Recent results on PDF determinations

LHCP 11 - Belgrade, May 2023

Juan M. Cruz-Martinez

Collinear unpolarized PDFs

 $\mathcal{O} = \sum_{ij} \int dx_1 dx_2 \, f_i(x_1, \mu_F) \, \left(f_j(x_2, \mu_F) \right) \, \hat{\sigma}_{ij}(x_1, (x_2,) \, \mu_R, \mu_F)$

- Crucially important to compare Standard Model predictions to data and for BSM searches.
- Necessary for the extraction of physical parameters such as α_s or the mass of the W.
- A dominant source of uncertainty in precision physics.
- Cannot be computed exactly -> determination limited to fits of well known experimental data.

PDF4LHC21 combination

- PDFs determined from $\mathcal{O}(3500)$ datapoints coming from many different type of processes and kinematics. DIS, Fixed-Target and hadronic collider data.
- Latest community combination and benchmark is **PDF4LHC21** <u>hep-ph/</u> 2203.05506 and includes:
 - NNPDF3.1 (1706.00428)
 - CT18 (1912.10053)
 - MSHT20 (2012.0468)
- NNLO corrections when available
- NNLO DGLAP evolution
- $\alpha_{\rm s}(m_{\rm Z}) = 0.118$
- Update with respect to PDF4LHC15

State of the art

NNPDF4.0, new generation PDF from NNPDF

- 1. Enhanced methodology and tests for reliability of results.
- 2. Fit from $\mathcal{O}(4000)$ datapoints (with $\mathcal{O}(40)$ new datasets, mostly from LHC!)
- 3. Integrability and positivity imposed during the fit

-> hep-ph/2109.02653

Approximated N3LO (in α_s) results by the MSHT group: **MSHT20 aN3LO**

- 1. Exploit available knowledge of N3LO processes and splitting function
- 2. Approximate unknown pieces and estimate uncertainty
- -> hep-ph/2207.04739

Global NNLO PDFs

The last releases of the three biggest collaborations:

- **CT18** [hep-ph] 1912.10053
 - -> perturbative charm, hessian, tolerance
- **MSHT20** [hep-ph] 2012.04684
 - -> perturbative charm, hessian, dynamic tolerance
- NNPDF4.0 [hep-ph] 2109.02653
 - -> fitted (intrinsic) charm, monte carlo

Entering the precision era of Parton Distribution Functions!

region" ends at around x~0.5

aiming for both accuracy & precision

Intrinsically charming

Evidence for intrinsic charm quarks in the proton hep-ph/2208.08372

NNPDF is the only collaboration which fits charm by default, i.e., $c^+ = c + \bar{c} \neq 0$ at the fitting scale which means the contribution is not limited to DGLAP evolution

Open challenges:

- Better grasp of MHOU
- Improved jet algorithms

in order to match data and predictions...

collinear-safe jet algorithms need to be used

Diagrams taken from talks by G. Stagnitto and D. Zuliani

Intrinsically charming

Evidence for intrinsic charm quarks in the proton hep-ph/2208.08372

NNPDF is the only collaboration which fits charm by default, i.e., $c^+ = c + \bar{c} \neq 0$ at the fitting scale which means the contribution is not limited to DGLAP evolution

Open challenges:

- Better grasp of MHOU
- Improved jet algorithms

in order to match data and predictions...

collinear-safe jet algorithms need to be used

See talks on Monday session for more about the theoretical and experimental challenges on this

extrinsic c

Diagrams taken from talks by G. Stagnitto and D. Zuliani

Intrinsically Asymmetrically charming

Beyond the NNLO QCD PDF

The true NNLO PDF

While technically the PDFs are truly NNLO orders (two extra orders in α_s) this come with caveats:

- The evolution from the fitting scale to the process scale is performed exactly at NNLO
- ... but the prediction often relies on the "k-factor approximation"...

i.e., grids exact up to only NLO with the NNLO contribution applied bin-by-bin on the experimental data: integrating out flavour decomposition or x-dependence.

We need NNLO-accurate grids, differential in x, flavour (and hopefully Q)!

see how in hep-ph/2302.12124

Some active efforts to make grids available for the community:

<u>Plougshare</u>

Pineline

Missing Higher Orders

Uncertainties beyond the data

PDF uncertainties are propagate mainly from the data but this is just half of the story, fixedorder prediction also contain uncertainties:

$$\sigma_{NNLO} = \sigma_0 + \alpha_s \sigma_1 + \alpha_s^2 \sigma_2 + \mathcal{O}(\alpha_s^3)$$

A spurious dependence on unphysical scales (renormalization, factorization) is kept. This is exploited to generate a theory uncertainty. Two possible approaches:

- Modifying the covariance matrix 1906.10698
- Monte Carlo sampling of scales 2207.07616

1.04

1.03

1.02 1.01

NNPDF4.0

to

Ratio

0.97

g at 10.0 GeV

N3LO: the next frontier

Open challenges:

- Exact N3LO evolution
- NNLO grids, instead of k-factors
- N3LO grids, instead of k-factors!
- Computationally very complex (diminishing returns on precision gain Vs computational cost)

First approximated results by MSHT collaboration

- Using K-factors for fixed-order predictions
- Splitting functions only partially known, approximated evolution.
- Exploit knowledge about N3LO results to constrain the PDF and fit (with uncertainties) the unknown pieces.

See talks by F. Buccioni and G. Zanderighi for more on recent progresss in N3LO calculations.

N3LO: news from NNPDF

Ongoing work on the implementation of the known bits for the splitting functions at N3LO in

(see EKO documentation and <u>references</u> therein)

Caveats for NNPDF plot:

- DIS only fit (both N3LO and NNLO)
- Includes MHOU at both N3LO and NNLO
- Uncertainties include also incomplete knowledge of the N3LO splitting functions

Conclusions

Enough data available that we can start talking about the precision age of Parton Distribution Functions.

- 1. Uncertainties in the data region can be of order 1%
- 2. Including an estimation of the uncertainties due to Missing Higher Order Uncertainties becomes important.

With great power comes great responsibility:

- 1. A close scrutiny of PDF uncertainties is important: theory, data.
- 2. For that more public codes are necessary from PDF fitters (like <u>NNPDF</u> and <u>xfitter</u>) but also Monte Carlo generators.
- 3. Systematic ways of testing fitting methodologies for flexibility and reliability (e.g., closure tests)

3. N3LO will bring the determination of PDFs to the same level of accuracy of Higher Order Predictions (ingredients missing!)

Thank you!

Backup

Why are grids needed?

$$\mathcal{O} = \sum_{ij} \int dx_1 dx_2 \ f_i(x_1, \mu_F) \ \left(f_j(x_2, \mu_F) \right) \ \hat{\sigma}_{ij}(x_1, (x_1, \mu_F))$$

The evolution on the μ scales is exact (O(α^2)) and the PDF depend then only on the flavour and the momentum fraction:

$$\mathcal{O} = \sum_{ij} \int dx_1 dx_2 f_i(x_1, \mu_F) f_j(x_2, \mu_I)$$

With O(50) points we can get a good representation of most observables, i.e., for each step of the fitting process we just need to contract the PDF with a tensor of only $4500 \times 50 \times 50 \times 14 \times 14 \simeq 10^9$ elements. Easy!

But actually, the convolution of such a big array with the luminosity takes roughly 1 second!

 $d^2 \hat{\sigma}_{ij}$

x-grid $a_F) \hat{\sigma}_{ij}(x_1, x_2, \mu_R, \mu_F) = \int_i^{\alpha} f_j^{\beta} \hat{\sigma}_{\alpha\beta}^{ij}$

flavours

PineAPPL General process, PDF-independent, grid storage

- MSHT20

List of datasets

Data set	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
CMS W asym. 7 TeV ($\mathcal{L} = 36 \text{ pb}^{-1}$)	×	×	×	×	1
CMS Z 7 TeV ($\mathcal{L} = 36 \text{ pb}^{-1}$)	×	×	×	×	1
CMS W electron asymmetry 7 TeV	1	1	×	1	1
CMS W muon asymmetry 7 TeV	 Image: A second s	1	1	1	×
CMS Drell-Yan 2D 7 TeV	1	1	×	(•	1
CMS Drell-Yan 2D 8 ${ m TeV}$	(✔)	×	×	×	×
CMS W rapidity 8 TeV	1	1	1	1	1
CMS $W, Z p_T$ 8 TeV ($\mathcal{L} = 18.4 \text{ fb}^{-1}$)	×	×	×	(🗸)	×
CMS $Z p_T$ 8 TeV	1	1	×	(•	×
CMS $W+c$ 7 TeV	1	1	×	(•	1
CMS $W+c$ 13 TeV	×	1	×	×	(🗸)
CMS single-inclusive jets 2.76 TeV	1	×	×	×	1
CMS single-inclusive jets 7 TeV	1	(✔)	×	1	1
CMS dijets 7 TeV	×	1	×	×	×
CMS single-inclusive jets 8 TeV	×	1	×	1	1
CMS 3D dijets 8 TeV	×	(✔)	×	×	×
CMS $\sigma_{tt}^{\rm tot}$ 5 TeV	×	1	×	×	×
CMS $\sigma_{tt}^{\rm tot}$ 7, 8 TeV	1	1	×	×	×
CMS $\sigma_{tt}^{\rm tot}$ 8 TeV	×	×	×	×	1
CMS $\sigma_{tt}^{\rm tot}$ 5, 7, 8, 13 TeV	×	×	1	×	×
CMS $\sigma_{tt}^{\rm tot}$ 13 TeV	1	1	1	×	×
CMS $t\bar{t}$ lepton+jets 8 TeV	1	1	×	×	1
CMS $t\bar{t}$ 2D dilepton 8 TeV	×	1	×	1	1
CMS $t\bar{t}$ lepton+jet 13 TeV	×	1	×	×	×
CMS $t\bar{t}$ dilepton 13 TeV	×	1	×	×	×
CMS single top $\sigma_t + \sigma_{\bar{t}}$ 7 TeV	×	1	1	×	×
CMS single top R_t 8, 13 TeV	×	1	1	×	×
CMS single top 13 TeV	×	×	×	×	(•

2	0
_	-

Data set	NNPDF3.1	NNPDF4.0	ABMP16	CT18	\mathbf{M}
ATLAS W, Z 7 TeV ($\mathcal{L} = 35 \text{ pb}^{-1}$)	1	1	1	1	
ATLAS W, Z 7 TeV ($\mathcal{L} = 4.6 \text{ fb}^{-1}$)	1	1	×	(✔)	
ATLAS low-mass DY 7 TeV	1	1	×	(✔)	
ATLAS high-mass DY 7 TeV	1	1	×	(✔)	
ATLAS W 8 TeV	×	(✔)	×	×	
ATLAS DY 2D 8 TeV	×	1	×	×	
ATLAS high-mass DY 2D 8 TeV	×	1	×	(✔)	
ATLAS $\sigma_{W,Z}$ 13 TeV	×	1	1	×	
ATLAS W +jet 8 TeV	×	1	×	×	
ATLAS $Z p_T$ 7 TeV	(✔)	×	×	(🗸)	
ATLAS $Z p_T 8$ TeV	1	1	×	1	
ATLAS $W + c$ 7 TeV	×	1	×	(✔)	
ATLAS σ_{tt}^{tot} 7, 8 TeV	1	1	1	×	
ATLAS σ_{tt}^{tot} 7, 8 TeV	×	×	1	×	
ATLAS σ_{tt}^{tot} 13 TeV ($\mathcal{L} = 3.2 \text{ fb}^{-1}$)	1	×	1	×	
ATLAS σ_{tt}^{tot} 13 TeV ($\mathcal{L} = 139 \text{ fb}^{-1}$)	×	1	×	×	
ATLAS σ_{tt}^{tot} and Z ratios	×	×	×	×	
ATLAS $t\bar{t}$ lepton+jets 8 TeV	1	1	×	1	
ATLAS $t\bar{t}$ dilepton 8 TeV	×	1	×	×	
ATLAS single-inclusive jets 7 TeV, $R=0.6$	1	(✔)	×	1	
ATLAS single-inclusive jets 8 TeV, $R=0.6$	×	1	×	×	
ATLAS dijets 7 TeV, $R=0.6$	×	1	×	×	
ATLAS direct photon production 8 TeV	×	(✔)	×	×	
ATLAS direct photon production 13 TeV	×	1	×	×	
ATLAS single top R_t 7, 8, 13 TeV	×	1	1	×	
ATLAS single top diff. 7 TeV	×	1	×	×	
ATLAS single top diff. 8 TeV	×	1	×	×	

Data set	NNPDF3.1	NNPDF4.0	ABMP
CDF Z rapidity	1	1	×
CDF $W \rightarrow \ell \nu$ asymmetry (1.8 TeV)	×	×	×
CDF $W \to e\nu$ asymmetry ($\mathcal{L} = 170 \text{ pb}^{-1}$)	×	×	×
CDF $W \to e\nu$ asymmetry ($\mathcal{L} = 1 \text{ fb}^{-1}$)	×	×	×
CDF k_t inclusive jets	1	×	×
CDF cone-based inclusive jets	×	×	×
D0 Z rapidity	1	1	×
D0 $W \rightarrow e\nu$ asymmetry ($\mathcal{L} = 0.75 \text{ fb}^{-1}$)	×	×	×
D0 $W \rightarrow e\nu \text{ (prod.)}$ asymmetry ($\mathcal{L} = 9.7 \text{ fb}^{-1}$)	×	×	(🗸)
D0 $W \to e\nu$ (prod. and decay) asymmetry $(\mathcal{L}=9.7~{\rm fb^{-1}})$	1	(✔)	1
D0 $W \rightarrow \mu \nu$ asymmetry ($\mathcal{L} = 0.3 \text{ fb}^{-1}$)	×	×	×
D0 $W \rightarrow \mu \nu$ asymmetry ($\mathcal{L} = 7.3 \text{ fb}^{-1}$)	1	1	1
D0 cone-based inclusive jets	×	×	×
CDF and D0 top-pair production	×	×	(🗸)
CDF and D0 single-top production	×	×	1

Data set	NNPDF3.1	NNPDF4.0	ABMP
DY E866 $\sigma_{\rm DY}^d / \sigma_{\rm DY}^p$ (NuSea)	1	1	1
DY E866 $\sigma_{\rm DY}^p$	1	1	×
DY E605 $\sigma_{\rm DY}^p$	1	1	1
DY E906 $\sigma^d_{\rm DY}/\sigma^p_{\rm DY}$ (SeaQuest)	×	1	×
LHCb Z 7 TeV ($\mathcal{L} = 940 \text{ pb}^{-1}$)	1	1	×
LHCb $Z \rightarrow ee \ 8 \ \text{TeV} \ (\mathcal{L} = 2 \ \text{fb}^{-1})$	1	1	1
LHCb W 7 TeV ($\mathcal{L} = 37 \text{ pb}^{-1}$)	×	×	×
LHC b $W,Z\to\mu$ 7 TeV	1	1	1
LHC b $W,Z \to \mu$ 8 TeV	1	1	1
LHC b $W \to e$ 8 TeV	×	(✔)	×
LHC b $Z \to \mu \mu, ee$ 13 TeV	×	1	×

6	CT18	MSHT20
	1	1
	1	×
	1	×
	×	1
	×	1
	1	×
	1	1
	×	1
	×	1
	1	×
	1	×
	×	 Image: A second s
	1	1
	×	1
	×	×
6	X CT18	× MSHT20
6	× CT18	× MSHT20
6	× CT18 ✓	× MSHT20
6	× CT18 ✓	× MSHT20 ✓ ✓ ×
6	× CT18 、 、 、 、	× MSHT20 、 、 、 、
6	× CT18 ✓ ✓ ✓ ×	× MSHT20 × ×
6	× CT18	× MSHT20 ✓ ✓ ×
6	× CT18 ✓ ✓ ✓ ×	× MSHT20 × × ×
6	× CT18 ✓ ✓ ✓ × ✓ ×	× MSHT20 × × ×
6	× CT18 CT18	× MSHT20
6	× CT18 CT18 X X X X X X X X X X X X X X X X X X	× MSHT20 × × × ×
6	× CT18 CT18 X X X X X X X X X X X X X X X X X X	× MSHT20

Data set	NNPDF3.1	NNPDF4.0	ABMP16	CT18	N
NMC F_2^d/F_2^p	1	1	×	×	
NMC $\sigma^{NC,p}$	1	1	×	1	
SLAC F_2^p, F_2^d	1	1	1	×	
BCDMS F_2^p	1	1	1	1	
BCDMS F_2^d	1	1	×	1	
BCDMS, NMC, SLAC F	×	×	×	×	
CHORUS $\sigma^{\nu}_{CC}, \sigma^{\bar{\nu}}_{CC}$	1	1	×	×	
CHORUS	×	×	1	×	
NuTeV F_2, F_3	×	×	×	×	
NuTeV/CCFR $\sigma^{\nu}_{CC}, \sigma^{\bar{\nu}}_{CC}$	1	1	1	1	
EMC F_2^c	(✔)	(✔)	×	×	
NOMAD	×	(✔)	1	×	
CCFR xF_3^p	×	×	×	1	
CCFR F_2^p	×	×	×	1	
CDSHW F_2^p, xF_3^p	×	×	×	1	
E665 F_2^p, F_2^d	×	×	×	×	
HERA NC, CC	×	×	×	×	
HERA I+II $\sigma^p_{\rm NC,CC}$	1	1	1	1	
HERA I+II $\sigma_{c\bar{c}}^{\rm red}$	×	1	×	(✔)	
HERA I+II $\sigma^{\rm red}_{b\bar{b}}$	×	1	×	(🗸)	
HERA I+II $\sigma_{c\bar{c}}^{\rm red}$	1	×	1	1	
H1 $F_2^{c\bar{c}}$	×	×	×	1	
H1 $F_2^{b\bar{b}}$	1	×	1	×	
ZEUS $\sigma^{\rm red}_{b\bar{b}}$	1	×	1	×	
H1 $F_{\rm L}$	×	×	×	1	
H1 and ZEUS $F_{\rm L}$	×	×	×	×	
ZEUS 820 (HQ) (1j)	×	(🗸)	×	×	
ZEUS 920 (HQ) (1j)	×	(✔)	×	×	
H1 (LQ) (1j-2j)	×	(✔)	×	×	
H1 (HQ) (1j-2j)	×	(✔)	×	×	
ZEUS 920 (HQ) (2j)	×	(✔)	×	×	

- Charm fitted $c + = c + \overline{c} \neq 0$, so not limited to
- Errors propagated via Monte Carlo replicas
- Central result as average of all replicas (instead

Monte Carlo Uncertainties, from data to PDF

Closure test

A powerful tool to test the reliability of a methodology.

- Select some other PDF as the truth
- 2. Generate fake data according to the theoretical predictions used in the fit
- 3. Generate variations of the data using the experimental uncertainties

- Check whether the parametrization is flexible enough
- Check whether we can reproduce the "true" PDF if it were known ➡
- known unknowns: missing higher order corrections, systematics, inconsistencies, etc...)

Do all of that in an environment in which everything is consistent and no theoretical knowledge is missing (no

Missing Higher Orders at NLO

Uncertainties beyond the data

PDF uncertainties are propagate mainly from the data but this is just half of the story, fixedorder prediction also contain uncertainties:

$$\sigma_{NNLO} = \sigma_0 + \alpha_s \sigma_1 + \alpha_s^2 \sigma_2 + \mathcal{O}(\alpha_s^3)$$

A spurious dependence on unphysical scales (renormalization, factorization) is kept. This is exploited to generate a theory uncertainty. Two possible approaches:

- Modifying the covariance matrix 1906.10698
- Monte Carlo sampling of scales 2207.07616

1.05 baseline 1.00 **NNPDF3** 0.95 0.90 to Ratio 0.85 10^{-5} d at 10.0 GeV

