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ARTIFICIAL INTELLIGENCE: PARADIGMS

“KNOWLEDGE BASED” AI

• LEARN AND IMPLEMENT A SET OF RULES

• GOOD FOR CHESS, BAD FOR REAL LIFE

MACHINE LEARNING
• “INTUITIVE”

REPRESENTATION

• THE AI MODEL

BUILID UP

ITS OWN KNOWLEDGE



WHAT IS MACHINE LEARNING?

GENERALIZATION



THE PROBLEM:

PROTON COLLISIONS AT THE LHC



WHAT EXPERIMENTS SEE
ATLAS LHCB

ALICE CMS

ABOUT 1 BILLION COLLISIONS/SEC; ABOUT 100 PETABYTE/YEAR



INSIDE THE PROTON



QCD: THE WORK OF MANY PEOPLE

Wilson

Gross

Wilczek
Politzer

Altarelli Parisi

Collins
Sterman

HIGGS PRODUCTION AT THE LHC

λ ∼ 1
MHiggs

• CAN COMPUTE THE FEYNMAN DIAGRAMS

• CANNOT COMPUTE THE GLUON DISTRIBUTION



SO, YOU WANT TO LEARN THE
PROTON?



FIRST IDEA:
NEURAL NETWORKS

Δfu(x, A, Q0)
Du→π(z, A, Q0)
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SECOND IDEA:
THE MONTECARLO METHOD

MONTECARLO COMPUTATION OF π



MONTE CARLO COMBINATION
DATA REGRESSION: AVERAGING

MONTE CARLO REPRESENTATION



MONTE CARLO COMBINATION
DATA GENERALIZATION: NEURAL NETWORKS

MONTE CARLO REPRESENTATION



NEURAL NETWORK TRAINING

LOSS MINIMIZATION



NEURAL NETWORK TRAINING

UNDERLEARNING



NEURAL NETWORK TRAINING

PROPER LEARNING



NEURAL NETWORK TRAINING

OVERLEARNING



OPTIMAL LEARNING
CROSS-VALIDATION
AN OVERLEARNING SOLUTION

THE STRANGE QUARK DISTRIBUTION OF PROTON MOMENTUM FRACTIONS

REMOVED
BY THE CROSS-VALIDATION METHOD



WHAT IS THE MACHINE GOOD FOR?
HYPEROPTIMIZATION
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HYPEROPT PARAMETERS

NEURAL NETWORK FIT OPTIONS

NUMBER OF LAYERS OPTIMIZER

SIZE OF EACH LAYER INITIAL LEARNING RATE

DROPOUT MAXIMUM NUMBER OF EPOCHS

ACTIVATION FUNCTIONS STOPPING PATIENCE

INITIALIZATION FUNCTIONS POSITIVITY& INTEGRABILITY MULTIPLIER



OVERFITTING AGAIN!
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GENERALIZATION!
K-FOLDING



THE RESULT



DO WE REALLY NEED THE
MACHINE?



A CLOSER LOOK AT THE GLUON
WORST VS BEST AGREEMENT WITH DATA



YET CLOSER....
WORST VS BEST AGREEMENT WITH DATA

WHAT IS GOING ON?



EXPLANATION

GENERALIZATION!
FITTED FOLDS EXCLUDED FOLD

• BEST VS WORST REVERSED

• “BEST” DO NOT GENERALIZE

SAYS THE MACHINE!



SO, DO WE REALLY

NEED THE MACHINE?

LET’S ASK CHATGPT!
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