

REGRESSION NETWORKS: PRECISION AND UNCERTAINTY ESTIMATION

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

WITH TUTORIALS BY

TOMMASO GIANI

NIKHEF

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

MACHINE LEARNING IN PARTICLE THEORY

MITP, JULY 6, 2023

IV: VALIDATION AND TESTING

- GAUSSIANITY
 - THE "HESSIAN" PROJECTION
 - ASSESSING GAUSSIANITY
- CLOSURE TESTING
 - THE CLOSURE TEST AND ITS METRICS
 - THE NATURE OF UNCERTAINTIES
- FUTURE TESTING
 - THE IDEA
 - THE RESULTS
- CORRELATIONS
 - THE NATURE OF PDF CORRELATIONS
 - DATA-INDUCED VS. METHDOLOGY-INDUCED CORRELATIONS

GAUSSIANITY

MULTIGAUSSIAN REPRESENTATION

- PARAMETRIC REGRESSION \Rightarrow MAP MULTIGAUSSIAN IN PARAMETER SPACE "HESSIAN" $\Rightarrow C_{ij}^{-1} = \partial_i \partial_j \chi^2$
- HESSIAN REPRESENTATION OF MC POSTERIOR:
 - SAMPLE k-TH PDF REPLICA OVER SET OF N_p POINTS $f_i^{(k)}(x_j)$ *i* runs over PDF flavors; $\{ij\} = \{p\}, p = 1, ..., N_p \times N_f$ $X_{pk} = f_i^{(k)}(x_j) - f_i^{(0)}(x_j); f_i^{(0)}(x_j) \equiv \langle f_i^{(k)}(x_j) \rangle$ REPLICA AVERAGE $- C_{pp'} = \frac{1}{N_{rep}} X X^t$ (Cholesky)
 - $X = USV^t$; $U \Rightarrow$ EIGENVECTORS OF $C N_p \times N_{rep}$; $S \Rightarrow$ DIAGONAL NONZERO EIGENVALUE SQRT MATRIX; $V \Rightarrow$ ORTHOGONAL $N_{rep} \times N_{rep}$ (SVD)

$$-C = \frac{1}{N_{\text{rep}}} X X^t = \frac{1}{N_{\text{rep}}} (US) (US)^t \Rightarrow \text{KEEP LARGEST EIGENVALUES}$$

MULTIGAUSSIAN REPRESENTATION vs. MONTECARLO PDF CORRELATIONS Correlations @ 8 GeV for Correlations @ 8 GeV for PDF4LHC15_nnlo_100-PDF4LHC15_nnlo_prior PDF4LHC15 nnlo 100-PDF4LHC15 nnlo prior 1.0 0.20 0.16 0.8 0.12 0.6 \overline{v} 0.4 0.08 đ á 0.2 0.04 0.0 0.00 qa-0.04-0.2 d -0.4-0.08 -0.6-0.12-0.8 -0.16-1.0-0.20 \overline{s} \bar{u} ā qd u \bar{u} d gd u \mathbf{S} **LUMINOSITIES QUARK-QUARK GLUON-GLUON** LHC 13 TeV - NNPDF3.0 NLO $\alpha_s = 0.118$ LHC 13 TeV - NNPDF3.0 NLO α_s = 0.118 1.3 1.3⊏ Monte Carlo Monte Carlo 1.25 Hessian Hessian Web APFEL 2.4.0 Wet Generated with Generated 0.85 0.8 0.8^t 10^{3} 10² 10³ 10² 10 10 M_x [GeV] M_x [GeV]

ū ā g d

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

- CONSTRUCT A VERY LARGE REPLICA SAMPLE
- SELECT BY GENETIC ALGORITHM A SUBSET OF REPLICAS WHOSE STATISTICAL FEATURES ARE AS CLOSE AS POSSIBLE TO THOSE OF THE PRIOR
- \Rightarrow FOR ALL PDFS ON A GRID OF POINTS// MIN-IMIZE DIFFERENCE OF: FIRST FOUR MOMENTS, CORRELATIONS; OUTPUT OF KOLMOGOROV-SMIRNOV TEST (NUMBER OF REPLICAS BETWEEN MEAN AND σ , 2σ , INFINITY)
- 50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY

MULTIGAUSSIAN

• SELECT SUBSET OF THE COVARIANCE MATRIX CORRELATED TO A GIVEN SET OF PROCESSES

<u>s</u> ū d g d

- PERFORM SVD ON THE REDUCED COVARI-ANCE MATRIX, SELECT DOMINANT EIGENVEC-TOR, PROJECT OUT ORTHOGONAL SUBSPACE
- ITERATE UNTIL DESIRED ACCURACY REACHED
- 15 EIGENVECTORS DESCRIBE ALL HIGGS MODES + JETS + W, Z production

- TRAIN A NETWORK TO SIMULATE THE TRUE DISTRIBUTION (GENERATOR)
- TRAIN A NETWORK TO **DISCRIMINATE** TRUTH FROM SIMULATION (**DISCRIMINATOR**)
- TRAIN THE GENERATOR TO TRICK THE DISCRIMINATOR

GAN ENHANCEMENT

- ENHANCE THE STARTING PDF SET BY ADDING GAN-PDFS TO IT
- PERFORM COMPRESSION OF THE ENHANCED SET

ENHANCED: NUMBER OF REPLICAS CUT IN HALF FOR SAME TARGET ACCURACY

ARE UNCERTAINTIES GAUSSIAN?

- REPLICA HISTOGRAM *i*-TH DATAPOINT z_i FROM MC \Rightarrow CONTINUOUS DISTRIBUTION WITH KDE
 - POINT \Rightarrow KERNEL: $P(z) = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} K(z z_i);$
 - Gaussian kernel $K(z z_i) \equiv \frac{1}{h\sqrt{2\pi}} \exp\left(-\frac{(z z_i)^2}{h}\right)$
 - Silverman bandwidth $h = \sigma_i \left(\frac{4}{3N_{\text{rep}}}\right)^{\frac{1}{5}} \Rightarrow$ MINIMIZES DIFFERENCE TO GAUSSIAN
- DEFINE KULLBACK-LEIBLER DIVERGENCE $D_{\text{KL}} = \int_{-\infty}^{\infty} P(x) \ln \frac{P(x)}{Q(x)} dx$ BETWEEN A PRIOR P AND ITS REPRESENTATION Q
- COMPUTE $D_{\rm KL}$ MC prior VS representation & MC prior VS Gaussian
- REPRESENTATIONS: MULTIGAUSS OR MC COMPRESSION

- D_{KL} to gaussian generally small
- ONLY FOR FEW POINTS COMPRESSION MORE EFFICIENT THAN MULTIGAUSS CONVERSION

PDF UNCERTAINTIES: DATA

THE CLOSURE TEST: THE BASIC IDEA

- POSTERIOR REPLICA DISTRIBUTION \Rightarrow APPROXIMATELY GAUSSIAN
- CAN DETERMINE CONFIDENCE LEVEL OF TRUTH ABOUT PREDICTION
 - DATA SPACE
 - * IN SAMPLE (USED FOR TRAINING)
 - * OUT OF SAMPLE (PREDICTIONS)
 - PDF SPACE
- MEASURABLE BASED ON ASSUMED UNDERLYING TRUTH = RUNS OF THE UNIVERSE
- $n\sigma$ GAUSSIAN CONFIDENCE INTERVAL: $\xi_{n\sigma} = \operatorname{erf}\left(\frac{n\sigma}{\sqrt{2}\sigma^0}\right)$ $n\sigma \to \operatorname{CONFIDENCE}$ INTERVAL; $\sigma^0 \Rightarrow$ WIDTH OF GAUSSIAN

STATISTICAL INDICATORS

• BIAS
$$b = \frac{1}{N_{\text{points}}} \sum_{i=1}^{N_{\text{points}}} (\mathcal{G}_i(f) - z_i)^2$$

 $(\mathcal{G}_i(f) = \langle \mathcal{G}_i(f) \rangle \equiv \frac{1}{N_{\text{replicas}}} \sum_{j=1}^{N_{\text{replicas}}} \mathcal{G}_i(f_j) \text{ prediction, } z_i \text{ true});$
NORMALIZED: $\frac{1}{N_{\text{points}}} |\mathcal{G}(f) - z|_C^2,$
 $C \text{ COVARIANCE MATRIX}:$

- − DATA \Rightarrow FROM EXPERIMENT
- PDF \Rightarrow FROM REPLICAS

• VARIANCE
$$v = \frac{1}{N_{\text{points}}} \sum_{i=1}^{N_{\text{points}}} \sigma_i^2$$
; $\sigma_i = \langle (\mathcal{G}_i(f) - \langle \mathcal{G}_i(f) \rangle)^2 \rangle$; NORMALIZED $v = |\mathcal{G}(f) - \langle \mathcal{G}(f) \rangle|_C^2$

- BIAS-VARIANCE RATIO $R_{bv} = \sqrt{\frac{b}{v}}$: AVERAGED OVER RUNS OF THE UNVERSE (RUS)
- EMPIRICAL CONFIDENCE LVL $\xi_{n\sigma} = \frac{1}{N_{\text{points}}} \sum_{i=1}^{N_{\text{points}}} I_{[-n\sigma,n\sigma]} \left(\langle \mathcal{G}_i(f) \rangle z_i \right)$ OVER RUS

CLOSURE TEST IMPLEMENTATION

- ASSUME UNDERLYING "TRUTH" PDF (SAY A RANDOM PDF REPLICA)
- GENERATE DATA ACCORDING TO STATISTICAL AND CORRELATED SYSTEMATICS (SAY FOR NNPDF4.0 DATASET)
- DETERMINE PDFs & COMPARED TO "TRUTH" BASED ON INDICATORS

THE NATURE OF UNCERTAINTIES

- LEVEL 0:
 - EACH DATAPOINT EQUAL TO THE "TRUTH VALUE"; ZERO UNCERTAINTY
 - FIT \rightarrow MUST FIND $\chi^2 = 0$ (GET BACK "TRUTH")
 - $\chi^2 pprox 0$ both replica to replica and average to truth
 - INTERPOLATION / EXTRAPOLATION UNCERTAINTY
- LEVEL 1:
 - EACH PSEUDO- DATAPOINT IS OBTAINED AS A RANDOM FLUCTUATION WITH GIVEN COVARIANCE MATRIX ABOUT "TRUTH" \Rightarrow "RUN OF THE UNIVERSE"
 - FIT DATA OVER AND OVER AGAIN
 - $\chi^2 \approx 1$ both replica to replica and average to truth
 - FUNCTIONAL UNCERTAINTY
- LEVEL 2:
 - DATA AS IN LEVEL 1
 - GENERATE DATA REPLICAS OF THESE "DATA"
 - FIT PDF REPLICAS TO DATA REPLICAS
 - $\chi^2 \approx 2$ replica to replica; $\chi^2 \approx 1$ average to truth
 - DATA UNCERTAINTY

UNCERTAINTIES: TYPE AND SIZE CLOSURE TEST RESULTS (NNPDF4.0)

LEVEL 0 χ^2 VS TRAINING

- LEVEL 0 (TRUTH DATA) $\Rightarrow \chi^2 \approx 0$, YET UNCERTAINTY NONZERO \Rightarrow NEURAL NETS \Leftrightarrow MANY FUNCTIONAL FORMS
- LEVEL 1 (RUNS OF UNIVERSE) \Rightarrow REPLICAS ALL FITTED TO SAME DATA, YET UNCERTAINTY NONZERO \Rightarrow DITTO
- Level 0, 1 and 2 uncertainties comparable in size

LEVEL 0/1/2 UNCERTAINTIES

GLUON

TESTING: THE INDICATORS

BIAS/VARIANCE RATIO AND ONE- σ QUANTILE

DATA-SPACE, DATA COVARIANCE MATRIX, OUT-OF-SAMPLE

PDF-SPACE & COV MATRIX

Dataset	$\sqrt{b/v}$	$\xi_{1\sigma}^{ m (data)}$	$\operatorname{erf}(R_{bv}/\sqrt{2})$	flavour	$\xi_{1\sigma}^{(\mathrm{pdf})}$
DY Top-pair Jets Dijets Direct photon Single top Total	$\begin{array}{c} 0.99 \pm 0.08 \\ 0.75 \pm 0.06 \\ 1.14 \pm 0.05 \\ 0.99 \pm 0.07 \\ 0.71 \pm 0.06 \\ 0.87 \pm 0.07 \\ 1.03 \pm 0.05 \end{array}$	$\begin{array}{c} 0.69 \pm 0.02 \\ 0.75 \pm 0.03 \\ 0.63 \pm 0.03 \\ 0.70 \pm 0.03 \\ 0.81 \pm 0.03 \\ 0.69 \pm 0.04 \\ 0.68 \pm 0.02 \end{array}$	$\begin{array}{c} 0.69 \pm 0.04 \\ 0.82 \pm 0.03 \\ 0.62 \pm 0.02 \\ 0.69 \pm 0.04 \\ 0.84 \pm 0.03 \\ 0.75 \pm 0.04 \\ 0.67 \pm 0.03 \end{array}$	Σ g V V_3 V_8 T_3 T_8 Total	$\begin{array}{c} 0.82 \pm 0.04 \\ 0.70 \pm 0.05 \\ 0.65 \pm 0.05 \\ 0.63 \pm 0.05 \\ 0.72 \pm 0.04 \\ 0.71 \pm 0.05 \\ 0.71 \pm 0.05 \\ 0.71 \pm 0.02 \end{array}$

- 25 "UNIVERSE RUNS", 45 REPLICAS EACH
- IN-SAMPLE DATA: PRE 2015
- OUT OF SAMPLE DATA: 2015-2020, MOSTLY LHC
- PDFs highly correlated \Rightarrow sampled at 4 points each

• PDF-SPACE MORE NOISY THAN DATA SPACE

ASIDE: ERRORS IN MC ESTIMATES THE JACKNIFE/BOOSTRAP METHOD

- GIVEN N_{est} ESTIMATES x^i OF x, COMBINED ESTIMATE $x = \langle x \rangle \pm \sigma$, $\langle x \rangle = \frac{1}{N_{\text{est}}} \sum_{i=1}^{N_{\text{est}}} x^i$; $\sigma^2 = \langle (x - \langle x \rangle)^2 \rangle$.
- GIVEN A MC SAMPLE OF ESTIMATES, EXTRACT RANDOMLY $n < N_{est}$ from it with replacement \Rightarrow extractions independent, repetitions allowed JACKNIFE: $n = N_{est} 1$
- REPEAT EXTRACTION N_B TIMES $\Rightarrow N_b$ SAMPLES OF n REPLICAS
- COMPUTE AVERAGE FOR EACH EXTRACTED n-REPLICA SAMPLE
- AVERAGE OF THESE EQUAL TO THE STARTING SAMPLE AVERAGE
- COMPUTE $\langle x \rangle$ FROM FULL SAMPLE, ESTIMATE UNCERTAINTY ON IT FROM VARIANCE OF BOOTSTRAP EXTRACTIONS

PDF UNCERTAINTIES: EXTRAPOLATION

- DEFINE "PRE-HERA", " PRE-LHC" AND "CURRENT" DATASETS EACH LATER DATASET IS EXTRAPOLATION OF PREVIOUS
- DETERMINE PDFs & COMPARE TO "FUTURE" DATA
- COMPUTE χ^2 TO FUTURE DATA:
 - WITHOUT PDF UNCERTAINTIES \Rightarrow IF \gg 1, MISSING INFORMATION
 - WITH PDF UNCERTAINTY \Rightarrow IF \sim 1, TEST PASSED MISSING INFO REPRODUCED BY UNCERTAINTY

ASSESSING EXTRAPOLATION UNCERTAINTIES FUTURE TEST RESULTS (NNPDF4.0) χ^2 : FITTED VS EXTRAPOLATED: WITHOUT/WITH PDF UNC.

PROCESS	PRE-HERA	PRE-LHC	NNPDF4.0
FT DIS (NC)	1.05	1.18	1.23
FT DIS (CC)	0.80	0.85	0.87
FT DY	0.92	1.27	1.59
HERA	27.20 /1.23	1.22	1.20
Coll. DY (Tev.)	5.52 /1.02	0.99	1.11
Coll. DY (LHC)	18.91/1.31	<mark>2.63</mark> /1.58	1.53
Top guark	20.01 /1.06	1.30/0.87	1.01
JETS	2.69 /0.98	2.12/ 1.10	1.26
TOTAL OUT OF SAMPLE	19.48 /1.16	<mark>2.10</mark> /1.15	_

PDFs ARE FUTURE-COMPATIBLE!

PDF CORRELATIONS

CORRELATION BETWEEN MODEL FEATURES example: up vs down PDFs covariance: $Cov[u, d](x, x') = \langle u(x, Q_0^2)d(x', Q_0^2) \rangle - \langle u(x, Q_0^2) \rangle \langle d(x', Q_0^2) \rangle;$ correlation: $\rho[u, d](x, x') = \frac{Cov[u, d](x, x')}{\sqrt{Var[u](x)Var[d](x')}}$ computation in MC approach: $\langle u(x, Q_0^2)d(x', Q_0^2) \rangle = \frac{1}{N} \sum_{r=1}^N u^{(r)}(x, Q_0^2)d^{(r)}(x', Q_0^2);$ $u^{(r)}(x, Q_0^2)$ REPLICAS

- CORRELATION INDUCED BY DATA, THEORY (E.G. SUM RULES), METHODOLOGY (E.G. ASSUMPTIONS ON EXTRAPOLATION)
- USED E.G. TO ASSESS CORRELATION BETWEEN SIGNAL AND BACKGROUND PROCESSES

PDF-INDUCED CORRELATIONS BETWEEN HIGGS SIGNAL & BACKGROUND PROCESSES (HXSWG, YR2, 2011) Higgs in gluon fusion vs. W production

CORRELATIONS BETWEEN MODELS

CORRELATE PDFs in different sets

example: up NN model vs down parametric model $Cov[u^{N}, d^{P}](x, x') = \langle u^{N}(x, Q_{0}^{2})d^{P}(x', Q_{0}^{2})\rangle - \langle u^{N}(x, Q_{0}^{2})\rangle \langle d^{P}(x', Q_{0}^{2})\rangle$ S-CORRELATION VS F-CORRELATION $\rho[u^{N}, u^{P}]$ DIFFERENT SETS, SAME PDF VS. $\rho[u^{N}, d^{N}]$ SAME SET, DIFFERENT PDFS

• SAME REPLICA MUST BE USED FOR NONZERO CORRELATION: IF REPLICAS UNCORRELATED $\langle u(x, Q_0^2) d(x, Q_0^2) \rangle \stackrel{?}{=} \frac{1}{N} \sum_{r=1}^N u^{(r)}(x, Q_0^2) d^{(r')}(x, Q_0^2) = \langle u \rangle \langle d \rangle$ THEN CORRELATION VANISHES

REPLICA CORRELATION

- FIT PDF REPLICAS $f_i^{(r, N)}(x, Q_0^2)$ & $f_i^{(r, P)}(x, Q_0^2)$ for all x, i to same data replica
- COMPUTE COVARIANCE & CORRELATION USING

$$\langle u(x, Q_0^2) d(x, Q_0^2) \rangle = \frac{1}{N} \sum_{r=1}^N u^{(r, N)}(x, Q_0^2) d^{(r, P)}(x, Q_0^2)$$

DATA vs METHOOLOGY CORRELATION

- NONZERO LEVEL-1 UNCERTAINTY \Rightarrow DATA REPLICA DOES NOT DETERMINE UNIQUELY THE PDF REPLICA
- IN PRINCIPLE FULL CORRELATION: $r \Leftrightarrow$ DATA REPLICA AND $r' \Leftrightarrow$ LEVEL-1 (METHDOLOLOGY) REPLICAS REPLICAS (UP QUARK) $u^{(r,r')}(x,Q_0^2)$;

 $\left| \frac{1}{N} \sum_{r=1}^{N} u^{(r,r')}(x,Q_0^2) d^{(r,r'')}(x,Q_0^2) - \langle u \rangle \langle d \rangle \right| \le \left| \frac{1}{NM} \sum_{r=1}^{N} \sum_{r'=1}^{M} u^{(r,r')}(x,Q_0^2) d^{(r,r')}(x,Q_0^2) - \langle u \rangle \langle d \rangle \right|$

• IN PRACTICE METHODOLOGY CORRELATION NOT INCLUDED \Rightarrow CORRELATION LOSS

FULL VS DATA-INDUCED

MEASURING METHODOLOGY DECORRELATION

- SELF-CORRELATION: S-CORRELATION OF A PDF SET TO ITSELF = F-CORRELATION OF A PDF TO ITSELF
- USE TWO DIFFERENT SETS OF PDF REPLICAS FITTED TO THE SAME DATA REPLICAS

$$\langle u(x, Q_0^2)u(x, Q_0^2)\rangle = \frac{1}{N} \sum_{r=1}^N u^{(r, r')}(x, Q_0^2)u^{(r, r'')}(x, Q_0^2)$$

- DEVIATION OF CORRELATION FROM 100% MEASURES THE CORRELATION LOSS \Rightarrow UNCORRELATED FUNCTIONAL UNCERTAINTY
- HIGHER CORRELATION \Rightarrow MORE EFFICIENT METHODOLOGY

