Improved hyperparameter selection

The k-folds hyperoptimization as described in Sect. 2.1.4 aims to obtain the best
methodology, this being the one that provides the most accurate generalization of
the data. While the automated hyperoptimization provides a useful tool to aid in
the selection of the model hyperparameters, improvements can be made along two
main trajectories to be discussed below, both of which improve the efficiency of the
methodology by reducing the need for human interaction. Similar to the feature scaling
proposed in the previous section, here we will propose directions for improvement
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that allow to automate a human interaction, and show that the result confirms the
faithfulness of NNPDF4.0.

The first improvement we will propose is based on the observation that for the
problem of PDF determination not all datasets are equal: different datasets may
constrain different kinematic ranges and correspond to different processes. As such,
the choice of the folds can have a non-negligible impact on the hyperoptimization
procedure. For instance, if we use two folds, one with only high-x data and another
with only low-z data, the k-folding would be useless, since the extrapolation values
will be, for all intents and purposes, random. It is then important to curate the
folds in a way that ensures they are representative of the whole range of the problem.
In NNPDF4.0 (see Table 3.2 of Ref [6]) the fold selection was a completely manual
process aided by a very extensive appraisal of the individual datasets considered for
the NNPDF4.0 release. This careful curation of the folds would, in principle, have to
be repeated each time a change is made to the target dataset. In practice though, this
does not have to be redone upon small changes to the dataset since there is a certain
redundancy on the kinematic coverage of the data. Nevertheless, even the decision
not to redo the selection is one that needs to be taken with care.

The second improvement we will propose relies on the observation that it is possible
that the hyperparameter setup corresponding to the lowest hyperoptimization loss
Eq. (2.13) results in overlearning. This is a consequence of the simplified nature of the
fits that are performed during optimization as well as random samplings that affect
the performance of the individual fits. One such random sampling that affected the
model choice during hyperoptimization as performed for the NNPDF4.0 determination
is the sampling of the preprocessing exponents for which we proposed a solution in
Sect. 3.1. Other fluctuations include those due to the randomized initialization of
the neural network and optimization algorithm. After deciding on a hyperparameter
configuration it is necessary to validate the chosen methodology by performing future
tests and closure tests. However, in particular closure testing requires a lot of
computational resources and is therefore not feasible to perform for more than a select
few configurations. Furthermore, while the closure test provides a method of testing
the faithfulness of the PDF uncertainty, it lacks an adequate measure for the detection
of inefficiencies due to overfitting. As a result, the fit corresponding to the antistrange
and gluon PDFs presented in Fig. 2.11 passed a closure test, though visual inspection
suggests that the clear wiggles present in the PDF replicas are unlikely to correspond
to features of the underlying PDF of nature.

One may, and arguably should, wonder whether the features shown in Fig. 2.11 do
truly correspond to overfitting. In Sect. 3.2.2 below, we will therefore define a measure
for the degree of overfitting, and using this measure we will show that those features
indeed correspond to overfitting.

3.2.1 Automated fold selection for hyperoptimization

The assessment of data is a very time-consuming task and, for the purposes of
hyperparameter configuration, the only information we are interested in is which
regions of the (flavour, x) space of the PDFs depend on a given dataset. Since we have
an extensive corpus of data, small inefficiencies in the dataset selection lead to similarly
sma