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III: PROPER LEARNING
• CROSS-VALIDATION

– NEURAL LEARNING
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– OVERFITTING AND OVERFITTING METRICS

• GENERALIZATION
– THE TEST SET METHOD

– K-FOLDS



CROSS-VALIDATION



LEARNING
• COMPLEXITY INCREASES WITH DECREASING LOSS

• UNTIL LEARNING NOISE

• WHEN SHOULD ONE STOP?

UNDERLEARNING
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LEARNING
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OVERLEARNING



OPTIMAL LEARNING: CROSS-VALIDATION
• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE LOSS OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE LOSS FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR TRAINING)

• WHEN THE VALIDATION LOSS STOPS DECREASING, STOP THE TRAINING
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OPTIMAL FIT: CROSS-VALIDATION
• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE LOSS OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE LOSS FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

• WHEN THE VALIDATION LOSS STOPS DECREASING, STOP THE FIT

STOP!



OPTIMAL FIT: CROSS-VALIDATION
GENETIC MINIMIZATION:
AT EACH GENERATION, χ2 EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

• WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT

TOO LATE!



STOPPING
TRAINING/VALIDATION LOSS WITH NO STOPPING

THRESHOLD STOPPING

• define tr/val ratios rtr ≡ 〈Etr(i)〉
〈Etr(i−∆smear)〉

, rval ≡ 〈Eval(i)〉
〈Eval(i−∆smear)〉

WITH MOVING-AVERAGED LOSS 〈Etr,val(i)〉 ≡ 1
Nsmear

∑i
l=i−Nsmear+1 Etr,val(l)

• STOP IF rtr > 1− δtr; rval > 1 + δval
(training does not decrease too much, validation increases)

AVERAGED TRAINING LOSS AVERAGED VALIDATION LOSS



STOPPING
TRAINING/VALIDATION LOSS WITH NO STOPPING

LOOKBACK STOPPING

• NO (INFINITE) PATIENCE:
– TRAIN FOR MAX Nmax GENERATIONS

• FINITE PATIENCE
– VALIDATION LOSS NOT DECREASING
⇒ KEEP TRAINING FOR Npatience GENERATIONS

• GO BACK& STOP AT ABSOLUTE MINIMUM OF VALIDATION
LOSS

THE PATIENCE ALGORITHM



HYPEROPTIMIZATION



THE ALGORITHM
CROSS-VALIDATION

STOPPING

THE HYPERPARAMETERS
MODEL MINIMIZATION

Number of layers Optimizer
Size of each layer Initializer

Activation functions Learning rate
Initial positivity Clipnorm

Initial integrability Maximum number of epochs
Stopping Patience



HYPERPARAMETER SELECTION
GAUSSIAN PROCESS INTERPOLATION

• VIEW FUNCTION f(xi) AS VECTOR ~y WITH COMPONENTS yi = f(xi)

• ASSUME yi DISTRIBN. MULTIGAUSSIAN: p(yi) = exp 1
2

(yi − y0
i )Cij(yjy

0
j )

• ASSUME 0-TH ORDER COVARIANCE MATRIX GIVEN BY KERNEL DEFINED FOR ALL x:
Cij = K(xi, xj)

E.G. K(x, x′) = θo exp−
[
θ1
2

(x− x′)2
]

+ θ2 + θ3xx′

• COMBINED GAUSSIAN Cij BASED ON OBSERVED yi ⇒ MULTIGAUSSIAN WITH
Cij = K(xi, xj) + covij , covij EXPT COVARIANCE MATRIX

• DETERMINE POSTERIOR (CONDITIONAL) GAUSSIAN FOR UNOBSERVED xi

GOAL: MINIMIZE LOSS IN PARAMETER SPACE

• SAMPLE LOSS FOR A SET OF HYPERPARAMETER VALUES

• INTERPOLATE LOSS USING GAUSSIAN PROCESS

• LOOK FOR POINTS WITH MAXIMAL EXPECTED GAIN
⇒ CLOSE TO MIN OF INTERPOLATED LOSS, OR WITH LARGE UNCERTAINTY

• SAMPLE AGAIN





HYPEROPTIMIZATION SCAN

Adam RMSprop Adadelta
optimizer

1

2

3

4

5

Lo
ss

10 3 10 2 10 1

learning rate
glorot_uniform glorot_normal

initializer
10000 20000 30000 40000

epochs
0.1 0.2 0.3 0.4

stopping patience
1.00 1.05 1.10

positivity multiplier
1 2 3 4

number of layers
sigmoid tanh

activation function

• BAYESIAN SCAN OF PARAMETER SPACE

• OPTIMIZE LOSS: VALIDATION χ2



RESULTS: OVERFITTING!
DOWN QUARK: HYPEROPTIMIZED VS. HAND-PICKED

• HAND-PICKED: WIGGLES: FINITE SIZE ⇒ WILL GO AWAY AS Nrep GROWS

• HYPEROPT: WIGGLY PDFS ⇔ OVERFITTING ⇒ WILL NOT GO AWAY
(χ2

train � χ2
valid EVEN THOUGH VALIDATION LOSS MNIMIZED)



OBJECTIVE?
VALIDATION: OVERFITTING METRIC

• TEST VALIDATION χ2
val′

– DIFFERENT FLUCTUATED VALIDATION DATA

– BUT KEEP SAME TRAINING-VALIDATION SPLIT

• COMPUTE AVERAGE OVER REPLICAS 〈χ2
val′ 〉 &

DETERMINE DIFFERENCE TO STANDARD VALIDATION χ2
val

OVERFITNESS: RO = χ2
val − 〈χ

2
val′ 〉

• NEGATIVE OVERFITNESS RO ⇒ OVERFIT

CHARM PDF
OVERFIT (NO CLIPNORM)

RO = −0.024± 0.012

PROPER FIT (NNPDF4.0)

RO = −0.001± 0.013



WHAT HAPPENED?

OPTIMIZATION

CROSS-VALIDATION SELECTS THE OPTIMAL MINIMUM



WHAT HAPPENED?

HYPEROPTIMIZATION

WE ARE MISSING A SELECTION CRITERION



GENERALIZATION



THE SOLUTION

THE TEST SET

COMPARE TO A A TEST SET ⇒ NEW DATA PREVIOUSLY NOT USED AT ALL
TESTS GENERALIZATION POWER



TEST SET RESULS
• COMPLETELY UNCORRELATED TEST SET (JETS, FOR DIS-ONLY DATASET)

• OPTIMIZE ON WEIGHTED AVERAGE OF VALIDATION AND TEST
⇒ NO OVERLEARNING

HYPEROPTIMIZED PDFS
DOWN QUARK

OVERFIT VS HAND-PICKED TEST-SET VS HAND-PICKED

• IS THE TEST SET REALLY INDEPENDENT?

• IS IT GENERAL ENOUGH?



K-FOLDS
THE BASIC IDEA:

• DIVIDE THE DATA INTO n REPRESENTATIVE SUBSETS
EACH CONTAINING PROCESS TYPES, KINEMATIC RANGE OF FULL SET

• TRAIN n− 1 SETS AND USE n-TH SET AS TEST
⇒ n VALUES OF χ2

test, i



K-FOLD VALIDATION
LOSS: AVERAGE χ2 OF NON-FITTED FOLDS

TEST-SET VS HAND-PICKED K-FOLD VS. TEST-SET
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K-FOLD VALIDATION: RESULTS AND STABILITY
HYPEROPTIMIZED PARAMETERS

• DIFFERENT CHOICES OF LOSS: L = 1
nfold

nfold∑
k=1

χ
2
k vs. L = max

(
χ2
1, χ

2
2, χ

2
3, . . . , χ

2
nfold

)
• PDF FLAVOR VS. EVOLUTION BASIS

CHANGE OF LOSS (ANTIDOWN)
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GENERALIZATION


