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Summary

The purpose of this thesis is to study and verify the presence of correlations be-
tween the statistical properties of a PDFs-set ensemble, and their physical prop-
erties such as arclength or kinetic energy. In particular, this work is focused on
the meaning of the different χ2 values associated with each PDF replica obtained
with the NNPDF code and its correlation with other replicas’ properties such as
their functional form.

In Chapter 1 we introduce the theoretical framework of this work, starting
with a description of the standard model of particle physics (SM), and Quantum
Chromodynamics (QCD). Then we define what a parton distribution function
(PDF) is, why it is important in perturbative QCD and how PDFs can be in
principle derived from experimental data.

Chapter 2 contains a brief introduction to the main concepts of Machine Learn-
ing, the classification of ML algorithms, based on the different strategies on which
the ”learning” relies, and the different purposes for which can be used. Then
there’s a focus on artificial neural networks and their properties starting from the
simplest example of a neural network, the single-layer perceptron. In particular,
we give the definition of weight and activation function in the context of ML,
then we describe the processes of training and generalization of a neural network
algorithm.

In Chapter 3 is described the general NNPDF strategy, explaining how the
NNPDF approach allows researchers to avoid theoretical bias when inferring the
PDFs’ functional forms from experimental data, namely by using neural networks
as unbiased interpolants. Then we proceed to describe the role of Monte Carlo
replicas of the data in the NNPDF approach, and how the replicas are used for
both training and validation.

Considering the importance of the χ2 figure of merit for this work we focus on
its definition and on the difference between the central-data-χ2 and the replica-
χ2. Moreover, in the last part of the chapter, while presenting the cross-validation
strategy adopted by the NNPDF research group, we define the role of the training
and validation χ2.

Chapter 4 contains the description of the data analysis conducted. For the
analysis two sets of replicas were used: the main 1000-replicas set and a 150-
replicas subset of the first one. Indeed working directly on the 1000 replicas set
resulted computationally inefficient, for this reason, the 150-replicas subset was
used for testing purposes. We developed the analysis with the following scheme:
first of all, we plotted a distribution of the central-data-χ2, then a fitting evaluation
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was run in order to control the possible over-fitting of the network and the possible
correlation between the ”fitting-level” of the NN and the central-data-χ2 for each
replica.

From this evaluation emerged the absence of correlation between the central-
data-χ2 and the learning of the NN. For this reason, we proceeded to plot a
number of replicas with the highest and lowest central-data-χ2 in order to verify
the presence of any particular feature. Then to highlight the main differences
in the PDF replicas properties with respect to the central-data-χ2 we plotted
the arclength distribution, the PDFs derivatives, and the kinetic energy (for the
highest and lowest central-data-χ2).

The conclusion summarizes the main results of the analysis, in particular the
evidence of a systematic change in the PDF functional form with respect to the
central-data-χ2.
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Chapter 1

Parton Distribution
Functions

The Standard Model is the current theory that describes the fundamental particles
and their interactions, in particular, it describes three of the four fundamental
forces: electromagnetic, weak, and strong interactions, excluding gravity.

The branch of physics that studies fundamental particles and their interaction
is high energy physics (HEP). Scattering experiments are an important tool in
high-energy physics, they are used not only to study the internal structure of
particle systems, such as atomic nuclei or protons but also to study the interactions
between different types of particles.

The main reason to study Parton Distribution Functions or PDFs is that they
play a fundamental role in the study of the strong interaction, especially regarding
theoretical predictions in a wide range of scattering experiments.

Moreover, considering possible future experiments, a precise determination of
the PDFs, would help physicists in making predictions that could open scenarios
of new physics beyond the Standard Model (for reference see [14] and for example,
[4] ).

1.1 Quantum Chromodynamics

At first, the quark model was proposed as a mathematical tool to organize the
different properties, such as symmetry, of the increasing number of particles that
were observed at the time. Then, the first pieces of evidence of fundamental
constituents of hadrons came from deep inelastic scattering experiments (DIS)
only later, during the first years of the 1970s.

This evidence came together with the indication of an internal degree of free-
dom for quarks, the color, and the presence of a particle mediating the interaction
between quarks that is sensitive to this color charge, the gluon, the gauge boson of
the strong force. There are three possible values for this color charge, arbitrarily
labeled blue, green, and red.

Quantum Chromodynamics (QCD) is indeed the theory of the strong interac-
tion between quarks, in particular, describes how quarks and gluons bind together
to form hadrons. Nowadays QCD is considered by scientists one of the cornerstones
of the Standard Model [10].
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1.2. DEFINITION OF A PDF 1. Parton Distribution Functions

Asymptotic freedom and color confinement As mentioned before, the first
step toward the systematical studies on strong interaction, was the interpretation
of quarks as physical entities, this could indeed explain the data obtained from
DIS. This interpretation opened the way to the study of the internal structure
of hadrons which, as opposed to elementary particles such as leptons, are bound
states composed of quarks and gluons, collectively known as partons.

Today the most important sources of data in high-energy physics are collision
experiments because particle colliders provide the highest available center of mass
energies, s. Having the highest possible value of s is of key importance for probing
the structure of matter at the shortest distances available.

This last fact is explained by QCD with the concept of asymptotic freedom,
namely the tendency of quarks to be free at small distances (or equivalently, high
energy scale) when the force between them becomes weaker. On the opposite
side of the energy scale, at great distances, quarks are seen as bound together for
confinement: since the force between two color charges remains constant with
the distance, when two color charges are separated the energy grows until a quark-
antiquark pair is spontaneously produced turning the initial hadron state into a
pair-of-hadrons state instead of an isolated color charge [3].

1.2 Definition of a PDF

Nowadays we know that inside nucleons and hadrons there are quarks and gluons,
although we do not know their precise form because we can not resolve QCD with
a non-perturbative approach. Indeed the internal structure of nucleons is not well
defined for the confinement, because their components can not be free. For this
reason, the internal structure of nucleons is described by PDFs, Parton Distribu-
tion Functions, which encode information about the structure of strong-interacting
particles and give a parameterization of the nucleon’s internal components[9].

For example, at the leading order of perturbative QCD, a PDF fi(x,Q
2) repre-

sents the probability density of finding the parton flavor i carrying a fraction x of
the nucleon momentum at scale Q2, where Q is the energy scale of the interaction.

With this definition, it is clear that a complete PDF set includes 13 functions
(6 quarks, 6 anti-quarks, and a gluon) defined for x between 0 and 1. A PDF
set is usually determined through the comparison between the PDF-dependent
prediction for a physical process and its actual experimental value.

Fig. 1.1 shows a PDF set for the proton including some parton flavors at two
different energy scales.

1.3 Parameterization of a PDF

At a reference scale, Q2
0 the standard parametrization that is used for a PDF reads

fi(x,Q
2
0) = xαi(1− x)βigi(x), (1.1)

where gi(x) tends to a constant for both x → 0 and x → 1. Usually gi(x) is a
polynomial function or the exponential of a polynomial in x or

√
x. This choice

is guided by the expectation that PDFs behave as a power of x for x → 0, due
to Regge theory, and as a power of (1 − x) as x → 1 because of quarks counting
rules.

As will be further explained in the following, the aim of the NNPDF group is
to infer the shape of parton distribution functions without assumptions on their
functional forms.
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1. Parton Distribution Functions 1.4. FACTORIZATION

Figure 1.1: Examples of parton distribution functions obtained from NNPDF4.0

It is important to note that, to define a PDF is necessary to choose a reference
scale in fact, the PDF form depends on the scale of the process. This dependence
can be evaluated with DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi) evo-
lution equations: a set of perturbative QCD equations which describe the variation
of parton distribution function with the energy scale [15].

1.4 Factorization

PDFs have an important role in the study of ”hard” processes, which are high-
energy processes that admit a perturbative description. Indeed, the fundamental
property of QCD which enables the perturbative computation of cross sections for
processes with hadrons in the initial state is the factorization[11]. Factorization
allows separating the cross-section of a process into two parts: a process-dependent
partonic cross-section, and a set of universal parton distribution functions that
characterize the hadronic bound states.

For example, if we consider a process with two hadrons in the initial states,
the cross-section for this process can be written as follow:

σ =
∑
a,b

σ̂a,b ⊗ fa/h1
⊗ fb/h2

, (1.2)

where σ is the experimentally measured cross section, σ̂a,b is the partonic cross
section, computed with quarks and gluons in the initial state, fa/hi

(x1, Q
2) is the

distribution of partons of type a in the i-th incoming hadron, and the convolution
product of the a-th parton with the bi hadron PDFs represents an integration over
the relevant initial-state kinematic variables.

If we consider instead a process with a single hadron in the initial state the
cross-section can be written as follow:

Fi(x,Q
2) = Ci,a ⊗ fa(x,Q

2), (1.3)

where Fi(x,Q
2) is the deep-inelastic structure-function, Ci,a is the structure-

function computed with an incoming parton, x := Q2

2p·q is the standard Bjorken
variable, and fa is the PDF for the proton a. By making explicit the integral
computation, we can rewrite the equation as

9



1.5. SUM RULES 1. Parton Distribution Functions

Fi(x,Q
2) = x

∑
a

∫ 1

x

dz

z
Ci,a

(
x

z
, αS(Q

2)

)
fa(z,Q

2), (1.4)

1.5 Sum rules

Typical conservation laws put some constraints on the distribution functions, for
example, the total momentum-energy conservation and the conservation of baryon
number, with the PDF formalism can, respectively, be expressed as follow:∫ 1

0

dxx

[ nf∑
i=1

(
qi(x,Q

2) + q̄i(x,Q
2)
)
+ g(x,Q2)

]
= 1, (1.5)

∫ 1

0

dx(qi(x,Q
2)− q̄i(x,Q

2)) = ni, (1.6)

In particular, the baryon number conservation laws for the proton read as follows:∫ 1

0

dx(u(x,Q2)− ū(x,Q2)) = 2, (1.7)

∫ 1

0

dx(d(x,Q2)− d̄(x,Q2)) = 1, (1.8)∫ 1

0

dx(s(x,Q2)− s̄(x,Q2)) = 0, (1.9)
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Chapter 2

Machine learning

Machine learning (ML) is a field of computer science that has seen great expansion
in the last decades, mainly thanks to the increase in the computational power of
modern computers.

2.1 Classification

ML algorithms can be distinguished on the basis of the type of training they
undergo. In particular, three main classes of ML algorithms can be identified.

Supervised learning Supervised learning concerns learning from labeled data,
this kind of algorithm is mainly used to handle regression and classification prob-
lems. In the NNPDF code supervised learning is used to determine parton distri-
bution functions [5] and fragmentation functions [1]

Unsupervised learning Unsupervised learning is used to find patterns and
structure in unlabeled data, these kinds of algorithms are particularly useful for
the analysis of big data sets, especially when looking for clusters.

Reinforcement learning Differently from the previous cases, in a reinforce-
ment learning algorithm, the algorithm, often called (agent), learns by interacting
with the environment. A reinforcement learning algorithm works on a reward sys-
tem: the agent learns by making, step by step, decisions that maximize its reward
and minimize its penalty.

2.2 Neural Networks

With the term Artificial Neural Networks (ANNs) or simply Neural Networks
(NNs) we define a large class of computing systems that mimic the biological
neural networks constituting animal brains. A NN is constituted by a collection
of fundamental units, nodes, called artificial neurons. These nodes are connected
through edges. Edges carry a weight that adjusts as learning proceeds.

The great power of NNs is determined by two key properties, that allow the
developer to module the learning parameters of the network to make them efficient
for the specific problem they are applied to. Firstly there is the possibility to ag-
gregate the neurons in layers, each of which can perform a different transformation
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2.3. MULTI-LAYERED NEURAL NETWORKS 2. Machine learning

Activation
function

∑
w2x2

...
...

wnxn

w1x1

w01

inputs weights

Figure 2.1: Example of single layer perceptron, from left: the different inputs, to
each of them, is attached a weight (wi), the perceptron Σ is considered active if
the weighted sum is greater than a certain threshold value.

on its inputs, then there’s the possibility to define a threshold of activation for the
neuron, under this threshold the neuron is considered inactive; indeed the function
that defines the threshold of activation is called activation function.

Single-layer perceptron The simplest example of NN is a single-layer percep-
tron, even if today it is more common to use different models of artificial neurons.
Fig. 2.1 shows an example of this simplest neural network, several inputs are fed
to the perceptron through the edges, and each edge carries a weight, which de-
termines the importance of the respective input for the node Σ. In a perceptron,
the output is a simple binary output, O or 1, and it is determined by whether the
weighted sum of the inputs is greater or not than a certain threshold value.

2.3 Multi-layered Neural Networks

Today’s artificial neurons have a structure similar to the perceptron’s, the main
difference is the fact that the output of the node is not strictly binary. The
most common neuron is the sigmoid neuron, where the output function is much
smoother than the step function. In the sigmoid neuron, a small change in the
input only causes a small change in the output as opposed to the stepped output
of the perceptron.

As mentioned before, neurons in a NN can form layers. If the NN is constituted
by more than one layer it’s called a multi-layered neural network. Every multi-
layered NN has an input layer and an output layer, respectively the first and last
layer, these layers can be separated by a series of hidden layers.

An example of multi-layer neural networks are deep neural networks (DNNs),
constituted by multiple layers of neurons that progressively extract information
from raw data.

In multi-layer NNs and in DNNs hidden layers can be connected in different
ways, the simpler NNs are the Feed-forward Neural Networks (FNNs), which are
neural networks where the connections between different nodes do not form a cycle
[16].
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2. Machine learning 2.4. LEARNING AND GENERALIZATION

However, the greater the number of layers, the greater the number of optimiza-
tion parameters, and the best is the approximation we get from the NN. Indeed
the so-called universal approximation theorem states that any continuous function
f : [0, 1]n → [0, 1] can be approximated arbitrarily well by a multi-layer perceptron
with at least 1 hidden layer and a finite number of hidden units. Moreover, in 2017
proved a generalization of this theorem [13] which states that: width n + 4 net-
works with ReLU activation functions can approximate any Lebesgue integrable
function on n-dimensional input space if the depth of the network is allowed to
grow.

2.4 Learning and generalization

When working with machine learning algorithms, the first step usually consists of a
training phase. During this phase, the algorithm ”learns” from data, for example,
recognizes patterns or fits the input data. The training phase usually requires the
minimization of a given cost function, which allows for an evaluation of the NN
performance.

The aim of the training is to develop the algorithm’s ability to generalize suc-
cessfully its model, i.e. make predictions on data. Specifically, the term ‘general-
ization’ refers to the model’s capability to adapt and react properly to previously
unseen, new data, which has been drawn from the same distribution as the one
used to build the model. Indeed, after the training, the NN undergoes the valida-
tion phase in which the network performance is measured by evaluating the same
cost function.

Correct generalization problem Ideally, after the training the ML algorithm
should be able to make correct predictions on data, avoiding either under- or
over-learning. While under-learning happens when the model is not trained with
adequate data, and subsequently the algorithm fails to make accurate predictions
even with the training data, in case of over-learning the model will not be able
to generalize, meaning that would make inadequate predictions on new data. For
this reason, the validation phase of an ML algorithm is particularly important as
shows how good or how bad the predictions of the NN are.

The learning evaluation is the domain of the statistical learning theory (for
reference see [12]), but a few basic ideas can be summarized as follows. Firstly,
it is clear that minimizing the training, or in-sample error is not enough because
the validation or out-of-sample error can still be large, meaning that the NN
cannot make a good prediction on the model underlying the data. Indeed, a large
difference between the training and validation error indicates an over-fit of the
data; the NN’s parameters adapted too much to the training dataset causing a
loss of generality for the model.

This fact is related to a second observation, which is that the validation error is
a function of the model complexity, often related to the number of parameters used
by the NN to approximate the result. The validation error is generally minimized
for models with intermediate complexity, in fact, many-parameters models can
easily produce over-learning, while NN models with not enough parameters can
never reach an optimal learning level.
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2.4. LEARNING AND GENERALIZATION 2. Machine learning
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Chapter 3

NNPDF strategy

Machine Learning techniques have different applications in High Energy Physics,
here specifically are used for the parameterization and optimization of PDFs [7].
In particular, while in other fitting approaches, the PDF shape is parameterized
by relatively simple functional forms (see sect.1.2), inspired by QCD models, here
NNs are used as unbiased interpolants, in order to avoid any theoretical bias. In
this chapter, we present the NNPDF fitting strategy, with a focus on some specific
features of the NNPDF fitting algorithm.

Figure 3.1: Schematic representation of the NNPDF general strategy

3.1 Fitting strategy

PDFs are not computable from first principles because that would involve the
knowledge of the proton wave function. So, in order to determine a PDF set, a
fitting procedure must be adopted which consists in comparing factorized expres-
sions, such as Eq. 1.4, with experimental data while minimizing a specific cost
function used to measure the goodness of the fit.

In this context, a determination of PDFs with uncertainties involves deter-
mining a probability distribution in a space of several independent functions. A
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3.2. MC APPROACH AND MC REPLICAS 3. NNPDF strategy

possible method assumes a specific functional form for parton distributions, pro-
jecting the infinite-dimensional problem onto a finite-dimensional parameter space
so that a representation of PDFs is possible in terms of a finite number of param-
eters and there is an optimal parametrization.

Two different methodologies are currently used: the Hessian approach and the
Monte Carlo approach, while in the first case the parametrization is standard and
inspired by QCD arguments (see for example Eq. 1.1 in section PDF parameteri-
zation); in a Monte Carlo approach, the best fit is determined from Monte Carlo
sample by an average of the data, and uncertainties are obtained as variances of
the sample. In the following, we will present the Monte Carlo approach.

3.2 MC approach and MC replicas

In this Monte Carlo (MC) approach, in order to use a statistical framework, a
number Ndat of experimental data (data-point) are used to build an ensemble of
Nrep artificial Monte Carlo pseudo-data, hereinafter replicas

F
(art)(k)
i = (1 + r

(k)
N σN )

(
F

(exp)
i +

Nsys∑
p=1

r(k)p σi,p + r
(k)
i σi,s

)
, (3.1)

with k = 1, ..., Nrep, i = 1, ..., Ndat; where Fi represents one single data point,
σN is the total normalization uncertainty, σi,p are the Nsys correlated systematic

errors, σi,c =
∑Nsys

p=1 σi,p is the sum of all the correlated systematic errors, and r(k)

are independent univariate Gaussian random numbers.

We see, from Eq. 3.1, that replicas are randomly generated in accordance with a
multi-Gaussian distribution, centered around each-data point, with variance given
by the experimental uncertainty. Each replica contains the same number of data
points as the original experimental measurement. So, with enough replicas, the
set contains complete experimental information and the experimental value can
be retrieved by taking the mean and the experimental variance (calculated over
different replicas).

The experimental (or central) data used in the NNPDF strategy, come from a
number of experiments, including fixed target, colliders, deep inelastic scattering,
and Drell-Yan experiments. The experimental data are in form of observables such
as cross-sections and structure formations and are provided in different formats
from different research groups. In order to produce replicas and fit them, the data
are converted to an NNPDF common-format (commondata) by the buildmaster
code [2].

3.3 Fitting methodology

The next step consists in the interpolation between data points with neural net-
works, which means training Nrep neural networks, each of them based on the data
in one single replica. In the end, we have Nrep PDFs and from these values, we
can determine the mean value of the parton distribution for each x as the average
over all the replicas, while the uncertainty is the variance of the values. Examples
of PDF replicas and final PDF plots can be found in the Appendix, Fig. 5.1 - Fig.
5.4.
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3. NNPDF strategy 3.3. FITTING METHODOLOGY

Figure 3.2: Schematic of the NNPDF algorithm workflow

3.3.1 Fit constraints

In the NNPDF approach, the parton distribution functions (or the fragmentation
functions) are parameterized at a low scale, around the boundary between the per-
turbative and non-perturbative regimes of QCD, namely Q0 ≃ 1 GeV (the proton
mass). QCD provides little guidance about the behavior of PDFs at the input
parameterization scale Q0, such as integrability conditions and the momentum
and valence sum rules, and does not provide any further information on their x
dependence at low scales. The NNPDF4.0 algorithm implements in the code these
restraints together with a positivity constraint.

Positivity constraints As PDFs below leading order do not represent proba-
bilities, they may be negative. Nevertheless, since was demonstrated (see [6]) that
PDFs for individual quark flavors and for the gluon in the minimal subtraction
scheme are non-negative, a positivity condition is imposed along with the positivity
of physical cross-sections. Note that the positivity of PDFs in the minimal sub-
traction scheme is neither necessary nor sufficient in order to ensure cross-section
positivity: they are independent (though of course related) constraints that limit
the space of acceptable PDFs.

Integrability constraints At small-x the PDFs behavior is constrained by in-
tegrability requirements. The gluon and singlet PDFs must satisfy the momentum
sum rule, Eq. 1.5, which implies

lim
x→0

x2fk(x,Q) = 0, ∀Q, fk = g,Σ, (3.2)

.
Similarly the valence sum rule, Eq. 1.6, force the small-x behaviour of the

valence distributions:

lim
x→0

xfk(x,Q) = 0, ∀Q, fk = V, V3, V8 (3.3)

.
Moreover, standard Regge theory arguments indirectly imply that

lim
x→0

xfk(x,Q), ∀Q, fk = T3, T8; (3.4)

where Σ is the singlet quark, g the gluon, Vi the valence and Ti the non-singlet
sea combinations (listed in the following).

Σ(x,Q2
0) = (u+ ū+ d+ d̄+ s+ s̄+ 2c)(x,Q2

0), (3.5)
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3.4. NEURAL NETWORK ARCHITECTURE 3. NNPDF strategy

T3(x,Q
2
0) = (u+ ū− d− d̄)(x,Q2

0), (3.6)

T8(x,Q
2
0) = (u+ ū+ d+ d̄− 2s− 2s̄)(x,Q2

0), (3.7)

V (x,Q2
0) = (u− ū+ d− d̄+ s− s̄)(x,Q2

0), (3.8)

V3(x,Q
2
0) = (u− ū− d+ d̄)(x,Q2

0), (3.9)

V8(x,Q
2
0) = (u− ū+ d+ d̄− 2s+ 2s̄)(x,Q2

0), (3.10)

These constraints that are imposed, by means of the Lagrange multipliers,
affect the cost function. In particular, for each constraint that’s imposed, an
additional contribution is added to the total cost function. This fact is important
for considerations that will the following as a higher or lower value of the cost
function makes respectively, increase or decrease the probability of having a specific
output.

3.4 Neural Network architecture

The NNPDF fitting code supports multi-layered, feed-forward NNs, called sequen-
tial dense NNs in the ML code framework (for more details on the NNPDF code
see [2]).

Figure 3.3: Example NNPDF neural network architecture, this architecture cor-
responds to the optimal choice in the evolution basis as results from hyper-
optimization studies.

Image 3.3 shows an example of NNPDF neural network architecture. The neu-
ral network has two inputs (x and lnx) and eight output neurons, one for each
parton flavor. In particular, image 3.3 shows a 2-25-20-8 NN, this particular ar-
chitecture corresponds to the optimal choice of hyper-parameter in the evolution
basis. Here the term hyper-parameter refers to the parameters of the NN archi-
tecture that can be decided by the developer; the number of layers, of neurons
per layer, the activation function associated to each neuron, and the optimization

18



3. NNPDF strategy 3.5. χ2 FIGURE OF MERIT

function are examples of hyper-parameters. The NNPDF4.0 code implements an
automatic hyper-parameters study, the hyper-optimization which aims to find the
best choice for the architecture’s parameters of the NN.

As in other NNs, the neurons of this neural network are characterized by a series

of parameters. In particular, ξ
(l)
i denotes the activation state of each neuron, where

l represents the layer and i is the neuron index within the layer. These values of

activation, ξ
(l)
i , are determined in terms of the previous layer, (l− 1). ω

(l)
ij denotes

the weight associated to the edge connecting the i-node of the l layer and the

j−node of the (l − 1) layer; and θ
(l)
i the activation thresholds of each neuron.

For example, for a sigmoid neuron, its activation state can be computed ex-
plicitly as follow:

ξ
(l)
j = g(h

(l)
j ), (3.11)

where g(x) is the sigmoid function

g(x) =
1

1 + e−x
, (3.12)

and h
(l)
j is computed as

h
(l)
j =

nl−1∑
i=1

ω
(l)
ji ξ

(l−1)
i − θj , (3.13)

3.5 χ2 Figure of Merit

The goodness of a PDF set is measured by means of a suitable figure of merit,
subsequently, the optimal fit is obtained by minimizing this figure of merit (or cost
function). In the NNPDF approach, this figure of merit is the χ2,

χ2 =

Ndat∑
i,j

(Di − Pi)C
−1
ij (Dj − Pj), (3.14)

where Di is the i-th data point, Pi is the prediction of the corresponding data
point, and Cij

Cij = δij(σ
uncorr
i )2 +

Ncorr∑
k=1

σcorr
k,i σcorr

k,j (3.15)

is the experimental covariance matrix element between data-points i and j; where
every i−th data point (i = 1, ..., Ndat) is affected by uncorrelated uncertainty
σuncorr
i and correlated systematic uncertainty σcorr

k,i for k = 1, ..., Ncorr.

Central-data and replica χ2 Depending on which data point Di is considered
when calculating the χ2, we can compute different quantities. For each replica,
we can compute the replica-χ2 or the central-data-χ2, in the first case the χ2 is
computed to the replicas, meaning that data point Di used in the calculation are
replicas of the original data. The central-data-χ2 is calculated with respect to the
original experimental data, in this case, Di indicates the experimental data point.
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3.6. CROSS VALIDATION 3. NNPDF strategy

Figure 3.4: Training and validation χ2 at different epochs

3.6 Cross Validation

As explained in section 2.2, weights and activation thresholds are free parameters
of the network which adjust as learning proceeds. This means that is necessary to
optimize these parameter values in order to have a good fit. When having a large
number of parameters, determining the best fit could be non-trivial, due to false
minima and fluctuations. One possible way to avoid this problem is the cross-
validation method [8]. This method consists in randomly dividing the data into
two sets, training, and validation, and computing their χ2 separately, but only the
training (χ2

tr) is minimized.

χ2 minimization Currently, the minimization strategy used in the NNPDF
algorithm involves gradient descent algorithms, which require the evaluation of
the χ2 gradient with respect to the weights and the activation threshold of the

neuron, namely ∂χ2

∂w
(l)
ij

and ∂χ2

∂θ
(l)
i

. When having a large number of parameters a

deterministic gradient descent may not be efficient as the algorithm would easily
get stuck in local minima. To avoid this problem a stochastic gradient descent
algorithm (SGD) is useful. In particular, the NNPDF algorithm has been tested
with the Adam, AdaGrad, and RMS stochastic gradient descent function.

The cross-validation approach is thus important to determine the optimal length
of the fit. While in the beginning, both χ2

ttr and χ2
val decrease, at some point, the

training error continues decreasing, while the validation error starts increasing
determining a global minimum (see Fig. 3.4). This global minimum of the χ2

val is
the optimal stopping point, a too-short fit would cause under-learning, meaning
the NN is not yet able to fit data correctly. On the contrary, a longer fit would
lead to over-learning, where the NN ends up fitting statistical fluctuations. In
particular, over-learning is characterized by the increase in χ2

val as the number of
iterations increases, indicating that what is being learned in the training sample
is not present in the validation one (namely the fluctuations).

Patience algorithm The optimal stopping point can be determined with dif-
ferent strategies: in a look-back strategy the optimal stopping point is defined as
the global minimum of χ2

val, computed over a large, fixed number of iterations.
Instead, in a so-called patience algorithm the fit is stopped after χ2

val no longer
improves for a defined number of iterations.

NNPDF4.0 algorithm implements a patience algorithm that, together with
positivity constraints, defines when a fit is allowed to stop. Fig. 3.5 shows the
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3. NNPDF strategy 3.6. CROSS VALIDATION

Figure 3.5: Flowchart describing the algorithm implemented in NNPDF4.0 to
determine the optimal length of the fit based on the look-back cross-validation
stopping method

workflow of the fit algorithm after the patience algorithm is enabled.
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Chapter 4

Results

The aim of this work is to verify the presence of possible correlations between the
statistical and physical properties of PDFs ensembles obtained with the NNPDF
collaboration’s code, and eventually identify the main features of the better-fitting
PDFs. As the NNPDF fits produce a distribution of results, to have a better
understanding of this result distribution, it’s interesting to compare the results
with properties of the experimental data. The central-data-χ2 is useful in this
task because shows how well a PDF replica describes experimental data.

4.1 Analysis overview

The analysis that will be described in the following involves two different sets
of replicas: the main set of 1000 replicas and a subset of 150 replicas. The 150
replicas subset, was used mainly for testing purposes as working directly on the
1000 replicas set resulted computationally inefficient. In particular, all the analyses
that will be presented were, in the first moment tested on the 150 replicas subset,
and then reproduced on the 1000 replicas main set. After studying the main
statistical features of the two ensembles, we studied the statistical and physical
properties of the highest and lowest central-data-χ2 replicas. In particular, to
investigate the systematic behavior of the PDF replicas in relation to the central-
data-χ2, from both the main set and its subset the 2, 5, 10, 15, and 20 replicas
with the highest and lowest central-data-χ2 were analyzed.

In order to summarize the results of these analyses, in the following we report
the plots of the analyzed statistical and physical quantities

1. of the 5 replicas with the highest and lowest central-data-χ2, plotted respec-
tively in green and orange.

2. of all the replicas with a color scale associated to the central-data-χ2 of
the replicas. In particular, in the 150-replicas plot, the color scale goes
from green for the lowest-central-data-χ2-replicas, to orange for the highest-
central-data-χ2-replicas. In the 1000-replicas this color scale wasn’t appro-
priate as did not allow for a clear understanding of the systematic feature
we wanted to enhance, indeed we used a color scale that goes from blue, for
the lowest-central-data-χ2 replicas, to yellow, for the highest-central-data-
χ2-replicas.

The plots for the 5 replicas with the highest and lowest central-data-χ2 repre-
sent clearly the feature studied while the color-scale plots are useful to represent
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4.2. χ2 DISTRIBUTION 4. Results

the systematic behavior of PDFs replica with respect to the central-data-χ2.

4.2 χ2 distribution

The analysis starts from the central-data-χ2 distribution plots (Fig. 4.1 and Fig.
4.2).

Figure 4.1: Chi2 distribution for 150 replica

Figure 4.2: Chi2 distribution for 1000 replica

As we would expect, the two χ2 distributions do not show particular differ-
ences. Both plots follow a standard χ2 probability distribution and have only a
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4. Results 4.3. FITTING EVALUATION

few replicas with a central-data-χ2 smaller than 1.24, and a few replicas with a
central-data-χ2 value, greater than 1.28 or 1.29; meaning the two sets are statis-
tically equivalent.

At first one could think that the central-data-χ2 value of a replica was related
to the learning level of the NN algorithm while producing that replica. We tested
this hypothesis by carrying out a fitting evaluation, in order to verify the possible
presence of a correlation between the over-fitting of the NN associated with the
replica and the low central-data-χ2 value.

4.3 Fitting evaluation

The learning (or fitting) level of each replica was studied by means of a scatter-plot
in which, each point’s (x, y) coordinates are defined as (χ2

tr, χ
2
val). In this way,

the y = x line on the plane represents the case of ”optimal learning” in which the
NN is able to fit the valuation data set as well as the training data set. On the
other hand, a point situated above this line represents a PDF replica affected by
over-learning, while a point situated under this line represents the under-learning
situation.

Figure 4.3: Color scale plot of the 150
replicas position in the χ2

tr, χ
2
val plane.

The color indicates the central-χ2 value

Figure 4.4: Color scale plot of the 1000
replicas position in the χ2

tr, χ
2
val plane.

The color indicates the central-χ2 value

In Fig. 4.3 and Fig. 4.4, each data point is plotted in a different color, asso-
ciated with its central-data-χ2, going from green for the lowest central-data-χ2 to
orange for the highest central-data-χ2. The red square represents a sort of ”mean
learning level”, that quantifies the mean learning of the algorithm on its own
replica data set. Its position over the bisector line indicates a small over-learning.

The scatter plots show that there is not any correlation between the central-χ2

value and the learning of the NN, if a correlation was present we would expect
a majority of green points over the bisector line and a majority of orange points
under the bisector line, meaning that central-data-χ2 would be related to over-
learning.

Fig.4.6 and 4.5 show the same plots for the five replicas with the highest and
lowest central-data-χ2 for each set of replicas. The points associated with the low
central-data-χ2 replicas are plotted in green, while the ones associated with high
central-data-χ2 replicas are plotted in orange. From these plots, it is even more
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4.4. PDF REPLICAS PLOT 4. Results

Figure 4.5: Plot of the position of the
selected replicas (from 150 replicas fit)
on the χ2

tr, χ
2
val plane

Figure 4.6: Plot of the position of the
selected replicas (from 1000-replicas-fit)
on the χ2

tr, χ
2
val plane

evident the difference in the central-data-χ2 value, is not related to a difference in
the learning on the NN, as both replicas with the highest and lowest central-data-
χ2 show a small over-learning.

4.4 PDF replicas plot

In order to understand whether the high or low central-data-χ2 could be related
to a physical property of a PDF set, the first step is looking at the plots of the
five highest and lowest central-data-χ2 replicas. Fig. 4.7 - 4.8 shows PDF plots
for the 5 lowest (green) and highest (orange) central-data-χ2 replicas.

From the analyses presented so far, we know that the 1000 replicas set and
its 150 subsets are statistically equivalent but we can not say anything about the
physical properties of the two sets. For this reason, the 5 replicas with the highest
and lowest central-data-χ2 have been selected from both replicas set.

These plots (Fig. 4.8 and Fig. 4.7) shows that the lowest central-data-χ2 replicas
have a more complex functional structure. This is especially evident for the gluon
(4.8 (d) and 4.7 (d)).
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(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 4.7: Plot of the 5 highest and lowest central-data-χ2 replicas from the 150
replicas set
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(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 4.8: Plot of the 5 highest and lowest central-data-χ2 replicas from the 1000
replicas set
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4.5 Arc-length

Intuitively one can imagine that the difference in the functional structure should
result in different PDFs arclength,∫ 1

0

√
1 +

( d

d log x
xfi(x)

)2
dx. (4.1)

In particular, we would expect to see an arc-length distribution centered around
a higher value for the lowest central-data-χ2 replicas (more oscillating PDFs) and
a distribution centered around a lower value for the high central-data-χ2 replicas
(more smooth PDFs).

Figures Fig. 4.9 and Fig. 4.10, show the arc length distributions for the 5 lowest
(green) and highest (orange) central-data-χ2 for both the 150-replicas subset and
the 1000-replicas main set.

The same figures do not show any significant difference between distributions:
for each of the eight flavors, the arc lengths for both the 5 highest and lowest
central-data-χ2 replicas are distributed around the same value. For example, con-
sidering the gluon PDF (Fig. 4.9 if we consider the set of 150 replicas (d), and
Fig. 4.10 (d) if we instead consider the 1000 replicas set), the arclength for both
high-χ2 and low-χ2 vary around a central value of 1.28, despite the considerable
difference in the PDF shape.

Anyway from this arclength analysis, and together with the PDFs plots in the
previous section we can conclude that the main 1000-replicas set and the 150-
replicas subset are statistically also with respect to the ”physical” properties of
the PDFs. For this reason, from this point on the analysis results and plots are
reported only for the main replicas set.

4.6 Derivative

In order to have a better understanding of the trend of the curve, it is interesting
to study the PDFs’ derivative, especially considering that it is very similar to the
integrand function in equation Eq. 4.1. For this reason, for the 5 replicas with
the highest and lowest central-data-χ2, we plotted the derivative (Fig. 4.11). As
in previous plots, the derivative of the low-χ2 replicas is represented by green
functions, and orange was used to plot the high-χ2 replicas derivative. In order to
have more detailed information on the PDFs trend we computed the log derivative
instead of the standard derivative. The use of log-scale indeed is useful to have a
look at both the limits: x → 0 and x → 1.

Looking at the derivative’s plots (4.11) it is clear the reason behind the sim-
ilarity of the arclength distributions: the arc-length value is dominated by the
peak that all the PDFs present for x → 1. Moreover, it is clear that replicas with
the highest central-data-χ2 have a more fluctuating derivative, while the lowest
central-data-χ2 replicas are related to a more smooth function and subsequently
a less oscillating derivative. Figure 4.12 shows how this is a systematic behavior.
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4.6. DERIVATIVE 4. Results

(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 4.9: Plot of the arclength distributions of different parton flavors divided
in respect with the χ2 value - 150 replicas set
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(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 4.10: Plot of the arclength distributions of different parton flavors divided
in respect with the χ2 value - 1000 replicas set
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4.6. DERIVATIVE 4. Results

(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 4.11: Plot of the PDFs’ log-derivatives of different parton flavors separated
according to the χ2 value - 1000 replicas set

32



4. Results 4.6. DERIVATIVE

(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 4.12: Plot of the PDFs’ log-derivatives of different replicas in a color scale
related to the central-χ2 value - 1000 replicas.
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4.7. KINETIC ENERGY 4. Results

4.7 Kinetic energy

To conclude the analysis, the last quantity that we consider is kinetic energy. The
term kinetic energy is used to identify the integrand in eq. 4.1 because it coincides
with the Lagrangian of a quantum free particle, indeed its kinetic energy. The
PDF kinetic energy is defined as√

1 +
( d

d log x
xfi(x)

)2
. (4.2)

Eq. 4.2 shows that the kinetic energy is ultimately the module of the derivative the
kinetic energies, for this reason, the kinetic energies plots enhance the difference
in the PDF replicas that were already identified in the derivative’s plots. Fig 4.13
shows the kinetic energy plots for the 5 replicas with the lowest (green) and highest
(orange) central-data-χ2.

From this final analysis of the kinetic energy, it is clear that a low-central-data-
χ2 can be related to a particular shape of the PDFs function for different flavors.
In particular, it can be related to higher-kinetic energy and subsequently to more
oscillating functions. This is especially true for the gluon PDF (4.13, (d)) where
the high central-data-χ2 replicas form almost straight lines while the low central-
data-χ2 replicas have a well-defined peak for x = 10−2. The same plot for the
complete replicas set (Fig. 4.14) confirms the observation, indeed, in the PDF
gluon’s plot (Fig. 4.13 (d)) it’s possible to see a color gradient from blue to yellow
in accordance with the results seen in (4.13, (d)).
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(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 4.13: Plot of the PDFs’ log-derivatives of different parton flavors separated
according to the χ2 value - 1000 replicas set
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4.7. KINETIC ENERGY 4. Results

(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 4.14: Plot of the PDFs’ kinetic energies with a colors scale indicating how
well they fit the central data according to the central-χ2 value - 1000 replicas set
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Chapter 5

Conclusions

The analysis presented shows a few interesting results. First of all, we can state
that a low-central-data-χ2 is related to a specific functional form for each PDF’s
flavor. We can also state that the reason why these replicas have a low-central-
data-χ2, is simply that they reflect, the low-χ2 value is not related to better
learning of the NN.

The analysis also shows that these functional forms are outliers of the central-
χ2 distribution. Only a few data replicas produce PDFs set with this feature.
This can, in turn, be due to different reasons; it is possible that central data re-
flects a certain distribution made unlikely by the fitting methodology, for example,
highly-fluctuating functions are penalized by the algorithm. This first hypothesis
is supported by the lack of correlation between the central-data-χ2 and the fitting
performance measured by the ratio between χ2

tr and χ2
val.

On the other side, it is possible that the fitting methodology is correct and that
the fact that these functional forms are unlikely, is related to experimental data
features: for example, the fact that low-central-data-χ2 shows high kinetic energy
may be due to the experimental results obtained until this point and the fact of
having only a few replicas with this feature is that experimentally it’s difficult to
obtain high-enough kinetic energy.

It is also possible that the particular functional form of low-central-data-χ2

replicas may represent only a statistical fluctuation of the experimental results
and not a particularly ”good” parton distribution functions and that, with further
experiments, thus having more and different central-data-χ2 these same functional
forms result in a high central-data-χ2.

The other important observation emerging from this study, is the absence of
correlation between the low-central-data-χ2 and the possible over-fitting of the
data by the NN. Indeed, if a correlation was present, one would expect to see
a clear separation between the low-central-data-χ2 and the high-central-data-χ2

on the over-fitting plane, to be precise I’d expect to see a higher number of low-
central-data-χ2-points (green) in the upper part of the plane, and a higher number
of high-central-data-χ2-points (orange) points in the lower part, under the bisector
line, but that’s not the case (see Fig. 4.3 and Fig. 4.4).

Moreover, if a correlation between the central-χ2 and the fitting performance
of the NN was present, one would also expect to see an overall progressive shift
from high-central-data-χ2 to low-central-data-χ2 (from orange to green), moving
upward in the plot, which instead does not happen.

37



5. Conclusions

Considering these observations, in order to have a better understanding of the
relation between the central-χ2, the available data, and PDFs functional forms, it
may be interesting to reproduce the scheme of analysis on a set of PDFs produced
directly fitting the central data instead of the replicas. This could help understand
whether the small number of low-χ2 replicas is due to the fitting methodology or
if it reflects features of the data that need to be further investigated.
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5. Conclusions

(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 5.1: Best PDF set obtained from the 150-replicas sett
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5. Conclusions

(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 5.2: Plot of the 150 replicas PDF-set

41



5. Conclusions

(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 5.3: PDF set obtained from the 1000-replicas set
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5. Conclusions

(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 5.4: Plot of the 1000 replicas PDF-set
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5. Conclusions

(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 5.5: Plot of the 15 PDFs replicas data-set with a color scale representing
how good they fit the central data
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5. Conclusions

(a) antistrange (b) antidown

(c) antiup (d) gluon

(e) up (f) down

(g) strange (h) charm

Figure 5.6: Plot of the 1000 PDFs replicas data-set with a color scale representing
how well they fit the central data
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a te; già che ci sono insieme a te ringrazio anche la nostra Wendolina. Ringrazio
la nonna Palmira per essersi sempre divertita ad ascoltare le mie divagazioni e i
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