

Istituto Nazionale di Fisica Nucleare

Including QED corrections in PDFs fits

The NNPDF4.0QED PDFs set

Niccolò Laurenti, on behalf of the NNPDF collaboration, QCD@LHC23

UNIVERSITÀ DEGLI STUDI **DI MILANO**

Introduction Adding QED to a PDF fit Results Markov Impact on phenomenology Conclusions

INTRODUCTION

Introduction: QED fits done in the past

ADDING QED TO A PDF FIT

Adding QED: motivation

 $\alpha \sim \mathcal{O}(\alpha_s^2) \sim \mathcal{O}(1\%)$

percent correction

In some kinematical regions QED corrections are important

see phenomenology section

Adding QED: corrections to DGLAP

 $\mu^{2} \frac{d}{d\mu^{2}} f_{i}(x,\mu^{2}) = \sum_{j=q,\bar{q},g,\gamma} \int_{x}^{1} \frac{dz}{z} P_{ij} \left(\frac{x}{z}\right)^{2}$ $P_{ij}(\alpha_s, \alpha) = P_{ij}(\alpha_s) + \tilde{P}_{ij}(\alpha_s, \alpha)$ $\alpha_{s} P_{ij}^{(0)} + \alpha_{s}^{2} P_{ij}^{(1)} + \alpha_{s}^{3} P_{ij}^{(2)} + \dots$ pure QCD terms

Gluon couples in the same way to all quarks

$$\alpha (\mu^{2}), \alpha(\mu^{2}) f_{j}(z, \mu^{2}) \quad i = q, \bar{q}, g, \gamma$$

$$\alpha (\mu^{2}), \alpha(\mu^{2}) f_{j}(z, \mu^{2}) \quad i = q, \bar{q}, g, \gamma$$

$$\alpha P_{ij}^{(0,1)} + \alpha_{s} \alpha P_{ij}^{(1,1)} + \alpha^{2} P_{ij}^{(0,2)} + \dots$$

Photon couples in different ways to up-like and down-like quarks

More difficult to diagonalize (see next slide)

Adding QED: corrections to DGLAP

Solving the system

$$Pure QCD case$$

$$\mu^{2} \frac{d}{d\mu^{2}} \begin{pmatrix} g \\ \Sigma \end{pmatrix} = \begin{pmatrix} P_{gg} & P_{gq} \\ P_{gg} & P_{qq} \end{pmatrix} \otimes \begin{pmatrix} g \\ \Sigma \end{pmatrix}$$

$$\mu^{2} \frac{d}{d\mu^{2}} \begin{pmatrix} W \\ \Sigma \\ \Sigma \\ \Delta \end{pmatrix} = P_{s} \otimes \begin{pmatrix} g \\ \Sigma \\ \Sigma \\ \Sigma \\ \Delta \end{pmatrix}$$

$$\mu^{2} \frac{d}{d\mu^{2}} V = P_{ns,v} \otimes V$$

$$\mu^{2} \frac{d}{d\mu^{2}} f_{ns,\pm} = P_{ns,\pm} \otimes f_{ns,\pm}$$

$$P_{ns,\pm} \otimes f_{ns,\pm}$$

$$P_$$

Adding QED: corrections to DGLAP

Numerical results

Adding QED: photon PDF

Photon PDF is obtained from LuxQED approach [Manohar, Nason, Salam, Zanderighi, 2016]

$$x\gamma(x,\mu^2) = \frac{1}{2\pi\alpha(\mu^2)} \int_{x}^{1} \frac{dz}{z} \left\{ \int_{\frac{m_p^2 x^2}{1-z}}^{\frac{\mu^2}{1-z}} \frac{dQ^2}{Q^2} \alpha^2(Q^2) -\alpha^2(Q^2) r -\alpha^2(\mu^2) r^2 F_2(x/z) \right\}$$

γ modifies the momentum sum rules:

$$\int_0^1 dx \, x \left(\Sigma(x, Q^2) + g(x, Q^2) \right)$$

Adding QED: iteration

LuxQED formula gives a constraint between γ and the other PDFs

Such constraint is implemented iteratively

RESULTS OF THE FIT

Results of the fit: remark

No photon-initiated contributions in theory predictions

Chosen dataset cuts points in which they are important

Future development

Add photon-initiated contributions and add data points in which they are important QED corrections enter in the fit through momentum sum rule and DGLAP evolution

Results of the fit: photon

Comparison with other QED fits

Results of the fit: quarks and gluon

Comparison with NNPDF4.0

Results of the fit: quarks and gluon

Comparison with NNPDF4.0

Results of the fit: iteration

Two iterations are enough for the fit to converge!

Results of the fit: fit quality

Few words on a new pipeline

See <u>"Pineline: Industrialization of High-Energy</u> <u>Theory Predictions</u>" by A. Barontini

contributions in the theory predictions!

IMPACT ON Phenomenology

Impact on phenomenology: inclusive Drell-Yan production

Impact on phenomenology: weak boson production

SUMMARY AND CONCLUSIONS

Summary and conclusions

We can add QED corrections to PDF fitting, getting a photon PDF

M The photon PDF is compatible with the most recent QED fits

Quarks and gluon are almost unchanged (the photon PDF is small)

Market Series and Ser negligible

Soon we will be able to add such processes in our theory predictions

Thanks for your attention!!

BACKUP SLIDES

Singlet and Valence sectors

 $\mathbf{P_{s}} = \begin{pmatrix} P_{gg} + \tilde{P}_{gg} & \tilde{P}_{g\gamma} & P_{gq} \\ \tilde{P}_{\gamma g} & \tilde{P}_{\gamma \gamma} & \langle P_{gq} + \langle P_{gg} \rangle \\ 2n_{f}(P_{qg} + \langle \tilde{P}_{qg} \rangle) & 2n_{f}\langle \tilde{P}_{q\gamma} \rangle & P_{qq} + \langle \tilde{P}_{q}^{ns} \\ 2n_{f}\nu_{d}\tilde{P}_{\Delta qg} & 2n_{f}\nu_{d}\tilde{P}_{\Delta q\gamma} & \nu_{d}\tilde{P}_{\Delta q}^{ns,+} + \langle P_{\alpha}^{ns,+} \rangle \end{pmatrix}$

$$\mathbf{P_{v}} = \begin{pmatrix} P_{\mathrm{ns},V} + \langle \tilde{P}_{q}^{\mathrm{ns},-} \rangle & \nu_{u} \tilde{P}_{\Delta q}^{\mathrm{ns},-} \\ \nu_{d} \tilde{P}_{\Delta q}^{\mathrm{ns},-} & P_{\mathrm{ns}-} + \{ \tilde{P}_{q}^{\mathrm{ns},-} \} \end{pmatrix}$$

$$\nu_{u/d} = \frac{n_{u/d}}{n_f}, \quad \langle \tilde{P}_q^{\mathrm{ns},\pm} \rangle = \nu_u \tilde{P}_u^{\mathrm{ns},\pm} + \nu_d \tilde{P}_d^{\mathrm{ns},\pm},$$
$$\{\tilde{P}_q^{\mathrm{ns},\pm}\} = \nu_d \tilde{P}_u^{\mathrm{ns},\pm} + \nu_u \tilde{P}_d^{\mathrm{ns},\pm}, \quad \tilde{P}_{\Delta q}^{\mathrm{ns},\pm} = \tilde{P}_u^{\mathrm{ns},\pm} - \tilde{P}_d^{\mathrm{ns},\pm}$$

Solution of the non-diagonal sectors

$$\mu^{2(n)} = \mu^{2}$$

$$\mathbf{E}_{S}(\mu^{2} \leftarrow \mu_{0}^{2}) = \mathscr{P} \exp\left(-\int_{\log \mu_{0}^{2}}^{\log \mu^{2}} \gamma_{S}(\alpha_{s}(\mu^{2}), \alpha(\mu^{2})) d \log \mu^{2}\right) \simeq \prod_{k=0}^{n-1} \mathbf{E}_{S}(\mu^{2(k+1)} \leftarrow \mu^{2(k)})$$

$$\gamma(N) = -\int_{0}^{1} dz \, z^{N-1} P(z)$$

$$\mathbf{E}_{S}(\mu^{2(k+1)} \leftarrow \mu^{2(k)}) = \exp\left(-\gamma_{S}(\alpha_{s}(\mu^{2(k+1/2)}), \alpha(\mu^{2(k+1/2)}))\Delta \log \mu^{2(k)}\right)$$

$$\log \mu^{2(k+1/2)} = \frac{\log \mu^{2(k+1)} + \log \mu^{2(k)}}{2}$$

$$\Delta \log \mu^{2(k)} = \log \mu^{2(k+1)} - \log \mu^{2(k+1)}$$

Computation of the photon

LuxQED neglects higher twist corrections \bigcirc

Why the LuxQED formula is used at 100 GeV?

> For low μ , the integral is dominated by low Q^2 structure functions **non-perturbative!**