

Higgs Physics and Parton Distributions

Juan Rojo, VU Amsterdam & Nikhef Celebrating a Decade of the Higgs

TIFR, Mumbay, 9th June 2022

One may claim that the proton is a rather ``boring" particle, surely after one century of studying it, we know everything about the proton?

nothing farther from reality: the proton is a beautiful example of the richness of quantum mechanics: what a **proton is** depends on the **resolution with which we examine it**!

long distances / low energies

short distances / high energies

a point particle

 $E \ll 1 \text{ GeV}$

nothing farther from reality: the proton is a beautiful example of the richness of quantum mechanics: what a **proton is** depends on the **resolution with which we examine it**!

long distances / low energies

a point particle

 $E \ll 1 \text{ GeV}$

short distances / high energies

nothing farther from reality: the proton is a beautiful example of the richness of quantum mechanics: what a **proton is** depends on the **resolution with which we examine it**!

nothing farther from reality: the proton is a beautiful example of the richness of quantum mechanics: what a **proton is** depends on the **resolution with which we examine it**!

THE SCIENCES

Proton Spin Mystery Gains a New Clue

Gluons contribute to proton spin

The proton keeps surprising us as an endless source of **fundamental discoveries!**

THE SCIENCES

Proton Spin Mystery Gains a New Clue

Gluons contribute to proton spin

The proton keeps surprising us as an endless source of **fundamental discoveries!**

After 40 years of studying the strong nuclear force, a revelation *qlu*

gluon-dominated

This was the year that analysis of data finally backed up a prediction, **State of matter** made in the mid 1970s, of a surprising emergent behaviour in the strong nuclear force

THE SCIENCES

Proton Spin Mystery Gains a New Clue

Gluons contribute to proton spin

The proton keeps surprising us as an endless source of **fundamental discoveries!**

QUANTUM PHYSICS

Decades-Long Quest Reveals Details of the Proton's Inner Antimatter

 Twenty years ago, physicists set out to investigate a mysterious asymmetry in the proton's interior. Their results, published today, show how antimatter helps stabilize every atom's core.

Antimatter asymmetry in the proton

After 40 years of studying the strong nuclear force, a revelation *gluc*

gluon-dominated

This was the year that analysis of data finally backed up a prediction, **State of matter** made in the mid 1970s, of a surprising emergent behaviour in the strong nuclear force

THE SCIENCES

Proton Spin Mystery Gains a New Clue

Gluons contribute to proton spin

Intrinsic Charm

The proton keeps surprising us as an endless source of **fundamental discoveries!**

QUANTUM PHYSICS

Decades-Long Quest Reveals Details of the Proton's Inner Antimatter

 Twenty years ago, physicists set out to investigate a mysterious asymmetry in the proton's interior. Their results, published today, show how antimatter helps stabilize every atom's core.

Antimatter asymmetry in the proton

After 40 years of studying the strong nuclear force, a revelation *glue*

gluon-dominated

This was the year that analysis of data finally backed up a prediction, **State of matter** made in the mid 1970s, of a surprising emergent behaviour in the strong nuclear force

Address fundamental questions about Quantum Chromodynamics

- spin of mass & spin
- heavy quark & antimatter content
- 3D imaging
- gluon-dominated matter
- nuclear modifications
- Interplay with BSM e.g. via SMEFT PDFs

From colliders to the cosmos

New elementary particles beyond the Standard Model?

Origins and properties of **cosmic neutrinos**?

Nature of Quark-Gluon Plasma in heavy-ion collisions?

Why Nucleon Structure?

Key component of predictions for particle, nuclear, and astro-particle experiments

Address fundamental questions about Quantum Chromodynamics

- ep: fixed target DIS, HERA
- neutrinos: IceCube, KM3NET,

Forward Physics Facility @ LHC

- heavy ions: LHC Pb, LHC O, RHIC
- ep (future): Electron-Ion Collider, LHeC, FCC-eh

- ørigin of mass & spin
- heavy quark & antimatter content
- 🗳 3D imaging
- gluon-dominated matter
- nuclear modifications
- Interplay with BSM e.g. via SMEFT PDFs

Proton energy divided among constituents: **quarks** and **gluons**

What do we need to extract PDFs from data?

 $N_{\text{LHC}}(H) \sim g \otimes g \otimes \widetilde{\sigma}_{ggH}$

Parton Distributions

All-order structure: QCD factorisation theorems

g(x,Q)

Energy of hard-scattering reaction: inverse of resolution length

Probability of finding a gluon inside a proton, carrying a fraction *x* of the proton momentum, when probed with energy *Q*

x: fraction of proton momentum carried by gluon

Dependence on *x* fixed by **non-perturbative QCD dynamics**: extract from experimental data

$$g(x, Q_0, \{a_g\}) = f_g(x, a_g^{(1)}, a_g^{(2)}, \dots)$$

constrain from data

Quark number conservation

Energy conservation: momentum sum rule

$$dx \left(u(x, Q^2) - \bar{u}(x, Q^2) \right) = 2 \qquad \qquad \int_0^1 dx \, x \left(\sum_{i=1}^{n_f} \left[q_i((x, Q^2) + \bar{q}_i(x, Q^2)] + g(x, Q^2) \right] \right) = 1$$

g(x,Q)

Energy of hard-scattering reaction: inverse of resolution length

Probability of finding a gluon inside a proton, carrying a fraction *x* of the proton momentum, when probed with energy *Q*

x: fraction of proton momentum carried by gluon

Dependence on **Q** fixed by perturbative QCD dynamics: computed up to $\mathcal{O}(\alpha_s^4)$

$$\frac{\partial}{\partial \ln Q^2} q_i(x, Q^2) = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z}, \alpha_s(Q^2)\right) q_j(z, Q^2)$$

DGLAP parton evolution equations

A proton structure snapshop

The global QCD analysis paradigm

QCD factorisation theorems: PDF universality

 $\sigma_{lp \to \mu X} = \widetilde{\sigma}_{up \to u} \otimes u(x) \longrightarrow$

Determine PDFs from deepinelastic scattering...

The global QCD analysis paradigm

QCD factorisation theorems: PDF universality

$$\sigma_{lp \to \mu X} = \widetilde{\sigma}_{u\gamma \to u} \otimes u(x) \implies \sigma_{pp \to W} = \widetilde{\sigma}_{u\bar{d} \to W} \otimes u(x) \otimes \bar{d}(x)$$

Determine PDFs from deepinelastic scattering... ... and use them to compute predictions for **proton-proton collisions**

The global QCD analysis paradigm

Marametrise the PDFs at the boundary (*Q* **= 1 GeV**) between perturbative and non-perturbative QCD

$$xg(x, Q_0 = 1 \text{ GeV}, \{a\}) = f_g(x, a_g^{(1)}, a_g^{(2)}, ...)$$

Evaluate predictions for LHC cross-sections using QCD factorisation theorem

$$\sigma_{\text{th}}(M, s, \{a\}) \propto \sum_{ij} \int_{M^2}^{s} d\hat{s} \, \mathcal{L}_{ij}(\hat{s}, s, \{a_i^{(k)}\}, \{a_j^{(k)}\}) \, \widetilde{\sigma}_{ij}(\hat{s}, \alpha_s(M))$$

Extract PDF parameters from data via log-likelihood maximisation

$$\chi^2\left(\{\boldsymbol{a^{(k)}}\}\right) = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} \left(\sigma_{i,\text{th}}(\{\boldsymbol{a^{(k)}}\}) - \sigma_{i,\text{exp}}\right) \left(\text{cov}^{-1}\right)_{ij} \left(\sigma_{j,\text{th}}(\{\boldsymbol{a^{(k)}}\}) - \sigma_{j,\text{exp}}\right)$$

Setimate the associated **uncertainties**

The resulting PDFs are then ready for phenomenological applications in processed involving **proton/nuclear targets and projectiles**

Parton Distributions at the Dawn of Run III

	NNPDF4.0	MSHT20	CT18	ABMP16	
Released	<i>Sept 2021</i> : LHAPDF grids + fitting code	<i>Dec 2020</i> : LHAPDF grids	<i>Dec 2019</i> : LHAPDF grids	<i>Jan 2017</i> : LHAPDF grids	
Parametrisation	Neural networks (hyperoptimised)	Functional form + Chebyshev	Functional form + Bernstein	Functional form	
Error estimate	Monte Carlo (closure + future tested)	Hessian (dynamic tolerance)	Hessian (dynamic tolerance) + Lagrange mult.	Hessian (no tolerance)	
Theory settings	NNLO QCD, GM- VFN (+ NLO electroweak)	NNLO QCD GM-VFN	NNLO QCD GM-VFN	NNLO QCD, FFN	

+ PDF4LHC21 (Combination of CT18, MSHT20, NNPDF3.1), JAM, HERAPDF, ATLASpdf21, ...

The NNPDF4.0 dataset

 $\mathcal{O}(50)$ data sets investigated; $\mathcal{O}(400)$ data points more in NNPDF4.0 than in NNPDF3.1

Dataset comparison for global fits

$N_{\text{data}}(\text{CT18}) \leq N_{\text{data}}(\text{MSHT20}) \leq N_{\text{data}}(\text{NNPDF4.0})$

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20	Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
ATLAS W, Z 7 TeV ($\mathcal{L} = 35 \text{ pb}^{-1}$)	[51]	1	1	1	1	1	CMS W asym. 7 TeV ($\mathcal{L} = 36 \text{ pb}^{-1}$)	[267]	×	×	×	×	1
ATLAS W, Z 7 TeV ($\mathcal{L} = 4.6 \text{ fb}^{-1}$)	[52]	1	1	×	(✔)	1	CMS Z 7 TeV ($\mathcal{L} = 36 \text{ pb}^{-1}$)	[268]	×	×	×	×	1
ATLAS low-mass DY 7 TeV	[53]	1	1	×	(✔)	×	CMS W electron asymmetry 7 ${\rm TeV}$	[55]	 Image: A second s	1	×	1	1
ATLAS high-mass DY 7 TeV	[54]	1	1	×	(✔)	1	CMS W muon asymmetry 7 ${\rm TeV}$	[56]	 Image: A second s	 Image: A second s	1	1	×
ATLAS W 8 TeV	[79]	×	(✔)	×	×	1	CMS Drell-Yan 2D 7 TeV	[57]	 Image: A second s	1	×	(✔)	1
ATLAS DY 2D 8 TeV	[78]	×	1	×	×	1	CMS Drell-Yan 2D 8 TeV	[269]	(✔)	×	×	×	×
ATLAS high-mass DY 2D 8 TeV	[77]	×	1	×	(✔)	1	CMS W rapidity 8 TeV	[58]	 Image: A second s	1	✓	1	1
ATLAS $\sigma_{W,Z}$ 13 TeV	[81]	×	1	1	×	×	CMS $W, Z p_T $ 8 TeV ($\mathcal{L} = 18.4 \text{ fb}^{-1}$)	[270]	×	×	×	(✔)	×
ATLAS W +jet 8 TeV	[93]	×	1	×	×	1	CMS $Z p_T$ 8 TeV	[64]	1	1	×	(✔)	×
ATLAS $Z p_T$ 7 TeV	[259]	(✔)	×	×	(✔)	×	CMS $W + c$ 7 TeV	[76]	✓	1	×	(✔)	1
ATLAS $Z p_T$ 8 TeV	[63]	1	1	×	1	1	$\mathrm{CMS}\ W + c\ 13\ \mathrm{TeV}$	[84]	×	1	×	×	(✔)
ATLAS $W + c$ 7 TeV	[83]	×	1	×	(✔)	×	CMS single-inclusive jets 2.76 TeV	[75]		×	×	×	×
ATLAS σ_{tt}^{tot} 7, 8 TeV	[65]	1	1	1	×	×	CMS single-inclusive jets 7 TeV	[147]		(✔)	×	-	<i>✓</i>
ATLAS σ_{tt}^{tot} 7, 8 TeV	[260-265]	×	×	1	×	×	CMS dijets 7 TeV	[74]	×		×	X	×
ATLAS σ_{tt}^{tot} 13 TeV ($\mathcal{L} = 3.2 \text{ fb}^{-1}$)	[66]	1	×	1	×	×	CMS single-inclusive jets 8 TeV	[87]	×		×	v	v
ATLAS σ_{tt}^{tot} 13 TeV ($\mathcal{L} = 139 \text{ fb}^{-1}$)	[134]	×	1	×	×	×	CMS 3D dijets 8 TeV	[149]	^	(•)	²	Ŷ.	<u>^</u>
ATLAS σ_{tt}^{tot} and Z ratios	[266]	×	×	×	×	(✔)	$CMS = tot 7 + 8 T_{eV}$	[88]	^		<u></u>	Ŷ	<u></u>
ATLAS $t\bar{t}$ lepton+jets 8 TeV	[67]	1	1	×	1	1	$CMS \sigma_{tt}^{tot} \approx T_{eV}$	[140]	×	×	^	Ŷ	^
ATLAS $t\bar{t}$ dilepton 8 TeV	[89]	×	1	×	×	1	$CMS \sigma_{tt}^{tot} 5 7 8 13 \text{ TeV}$	[271] [68-272–280]	Ŷ	Ŷ		Ŷ	×
ATLAS single-inclusive jets 7 TeV, R=0.6	[73]	1	(🗸)	×	1	1	$CMS \sigma_{tt}^{tot} 13 \text{ TeV}$	[60]			•	, s	x
ATLAS single-inclusive jets 8 TeV, R=0.6	[86]	×	1	×	×	×	$CMS t\bar{t}$ lepton+jets 8 TeV	[70]		,	x	x	
ATLAS dijets 7 TeV, R=0.6	[148]	×	1	×	×	×	CMS $t\bar{t}$ 2D dilepton 8 TeV	[90]	×		×	1	1
ATLAS direct photon production 8 TeV	[100]	×	(✔)	×	×	×	CMS $t\bar{t}$ lepton+jet 13 TeV	[91]	×	1	×	×	×
ATLAS direct photon production 13 TeV	[101]	×	1	×	×	×	CMS $t\bar{t}$ dilepton 13 TeV	[92]	×	1	×	×	×
ATLAS single top R_t 7, 8, 13 TeV	[94,96,98]	×	1	1	×	×	CMS single top $\sigma_t + \sigma_{\bar{t}}$ 7 TeV	[95]	×	1	1	×	×
ATLAS single top diff. 7 TeV	[94]	×	1	×	×	×	CMS single top R_t 8, 13 TeV	[97,99]	×	1	1	×	×
ATLAS single top diff. 8 TeV	[96]	×	1	×	×	×	CMS single top 13 TeV	[281, 282]	×	×	×	×	(✔)

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
LHCb Z 7 TeV ($\mathcal{L} = 940 \text{ pb}^{-1}$)	[59]	1	1	×	×	1
LHCb $Z \rightarrow ee \ 8 \ \text{TeV} \ (\mathcal{L} = 2 \ \text{fb}^{-1})$	[<mark>61</mark>]	1	1	1	1	1
LHCb W 7 TeV ($\mathcal{L} = 37 \text{ pb}^{-1}$)	[283]	×	×	×	×	1
LHC b $W,Z \to \mu$ 7 TeV	[<mark>60</mark>]	 Image: A second s	 Image: A second s	1	1	1
LHC b $W,Z \to \mu$ 8 TeV	[<mark>62</mark>]	1	1	1	1	1
LHC b $W \to e$ 8 TeV	[80]	×	(✔)	×	×	×
LHCb $Z \rightarrow \mu\mu, ee \ 13 \text{ TeV}$	[82]	×	1	×	×	×

Comparison between global fits

reasonable agreement with CT18 and MSHT20 (with some exceptions)

Comparison between global fits

Novel experimental constraints

Collider Drell-Yan

Dijet production

Improved theory calculations

Positivity & integrability of PDFs T8 at 1.65 GeV

Lattice QCD constraints

NNPDF4.0: fitting methodology

- Model-independent PDF parametrisation with neural networks as **universal unbiased interpolants**
- Stochastic Gradient Descent via TensorFlow for neural network training
- Automated model hyperparameter optimisation: NN architecture, minimiser, learning rates …
- ☑ Validation with future tests (forecasting new datasets) and closure tests (data based on known PDFs)

NNPDF4.0: fitting methodology

Error estimate based on Monte Carlo replica method (band: standard deviation over the MC replicas)

Parton Distributions and Higgs physics

Higgs production and PDFs

Higgs production and PDFs

Theory uncertainties, including PDFs, could be limiting factor for Higgs analyses at HL-LHC

Improving PDFs makes possible better Higgs measurements and **BSM interpretations** *e.g.* in terms of coupling modifiers or in the **SMEFT framework**

Higgs production and PDFs

Theory uncertainties, including PDFs, could be limiting factor for **Higgs analyses at HL-LHC**

Improving PDFs makes possible better Higgs measurements and **BSM interpretations** *e.g.* in terms of coupling modifiers or in the SMEFT framework

the recent CDF-II M_W anomaly emphasises the key role that precise PDFs and SM calculations have for indirect BSM searches

Comparison between modern PDF fits

compare global PDF fits for inclusive and differential LHC cross-sections

agreement of NNPDF4.0 with CT18 & MSHT20 **at two-sigma level**, differences traced back to large-*x* gluon or quark flavour separation

NLO QCD+EW crosssections with NNLO PDFs

PDF4LHC 21 and Higgs physics

- The PDF4LHC15 combination of global PDF fits (CT14, MMHT14, NNPDF3.0) has been extensively used for Higgs predictions and measurements
- The combination has been recently updated to PDF4LHC21 (now with CT18, MSHT20, NNPDF3.1) leading to consistent predictions with improved precision
- Several MC compressed and Hessian reduced sets released, with the former reproducing non-trivial features of the combined probability distribution

PDF4LHC 21 and Higgs physics

PDF4LHC21 vs PDF4LHC15: consistent predictions with improved precision

Comparison between modern PDF fits

Global fits consistent (but differences in uncertainties), ABMP16 and ATLASpdf21 outliers

Comparison between modern PDF fits

Global fits consistent (but differences in uncertainties), ABMP16 and ATLASpdf21 outliers

Towards N3LO proton structure

Higher-order QCD calculations are crucial for Higgs phenomenology

Fully differential N³LO Higgs in gluon-fusion

$$\widetilde{\sigma}(\alpha_s, \alpha) = \widetilde{\sigma}^{(0)} \left(1 + c_{1,0}\alpha_s + c_{2,0}\alpha_s^2 + c_{3,0}\alpha_s^3 \right)$$
NLO
NNLO
N3LO

- Improved precision & accuracy: enhance physics reach of the same measurement
- Reliable estimate of missing higher-order uncertainties (MHOUs)

For Higgs rapidity distribution in gluon fusion:

- NLO: first sensible estimate of MHOUs
- NNLO: required for O(10%) precision
- N³LO: required for few-percent precision
- Good convergence of perturbative expansion

However, full **N3LO accuracy** requires **N3LO PDFs**, which do not exist yet!

Towards N3LO proton structure

Fully exploiting recent progress in N³LO calculations requires PDFs extracted at the same order

DGLAP
splitting
$$P_{ij}(x, \alpha_s) = \alpha_s P_{ij}^{(0)}(x) + \alpha_s^2 P_{ij}^{(1)}(x) + \alpha_s^3 P_{ij}^{(2)}(x) + \alpha_s^4 P_{ij}^{(3)}(x) + \alpha_s^5 P_{ij}^{(4)}(x)$$
functions \checkmark LO (1973) \checkmark NLO (1982) \checkmark NNLO (2004)N³LON⁴LOpartial resultspartial resultspartial resultspartial results

What do we about about N³LO P_{ij}?
Iow moments of singlet & non-singlet
Iarge-*x* limits (cust anomalous dim)
small-*x* limits (BFKL resummation)
What else for a N³LO PDF fit?
Massless and massive (partially) DIS coefficient functions
Heavy quark matching conditions

✓ N³LO K-factors for LHC observables (subset, e.g. Drell-Yan)

Charm in the proton

The charm content of the proton

common assumption in PDF fits: the static proton wave function does not contain charm quarks: the proton contains **intrinsic up**, **down**, **strange (anti-)quarks** but **no intrinsic charm quarks**

The charm content of the proton

common assumption in PDF fits: the static proton wave function does not contain charm quarks: the proton contains **intrinsic up**, **down**, **strange (anti-)quarks** but **no intrinsic charm quarks**

the charm PDF is generated perturbatively (DGLAP evolution) from radiation off gluons and quarks

If charm is **perturbatively generated**, the charm PDF is ``trivial"

The charm content of the proton

common assumption in PDF fits: the static proton wave function does not contain charm quarks: the proton contains **intrinsic up**, **down**, **strange (anti-)quarks** but **no intrinsic charm quarks**

It does not need to be so! An intrinsic charm component predicted in many models

Recent data give unexpectedly large cross-sections for charmed particle production at high x_F in hadron collisions. This may imply that the proton has a non-negligible uudcc Fock component. The interesting consequences of such a hypothesis are explored.

40 years of extensive searches for intrinsic charm: no unambiguous evidence

Intrinsic charm

The 3FNS charm PDF displays **non-zero component** peaked at large-*x* (3σ local significance) identified with intrinsic charm

in excellent agreement with model predictions

Z+charm @ LHCb

Direct handle on the charm content of the proton

Z+charm at forward rapidities (LHCb) sensitive to the charm PDF up to x=0.5

Z+charm @ LHCb

- A perturbative charm PDF disagrees with the LHCb forward Z+charm data
- LHCb data favour intrinsic charm hypothesis,with IC carrying 0.5% of proton's momentum
- Striking consistency between **direct** (Z+c, F₂^c) **and indirect constraints** on the charm PDF

 $\hat{W}(\times 10^4)$

Towards ultimate PDFs at the HL-LHC

- Emphasis on processes sensitive to the high-p_T region and not already limited by systematics
- Consider different scenarios (conservative & optimistic) for reduction of systematic errors at HL-LHC

Quantify impact of HL-LHC data by means of the Hessian profiling of PDF4LHC15 NNLO

Sector Assume *L= 3 ab*⁻¹ for ATLAS and CMS and *L= 0.3 ab*⁻¹ for LHCb

			0.111	0	
$Z p_T$	$20 \text{GeV} \le p_T^{ll} \le 3.5 \text{TeV}$ $12 \text{GeV} \le m_{ll} \le 150 \text{GeV}$	338	0.5	(0.4, 1)	[52] (8 TeV)
	$ y_{ll} \le 2.4$				
High-mass Drell-Yan	$p_T^{l1(2)} \ge 40(30) \mathrm{GeV}$	32	0.5	(0.4, 1)	[47] (8 TeV)
	$ \eta^l \le 2.5, m_{ll} \ge 116 \mathrm{GeV}$				
Top quark pair	$m_{t\bar{t}} \simeq 5 \text{ TeV}, y_t \le 2.5$	110	0.5	(0.4, 1)	[50] (8 TeV)
W+charm (central)	$p_T^{\mu} \ge 26 \mathrm{GeV}, p_T^c \ge 5 \mathrm{GeV}$	12	0.5	(0.2, 0.5)	[24] (13 TeV)
	$ \eta^{\mu} \leq 2.4$				
W+charm (forward)	$p_T^{\mu} \ge 20 \mathrm{GeV}, p_T^c \ge 20 \mathrm{GeV}$	10	0.5	(0.4, 1)	LHCb projection
	$p_T^{\mu+c} \ge 20 \mathrm{GeV}$				
	$2 \le \eta^{\mu} \le 4.5, 2.2 \le \eta^c \le 4.2$				
Direct photon	$E_T^{\gamma} \lesssim 3$ TeV, $ \eta_{\gamma} \leq 2.5$	118	0.5	(0.2, 0.5)	[55] (13 TeV)
Forward W, Z	$p_T^l \ge 20 \mathrm{GeV}, 2.0 \le \eta^l \le 4.5$	90	0.5	(0.4, 1)	[49] (8 TeV)
	$60\mathrm{GeV} \le m_{ll} \le 120\mathrm{GeV}$				
Inclusive jets	$ y \le 3, R = 0.4$	58	0.5	(0.2, 0.5)	[61] (13 TeV)
Total		768			

Gao et al (18, 19)

Towards ultimate PDFs at the HL-LHC

59

- Dedicated projections for the HL-LHC Yellow Reports highlight plenty of room for PDF improvements from future LHC data
- These projections account only for ``standard" processes for PDF constraints (e.g. DY, top, jets): one could do better by thinking outside the box!
- Crucial to account for theory uncertainties, e.g. MHOUs, when interpreting future LHC measurements

Towards ultimate PDFs at the HL-LHC

Compare the effects of the adding separately LHeC and HL-LHC to PDF4LHC15

Uncertanties in PDF luminosities @ $\sqrt{s}=14$ TeV

Juan Rojo

Can New Physics hide inside the proton?

``How can you be sure you are not reabsorbing BSM physics into your PDFs?"

perhaps most frequent question I am asked in talks!

Assuming the **SM**, the theory calculations that enter a global PDF fit are:

$$\sigma_{\text{LHC}}(\boldsymbol{\theta}) \propto \sum_{ij=u,d,g,\dots} \int_{M^2}^{s} d\hat{s} \, \mathcal{L}_{ij}(\hat{s},s,\boldsymbol{\theta}) \, \widetilde{\sigma}_{\text{SM},ij}(\hat{s},\alpha_s(M))$$
SM PDFs

However in the case of BSM physics, here parametrised by the **SMEFT**, the correct expression is:

How different are ``SM PDFs" & ``SMEFT PDFs"? Can we quantify the risk of **fitting away BSM** in PDFs?

Can New Physics hide inside the proton?

62

Exp.	\sqrt{s} (TeV)	Ref.	$\mathcal{L} \ (\mathrm{fb}^{-1})$	Channel	1D/2D	$n_{\rm dat}$	$m_{\ell\ell}^{\rm max}$ (TeV)
ATLAS	7	[120]	4.9	e^-e^+	1D	13	[1.0, 1.5]
ATLAS (*)	8	[86]	20.3	$\ell^-\ell^+$	2D	46	[0.5, 1.5]
\mathbf{CMS}	7	[121]	9.3	$\mu^-\mu^+$	2D	127	[0.2, 1.5]
CMS (*)	8	[87]	19.7	$\ell^-\ell^+$	1D	41	[1.5, 2.0]
CMS (*)	13	[122]	5.1	$e^-e^+, \mu^-\mu^+$ $\ell^-\ell^+$	1D	$\begin{array}{c} 43,43\\ 43\end{array}$	[1.5, 3.0]
Total						270 (313)	

Extract PDFs from global fit where **highmass DY cross-sections** account for EFT effects in two benchmark scenarios

$$d\sigma_{\mathrm{SMEFT}} = d\sigma_{\mathrm{SM}} \times K_{\mathrm{EFT}}$$

 $K_{\mathrm{EFT}} = 1 + \sum_{n=1}^{n_{\mathrm{op}}} c_n R_{\mathrm{SMEFT}}^{(n)} + \sum_{n,m=1}^{n_{\mathrm{op}}} c_n c_m R_{\mathrm{SMEFT}}^{(n,m)}$

Available data: limited interplay between PDF and EFT fits, best constraints from **searches**

HL-LHC: EFT effects, if present, would be **reabsorbed into PDFs**

Carrazza et al 19, Greljo et al 21

Proton structure the Electron-Ion Collider

Unique facility to study QCD matter and nucleon/nuclear structure

Simultaneous extraction of PDFs, polarised PDFs, nuclear PDFs, and fragmentation functions becomes possible (actually, **required**) at the EIC

Universal QCD fits

Pushing the **precision frontier** of **QCD fits** requires accounting for **cross-talk** between different **non-perturbative QCD** quantities

Towards universal/integrated global analyses of non-perturbative QCD

Universal QCD fits

Pushing the precision frontier of QCD fits requires accounting for cross-talk between different non-perturbative QCD quantities

Polarised PDFs + FFs $x\Delta u^+$ 0.4 0.3 0.2JAM17 0.1JAM15 0 0.6 0.20.4 0.8 0 0.04 $x(\Delta \bar{u} + \Delta \bar{d})$ Accardi et 17 0.02 0 -0.02-0.04DSSV09 10^{-2} 10^{-3} 10^{-10} 0.40.8

Universal QCD fits

ū at 1.651 GeV

- Ongoing work towards the integration of nuclear PDF fits (nNNPDF3.0) into the NNPDF4.0 framework
- Goal: joint extraction of PDFs from A=1 to A=208
- Eventually to be extended to polarised PDFs and to FFs

Nocera, Rabemananjara, Rojo, in progress

The Forward Physics Facility

A proposed new facility in a tailor-made underground cavern hosting a suite of farforward experiments suitable to detect long-lived BSM particles and neutrinos produced at the High-Luminosity LHC (ATLAS interaction point)

No modifications to the HL-LHC operations required!

QCD at the FPF

QCD at the FPF (neutrino production)

QCD at the FPF (neutrino interactions)

- Deep-inelastic CC scattering with TeV neutrinos: validate our understanding of neutrino crosssections (relevant for oscillation experiments)
- Continue succesful program of neutrino DIS
 experiments @ CERN
- Constrain proton & nuclear light (anti-)quark PDFs including strangeness

QCD uncertainties in PDF fits

QCD uncertainties in PDF fits

NNPDF (19)

-1.00

Theory-induced correlations between different experiments *e.g.* DIS and LHC

72
QCD uncertainties in PDF fits

MHOUs on PDFs: increase in total uncertainties + shift in central values

NNPDF3.1 Global, Q = 10 GeV

extension to NNLO in the NNPDF4.0 framework in progress

Summary and outlook

- A precise understanding of the quark and gluon structure of the proton is a central ingredient of the physics program of the LHC
- Progress in PDF determinations leads to precise predictions for Higgs production, which in turn make possible a robust characterisation of the Higgs sector and searching for BSM physics
- PDF analyses in the coming decade will benefit from new experimental measurements at future facilities (HL-LHC, EIC, FPF, ...), higher-order QCD and electroweak calculations, and methodological improvements (including new artificial intelligence techniques)

