

PARTON DISTRIBUTIONS AND MACHINE LEARNING FROM THE LHC TO THE EIC

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

EIC UG EARLY CAREER WSHOP

WARSAW, JULY 24, 2023

SUMMARY

- LIFE BEFORE THE LHC
 - PARTON DISTRIBUTIONS AND THEIR DETERMINATION
 - THE PROBLEM OF PDF UNCERTAINTIES
- THE PROBLEM OF PDF UNCERTAINTIES
 - TOLERANCE
 - GENERALIZATION
- PDFs AS AN AI PROBLEM
 - THE NEURAL MONTECARLO
 - NEURAL NETWORK ARCHITECTURE AND TRAINING
- FROM AI TO MACHINE LEARNING
 - OPTIMIZATION AND HYPEROPTIMIZATION
 - THE MEANING OF CORRELATIONS
- VALIDATION
 - CLOSURE TESTS AND FUTURE TESTS
 - THE MEANING OF UNCERTAINTIES
- THE STATE OF THE ART
 - DATA AND UNCERTAINTIES
 - THEORETICAL ACCURACY AND INTRINSIC CHARM
- UNDERSTANDING MACHINE LEARNING
 - DISTRIBUTIONS IN FUNCTION SPACE AND IN FEATURE SPACE
 - GENERALIZATION
- THE IMPACT OF THE EIC
 - FROM QCD TO NEW PHYSICS
 - THE EIC AND MACHINE LEARNING

PDFS IN HISTORY

PDFS: THE EARLY DAYS THE DISCOVERY OF THE W (1984)

THEORETICAL PREDICTION

42

G. Altarelli et al. / Vector boson production

TABLE 2 Values (in nb) of the total cross sections for W^{\pm} and Z^{0} production

	W ⁺ + W ⁻	$\mathbf{W}^+ + \mathbf{W}^-$	$W^+ + W^-$	\mathbf{Z}^{0}	Z ⁰	Z ⁰	$\frac{\sigma(W^+ + W^-)}{\sigma(Z^0)}$	$\frac{\sigma(W^+ + W^-)}{\sigma(Z^0)}$	$\frac{\sigma(W^+ + W^-)}{\sigma(Z^0)}$
√S (GeV)	GHR	DO1	DO2	GHR	D O 1	DO2	GHR	DOI	DO2
540	4.2	4.3	4.1	1.3	1.3	1.2	3.1	3.4	3.5
700	6.2	6.3	6.1	2.0	1.9	1.8	3.1	3.3	3.4
1000	9.5	9.5	9.6	3.1	3.0	2.9	3.1	3.2	3.3
1300	12.5	12.5	12.9	4.0	3.9	3.9	3.1	3.2	3.3
1600	15.5	15.6	16.5	5.0	4.8	5.0	3.1	3.2	3.3

ALTARELLI, ELLIS, GRECO, MARTINELLI, 1984

EXPERIMENTAL DISCOVERY

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP/85-108 11 July 1985

W PRODUCTION PROPERTIES AT THE CERN SPS COLLIDER

UA1 Collaboration, CERN, Geneva, Switzerland

Aachen¹ – Amsterdam (NIKHEF)² – Annecy (LAPP)³ – Birmingham⁴ – CERN⁵ – Harvard⁶ – Helsinki⁷ – Kiel⁸ – London (Imperial College⁹ and Queen Mary College¹⁰) – Padua¹¹ – Paris (Coll. de France)¹² – Riverside¹³ – Rome¹⁴ – Rutherford Appleton Lab.¹⁵ – Saclay (CEN)¹⁶ – Victoria¹⁷ – Vienna¹⁸ – Wisconsin¹⁹ Collaboration

The corresponding experimental result for the 1984 data at $\sqrt{s} = 630$ GeV is

 $(\sigma \cdot B)_{\rm W} = 0.63 \pm 0.05 (\pm 0.09) \, \rm nb$.

This is in agreement with the theoretical expectation [14] of $0.47 \stackrel{+0.14}{-0.08}$ nb. We note that the 15%

- AGREEMENT AND UNCERTAINTIES AT 20% CONSIDERED TO BE SATISFACTORY
- RESULTS FROM DIFFERENT PDF SETS DIFFER BY AT LEAST 5%
- NO WAY TO ESTIMATE PDF UNCERTAINTIES

PDFs: THE EARLY DAYS THE DISCOVERY OF THE W (1984)

PDFs in 1984

FIG. 25. Parton distributions of Glück, Hoffmann, and Reya (1982), at $Q^2=5$ GeV²: valence quark distribution $x[u_v(x)+d_v(x)]$ (dotted-dashed line), xG(x) (dashed line), and a. (dotted line).

FIG. 27. "Soft-gluon" (Λ =200 MeV) parton distributions of Duke and Owens (1984) at Q^2 =5 GeV²: valence quark distribution $x[u_v(x)+d_v(x)]$ (dotted-dashed line), xG(x) (dashed

GHR vs Duke-Owens

bution $x[u_v(x)+d_v(x)]$ (dotted-dashed line), xG(x) (dashed

line), and $q_{i}(x)$ (dotted line). Rev. Mod. Phys., Vol. 56, No. 4, October 1984

line), and $q_{y}(x)$ (dotted line)

ALTARELLI, ELLIS, GRECO, MARTINELLI, 1984

 $\sigma(W^+ + W^-)$

 $\sigma(Z^0)$

GHR

31

3.1

3.1

3.1

3.1

 $\sigma(W^+ + W^-)$

 $\sigma(Z^0)$

DO1

3.4

3.3

3.2

3.2

3.2

 $\sigma(W^+ + W^-)$

 $\sigma(Z^0)$

DO2

3.5

3.4

3.3

3.3

3.3

THEORETICAL PREDICTION

G. Altarelli et al. / Vector boson production TABLE 2

Values (in nb) of the total cross sections for W[±] and Z⁰ production

Z⁰ **Z**⁰

GHR DO1 DO2

3.0 2.9

70

13 1.3 1.2

2.0 1.9 1.8

3.1

4.0 3.9 3.9

5.0 4.8 5.0

 $W^{+} + W^{-}$

DO2

41

6.1

9.6

12.9

16.5

42

√S (GeV)

540

700

1000

1300

1600

 $W^{+}+W^{-}$ $W^{+}+W^{-}$

DO1

4.3

6.3

9.5

12.5

15.6

GHR

47

6.2

9.5

12.5

15.5

- AGREEMENT AND UNCERTAINTIES AT 20% CONSIDERED TO BE SATISFACTORY
- RESULTS FROM DIFFERENT PDF SETS DIFFER BY AT LEAST 5%
- NO WAY TO ESTIMATE PDF UNCERTAINTIES

PDFs and DISCOVERY THE DISCOVERY OF QUARK COMPOSITENESS? (1995)

- DISCREPANCY BETWEEN QCD CALCULATION AND CDF JET DATA (1995)
- EVIDENCE FOR QUARK COMPOSITENESS

PDFS AND DISCOVERY THE DISCOVERY OF THE GLUON (1995)

- DISCREPANCY BETWEEN QCD CALCULATION AND CDF JET DATA (1995)
- EVIDENCE FOR QUARK COMPOSITENESS
- NO INFO ON PARTON UNCERTAINTY \Rightarrow RESULT STRONGLY DEPENDS ON GLUON AT $x \ge 0.1$

DISCREPANCY REMOVED IF JET DATA INCLUDED IN THE FIT NEW CTEQ FIT (1996)

- RISE OF F_2 AT HERA CAME \Rightarrow SURPRIZE
- HINTED BY PRE-HERA DATA; VETOED BY THEORETICAL BIAS

DISCOVERING PDFs WHAT'S THE PROBLEM?

D. Kosower, 1999

- FOR A SINGLE QUANTITY, WE QUOTE 1 SIGMA ERRORS: VALUE \pm ERROR
- FOR A PAIR OF NUMBERS, WE QUOTE A 1 SIGMA ELLIPSE
- FOR A FUNCTION, WE NEED AN "ERROR BAR" IN A SPACE OF FUNCTIONS

MUST DETERMINE A PROBABILITY DENSITY (MEASURE) IN THE SPACE OF FUNCTIONS \Rightarrow MUST DETERMINE AN INFINITE-DIMENSIONAL OBJECT FROM A FINITE SET OF DATA POINTS

A SOLUTION? ~ 2000

- FIT A MODEL-INSPIRED FUNCTIONAL FORM
- Determine uncertainty by standard error propagation $\Rightarrow \Delta \chi^2 = 1$ contour in parameter space

gluon parametrization (MRST 2004) $xg(x, Q_0^2) = A_q (1-x)^{\eta_g} (1 + \epsilon_g x^{0.5} + \gamma_g x) x^{\delta_g} - A_- (1-x)^{\eta_-} x^{-\delta_-}$

- PROBLEM REDUCED TO FINITE-DIMENSIONAL
- WHO PICKS THE FUNCTIONAL FORM?

W.K.Tung, DIS 2004

PDF UNCERTAINTIES

FIRST PDFs with uncertainties (2002) "TOLERANCE"

one sigma & ten sigma intervals for typical covariance matrix eigenvalue

vs best value and uncertainty from individual experiments

- SPREAD OF BEST-FIT FROM DIFFERENT DATA HUGE W.R. TO $\Delta\chi^2 = 1$ ERROR PROPAGATION FORMULA
- PDF uncertainties rescaled by "tolerance" $T\sim 10$

THE HERA-LHC WORKSHOPS

HERALHC: 2004-2008 PDF4LHC: 2008–

RELIABLE PDF UNCERTAINTY ESTIMATES? DYNAMICAL TOLERANCE

"estimates of PDF uncertainties follow and ad-hoc recipe defined by the fitters" (C. Hays, 09)

- TOLERANCE \Rightarrow ENVELOPE OF UNCERTAINTIES OF EXPERIMENTS
- **DYNAMICAL** \Rightarrow SEPARATELY DETERMINED FOR EACH HESSIAN EIGENVECTOR

THE HERA-LHC BENCHMARK PROBLEM (2005)

- RESTRICTED AND VERY CONSISTENT DATASET USED
- RESULTS COMPARED TO THEN-BEST RESULT FROM FULL DATASET

BENCHMARK VS DEFAULT GLUON

"...the partons extracted using a very limited data set are completely incompatible, even allowing for the uncertainties, with those obtained from a global fit with an identical treatment of errors...The comparison illustrates the problems in determining the true uncertainty on parton distributions." (R.Thorne, HERALHC, 2005)

ATTEMPTS AT A SOLUTION

(Glazov, Radescu, 2009)

CHEBYSHEV AND LENGTH PENALTY

- OLD IDEA (PARISI, SOURLAS, 1978): EXPAND PDFS OVER BASIS OF ORTHOGONAL POLYNOMIALS
- Length penalty stabilization: contribution to χ^2 proportional to the arclength with weight p
- RESULTS STRONGLY DEPENDENT ON ARBITRARY CHOICE OF p

POOR AGREEMENT WITHIN UNCERTAIN-

• TOLERANCE? $\Delta \chi^2 = 100$ (CTEQ); 50

TIES

(MRST):

1 (ALEKHIN)

- (Demartin et al., 2010)
- THREE GLOBAL (DIS+HADRONIC) PDF SETS AVAILABLE
- REASONABLE AGREEMENT OF CENTRAL VALUES & UNCERTAINTIES

THE MODEL-DEPENDENT APPROACH: PROGRESS

- INCREASINGLY COMPLEX PARAMETRIZATION
- UNDERLYING PHYSICALLY MOTIVATED ANSATZ (SINCE 1973!) $f_i(x, Q_0^2) = x^{\alpha}(1-x)^{\beta}g_i(x)$; $g_i(x)$ polynomial in x or \sqrt{x}
- Example: MMHT 2015:
 - basis functions $g; u_v = u \bar{u}; d_v = d \bar{d}; S = 2(\bar{u} + \bar{d}) + s + \bar{s}; s_+ = s + \bar{s}; \Delta = \bar{d} \bar{u}; s_- = s \bar{s}.$
 - for all but $\Delta s_-, g \Rightarrow x f_i(x, Q_0^2) = A x^{\alpha} (1-x)^{\beta} \left(1 + \sum_{i=1}^4 a_i T_i(y(x)) \right);$ T_i Chebyshev polynomials, $y = 1 - 2\sqrt{x} \Leftrightarrow \text{must map } x = [0, 1]$ into y = [-1, 1]; $T_i(-1) = T_i(1) = 1$
 - gluon $xg(x, Q_0^2) = Ax^{\alpha}(1-x)^{\beta} \left(1 + \sum_{i=1}^2 a_i T_i(y(x))\right) + A'xT\alpha'(1-x)^{\beta'}$
 - sea asymmetry $x\Delta(x,Q_0^2) = Ax^{\alpha}(1-x)^{\beta}(1+\gamma x+\epsilon x^2)$
 - strangeness asymmetry $x\Delta(x, Q_0^2) = Ax^{\alpha}(1-x)^{\beta}(1-x/x_0)$
 - 41 parameters, 4 fixed by sum rules
 - -12 parms fixed at best fit, remaining 25 used for (hessian) covariance matrix

THE MODEL-DEPENDENT APPROACH: PROBLEMS ADDING NEW DATA PARTON PARAMETRIZATIONS

• CTEQ5 2002: $xg(x, Q_0^2) = A_0 x^{A_1} (1-x)^{A_2} (1+A_3 x^{A_4})$

- MRST-HERALHC 2005: $xg(x, Q_0^2) = A_g x^{\delta_g} (1-x)^{\eta_g} (1+\epsilon_g x^{0.5} + \gamma_g x) + A_{g'} x^{\delta_{g'}} (1-x)^{\eta_{g'}} (1-x)$
- CT18: $g(x, Q = Q_0) = x^{a_1 1} (1 x)^{a_2} \left[a_3 (1 y)^3 + a_4 3y (1 y)^2 + a_5 3y^2 (1 y) + y^3 \right];$ $y = \sqrt{x}; a_5 = (3 + 2a_1)/3.$

PDFs and AI

PROTON STRUCTURE AS AN AI PROBLEM: NNPDF

UNBIASED MODELING WITH UNCERTAINTIES IN A SPACE OF FUNCTIONS

AI SOLUTION

- NEURAL NETWORK REGRESSION
- MONTE CARLO UNCERTAINTIES

MONTE CARLO COMBINATION

- TWO DATA WITH UNCERTAINTY $z_i = \mu_i \pm \sigma_i$
- SAMPLE OF DATA REPLICAS $\mu_i^{(k)} \to \mu_i = \langle \mu_i^{(k)} \rangle$; $\sigma_i^2 = \langle \left(\mu_i^{(k)} \mu_i \right)^2 \rangle$.
- MAP COMBINATION $\mu_1^{(k)}, \mu^{(k)}_2 \rightarrow \bar{\mu}^{(k)}$
- $\mu^{(k)}$ REPLICA SAMPLE \Rightarrow REPRESENTATION OF Max A Posteriori PROBABILITY $\bar{\mu} \pm \bar{\sigma}$ $\bar{\mu} = \langle \bar{\mu}^{(k)} \rangle; \ \bar{\sigma}^2 = \langle \left(\bar{\mu}^{(k)} - \bar{\mu} \right)^2 \rangle.$

THE FUNCTIONAL MONTE CARLO

REPLICA SAMPLE OF FUNCTIONS ⇔ PROBABILITY DENSITY IN FUNCTION SPACE

AVOIDS LIKELIHOOD IN FUNCTION SPACE

FINAL PDF SET: $f_i^{(a)}(x,\mu)$; i =up, antiup, down, antidown, strange, antistrange, charm, gluon; $j = 1, 2, ..., N_{\text{rep}}$

FEED-FORWARD NEURAL NETWORKS

• WEIGHTS ω_{ij}

• THRESHOLDS θ_i

$$F_{\rm out}^{(i)}(\vec{x}_{\rm in}) = F\left(\sum_{j} \omega_{ij} x_{\rm in}^{j} - \theta_{i}\right)$$

PARAMETERS

SIMPLEST EXAMPLE 1-2-1

NEURAL NETWORKS ARCHITECTURE

- HOW MANY INPUTS?
- HOW MANY INDEPENDENT NNs?

NEURAL NETWORKS ACTIVATION FUNCTION

• LINEAR ACTIVATION \Rightarrow MULTILINEAR REGRESSION

• + NONLINEAR PROFILE
$$\Rightarrow$$
 UNIVERSAL INTERPOL.
- sigmoid $F(x) = \frac{1}{1+e^{-x}}$
- arctan $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan x$
- RELU $F(x) \begin{cases} 0; & x < 0 \\ x; & x > 0 \end{cases}$

NEURAL NETWORK TRAINING GENETIC ALGORITHMS

- BASIC IDEA: RANDOM MUTATION OF THE NN PARAMETER
- SELECTION OF THE FITTEST

NEURAL NETWORK TRAINING GRADIENT DESCENT

- BASIC IDEA: COMPUTE GRADIENT OF LOSS W.R. TO PARAMETERS
- SELECT DIRECTION OF DESCENT

NEURAL NETWORK TRAINING MINIMIZATION ALGORITHMS: DESIDERATA

- FAST CONVERGENCE
- DO NOT STOP ON LOCAL MINIMA
- EXPLORE SPACE OF MINIMA (DEGENERATE CASE)

GENETIC ALGORITHMS

- DIFFERENT EPOCHS; VARIABLE MUTATION RATE
- **REWEIGHTING** DIFFERENT DATA CONTRIBUTIONS TO LOSS
- NODAL MUTATION
- COVARIANCE MATRIX ADAPTATION (CMA)

GRADIENT DESCENT

- GLOROT NORMAL/UNIFORM INITALIZATION
- ADAPTIVE GRADIENT / ADAPTIVE MOMENT
- STOCHASTIC GD
- BATCH GD

NAIVE GA VS. CMA

GA (naive) vs GD (Adadelta)

NEURAL NETWORK TRAINING OVERLEARNING AND CROSS-VALIDATION

- NEURAL NET TRAINING \Rightarrow LOSS MINIMIZATION (χ^2)
- RANDOM TRAINING-VALIDATION SPLIT, TRAINING LOSS MINIMIZED
- TRAINING STOPS AT MIMIMUM OF VALIDATION LOSS

PDFS AND MACHINE LEARNING

NEURAL NETS FOR PDFs THE ALGORITHM

- BAYESIAN SCAN OF PARAMETER SPACE
- OPTIMIZE LOSS: VALIDATION χ^2

- HAND-PICKED: WIGGLES: FINITE SIZE \Rightarrow WILL GO AWAY AS N_{rep} GROWS
- HYPEROPT: WIGGLY PDFS \Leftrightarrow OVERFITTING \Rightarrow WILL NOT GO AWAY $(\chi^2_{\text{train}} \ll \chi^2_{\text{valid}}$ EVEN THOUGH VALIDATION LOSS MNIMIZED)

WHAT HAPPENED?

CROSS-VALIDATION SELECTS THE OPTIMAL MINIMUM

WHAT HAPPENED?

HYPEROPTIMIZATION

THE SOLUTION

THE TEST SET

TEST SET RESULS

- COMPLETELY UNCORRELATED TEST SET
- OPTIMIZE ON WEIGHTED AVERAGE OF VALIDATION AND TEST \Rightarrow NO OVERLEARNING

BUT WHO PICKS THE TEST SET?

K-FOLDS THE BASIC IDEA:

- DIVIDE THE DATA INTO k REPRESENTATIVE SUBSETS EACH CONTAINING PROCESS TYPES, KINEMATIC RANGE OF FULL SET
- TRAIN k-1 SETS and use k-th set as test $\Rightarrow k$ values of $\chi^2_{\rm test,\ i}$

	Fold 1			
CHORUS σ_{CC}^{ν}	HERA I+II inc NC e^+p 920 GeV	BCDMS p CMS $Z p_T$ 8 TeV (p_T^{ll}, y_{ll})		
LHCb Z 940 pb	ATLAS W, Z 7 TeV 2010			
DY E605 $\sigma_{\rm DY}^p$	CMS Drell-Yan 2D 7 TeV 2011	CMS 3D dijets 8 TeV		
ATLAS single- $\bar{t} y$ (normalised)	ATLAS single top R_t 7 TeV	CMS $t\bar{t}$ rapidity $y_{t\bar{t}}$		
CMS single top R_t 8 TeV				
	Fold 2			
HERA I+II inc CC e^-p	HERA I+II inc NC e^+p 460 GeV	HERA comb. $\sigma_{b\bar{b}}^{\rm red}$		
NMC p	NuTeV $\sigma_c^{\bar{\nu}}$	LHCb $Z \to ee \ 2 \ fb$		
CMS W asymmetry 840 pb	ATLAS $Z p_T$ 8 TeV (p_T^{ll}, M_{ll})	D0 $W \to \mu \nu$ asymmetry		
DY E886 $\sigma_{\rm DY}^p$	ATLAS direct photon 13 TeV	ATLAS dijets 7 TeV, R=0.6		
$\begin{array}{c} \text{ATLAS single antitop } y \\ \text{(normalised)} \end{array}$	CMS $\sigma_{tt}^{\rm tot}$	CMS single top $\sigma_t + \sigma_{\tilde{t}}$ 7 TeV		
	Fold 3			
HERA I+II inc CC e^+p	HERA I+II inc NC e^+p 575 GeV	NMC d/p		
NuTeV σ_c^{ν}	LHCb $W, Z \rightarrow \mu$ 7 TeV	LHCb $Z \to ee$		
ATLAS W, Z 7 TeV 2011 Central selection	ATLAS W^+ +jet 8 TeV	ATLAS HM DY 7 TeV		
CMS W asymmetry 4.7 fb	DYE 866 $\sigma_{\rm DY}^d / \sigma_{\rm DY}^p$	CDF Z rapidity (new)		
ATLAS σ_{tt}^{tot}	ATLAS single top y_t (normalised)	CMS σ_{tt}^{tot} 5 TeV		
CMS $t\bar{t}$ double diff. $(m_{t\bar{t}},y_t)$				
	Fold 4			
CHORUS $\sigma_{CC}^{\bar{\nu}}$	HERA I+II inc NC e^+p 820 GeV	LHCb $W, Z \rightarrow \mu 8 \text{ TeV}$		

CHORUS $\sigma_{CC}^{\bar{\nu}}$	HERA I+II inc NC e^+p 820 GeV	LHC b $W,Z \to \mu$ 8 TeV
LHCb $Z \to \mu \mu$	ATLAS W,Z 7 TeV 2011 Fwd	ATLAS W^- +jet 8 TeV
ATLAS low-mass DY 2011	ATLAS Z p_T 8 TeV (p_T^{ll}, y_{ll})	CMS W rapidity 8 TeV
D0 Z rapidity	CMS dijets 7 TeV	ATLAS single top y_t (normalised)
ATLAS single top R_t 13 TeV	CMS single top R_t 13 TeV	

K-FOLD VALIDATION Loss: average χ^2 of non-fitted folds

K-FOLD VALIDATION: RESULTS AND STABILITY HYPEROPTIMIZED PARAMETERS

Parameter	NNPDF4.0	L as in Eq. (3.21)	Flavour basis Eq. (3.2)
Architecture	25-20-8	70-50-8	7-26-27-8
Activation function	hyperbolic tangent	hyperbolic tangent	sigmoid
Initializer	glorot_normal	glorot_uniform	glorot_normal
Optimizer	Nadam	Adadelta	Nadam
Clipnorm	6.0×10^{-6}	5.2×10^{-2}	2.3×10^{-5}
Learning rate	2.6×10^{-3}	2.5×10^{-1}	2.6×10^{-3}
Maximum $\#$ epochs	17×10^{3}	45×10^{3}	45×10^{3}
Stopping patience	10% of max epochs	12% of max epochs	16% of max epochs
Initial positivity $\Lambda^{(pos)}$	185	106	2
Initial integrability $\Lambda^{(int)}$	10	10	10

• DIFFERENT CHOICES OF LOSS:
$$L = \frac{1}{n_{\text{fold}}} \sum_{k=1}^{n_{\text{fold}}} \chi_k^2$$
 vs. $L = \max\left(\chi_1^2, \chi_2^2, \chi_3^2, \dots, \chi_{n_{\text{fold}}}^2\right)$

• PDF FLAVOR VS. EVOLUTION BASIS

VALIDATING AND UNDERSTANDING

VALIDATION CLOSURE TESTS

- ASSUME UNDERLYING "TRUTH" PDF (SAY A RANDOM PDF REPLICA)
- GENERATE DATA WITH STATISTICAL AND SYSTEMATIC SHIFTS
- DETERMINE PDFs & COMPARED TO "TRUTH"

THE NATURE OF UNCERTAINTIES

- LEVEL 0:
 - DATAPOINT EQUAL TO THE "TRUTH VALUE"; ZERO UNCERTAINTY
 - MUST FIND $\chi^2=0$ ("TRUTH")
 - INTERPOLATION/EXTRAPOLATION UNCERTAINTY
- LEVEL 1:
 - − PSEUDO- DATAPOINTS \Rightarrow FLUCTUATIONS ABOUT "TRUTH" \Rightarrow "RUN OF THE UNIVERSE"
 - FIT DATA OVER AND OVER AGAIN
 - $-\chi^2 pprox 1$
 - FUNCTIONAL UNCERTAINTY
- LEVEL 2:
 - data as in level 1
 - DATA REPLICAS OF THESE "DATA"
 - FIT PDF REPLICAS TO DATA REPLICAS
 - $\chi^2 pprox 2$ replica to replica; $\chi^2 pprox 1$ average to truth
 - DATA UNCERTAINTY

UNCERTAINTIES: TYPE AND SIZE CLOSURE TEST RESULTS (NNPDF4.0)

LEVEL 0 χ^2 VS TRAINING

- LEVEL 0 (TRUTH DATA) $\Rightarrow \chi^2 \approx 0$, yet uncertainty NONZERO \Rightarrow NEURAL NETS \Leftrightarrow MANY FUNCTIONAL FORMS
- LEVEL 1 (RUNS OF UNIVERSE) ⇒ REPLICAS ALL FITTED TO SAME DATA, YET UNCERTAINTY NONZERO ⇒ DITTO
- Level 0, 1 and 2 uncertainties comparable in size

LEVEL 0/1/2 UNCERTAINTIES

GLUON

• PDF-SPACE MORE NOISY THAN DATA SPACE

- DEFINE "PRE-HERA", "PRE-LHC" AND "CURRENT" DATASETS EACH LATER DATASET IS EXTRAPOLATION OF PREVIOUS
- DETERMINE PDFs & COMPARE TO "FUTURE" DATA
- COMPUTE χ^2 TO FUTURE DATA:
 - WITHOUT PDF UNCERTAINTIES \Rightarrow IF \gg 1, missing information
 - WITH PDF UNCERTAINTY \Rightarrow IF \sim 1, TEST PASSED MISSING INFO REPRODUCED BY UNCERTAINTY

ASSESSING EXTRAPOLATION UNCERTAINTIES FUTURE TEST RESULTS (NNPDF4.0)

PROCESS	PRE-HERA	PRE-LHC	NNPDF4.0
FT DIS (NC)	1.05	1.18	1.23
FT DIS (CC)	0.80	0.85	0.87
FT DY	0.92	1.27	1.59
HERA	27.20 /1.23	1.22	1.20
Coll. DY (Tev.)	5.52 /1.02	0.99	1.11
Coll. DY (LHC)	18.91/1.31	<mark>2.63</mark> /1.58	1.53
TOP QUARK	20.01 /1.06	1.30/0.87	1.01
JETS	2.69/0.98	2.12 /1.10	1.26
TOTAL OUT OF SAMPLE	19.48/1.16	2.10/1.15	-

 χ^2 : FITTED VS EXTRAPOLATED: WITHOUT/WITH PDF UNC.

ML PREDICTS THE RISE OF F_2 AT HERA

PDFs TODAY

CONTEMPORARY PDF DETERMINATION

Experimental data in NNPDF4.0

More than 4000 datapoints!

New processes:

- direct photon
- single top
- dijets
- W+jet
- DIS jet

CONTEMPORARY PDF DETERMINATION THE PDFs

CONTEMPORARY PDF DETERMINATION THE UNCERTAINTIES (2016)

- TYPICAL UNCERTAINTIES IN DATA REGION: SINGLET $\sim 3\%$, NONSINGLET $\sim 5\%$
- DATA REGION: $10^2 \lesssim M_X \lesssim 10^3$ TeV, $-2 \lesssim y \lesssim 2$

CONTEMPORARY PDF DETERMINATION THE UNCERTAINTIES (2022)

- TYPICAL UNCERTAINTIES IN DATA REGION: SINGLET $\sim 1\%$, NONSINGLET $\sim 2-3\%$
- Data region: $10 \lesssim M_X \lesssim 3 \cdot 10^3$ TeV, $-4 \lesssim y \lesssim 4$

CONTEMPORARY PDF DETERMINATION: THE NEED FOR THEORETICAL ACCURACY INTRINSIC CHARM

- PERTURBATIVE CHARM ($N_f = 4$) DETERMINED BY MATCHING CONDITIONS
- LARGE HIGHER ORDER CORRECTIONS \Rightarrow N³LO AVAILABLE (Blümlein, Ablinger et al.)
- INTRINSIC CHARM \Rightarrow INVERT MATCHING CONDITIONS INVERSION \Rightarrow EKO CODE (Candido, Hekhorn, Magni, 2022)

CHARM PDF: $N_f = 4$ VS $N_f = 3$ (NNLO & N³LO CONVERSION)

CONTEMPORARY PDF DETERMINATION INTRINSIC CHARM!

- MHOU ESTIMATED FROM N³LO-NNLO DIFFERENCE
 - LARGE UNCERTAINTY AT SMALL x
 - NEGLIGIBLE UNCERTAINTY IN VALENCE REGION
- COMPATIBLE WITH ZERO AT SMALL x
- CLEAR EVIDENCE FOR INTRINSIC VALENCE PEAK

PDFs and XAI

CONTEMPORARY PDF DETERMINATION DISTRIBUTION IN FUNCTION SPACE :

- PLOT RESULTS IN (σ_H, σ_Z) PREDICTION SPACE
- DISTRIBUTION OF REPLICAS \Rightarrow IMPORTANCE SAMPLING OF UNDERLYING PROBABILITY

DISTRIBUTION OF REPLICAS DRIVEN BY

- DATA UNCERTAINTIES \Rightarrow DATA REPLICA FLUCTUATION
- INTERPOLATION, EXTRAPOLATION AND FUNCTIONAL UNCERTAINTIES \Rightarrow BEST FIT DEGENERACY

LEVEL-1 vs FULL UNCERTAINTIES

- REPLICA FLUCTUATION \Rightarrow DATA UNCERTAINTIES
- NO REPLICA FLUCTUATION \Rightarrow MODEL UNCERTAINTY

THE REPLICA DISTRIBUTION

LOSS QUALITY

- COMPARE TRAINING AND VALIDATION LOSS FOR EACH REPLICA
- NO CORRELATION BETWEEN FIT QUALITY AND POSITION IN THE (σ_H, σ_Z) PLANE
- UNIFORM QUALITY

CONTEMPORARY PDF DETERMINATION DISTRIBUTION IN FEATURE SPACE LOSS TO CENTRAL DATA

- EACH PDF REPLICA FITTED TO A DATA REPLICA
- LOSS COMPUTED TO CENTRAL DATA STATISTICALLY DISTRIBUTED

1000 REPLICAS VS. 3000 REPLICAS

- AVERAGE \Rightarrow CENTRAL PREDICTION PDF \Rightarrow Low Loss
- NOT NECESSARILY LOWEST

REPLICA LOSS DISTRIBUTION TRAINING AND VALIDATION

• ARE FITS WITH HIGH LOSS TO CENTRAL DATA POOR (UNDERLEARNT)?

- NO CORRELATION BETWEEN LOSS TO CENTRAL DATA AND TRAINING, VALIDATION LOSS
- UNIFORM FIT QUALITY
- DISPERSION DUE
 - − DATA REPLICA FLUCTUATION \Rightarrow DATA UNCERTAINTIES
 - − MODEL UNCERTAINTIES \Rightarrow INTERPOLATION, EXTRAPOLATION AND FUNCTIONAL UNCERTAINTIES

FEATURE SPACE vs. FUNCTION SPACE: CORRELATION

- CORRELATED TO POSITION IN (σ_H, σ_z) PLANE
- CORRELATED TO A FEATURE?

FEATURE SPACE VS. FUNCTION SPACE: REPLICAS WITH LOWEST & HIGHEST LOSS TO CENTRAL DATA THE GLUON

• REPLICAS CLOSER TO CENTRAL DATA \Rightarrow MORE STRUCTURE

THE PDF KINETIC ENERGY REPLICAS WITH LOWEST & HIGHEST LOSS TO CENTRAL DATA

$$\mathrm{KE} = \sqrt{1 + \left(\frac{d}{d\ln x}xf(x,Q^2)\right)^2}$$

ARCLENGTH OF THE NN OUTPUT IN TERMS OF INPUT THE GLUON

- REPLICAS CLOSER TO CENTRAL DATA \Rightarrow MORE STRUCTURE
- HIGHER KINETIC ENERGY

OVERLEARNING FEATURES

• INDUCE OVERLEARING: DOUBLE TRAINING LENGTH

• LOOK AT THE OUTPUT \Rightarrow MORE STRUCTURE IN GLUON

- OVERFITTING \Rightarrow POOR GENERALIZATION
- KEPT IN CHECK BY K-FOLDING (NOT CROSS-VALIDATION)
- LOOK AT BEST LOSS TO FITTED VS. EXCLUDED FOLDS

THE GLUON

FITTED FOLDS

EXCLUDED FOLD

- BEST VS WORST REVERSED
- HIGH K.E. SOLUTIONS DO NOT GENERALIZE

THE ERA OF THE EIC

- COMPLEMENTARY KINEMATICS AND INFORMATION COMPARED TO HL-LHC
- LARGE x KINEMATICS, POLARIZATION, NUCLEAR

PDFS

THE IMPACT OF THE EIC SMEFT:

 $\bar{e}\gamma^{\mu}e\bar{u}\gamma_{\mu}u, \ \bar{l}\gamma^{\mu}l\bar{q}\gamma_{\mu}q$ plane

- **SMEFT FITS:** RESOLVING DEGENERA-CIES (Boughezal et al., 2021-2023)
- α_s DETERMINATION AND PDFS (Cerci et al., 2023)
- LARGE x PDFS AND HIGH-MASS STATES (NNPDF, 2022)

 α_s : hera vs. eic

EIC AND MACHINE LEARNING

Artificial Intelligence for the Electron Ion Collider (AI4EIC)

C. Allaire⁶¹, R. Ammendola²⁴, E.-C. Aschenauer³, M. Balandat³⁵, M. 2023 Battaglieri³⁸, J. Bernauer^{6,45}, M. Bondì³⁷, N. Branson^{34,15}, T. Britton²⁹, A. Butter^{30||}, I. Chahrour⁵⁶, P. Chatagnon²⁹, E. Cisbani³⁹, E. W. Cline⁴⁸, S. Jul Dash^{25§}, C. Dean^{33||}, W. Deconinck^{55§}, A. Deshpande^{6,4}, M. Diefenthaler^{29§||}, R. Ent^{29||}, C. Fanelli^{64,29††‡*}, M. Finger¹⁰, M. Finger, Jr.¹⁰, E. Fol^{5||}, S. Furletov^{29||}, Y. Gao³, J. Giroux^{64,57} ||^{††}, N. C. Gunawardhana Waduge⁵⁹, R. Harish^{9,12}, O. 17Hassan^{55,58}, P. L. Hegde⁹, R. J. Hernández-Pinto¹⁷, A. Hiller Blin^{27||}, T. [physics.acc-ph] Horn^{49‡}, J. Huang^{3||}, D. Jayakodige^{22,29}, B. Joo^{41||}, M. Junaid⁵⁷, P. Karande³², B. Kriesten⁸, R. Kunnawalkam Elayavalli^{62||}, M. Lin³, F. Liu^{41||}, S. Liuti^{59||}, G. Matousek¹⁶, M. McEneaney^{16||}, D. McSpadden^{29††}, T. Menzo^{53||}, T. Miceli^{18||}, V. Mikuni^{31||}, R. Montgomery^{54§}, B. Nachman^{31§||}, R. R. Nair³⁶, J. Niestroy⁶⁴, S. A. Ochoa Oregon¹⁷, J. Oleniacz⁶³, J. D. Osborn³[§], C. Paudel¹⁹, C. Pecar^{16||}, C. Peng¹, G. N. Perdue¹⁸, W. Phelps^{11,29}, M. L. Purschke³, K. Rajput²⁹, Y. Ren^{31§||}, D. F. Renteria-Estrada¹⁷, D. Richford², B. J. Roy^{40,23}, D. Roy⁴⁷, N. Sato^{29||}, T. Satogata^{29,42||}, G. Sborlini^{13,21}, M. Schram^{29§}, D. Shih^{46||}, J. Singh⁴⁴, R. Singh^{4,7}, A. Siodmok²⁸, P. Stone⁶⁴, J. Stevens⁶⁴§, L. Suarez⁶⁴, K. Suresh^{57††}, A.-N. Tawfik²⁰, F. Torales Acosta^{31||}, N. Tran^{18||}, R. Trotta⁴⁹, F. J. Twagirayezu⁵², R. 3v1 Tyson⁵⁴, S. Volkova^{43||}, A. Vossen^{29,16}§, E. Walter^{64††}, D. Whiteson^{51||}, M. Williams^{33||}, S. Wu⁵⁵ and N. Zachariou⁶⁰ and P. Zurita^{14,26}§

- PDFs: COLLINEAR AND GPDs
- MONTE CARLO EVENT GENERATORS
- DETECTOR SIMULATION
- CROSS-SECTION INFERENCE
- EVENT RECONSTRUCTION AND PARTICLE IDENTIFICATION
- HARDWARE ACCELERATION
- STREAMING READOUT DATA AQUISITION

CONCLUSION

NO EFFECT THAT REQUIRES MORE THAN 10% ACCURACY IN MEASUREMENT IS WORTH INVESTIGATING Walther Nernst

NO EFFECT THAT REQUIRES MORE THAN 10% ACCURACY IN MEASUREMENT IS WORTH INVESTIGATING Walther Nernst

ACCURACY OF OBSERVATION IS THE EQUIVALENT OF ACCURACY OF THINKING Wallace Stevens