

Juan Rojo

VU Amsterdam & Theory group, Nikhef

CMS Physics Generator meeting CMS Collaboration meeting Bangkok, 17/12/2019

Outline

Towards NNPDF4.0

The NNPDF timeline

Solution NNPDF2.3: first PDF set with LHC data. LO set used in Monash 2013 Tune of Pythia8. Default (internal) PDF sets in MadGraph_aMC@NLO

NNPDF2.3QED: model-independent determination of the photon PDF

- Solution NNPDF3.0: large amounts of LHC data, methodological improvements closure-tested.
 Baseline PDF set in CMS MC event generation.
- NNPDF3.1: most LHC Run I data included (several new processes: ttbar differential, high-mass Drell-Yan, Z pT spectra, ...). NNLO fit markedly superior than NLO one

NNPDF3.1QED: LuxQED prescription for photon PDF

NNPDF3.1smallx: BFKL-improved PDFs for small-x physics (HERA, forward physics)

NNPDF3.1TH: first set of parton distributions with theory (MHO) uncertainties

NNPDF4.0: work on progress, expected release in summer 2020

NNPDF4.0: new experimental data

Many new LHC Run I & II data included, e.g. from CMS

- Differential Drell-Yan cross-sections at 13 TeV
- Z and W pT spectra at 8 and 13 TeV New
- ₩+c at 8 and 13 TeV (strangeness)
- Dijet production at 7 and 8 TeV New
- Top-quark pair production at 8 and 13 TeV
- Single-top cross-sections New

Direct photon production

- Revisited the impact of LHC direct photon data into the global PDF fit Campbell, JR, Slade, Williams 18
- Theory based on NNLO QCD and LL electroweak calculations
- Moderate impact on medium-x gluon
- Good **consistency** with other gluonsensitive experiments in NNPDF3.1

	NNPDF3.1	NNPDF3.1+ATLAS γ
Fixed-target lepton DIS	1.207	1.203
Fixed-target neutrino DIS	1.081	1.087
HERA	1.166	1.169
Fixed-target Drell-Yan	1.241	1.242
Collider Drell-Yan	1.356	1.346
Top-quark pair production	1.065	1.049
Inclusive jets	0.939	0.915
$Z p_T$	0.997	0.980
Total dataset	1.148	1.146

Juan Rojo

Dijet production

- Added several new measurements of inclusive jet and dijet production at 7 and 8 TeV, including the CMS 8 TeV 3D dijet distributions, using NNLO QCD theory
- Explore sensitivity to gluon PDF and robustness wrt experimental correlation models

NNPDF3.1 NNLO, Q = 100 GeV

satisfactory description of dijet data within NNLO global PDF fit

13 TeV Run II data currently restricted to low-statistics datasets

Top-quark production

- Added several new measurements of top quark pair production at 8 and 13 TeV, including the CMS 8 TeV 2D dilepton distributions, using NNLO QCD theory
- Also including **single-top t-channel production** (d/u ratio, bottom PDF, mass schemes)

Juan Rojo

NNPDF4.0: methodology improvements

NNPDF3.1

NNPDF4.0

Random numbers	main seed, closure filter seed	multi seed
Data management	libnnpdf	same as nnfit
Neural net	fixed architecture, per flavour	single net, flexible architecture
Preprocessing	random fixed	fitted in range
Integration	a posteriori per iteration	buildin in the model
Optimizer	genetic optimizer	gradient descent
Stopping	lookback	patience
Positivity	penalty and threshold	dynamic penalty, PDF must fulfill positi
Postfit	4-sigma chi2 and arclenght	same as nnfit
Fine tuning	manual	semi-automatic
Model selection	closure test	closure test, hyper optimization

NNPDF4.0: methodology improvements

In most Machine Learning applications, the model has several parameters which are typically **adjusted by hand** (trial and error) rather than algorithmically:

Solution Network architecture: number of layers of neurons per layer, activation functions, ...

Choice of minimiser (which of the Gradient Descent variants?)

Learning rate, momentum, memory, size of mini-batches,

Regularisation parameters, stopping, dropout rate, patience, …

one can avoid the need of subjective choice by means of **an hyperoptimisation procedure**, where all model and training/stopping parameters are determined algorithmically

Such hyperoptimisation requires introducing a **reward function** to grade the model. Note that this is different from the **cost function:** the latter is optimised separately model by model (e.g. for each NN architecture) while the former compares between all optimised models

e.g. cost function
$$C = E_{\rm tr}$$
 $R = E_{\rm val}$ reward function

Juan Rojo

NNPDF4.0: methodology improvements

In a hyperparameter scan one can compare the performance of hundreds or thousands of parameter combinations

eward function

- Some choices are discrete (type of minimiser, # of layers) others are continuous (learning rate)
- One can also visualise which choices are more crucial and which ones less important
- The violin plots are the KDEreconstructed probability distributions for the hyperparameters

Juan Rojo

NNPDF4.0: new theory

- For all datasets considered we use NNLO QCD calculations, supplemented by NLO electroweak corrections (with photon-induced processes) when relevant
- Improved treatment of charged-current DIS scattering with NNLO heavy quark mass corrections (neutrino data, strangeness)
- Missing Higher Order uncertainties (MHOUs) and nuclear uncertainties included systematically in the PDF fits

Juan Rojo

12

Parton Distributions with Theoretical Uncertainties

Based on NNPDF Collaboration: R. Abdul Khalek, R. D. Ball, S. Carrazza, S. Forte, T. Giani, Z. Kassabov, R. L. Pearson, E. R. Nocera, J. Rojo, L. Rottoli, M. Ubiali, C. Voisey, M. Wilson

arXiv:1905.04311 and arXiv:1906.10698 (EPJC)

Juan Rojo

CMS PH-GEN WG, CMS Collaboration Meeting

PDF uncertainties

PDF uncertainties receive contributions from different sources:

QCD uncertainties in PDF fits

Standard global PDF fits are based on fixed-order QCD calculations

$$\sigma = \alpha_s^p \sigma_0 + \alpha_s^{p+1} \sigma_1 + \alpha_s^{p+2} \sigma_2 + \mathcal{O}(\alpha_s^{p+3})$$

The truncation of the perturbative series has associated a theoretical uncertainty: **Missing Higher Order (MHO)** uncertainty

How severe is **ignoring MHOUs** in modern global PDFs fits?

A theoretical covariance matrix

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

$$\chi^{2} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(D_{i} - T_{i} \right) \left(C + S \right)_{ij}^{-1} \left(D_{j} - T_{j} \right)$$
experimental theoretical

assumption: theory errors are Gaussianly distributed around true value

Formally the theory covariance matrix is defined as

$$S_{ij} = \left\langle (\mathcal{T}_i - T_i)(\mathcal{T}_j - T_j) \right\rangle \equiv \left\langle \Delta_i \Delta_j \right\rangle$$

true result actual calculation

How to estimate these **theory systematic shifts**?

A theoretical covariance matrix

Here we use **scale variations** to estimate the MHOUs

note: renormalisation scale variations are only correlated within the same process

Different prescriptions for scale variations possible: Need to validate which ones exhibit the best performance

Point prescriptions

The theory covariance matrix

covariance matrices

Theory Covariance matrix (9 pt)

Rich pattern of **theory-induced correlations**:

Absent if only experimental errors considered

Experimental Covariance Matrix

The theory covariance matrix

correlation matrices

Experimental + Theory Correlation Matrix (9 pt)

Rich pattern of **theory-induced correlations**:

Absent if only experimental errors considered

Experimental Correlation Matrix

Validation

Systematic validation of NLO theory covariance matrix on the `exact' result, the NLO=>NNLO shift, for O(3000) data points of the global PDF fit

Scale variations: good estimate of MHOU for processes of relevance in PDF fits

Juan Rojo

CMS PH-GEN WG, CMS Collaboration Meeting

Impact on PDFs

NLO, C+S(9pt) NNLO, C 10^{-3} 10⁻² 10⁻¹ Х NNPDF3.1 Global, Q = 10 GeV NLO, C NLO, C+S(9pt) NNLO, C 0.8 10⁻³ 10⁻² 10^{-4} . 10⁻⁵ 10⁻¹ Х

NLO, C

Juan Rojo

22

Impact for LHC phenomenology

Depending on process, main consequence of **MHOUs in PDF fit for LHC pheno** is shift in central values, increase in overall PDF uncertainties, or both

Next steps

Extend formalism to NNLO hadronic cross-sections

- Assess role of MHOUs in a global NNLO fit: NNPDF4.0
- Study pheno implications, e.g. Higgs production, strong coupling fits, ...

Juan Rojo

Simultaneous fits of PDFs + BSM physics

Based on S. Carrazza, C. Degrande, S. Iranipour, J. Rojo, M. Ubiali

arXiv:1905.05215 (PRL)

The SM as an Effective Field Theory

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^2} \mathcal{O}_i^{(8)} + \dots$$

The SMEFT is the **low-energy limit** of generic UV-complete theories at high energies

Complete basis at given mass-dimension: systematic parametrisation of BSM effects

Fully renormalizable, full-fledged QFT: can compute higher orders in QCD and EW

Can be matched to any BSM model that reduces to the SM at low energies: exploits the full power of SM ``measurements" for model-independent BSM searches

The SMEFT is not some new model: **it is the SM** once we remove the **theoretical prejudice** of its validity up to arbitrarily large scales

SMEFT & PDF fits

General heavy bSM physics beyond the direct reach of the LHC can be **parametrised in a model-independent** in terms of a **complete** basis of higher-dimensional operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots ,$$

Some operators induce **growth with the partonic centre-of-mass energy**: increased sensitivity in LHC cross-sections in the TeV region

$$\sigma(\boldsymbol{E}) = \sigma_{\rm SM}(\boldsymbol{E}) \times \left(1 + \sum_{i}^{N_{d6}} \omega_{i} \frac{c_{i} m_{\rm SM}^{2}}{\Lambda^{2}} + \sum_{i}^{N_{d6}} \widetilde{\omega}_{i} \frac{c_{i} \boldsymbol{E}^{2}}{\Lambda^{2}} + \mathcal{O}\left(\Lambda^{-4}\right)\right)$$
many BSM/SMEFT studies interpret same data as in PDF fits: should one worry?
enhanced sensitivity from TeV-scale processes: unique feature of LHC

NNPDF3.1

Juan Rojo

CMS PH-GEN WG, CMS Collaboration Meeting

28

Juan Rojo

CMS PH-GEN WG, CMS Collaboration Meeting

Juan Rojo

31

Naive approach

Separate LHC data into input for PDF fits and input for SMEFT studies?

Can we do better?

32

Simultaneous PDF+SMEFT fits

Our goal: constrain **simultaneously** both the PDFs and SMEFT degrees of freedom

Proof of concept: DIS-only fits where SM **augmented** by four *d=6* SMEFT operators

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{q=u,d,s,c} \frac{a_q}{\Lambda^2} \left(\bar{l}_R \gamma^{\mu} l_R \right) \left(\bar{q}_R \gamma_{\mu} q_R \right)$$

which can arise *e.g.* from a **Z' boson** with non-universal couplings to quarks

These SMEFT operators modify the DIS structure functions and thus affect the PDF fit

$$\Delta F_2^{\text{SMEFT}} \supset \frac{x}{12e^4} \left(4a_u e^2 \frac{Q^2}{\Lambda^2} (1 + 4K_Z \sin^4 \theta_W) + 3a_u^2 \frac{Q^4}{\Lambda^4} \right) \left(u + \bar{u} \right)$$

$$\underset{\text{constrain from HERA data!}{\text{from interference with SM}} from squared amplitude$$

Juan Rojo

Impact on the PDFs

For a large region of the allowed parameter space,

SMEFT effects can be partially (but not completely) reabsorbed into the PDFs

NNPDF3.1 DIS-only, Q = 10 GeV

Fingerprinting BSM effects

Tell-tale sign of SMEFT effects: rapid variation with Q (DGLAP evolution slower)

Fingerprinting BSM effects

We can compare bounds on SMEFT degrees of freedom in the joint fit as compared to the usual approach where PDFs are kept fixed

90%CL allowed region

Ultimate goal: simultaneous PDF+SMEFT global analyses

Nuclear NNPDF fits and the impact of LHC data

Based on R. Abdul-Khalek, J. Ethier, J. Rojo

arXiv:1904.00018 (EPJ) + work in progress

Why nuclear PDFs?

- Cold nuclear matter effects modify the PDFs of bound nucleons as compared to the free-proton case
- Fich connection with nuclear calculations: EMC effect, shadowing
- Non-linear gluon interactions enhanced in heavy nuclei: Color Glass Condensate?

nPDFs relevant for the initial state of heavy-ion collisions: benchmarks for Quark-Gluon Plasma characterisation

nPDFs also required for ultra-highenergy astrophysics e.g. neutrino telescopes such as IceCube

Juan Rojo

From protons to heavy nuclei

Nuclear dataset << proton dataset</p>

- Limited info on nuclear gluon and quark sea, few constraints for x < 10⁻²
- Recently: info from p+Pb collisions at the LHC provides novel opportunities to pin down nPDFs

Nuclear NNPDF fits

Parametrize nPDFs with ANNs with *x*, *In(x)*, *A* as input: fully model-independent

$$q_i(x, Q_0, A) = B_i x^{-\alpha_i} (1 - x)^{\beta_i} NN(x, A), \quad i = g, \Sigma, T_8$$

Gluon normalisation (A-dependent) fixed by the **momentum sum rule**

$$B_g(A) = \left(1 - \int_0^1 dx \, x \Sigma(x, Q_0, A)\right) / \int_0^1 dx \, xg(x, Q_0, A)$$

Proton boundary condition implemented as a penalty in the figure of merit

$$\chi^{2} = \sum_{j=1}^{n_{\text{dat}}} \frac{\left(F_{j}^{(\text{exp})} - F_{j}^{(\text{th})}\right)^{2}}{\sigma_{j}^{(\text{exp})2}} + \lambda \sum_{i=g,\Sigma,T_{8}} \sum_{k=1}^{n_{x}} \frac{\left(q_{i}(x_{k}, Q_{0}, A) - q_{i}^{(\text{ref})}(x_{k}, Q_{0}, A = 1)\right)^{2}}{\left(\delta q_{i}^{(\text{ref})}(x_{k}, Q_{0}, A = 1)\right)^{2}}$$

 $q_i^{(\text{ref})}(x_k, Q_0, A = 1)$ Isoscalar **NNPDF3.1** NNLO global fit

Nuclear NNPDF fits

Parametrize nPDFs with ANNs with *x*, *In(x)*, *A* as input: fully model-independent

$$q_i(x, Q_0, A) = B_i x^{-\alpha_i} (1 - x)^{\beta_i} NN(x, A), \quad i = g, \Sigma, T_8$$

Optimisation of NN parameters using ADAM Stochastic Gradient Descent with TensorFlow

- Fitting methodology validated with closure tests
- Flexibility to vary flavour assumptions, proton boundary condition etc

nNNPDF1.0

Fit to fixed-target neutral-current nuclear DIS structure functions

Only the gluon and one quark combination can be extracted from this dataset

$$\Sigma(x, Q_0, A) + \frac{1}{4}T_8(x, Q_0, A)$$

$$T_8 = u^+ + d^+ - 2s^+$$
 $T_3 = u^+ - d^+ = 0$ (isoscalarity)

nNNPDF1.0

- Uncertainties increase for heavier nuclei
- Gluon poorly constrained from FT DIS data: need LHC or collider DIS (EIC) data

Towards nNNPDF2.0

Inclusion of neutrino CC nuclear structure function data and several LHC measurements of hard-probes in proton-lead collisions

- General quark-flavour decomposition: assess flavour dependence of nuclear effects
- Study also role that non-isoscalar effects play
- Phenomenological implications for the LHC heavy ion program

Impact of LHC p+Pb data

CMS PH-GEN WG, CMS Collaboration Meeting

Juan Rojo

Summary and outlook

The accurate determination of the **quark and gluon structure of the proton** is an essential ingredient for **LHC phenomenology** and **beyond**

- Working towards a next major release, NNPDF4.0, with significant improvements from the theoretical, data, and methodological aspects
- MHOUs (theory errors) can now be systematically included within a global PDF analysis
- The robust interpretation of high-energy measurements from the LHC benefits from simultaneous extraction of PDFs and BSM effects, e.g. within the SMEFT framework
- NNPDF methodology used to produce nuclear PDF fits constrained by LHC p+Pb measurements and accounting from the information provided by the proton baseline fits

46