

REGRESSION NETWORKS: PRECISION AND UNCERTAINTY ESTIMATION

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

WITH TUTORIALS BY

TOMMASO GIANI

NIKHEF

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

MITP, JULY 5, 2023

MACHINE LEARNING IN PARTICLE THEORY

III: PROPER LEARNING

• CROSS-VALIDATION

- NEURAL LEARNING
- TRAINING AND VALIDATION
- STOPPING
- HYPEROPTIMIZATION
 - HYPERPARAMETER OPTIMIZATION
 - OVERFITTING AND OVERFITTING METRICS
- GENERALIZATION
 - THE TEST SET METHOD
 - K-folds

CROSS-VALIDATION

LEARNING

- COMPLEXITY INCREASES WITH DECREASING LOSS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?

LEARNING

- COMPLEXITY INCREASES WITH DECREASING LOSS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?

LEARNING

- COMPLEXITY INCREASES WITH DECREASING LOSS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?

OPTIMAL LEARNING: CROSS-VALIDATION

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE LOSS OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE LOSS FOR THE DATA IN THE VALIDATION SET (NOT USED FOR TRAINING)
- WHEN THE VALIDATION LOSS STOPS DECREASING, STOP THE TRAINING

OPTIMAL LEARNING: CROSS-VALIDATION

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE LOSS OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE LOSS FOR THE DATA IN THE VALIDATION SET (NOT USED FOR TRAINING)
- WHEN THE VALIDATION LOSS STOPS DECREASING, STOP THE TRAINING

GO!

OPTIMAL FIT: CROSS-VALIDATION

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE LOSS OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE LOSS FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION LOSS STOPS DECREASING, STOP THE FIT

STOP!

OPTIMAL FIT: CROSS-VALIDATION

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

TOO LATE!

LOOKBACK STOPPING

- NO (INFINITE) PATIENCE:
 - TRAIN FOR MAX N_{max} GENERATIONS
- FINITE PATIENCE
 - Validation loss not decreasing \Rightarrow Keep training for $N_{\rm patience}$ generations
- GO BACK& STOP AT ABSOLUTE MINIMUM OF VALIDATION LOSS

THE PATIENCE ALGORITHM

HYPEROPTIMIZATION

THE ALGORITHM CROSS-VALIDATION

STOPPING

 $\{x_n^{(k)}\}$

HYPERPARAMETER SELECTION

GAUSSIAN PROCESS INTERPOLATION

- VIEW FUNCTION $f(x_i)$ AS VECTOR \vec{y} WITH COMPONENTS $y_i = f(x_i)$
- ASSUME y_i DISTRIBN. MULTIGAUSSIAN: $p(y_i) = \exp \frac{1}{2}(y_i y_i^0)C_{ij}(y_j y_j^0)$
- ASSUME 0-TH ORDER COVARIANCE MATRIX GIVEN BY KERNEL DEFINED FOR ALL x: $C_{ij} = K(x_i, x_j)$ E.G. $K(x, x') = \theta_o \exp - \left[\frac{\theta_1}{2} (x - x')^2\right] + \theta_2 + \theta_3 x x'$
- COMBINED GAUSSIAN C_{ij} based on observed $y_i \Rightarrow$ multigaussian with $C_{ij} = K(x_i, x_j) + \operatorname{cov}_{ij}$, cov_{ij} expt covariance matrix
- DETERMINE POSTERIOR (CONDITIONAL) GAUSSIAN FOR UNOBSERVED x_i

GOAL: MINIMIZE LOSS IN PARAMETER SPACE

- SAMPLE LOSS FOR A SET OF HYPERPARAMETER VALUES
- INTERPOLATE LOSS USING GAUSSIAN PROCESS
- LOOK FOR POINTS WITH MAXIMAL EXPECTED GAIN \Rightarrow CLOSE TO MIN OF INTERPOLATED LOSS, OR WITH LARGE UNCERTAINTY
- SAMPLE AGAIN

THE APPLICATION OF BAYESIAN METHODS FOR SEEKING THE EXTREMUM

J. Mockus, V. Tieśis, A. Žilinskas Institute of Mathematics and Cybernetics Academy of Sciences of the Lithuanian SSR Vilnius

The purpose of this paper is to describe how the Bayesian approach can be applied to the global optimization of multiextremal functions. The function to be minimized is considered as a realization of some stochastic function. The optimization technique based upon the minimization of the expected deviation from the extremum is called Bayesian. The implementation of Bayesian methods is considered.

The results of the application to the minimization of some standard test functions are given.

INTRODUCTION

Many well known methods for seeking the extremum have been developed on the basis of quadratic approximation. In some problems of global optimization the function to be minimized can be considered as a realization of some stochastic function. The optimization technique based upon the minimization of the expected deviation from the extremum is called Bayesian.

The description of such methods is given in [1, 2, 3]. However, to make this paper reasonably complete a brief definition of the Bayesian methods will be given.

DEFINITION OF BAYESIAN METHODS

Assume the function to be minimized is a realization $f(x, \omega)$ of some stochastic function f(x), where $x \in A \subset \mathbb{R}^n$ and $\omega \in \Omega$ is some fixed but unknown index.

The probability distribution P on Ω is defined by the equalities:

$$\mathbf{F}_{\mathbf{x}_{1},\dots,\mathbf{x}_{m}}(\mathbf{y}_{1},\dots,\mathbf{y}_{m}) = \mathbf{P}\left\{\omega:f(\mathbf{x}_{1},\omega) < \mathbf{y}_{1},\dots,f(\mathbf{x}_{m},\omega) < \mathbf{y}_{m}\right\}$$
(1)

where P is a priori probability of an event:

$$\left\{ \omega : f(\mathbf{x}_{1}, \omega) < \mathbf{y}_{1}, \dots, f(\mathbf{x}_{m}, \omega) < \mathbf{y}_{m} \right\}$$
(2)

- OPTIMIZE LOSS: VALIDATION χ^2
- BAYESIAN SCAN OF PARAMETER SPACE lacksquare

HYPEROPTIMIZATION SCAN

- HAND-PICKED: WIGGLES: FINITE SIZE \Rightarrow WILL GO AWAY AS N_{rep} GROWS
- HYPEROPT: WIGGLY PDFS \Leftrightarrow OVERFITTING \Rightarrow WILL NOT GO AWAY $(\chi^2_{\text{train}} \ll \chi^2_{\text{valid}}$ EVEN THOUGH VALIDATION LOSS MNIMIZED)

VALIDATION: OBJECTIVE? VALIDATION: OVERFITTING METRIC

- TEST VALIDATION $\chi^2_{\rm val'}$
 - DIFFERENT FLUCTUATED VALIDATION DATA
 - BUT KEEP SAME TRAINING-VALIDATION SPLIT
- COMPUTE AVERAGE OVER REPLICAS $\langle \chi^2_{val'} \rangle$ & DETERMINE DIFFERENCE TO STANDARD VALIDATION χ^2_{val} OVERFITNESS: $\mathcal{R}_O = \chi^2_{val} - \langle \chi^2_{val'} \rangle$
- **NEGATIVE** OVERFITNESS $\mathcal{R}_O \Rightarrow$ OVERFIT

WHAT HAPPENED?

CROSS-VALIDATION SELECTS THE OPTIMAL MINIMUM

WHAT HAPPENED?

HYPEROPTIMIZATION

WE ARE MISSING A SELECTION CRITERION

GENERALIZATION

THE SOLUTION

THE TEST SET

TESTS GENERALIZATION POWER

TEST SET RESULS

- COMPLETELY UNCORRELATED TEST SET (JETS, FOR DIS-ONLY DATASET)
- OPTIMIZE ON WEIGHTED AVERAGE OF VALIDATION AND TEST \Rightarrow NO OVERLEARNING

- IS THE TEST SET REALLY INDEPENDENT?
- IS IT GENERAL ENOUGH?

K-FOLDS THE BASIC IDEA:

• DIVIDE THE DATA INTO n REPRESENTATIVE SUBSETS EACH CONTAINING PROCESS TYPES, KINEMATIC RANGE OF FULL SET

• TRAIN n-1 SETS AND USE n-TH SET AS TEST $\Rightarrow n$ VALUES OF $\chi^2_{\rm test,\ i}$

	Fold 1		
CHORUS σ_{CC}^{ν}	HERA I+II inc NC e^+p 920 GeV	BCDMS p	
LHCb Z 940 pb	ATLAS W, Z 7 TeV 2010	CMS $Z p_T$ 8 TeV (p_T^{ll}, y_{ll})	
DY E605 $\sigma_{\rm DY}^p$	CMS Drell-Yan 2D 7 TeV 2011 CMS 3D dijets		
ATLAS single- $\bar{t} y$ (normalised)	ATLAS single top R_t 7 TeV CMS $t\bar{t}$ rapid		
CMS single top R_t 8 TeV			
	Fold 2		
HERA I+II inc CC e^-p	HERA I+II inc NC e^+p 460 GeV	HERA comb. $\sigma_{b\bar{b}}^{\rm red}$	
NMC p	NuTeV $\sigma_c^{\bar{\nu}}$	LHCb $Z \rightarrow ee~2$ fb D0 $W \rightarrow \mu\nu$ asymmetry ATLAS dijets 7 TeV, R=0.6 CMS single top $\sigma_t + \sigma_{\bar{t}}$ 7 TeV	
CMS W asymmetry 840 pb	ATLAS $Z p_T$ 8 TeV (p_T^{ll}, M_{ll})		
DY E886 $\sigma_{\rm DY}^p$	ATLAS direct photon 13 TeV		
$\begin{array}{c} \text{ATLAS single antitop } y \\ \text{(normalised)} \end{array}$	CMS $\sigma_{tt}^{\rm tot}$		
	Fold 3		
HERA I+II inc CC e^+p	HERA I+II inc NC e^+p 575 GeV	NMC d/p	
NuTeV σ_c^{ν}	LHC b $W,Z\to\mu$ 7 TeV	LHCb $Z \to ee$	

Nulev o_c	LITCD $W, Z \rightarrow \mu$ 7 TeV	$\text{LIICD } Z \to ee$	
ATLAS W, Z 7 TeV 2011 Central selection	ATLAS W^+ +jet 8 TeV	ATLAS HM DY 7 TeV	
CMS W asymmetry 4.7 fb	DYE 866 $\sigma^d_{\rm DY}/\sigma^p_{\rm DY}$	CDF Z rapidity (new)	
ATLAS σ_{tt}^{tot}	ATLAS single top y_t (normalised)	CMS σ_{tt}^{tot} 5 TeV	
CMS $t\bar{t}$ double diff. $(m_{t\bar{t}}, y_t)$			

Fold 4						
CHORUS $\sigma^{\bar{\nu}}_{CC}$	HERA I+II inc NC e^+p 820 GeV	LHC b $W,Z \to \mu$ 8 TeV				
LHCb $Z \to \mu \mu$	ATLAS W,Z 7 TeV 2011 Fwd	ATLAS W^- +jet 8 TeV				
ATLAS low-mass DY 2011	ATLAS $Z p_T$ 8 TeV (p_T^{ll}, y_{ll})	CMS W rapidity 8 TeV				
D0 Z rapidity	CMS dijets 7 TeV ATLAS single top y_t (norma					
ATLAS single top R_t 13 TeV	CMS single top R_t 13 TeV					

K-FOLD VALIDATION LOSS: AVERAGE χ^2 OF NON-FITTED FOLDS

K-FOLD VALIDATION: RESULTS AND STABILITY HYPEROPTIMIZED PARAMETERS

Parameter	NNPDF4.0	L as in Eq. (3.21)	Flavour basis Eq. (3.2)
Architecture	25-20-8	70-50-8	7-26-27-8
Activation function	hyperbolic tangent	hyperbolic tangent	sigmoid
Initializer	glorot_normal	glorot_uniform	glorot_normal
Optimizer	Nadam	Adadelta	Nadam
Clipnorm	6.0×10^{-6}	5.2×10^{-2}	2.3×10^{-5}
Learning rate	2.6×10^{-3}	2.5×10^{-1}	2.6×10^{-3}
Maximum $\#$ epochs	17×10^{3}	45×10^{3}	45×10^{3}
Stopping patience	10% of max epochs	12% of max epochs	16% of max epochs
Initial positivity $\Lambda^{(pos)}$	185	106	2
Initial integrability $\Lambda^{(int)}$	10	10	10

• DIFFERENT CHOICES OF LOSS:
$$L = \frac{1}{n_{\text{fold}}} \sum_{k=1}^{n_{\text{fold}}} \chi_k^2$$
 vs. $L = \max\left(\chi_1^2, \chi_2^2, \chi_3^2, \dots, \chi_{n_{\text{fold}}}^2\right)$

• PDF FLAVOR VS. EVOLUTION BASIS

GENERALIZATION

Q Search Wikipedia

Machine learning

Itents [hide]

D)

Article Talk

From Wikinedia, the free encyclonedia

Generalization [edit]

The difference between optimization and machine learning arises from the goal of generalization: while optimization algorithms can minimize the loss on a training set, machine learning is concerned with minimizing the loss on unseen samples. Characterizing the generalization of various learning algorithms is an active topic of current research, especially for deep learning algorithms.