Evidence for intrinsic charm quarks in the proton

Tommaso Giani

Based on Nature 608 (2022) 7923, 483-487

Richard D. Ball , Alessandro Candido , Juna Cruz Martininez, Stefano Forte, Tommaso Giani , Felix Hekhorn, Kirill Kudashkin, Giacomo Magni and Juan Rojo

Cracow EPIPHANY Conference

Tuesday, January 17

PHYSICS LETTERS

30 June 1980

THE INTRINSIC CHARM OF THE PROTON

S.J. BRODSKY¹

Stanford Linear Accelerator Center, Stanford, California 94305, USA

and

P. HOYER, C. PETERSON and N. SAKAI² NORDITA, Copenhagen, Denmark

Received 22 April 1980

Recent data give unexpectedly large cross-sections for charmed particle production at high x_F in hadron collisions. This may imply that the proton has a non-negligible uudcc Fock component. The interesting consequences of such a hypothesis are explored.

nature

Explore content v About the journal v Publish with us v

nature > articles > article

Article Open Access Published: 17 August 2022

Evidence for intrinsic charm quarks in the proton

The NNPDF Collaboration

Nature 608, 483-487 (2022) Cite this article 36k Accesses 2 Citations 349 Altmetric Metrics

Extraction of intrinsic c

Introduction: the treatment of the charm PDF

PDFs

$$F\left(x,Q^{2}\right) = \sum_{i} f_{i}\left(\mu^{2}\right) \otimes \hat{F}_{i}\left(\frac{Q^{2}}{\mu^{2}},\alpha_{s}\right) + \mathcal{O}\left(\frac{\Lambda_{QCD}^{2}}{Q^{2}}\right)$$

 $\rightarrow \frac{f_i(x,\mu^2)}{and}$ are universal: can be extracted from a set of data for some processes and used to make predictions for others

Heavy quarks PDFs

 $N_f = 4$ scheme (massless scheme)

- $Q >> m_c$
- \bullet computation of \hat{F} does not retain mass effects
- collinear $\log \frac{Q^2}{m_c^2}$ are factored in charm PDF $\rightarrow f_c^{n_f+1}(x,\mu)$
- 4 active flavors in β function and DGLAP

 $N_f = 3$ scheme (massive scheme)

• $Q \sim m_c$

- computation of \hat{F} retains mass effects, and explicit not resummed $\log \frac{Q^2}{m^2}$
- charm decouples: renormalization-group independent charm PDF $\rightarrow f_c^{n_f}(x)$ [Collins, Wilczek and Zee, Phys.Rev. D18,242, 1978]
- 3 active flavors in β function and DGLAP

$$\begin{aligned} 4\mathsf{FS} : \quad f_q^{n_f+1}\left(x,Q^2\right) \,, \quad q = \{u,d,s,c,\bar{u},\bar{d},\bar{s},\bar{c}\} \\ 3\mathsf{FS} : \quad f_q^{n_f}\left(x,Q^2\right) \,, \ f_h^{n_f}\left(x\right) \quad q = \{u,d,s,\bar{u},\bar{d},\bar{s}\} \quad h = \{c,\bar{c}\} \end{aligned}$$

Relation between the PDFs and α_s in the two schemes is given by

$$\begin{pmatrix} f_q \\ f_c \end{pmatrix}^{n_f+1} (\mu_h^2) = \begin{pmatrix} A_{qq} & A_{qc} \\ A_{cq} & A_{cc} \end{pmatrix} \begin{pmatrix} f_q \\ f_c \end{pmatrix}^{n_f} (\mu_h^2)$$

- Operator Matrix Elements (OME) A_{ij} known up to N^3LO
- OME depend on $\alpha_{s}\left(\mu_{h}
 ight)$ and $\lograc{\mu_{h}}{m_{c}}$

Perturbative charm

Charm in ${\cal N}_f=4$ generated purely by perturbative matching

$$f_{c}^{n_{f}}(x) = 0 \quad \rightarrow \quad f_{c}^{n_{f}+1}(x, m_{c}^{2}) = \sum_{i=q,g} A_{ci} f_{i}^{n_{f}}(x, m_{c}^{2}) = \mathcal{O}(\alpha_{s}^{2})$$

$$f_c^{n_f+1}\left(x,Q^2\right) \propto \alpha_s \log \frac{Q^2}{m_c^2} \left(P_{qg} \otimes f_g^{\left(n_f+1\right)}\right) + \mathcal{O}\left(\alpha_s^2\right)$$

• once the light flavors are determined, charm is fixed by matching and evolution

Fitted charm

Non vanishing $N_f = 3$ charm PDF is allowed

$$f_c^{n_f}(x) \neq 0 \quad \to \quad f_c^{n_f+1}(x, m_c^2) = \sum_{i=q,g} A_{ci} f_i^{n_f}(x, m_c^2) + A_{cc} f_c^{n_f}(x)$$

• 4FS charm is not fixed by the light flavors PDF

• we can fit charm PDF from data as any other quark

Can we provide a determination of $f_c^{n_f}(x)$? intrinsic charm $\iff f_c^{n_f}(x) \neq 0$ The NNPDF4.0 determination of PDFs

Methodology

- \rightarrow PDFs are parameterized in $N_f = 4$, at $Q_0 = 1.65$ GeV
- ightarrow PDFs parameterized using a neural network and a preprocessing polynomial factor

- ightarrow split of data in training validation sets $ightarrow \chi^2_{tr}\,,\,\,\chi^2_{val}$
- ightarrow minimization performed on χ^2_{tr} , stopping controlled by χ^2_{val}

- $\rightarrow\,$ new processes included for the first time: single top, W+jet, isolated photon, di-jets
- $\rightarrow~$ extensive use of 13 TeV dataset
- $\rightarrow\,$ total of $\mathcal{O}\left(4000\right)$ datapoints

Data set		NNPDF4.0	NNPDF3.1	ABMP16	CT18	MSHT20	-
ATLAS W, Z 7 TeV (2010)		1	1	1	1	1	_
ATLAS W, Z 7 TeV (2011)		1	1	×	1	1	
ATLAS low-mass DY 7 TeV		1	1	×	×	×	Data set
ATLAS high-mass DY 7 TeV		1	1	×	×	1	
ATLAS W 8 TeV		1	×	×	×	1	CMS W electron
ATLAS DY 2D 8 TeV		1	×	×	×	1	CMS W muon a
ATLAS high-mass DY 2D 8 7	leV.	1	×	×	×	1	CMS Drell-Yan
ATLAS $\sigma_{W,Z}$ 13 TeV		1	×	1	×	×	CMS W rapidity
ATLAS W ⁺ +jet 8 TeV		1	×	×	×	1	CMS $Z p_T$ 8 Te
ATLAS Z pT 8 TeV		1	1	×	1	1	CMS $W + c$ 7 T
ATLAS σ_{tot}^{tot} 7, 8 TeV		1	1	1	×	×	CMS $W + c 13$
ATLAS σ_{th}^{tot} 13 TeV		1	1	1	×	×	CMS single-inch
ATLAS tt lepton+jets 8 TeV		1	1	×	1	1	CMS single-inch
ATLAS t dilepton 8 TeV		1	×	×	×	1	CMS dijets 7 Te
ATLAS single-inclusive jets 7 TeV, R=0.6		×	1	×	1	1	CMS single-inch
ATLAS single-inclusive jets 8 TeV, R=0.6		1	×	×	×	×	CMS 3D dijets
ATLAS dijets 7 TeV, R=0.6		1	×	×	×	×	CMS σ_{tt}^{tot} 5 TeV
ATLAS direct photon production 13 TeV		1	×	×	×	×	CMS σ_{tt}^{tot} 7, 8 T
ATLAS single top R _ℓ 7, 8, 13 TeV		1	×	1	×	×	CMS σ_{tt}^{tot} 13 Te
ATLAS single top diff. 7, 8 TeV		1	×	×	×	×	CMS $t\bar{t}$ lepton+
ATLAS single top diff. 8 TeV		1	×	×	×	×	CMS $t\bar{t}$ 2D dile
						_	CMS $t\bar{t}$ lepton+
Data set	NNPDF4.0	NNPDF3	.1 ABMP1	5 CT18	MSHT2	90	CMS $t\bar{t}$ dilepton
LHCb Z 940 pb	1	1	×	×	1		CMS single top
LHCh Z A and D R		· · ·			· · ·		CMS single top
LHC0 Z → ee 2 10	- 1	- 1. I	- Č.	- Č.	- Č.		
LINCO $w, z \rightarrow \mu$ 7 TeV		- 1 - I	- 1 - I		- 1		
LHCb $W, Z \rightarrow \mu$ 8 TeV	1	1	1	1	1		
LHCb $Z \rightarrow \mu\mu$, ee 13 TeV \checkmark		×	×	×	×		

	x	Data set	NNPDF4.0	NNPDF3.1	ABMP16	CT18	MSHT2
	1	CMS W electron asymmetry 7 TeV	1	1	×	1	1
	1	CMS W muon asymmetry 7 TeV	1	1	1	1	×
	1	CMS Drell-Yan 2D 7 TeV	1	1	×	×	1
	Č.,	CMS W rapidity 8 TeV	1	1	1	1	1
	<u>,</u>	CMS $Z p_T$ 8 TeV	1	1	×	1	×
	· .	CMS $W + c$ 7 TeV	1	1	×	×	1
		CMS $W + c$ 13 TeV	1	×	×	×	×
	2	CMS single-inclusive jets 2.76 TeV	×	1	×	×	1
	2	CMS single-inclusive jets 7 TeV	×	1	×	1	1
	1	CMS dijets 7 TeV	1	×	×	×	×
	1	CMS single-inclusive jets 8 TeV	×	×	×	1	1
	x	CMS 3D dijets 8 TeV	1	×	×	×	×
	×	CMS σ_{tt}^{tot} 5 TeV	1	×	1	×	×
	x	CMS σ_{tr}^{tot} 7, 8 TeV	1	1	1	×	1
	×	CMS σ_{tt}^{tot} 13 TeV	1	1	1	×	×
	×	CMS $t\bar{t}$ lepton+jets 8 TeV	1	1	×	×	1
	×	CMS $t\bar{t}$ 2D dilepton 8 TeV	1	×	×	1	1
		CMS $t\bar{t}$ lepton+jet 13 TeV	1	×	×	×	×
20		CMS $t\bar{t}$ dilepton 13 TeV	1	×	×	×	×
		CMS single top $\sigma_t + \sigma_{\bar{t}}$ 7 TeV	1	×	1	×	×
		CMS single top R_t 8, 13 TeV	1	×	1	×	×

- $\rightarrow\,$ Python object oriented codebase
- \rightarrow Freedom to use external libraries (default: TensorFlow)
- $\rightarrow\,$ Documentation and tutorials provided
- ightarrow Results for a replica available in less than an hour ($\sim 40 \mathrm{mins}$ on 1 CPU)
- \rightarrow Code fully public

Tests passing DOI 10.5281/zenodo.5362229

NNPDF: An open-source machine learning framework for global analyses of parton distributions

The NNPDF collaboration determines the structure of the proton using Machine Learning methods. This is the main repository of the fitting and analysis frameworks. In particular it contains all the necessary tools to reproduce the NNPDF-4.0 PDF determinations. Extraction of intrinsic c

 $\tilde{\boldsymbol{f}}^{n_f+1}\left(Q_1^2\right) = \tilde{\boldsymbol{E}}^{\left(n_f+1\right)}\left(Q_1^2 \leftarrow \mu_h\right)\tilde{\boldsymbol{A}}^{n_f}\left(\mu_h^2\right)\tilde{\boldsymbol{E}}^{\left(n_f\right)}\left(\mu_h \leftarrow Q_0^2\right)\tilde{\boldsymbol{f}}^{n_f}\left(Q_0^2\right)$

EKO is a Python module to solve the DGLAP equations in N-space in terms of Evolution Kernel Operators in xspace.

[Candido, Hekhorn and Magni, Eur.Phys.J.C 82 (2022)]

- $\rightarrow\,$ implementation of DGLAP solutions at LO, NLO, NNLO
- $\rightarrow\,$ various solution methods implemented
- $\rightarrow\,$ implementation of matching in Mellin space
- $\rightarrow\,$ inverse Matching implemented both exactly and expanding and α_s

Intrinsic charm

$$f_{i}^{n_{f}+1}\left(x,\mu=1.65\,{\rm GeV}\right) \ \to \ f_{i}^{n_{f}+1}\left(x,\mu=1.51\,{\rm GeV}\right) \ \to \ f_{c}^{n_{f}}\left(x\right)$$

- $\rightarrow\,$ valence like peak in the region 0.3 < x < 0.6
- $\rightarrow\,$ in the region 0.3 < x < 0.6 PDF uncertainty is the dominant one
- $\rightarrow\,$ large perturbative uncertainties for x < 0.2

Momentum fraction

$$[c] = \int_0^1 dx \, x c^+ \, (x, Q)$$

Scheme	Q	Charm PDF	m_c	[c] (%)	
3FNS	-	default	1.51 GeV	$0.62\pm0.28_{\rm pdf}\pm0.54_{\rm mhou}$	
4FNS	1.65 GeV	default	1.51 GeV	$0.87\pm0.23_{\rm pdf}$	
4FNS	1.65 GeV	perturbative	1.51 GeV	$0.346 \pm 0.005_{\rm pdf} \pm 0.44_{\rm mhou}$	

- \rightarrow momentum fraction of 4FNS PDF different from 0 at 3σ level (PDF uncertainty only)
- ightarrow big MHO uncertainty on IC momentum fraction (due to region x < 0.2)
- $\rightarrow\,$ not possible to tell whether 4FS momentum fraction is of perturbative or intrinsic origin

Dataset dependence

Comparison with models

BHPS model: [Phy. Letter B (1980) 451-455]

$$xc^{+} = rac{1}{2}Nx^{3}\left[rac{1}{3}\left(1-x
ight)\left(1+10x+x^{2}
ight)+2x\left(1+x^{2}
ight)\ln x
ight]$$

Meson Baryon model: [arxiv:1311.1578]

$$xc^{+} = \frac{N}{B(\alpha + 2, \beta + 1)}x^{1+\alpha}(1-x)^{\beta}$$

Phenomenology: Z+c @ LHCb

Z+c measurements from LHCb

Measurement of Z bosons produced in association with charm in the forward region [Phys.Rev.Lett. 128 (2022)]

ightarrow The most forward rapidity bin is sensitive to charm PDF in the region of the valence peak

Theory prediction for R_j^c computed using POWHEG @ NLO + PS, using both perturbative and default (fitted) charm

Z bosons	$p_{\rm T}(\mu) > 20 \text{GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120 \text{GeV}$
Jets	$20 < p_T(j) < 100 \text{ GeV}, 2.2 < \eta(j) < 4.2$
Charm jets	$p_T(c \text{ hadron}) > 5 \text{ GeV}, \Delta R(j, c \text{ hadron}) < 0.5$
Events	$\Delta R(\mu, j) > 0.5$

 \rightarrow theory prediction based on perturbative charm in disagreement with LHCb data \rightarrow better agreement found using NNPDF4.0 baseline (fitted charm)

- \rightarrow inclusion of LHCb (by bayesian RW) and EMC data gives compatible results with moderate reduction of PDF error
- \rightarrow local significance for IC at 2.5σ in 0.3 < x < 0.6, getting to 3σ when including LHCb and EMC data

Summary

• starting point: NNPDF4.0 charm PDF, fitted in the 4FS

- determination of charm PDF in the 3FNS
 - $\rightarrow\,$ local evidence for non-vanishing valence peak
 - $\rightarrow\,$ large uncertainties at small x
- future data
 - $\rightarrow\,$ HL-LHC data
 - ightarrow EIC data for F_c^2
- to do:
 - $ightarrow \, c ar{c}$ asymmetry

Hyperoptimization

Parameter	NNPDF4.0
Architecture Activation function Initializer Optimizer Clipnorm Learning rate	2.25-20-8 hyperbolic tangent glorot.normal Nadam 6.0×10^{-6} 2.6×10^{-3}
$\begin{array}{l} \text{Maximum $\#$ epochs} \\ \text{Stopping patience} \\ \text{Initial positivity Λ}(\text{pos}) \\ \text{Initial integrability Λ}(\text{int}) \end{array}$	17 × 10 ³ 10% of max epochs 185 10

Selecting manually the best set of parameters is a slow process and systematic success is not guaranteed

 \checkmark Hyperparameter scan: let the computer decide automatically

- Define a methodology (a specific hyperparameter combination)
- · Define a reward function to grade the methodology
- . Scan over thousands of hyperparameter combinations and select the best one

Evolution equations

$$\mu_F^2 \frac{d\boldsymbol{f}}{d\mu_F^2} \left(x, \mu_F^2 \right) = \boldsymbol{P} \left(\alpha_s \left(\mu_R^2 \right), \mu_F^2 \right) \otimes \boldsymbol{f} \left(\mu_F^2 \right) \,,$$

can be written in Mellin space as

$$\frac{d\tilde{\boldsymbol{f}}}{d\alpha_{s}}\left(\boldsymbol{N},\alpha_{s}\right)=-\frac{\gamma\left(\boldsymbol{N},\alpha_{s}\right)}{\beta\left(\alpha_{s}\right)}\tilde{\boldsymbol{f}}\left(\boldsymbol{N},\alpha_{s}\right)\,,$$

and solved as

$$\tilde{\boldsymbol{f}}\left(N,\alpha_{s}\right) = \tilde{\boldsymbol{E}}\left(\alpha_{s} \leftarrow \alpha_{s}^{0}\right)\tilde{\boldsymbol{f}}\left(N,\alpha_{s}^{0}\right), \quad \tilde{\boldsymbol{E}}\left(\alpha_{s} \leftarrow \alpha_{s}^{0}\right) = \mathcal{P}\exp\left[-\int_{\alpha_{s}^{0}}^{\alpha_{s}}\frac{\gamma\left(\alpha_{s}'\right)}{\beta\left(\alpha_{s}'\right)}\,d\alpha_{s}'\right]$$

In x-space

$$\boldsymbol{f}(x,\mu) = \boldsymbol{E}\left(\mu \leftarrow \mu_0\right) \otimes \boldsymbol{f}(x,\mu_0) \ .$$

Matching

When we cross the threshold for heavy quark production we have to apply the matching

$$\tilde{\boldsymbol{f}}^{n_f+1}\left(Q_1^2\right) = \tilde{\boldsymbol{E}}^{\left(n_f+1\right)}\left(Q_1^2 \leftarrow \mu_h\right)\tilde{\boldsymbol{A}}^{n_f}\left(\mu_h^2\right)\tilde{\boldsymbol{E}}^{\left(n_f\right)}\left(\mu_h \leftarrow Q_0^2\right)\tilde{\boldsymbol{f}}^{n_f}\left(Q_0^2\right)$$

$$\begin{pmatrix} \tilde{V} \\ \tilde{h}_{-} \end{pmatrix}^{n_{f}+1} (\mu_{h}^{2}) = \tilde{A}_{NS,h_{-}}^{n_{f}} (\mu_{h}^{2}) \begin{pmatrix} \tilde{V} \\ \tilde{h}_{-} \end{pmatrix}^{n_{f}} (\mu_{h}^{2})$$
$$\begin{pmatrix} \tilde{g} \\ \tilde{\Sigma} \\ \tilde{h}_{+} \end{pmatrix}^{n_{f}+1} (\mu_{h}^{2}) = \tilde{A}_{S,h_{+}}^{n_{f}} (\mu_{h}^{2}) \begin{pmatrix} \tilde{g} \\ \tilde{\Sigma} \\ \tilde{h}_{+} \end{pmatrix}^{n_{f}} (\mu_{h}^{2})$$

OME depend on $\alpha_s^{n_f+1}\left(\mu_h^2\right)$ and $\log\left(\mu_h^2/m_h^2\right)$

Matching: more in details

OME are available up to N3LO with only NLO for heavy quark entries

$$\bar{\boldsymbol{A}}^{n_{f}}\left(\mu_{h}^{2}\right) = \boldsymbol{I} + \alpha_{s}\left(\mu_{h}^{2}\right)\bar{\boldsymbol{A}}^{n_{f},(1)} + \alpha_{s}^{2}\left(\mu_{h}^{2}\right)\bar{\boldsymbol{A}}^{n_{f},(2)} + \alpha_{s}^{3}\left(\mu_{h}^{2}\right)\bar{\boldsymbol{A}}^{n_{f},(3)} + \dots$$

$$\mathbf{A}_{S,h_{+}}^{nf_{+}(1)} = \begin{pmatrix} A_{gg}^{S,(1)} & 0 & A_{gH}^{S,(1)} \\ 0 & 0 & 0 \\ A_{Hg}^{S,(1)} & 0 & A_{HH}^{S,(1)} \end{pmatrix}, \quad \mathbf{A}_{S,h_{+}}^{nf_{+}(2)} = \begin{pmatrix} A_{gg}^{S,(2)} & A_{gg}^{S,(2)} & 0 \\ 0 & A_{gq}^{S} & 0 \\ A_{Hg}^{S,(2)} & A_{Hq}^{S,(2)} & 0 \\ \end{pmatrix}, \quad \mathbf{A}_{S,h_{+}}^{nf_{+}(3)} = \begin{pmatrix} A_{gg}^{S,(2)} & A_{gg}^{S,(2)} & 0 \\ 0 & A_{gq}^{S} & 0 \\ A_{Hg}^{S,(2)} & A_{Hq}^{S,(2)} & 0 \\ \end{pmatrix},$$

$$\bar{\boldsymbol{A}}_{NS,h_}^{n_{f},(1)} = \begin{pmatrix} 0 & 0 \\ 0 & A_{H}^{NS,(1)} H \end{pmatrix} , \quad \bar{\boldsymbol{A}}_{NS,h_}^{n_{f},(2)} = \begin{pmatrix} A_{qq}^{NS,(2)} & 0 \\ 0 & 0 \end{pmatrix} , \quad \bar{\boldsymbol{A}}_{NS,h_}^{n_{f},(3)} = \begin{pmatrix} A_{qq}^{NS,(3)} & 0 \\ 0 & 0 \end{pmatrix}$$

NNLO [Eur.Phys.J.C 1 (1998) 301-320], NLO massive [Phys.Lett.B 754 (2016) 49-58], N³LO [Ablinger, Blumlein et al, 2009-2017]

The inversion can be done either perturbatively or exactly

$$\left(\tilde{\boldsymbol{A}}^{n}f\right)^{-1}\left(\boldsymbol{\mu}_{h}^{2}\right) = \boldsymbol{I} - \alpha_{s}\left(\boldsymbol{\mu}_{h}^{2}\right)\tilde{\boldsymbol{A}}^{n}f^{,(1)} + \alpha_{s}^{2}\left(\boldsymbol{\mu}_{h}^{2}\right)\left(\tilde{\boldsymbol{A}}^{n}f^{,(2)} - \left(\tilde{\boldsymbol{A}}^{n}f^{,(1)}\right)^{2}\right) + \mathcal{O}\left(\alpha_{s}^{3}\right)^{2}$$

Fitted vs perturbative charm

Fitted charm

- $\rightarrow~{\rm agnostic}~{\rm about}~{f_c}^{nf}$
- $\rightarrow\,$ independent of matching conditions: no dependence on perturbative order, $\mu_h,\,m_c$
- ightarrow more realistic PDF error given by the data

Perturbative charm

fix
$$f_c^{n_f} = 0$$

- X c PDF built using matching + evolution: perturbative unstable, strong dependence on $\mu_h,\ m_c$
- X big MHO uncertainty, unrealistic PDF error

Mass dependence

