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Introduction

The scope of this work is to gain further insight into the functioning of the Machine
Learning algorithm developed by the NNPDF collaboration for the scope of Parton
Distribution Function (PDF) determination. In particular, our aim is to understand
the impact of inconsistent data on the methodology functioning.

The structure of the proton is encoded in the PDFs, which are not directly ob-
servable. In order to be able to compute theoretical predictions in QCD one needs
then to infer their value starting from experimental measurements. In addition to
the straightforward determination of the PDFs’ values, it is essential to address the
proper handling of uncertainties. This aspect forms the fundamental focus of our
current research.

The framework of this thesis is the validation of the methodology known as clo-
sure test, which is employed by the NNPDF collaboration since 2012. In a closure
test we choose an underlying true value in order to then generate several pseudo-data
instances which are ‘perfect’, in the sense that they are free from internal inconsis-
tencies since they are sampled from a totally known distribution. The next step is
to corrupt this distribution in order to insert artificial inconsistencies in the gener-
ated pseudo-data: in principle this gives complete information on the response of the
Neural Network to inconsistent data.

The first part of this thesis is actually devoted to the modification of the closure
test setup: in particular, in order to quantify the performance of the NN in the closure
test framework, it has been found that the previously adopted figure of merit was
flawed by some problems. These issues have been partially solved with the redefinition
of the figure of merit apt to deliver the judgement on the NN performance itself.

Having modified the previous way of evaluating the NN performance, we were
able to extract the following results. We found that the NN behaves by learning the
inconsistency only in extreme cases. Moreover, we found that the inconsistency is
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propagated respecting a simple pattern: this means that the output of the incon-
sistently trained NN shows an inconsistent behaviour only on those processes which
were made inconsistent in the input.

The thesis is outlined as follows: in Chapter 1, we introduce the fundamental
concepts of Quantum Chromodynamics (QCD) and Parton Distribution Functions
(PDFs). Our focus here is on exploring advanced topics within this field and eluci-
dating their relevance to the present research.

Chapter 2 provides an overview of the methodology employed by NNPDF for
error treatment. To do this, we briefly introduce the concept of inverse problems and
detail the Bayesian approach used to address them. This will show the validity of the
NNPDF approach in treating error.

Chapter 3 offers an introduction to Machine Learning and Neural Networks (NNs).
We also present the essential technical details related to the NNPDF code, which
forms the backbone of our study.

In Chapter 4, we delve into the methodology validation framework known as
closure testing. This framework constitutes the main setting of the research proposed
in this work.

Finally, Chapter 5 is devoted to the results of this thesis. The first part deals
with the modification of the closure test formalism, and the explanation related to
the need of such a change. The second part is then devoted to the presentation of
the results concerning the inconsistent closure test.



Chapter 1

QCD and Parton Distribution
Functions

This chapter is devoted to a brief introduction to the topic of Quantum ChromoDy-
namics (QCD) and Parton Distribution Functions (PDFs). The covered topics will
regard technical aspects of the theory which are of fundamental importance in the
context of this work. The basic notions of Quantum Field Theory are assumed to be
familiar to the reader.

1.1 Introduction to QCD

QCD is the physical theory that describes strong interactions. The fundamental
particles of the theory are the quarks which are the constituents of hadrons; these in
turn include among many other particles the proton and the neutron just to cite a
couple of well known examples.

Hadronic matter is divided into two families, mesons and baryons, which are
respectively bound states of quark and anti-quark (qq) and of three quarks (qqq).
Quarks are spin 1{2 particles with fractionary charge whose basic properties are listed
in the table below1.

The properties listed in table (1.1) constitute what is known as the naïve quark
model, which historically was the first one introduced. As it can be seen from the

1It has to be said that the attribution of a mass to quarks is a tricky statement since quarks
cannot be observed isolated.
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8 CHAPTER 1. QCD AND PARTON DISTRIBUTION FUNCTIONS

Quark Mass Charge
Up (u) „ 4MeV `2

3

Down (d) „ 7MeV ´1
3

Charm (c) „ 1.5GeV `2
3

Strange (s) „ 135MeV ´1
3

Top (t) „ 175GeV `2
3

Bottom (b) „ 5GeV ´1
3

Table 1.1: Quark properties

mass parameter, quarks can be divided into two families: light quarks which are u,
d, s and heavy quarks which are the remaining three b, t, c. The light quarks obey
an approximate symmetry under the group SUp3qfl called flavour symmetry2.

The naïve quark model briefly described until now poses a serious problem: some
particles expected from the flavour symmetry needed to violate the Fermi-Dirac statis-
tics. In particular in baryonic spectroscopy the resonance ∆`` was measured, which
is a bound state of charge 2e and spin 3{2. The problem with the state ∆`` is the
fact that a state of three u quarks all with up spin would make it a totally symmetric
state, violating Fermi-Dirac statistics.

In order to solve this problem a new quantum degree of freedom was introduced:
the colour number, which is actually the fundamental property of QCD as will be
seen later on. This new degree of freedom introduces another SUp3qc symmetry
called symmetry of colour and the new index can take up three values usually called
red, green and blue. Adding a new quantum number to the theory, the antisymmetry
of the state ∆`` can be restored, regarding such a state as a totally anti-symmetric
combination of the new degree of freedom:

|∆``
y “

1
?
6
εijk|uÒ

i , u
Ò

j , u
Ò

ky. (1.1)

The introduction of this new degree of freedom immediatly leads to another fun-
damental property of QCD which is colour confinement. There is resounding evidence
that quarks cannot be observed isolated, thus the only observable hadronic states are
bound states of quarks, which are exactly mesons and baryons.

2This division into light and heavy quarks is not totally rigorous. This split comes mainly from
the fact that the mass corrections become important as the mass increases.
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From a group theoretical point of view, colour confinement can be seen as a
manifestation of the fact that qq (mesons) and qqq (baryons) all lie in the trivial
representation of the colour symmetry group.

Mesons : 3c ˆ 3c “ 8 ‘ 1, (1.2)
Baryons : 3c ˆ 3c ˆ 3c “ 10 ‘ 8 ‘ 8 ‘ 1. (1.3)

Lagrangian formulation of QCD

As any other Quantum Field Theory (QFT), also QCD is formalized through its
Lagrangian formulation which will be shortly described here.

Each quark is represented as a Dirac spinor Ψf in the fundamental representation
of SUp3qfl, where f ranges over the possible flavours. Spinors also carry a colour
index which refers to the colour symmetry SUp3qc. It is upon quantization that QCD
becomes a non abelian gauge theory: through the gauging of the symmetry of colour
new particles are introduced. These are the vector bosons of the theory which are
called gluons.

This is essentially what happens in Quantum Electro Dynamics (QED), with the
only difference that here the symmetry group is SUp3qc which is non abelian and has
higher dimension, yielding more than one gauge boson. Gluons are spin-1 particles
described by 8 gauge fields Aµ

a living in the adjoint representation of SUp3qc.
Similarly to the Lagrangian of QED, the Lagrangian of QCD reads as follows:

L “
ÿ

flavours
Ψapi {D ´ mf qabΨb ´

1

4
F a
αβF

αβ
a . (1.4)

{D “ γµD
µ is the covariant derivative:

Dµ
“ B

µ
` igTaA

µ
a (1.5)

and F µν
a is the field strength tensor

F µν
a “ B

µAν
a ´ B

νAµ
a ´ gfabcA

µ
bA

ν
c . (1.6)

In the equations above Ta are the generators of SUp3qc in the adjoint represen-
tation, g is the coupling constant and fabc are the structure constants of the group.
The following relation defines the structure constants relating them to the generators
of the group:

rT a, T b
s “ ifabcT bT c. (1.7)
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The Lagrangian is necessary in order to compute observables as a perturbative
series in the coupling constant g. These computations though pose the problem
of divergences in the series [18], cured by the known process of renormalization.
Renormalization is a topic of fundamental importance in QFT and in the following
section a brief discussion will be given.

1.2 Renormalization of QCD
Renormalization is closely related to the topic of PDFs for two main reasons: first
of all it is through renormalization that one can understand the phenomenon of
asymptotic freedom; second of all renormalization revolves around the formalism of
the renormalization group equations and it will be shown that also PDFs need to
undergo a certain renormalization procedure.

In QCD, as in typical, renormalization becomes necessary to address the issue of
UV divergences which arise when calculating perturbative corrections to observables.

9
ş

d4q
q2

9Λ2

Figure 1.1: Loop diagram in vector boson self energy.

The coupling constant α :“ g2{4π appearing in equation (1.4) is known as a bare,
non observable quantity which holds no physical meaning. In order to have a sensible
perturbation expansion of observable quantities such as cross sections, one needs to
define a physical coupling constant αs. There are various possible approaches to
renormalization: just to keep the discussion general it can simply be said that αs

needs the choice of some renormalization point µ which will then become another
scale parameter of the theory.

To briefly introduce the topic, consider a dimensionless observable R involving
a scale Q computable in perturbation theory. For the forthcoming discussion until
the end of the chapter the masses of the fundamental particles of the theory will be
considered „ 0, thus they do not constitute a fundamental scale of the theory itself.

From dimensional analysis R can only be a function of this form:

R “ Rpµ,Q, αspµqq “ RpQ2
{µ2, αsq. (1.8)
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R is an observable quantity thus it cannot depend upon the choice of the renormal-
ization point µ; this independence defines then the renormalization group equation
for observables:

µ2 d

dµ2
RpQ2

{µ2, αsq “

„

µ2 B

Bµ2
` µ2Bαs

Bµ2

B

Bαs



R “ 0. (1.9)

Introducing some variables (1.9) can be rewritten in a simpler form. Define

t “ lnp
Q2

µ2
q, βpαsq “ µ2Bαs

Bµ2
(1.10)

which in turn yield for (1.9):
„

´
B

Bt
` βpαsq

B

Bαs



Rpet, αsq “ 0. (1.11)

This differential equation can be implicitly solved by defining a new function, the
running coupling αspQ

2q:

t “

ż αspQ2q

αs

dx

βpxq
, αspQ

2
“ µ2

q “ αs. (1.12)

Upon differentiation of (1.12) the following is obtained:

BαspQ
2q

Bt
“ Q2BαspQ

2q

BQ2
“ βpαsq, (1.13)

which is a renormalization group equation for the running coupling αspQ
2q. β is a

quantity which has a perturbative expansion in αs:

βpαsq “ α2
s

˜

´β0 `
ÿ

k

βkα
k
s

¸

. (1.14)

The running coupling equation can then be perturbatively solved: its solution
gives information regarding the high and low energy limits of the coupling constant.
Without addressing the problem of relating the coefficients βk to the characteristics
of the theory, and keeping only the first order of eq. (1.13), we get to

Q2dαspQ
2q

dQ2
“ ´β0α

2
s, (1.15)
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which can be solved remembering the boundary condition for αs in Eq. (1.12).

ż αpQ2q

αpµ2q

dαpQ2q

´β0αpQ2q
“

ż Q2

µ2

dQ2

Q2
,

1

β0

ˆ

1

α2pQ2q
´

1

α2pµ2q

˙

“ lnp
Q2

µ2
q,

1

α2pQ2q
“

β0α
2pµ2q lnp

Q2

µ2 q ` 1

α2pµ2q
.

(1.16)

In the end this yields:

α2
pQ2

q “
α2pµ2q

β0α2pµ2q lnp
Q2

µ2 q ` 1
. (1.17)

Equation (1.17) gives the trend of the running coupling αs for increasing Q2 which
determines whether the theory is asymptotically free or not. In QCD

β0 “
33 ´ 2nf

12π
, (1.18)

where nf is the number of active light flavours. In particular in QCD nf ď 16 ùñ

β0 ą 0, which in turn implies that αs becomes smaller as Q2 increases. This property
is known as asymptotic freedom. Clearly for decreasing Q2 there is a scale Λ at which
the perturbative expansion breaks, which in QCD has been found from experiments to
be Λ „ 200MeV3. Given the asymptotic freedom phenomenon and the existance of a
scale at which the perturbative expansion breaks, we can split QCD in a perturbative
sector and a non perturbative one.

The role of the sign of β0 is of fundamental importance, since if β0 ă 0 all the
discussion above would work in the opposite way.

Renormalization is necessary in order to understand if processes at high energies
can be treated perturbatively, which is the case for QCD. The complication arises
though since every hadronic process includes bound states of quarks due to colour
confinement: this phenomenon is a manifestation of the low-momentum sector of
QCD, thus it cannot be treated perturbatvely. This problem is overcome thanks
to the factorization theorem and the introduction of Parton Distribution Functions,
topics which will be briefly introduced in the coming chapters.

3Λ „ 200MeV is an extreme limit for the fail of the perturbative approach; it is safe to say that
it actually starts failing at much higher energies, „ 1GeV.
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1.3 Factorization
It is thanks to factorization that one is able to actually compute the values of the
PDFs. Factorization roughly states that observables can be computed factorizing
effects of perturbative QCD and non-perturbative QCD.

Hadronic processes can be very generally distinguished between processes with
one hadron in the initial state or more than one hadron (generally two). We start by
giving the description of a particular single hadron process, a Deep Inelastic Scattering
event. From the study of this process we will be able to introduce both PDFs and
the factorization theorem.

Deep Inelastic Scattering

Deep Inelastic lepton-hadron scattering is the simplest process that gives useful in-
sight in the topic of factorization and PDFs. The scattering becomes inelastic if the
momentum transfer Q is high enough to disintegrate the target hadron. Let us con-
sider a specific case: a charged lepton (an electron) of momentum k scattering off a
target proton of momentum P . The basic diagram of the process is:

q

k

k1

p

Figure 1.2: Deep Inelastic Scattering diagram.

and the kinematic variables are usually renamed as follows:

• Q2 “ ´q2

• M2 “ p2

• ν “ p ¨ q

• x “
q2

2ν
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• y “
q¨p
k¨p

The differential cross section of the process shown in figure (1.2) can be written as
follows:

d2σ

dx dy
“

8πα2ME

Q4

”´1 ` p1 ´ yq2q

2
2xF em

1

¯

`

` p1 ´ yqpF em
2 ´ 2xF em

1 ´ pM{2EqxyF em
2

ı

. (1.19)

F em
i are the electromagnetic structure functions, which in some way ‘parametrize’

the structure of the target as seen from the incoming particle. The presence of
such functions starts giving an idea for the successive parton model of the proton.
Before formulating the naïve parton model, the so called Bjorken scaling has to be
postulated.

Experimental data roughly confirm that structure functions obey an approximate
scaling law, that is they depend only on the variable x when Q2, ν Ñ 8 with x fixed,
that is:

F px,Q2
q

Q2, ν Ñ 8
ÝÝÝÝÝÝÑ F pxq. (1.20)

Below a collection of data supporting this fact.

Figure 1.3: Image taken from [15]. Measurements for the F2 structure function from
various collaborations. As it can be seen to a good approximation the values lie on a
universal curve even for different Q values

Bjorken scaling implies that leptons scatter off pointlike constituents, since other-
wise the structure functions would have a dependence on Q through the ratio Q{Q0
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where 1{Q0 sets some size scale for the struck proton. In the limit of massless proton
p „ pP, 0, 0, P q with P " M , equation (1.19) can be rewritten as:

d2σ

dx dy
“

4πα2

Q4

”

r1 ` p1 ´ yq
2F1 `

1 ´ y

x
pF2 ´ 2xF1q

ı

. (1.21)

The naïve parton model can be easily introduced having written down (1.21).
Take into consideration the unpolarized cross section e´ ` q Ñ e´ ` q; its squared
amplitude takes the form:

ÿ

|M |
2

“ 2e2qe
4 ŝ

2 ` û2

t̂2
, (1.22)

where the ˆ stands for the quark level Mandelstam variables and the
ř

is the sum
over final and average over initial states. Relating now this simple 2 Ñ 2 scattering
to (1.22), suppose the quark of e´ ` q Ñ e´ ` q carries a fraction of the proton
momentum, that is pq “ ξp with 0 ă ξ ă 1. From (1.21) the totally differential cross
section can be computed, which yields:

d2σ̂

dx dy
“

4πα2

Q4

”

r1 ` p1 ´ yq
2
ı1

2
e2qδpx ´ ξq. (1.23)

Reinserting the notation for structure functions in this context, the quark level struc-
ture functions can be introduced. Comparing with eq.(1.21) these would be:

F̂2pxq “ 2xF̂1pxq “ xe2qδpx ´ ξq. (1.24)

This simple example suggests that the structure function F2 ‘probes’a quark with
momentum fraction ξ. From experimental data it can be clearly seen that in the case
of DIS the structure function is a broader distribution rather than a δ, which can be
interpreted as:

• the quarks constituents carry a range of momentum fractions,

• F2pxq for the proton has to be weighted by the probability of finding a quark
with ξ momentum fraction.

This gives rise to the naïve parton model. The probability of finding a quark with
momentum fraction ξ is define as qpξq dξ, which then yields:

F2 “ 2xF1 “
ÿ

q,q

ż 1

0

dξqpξqF̂2pξq

“
ÿ

q,q

e2qxqpxq.
(1.25)
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Up until this point nothing has been said regarding factorization. What can be
seen is that (1.21) is actually factorized into a short distance component (the structure
functions) and into a long distance one (the rest). The validity of this statement can
be seen to hold to any order in perturbation theory, but its proof is outside the scope
of the present work. For our purposes it is only important to state that any DIS cross
section can be written down as:

σlh
“

ÿ

i

ÿ

f

ż

dxi

ż

dΦfqipxi, Q
2
F q

dσlpÑf pxi,Φf , Q
2
F q

dxi dQ2
F

. (1.26)

Collinear Next to Leading Order DIS

In this subsection we will treat the Next to Leading Order (NLO) collinear corrections
to the DIS process described above. This will both prove the breaking of Bjorken
scaling at higher order in perturbation theory and allow us to introduce the evolution
equations for the PDFs. To incorporate the collinear NLO corrections, we must begin
by introducing additional particles into the interaction vertex. It is at this point that
perturbative QCD begins playing a role in the cross-section calculation.

= + NLO corrections

Figure 1.4: QCD vertex

The next more complicated process is a gluon emission by the quark.

q

p
l

r

q

p l

r

Figure 1.5: NLO collinear singularities arising from real emission of gluons

These vertex corrections give rise to various contributions to the square matrix
element; in figure 1.6 we show the only divergent one. Without getting into the
technical aspect of the calculation, the phase space for this contribution can be written
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down as:
dΦ2 “

1

4π2

ż

d4kδ`
ppp ´ kq

2
qδ`

ppk ` qq
2
q. (1.27)

Introducing a vector nµ and kµ
T , k and d4k can be rewritten as:

kµ
“ ξpµ `

k2
T ´ |k2|

2ξ
nµ

` kµ
T , (1.28)

d4k “
dξ

2ξ
dk2 d2kT , (1.29)

which in turn yields for the phase space:

dΦ2 “
1

16νπ2

ż

dξ dk2 d2kT dθδpk2
T ´ p1 ´ ξq|k2

|qˆ

ˆ δ
´

ξ ´ x ´
|k2| ` 2qT ¨ kT

2ν

¯

, (1.30)

where θ P p0, πq. Knowing the phase space, the square amplitude contribution can be

Figure 1.6: Divergent contribution from real gluon emission

calculated. Skipping the technicalities we find that:

1

4π
nαnβ

ÿ

|Mαβ|
2

“
8e2qαs

|k2|
ξP pξq, (1.31)

where |Mαβ|2 is the matrix element of the scattering process, which is then multiplied
by nα and nβ to project out the contribution to F̂2. P pξq is known as parton splitting
function whose form is characteristic of the qqg vertex:

P pξq “
4

3

1 ` ξ2

1 ´ ξ
. (1.32)

The parton level structure function can be extracted from (1.31) and (1.30):

F̂2 “ e2q
αs

2π2

ż 2ν

0

d|k2|

|k2|

ż ξ`

ξ´

dξ
ξP pξq

a

pξ` ´ ξqpξ ´ ξ´q
, (1.33)
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where ξ`{´ are:
ξ`{´

“ x ` z ´ 2xz ˘
a

4xp1 ´ xqzp1 ´ zq, (1.34)

where z “ |k2|{2ν.
It can be seen that (1.33) is actually divergent for k Ñ 0. Regularising the

divergence with a small cut off ε the parton level structure function takes the following
form:

F̂2px,Q
2
q “ e2qx

”

δp1 ´ xq `
αs

2π

´

P pxq lnp
Q2

ε
` Cpxqq

¯ı

. (1.35)

This shows that beyond leading order Bjorken scaling is broken by logarithms
of Q in the structure function. This divergence in the structure function cannot be
treated as the other divergences: here come into play the PDFs. The proton level
structure function has to be regarded as a convolution between (1.35) and a bare
parton distribution function q0pξq which absorbs the divergence of F̂2. This yields:

F2px,Q2
q “ x

ÿ

q,q

e2q

”

q0pxq `
αs

2π

ż 1

x

dξ

ξ
q0pξq`

`

!

P p
x

ξ
q ln

Q2

ε
` Cp

x

ξ
q

)

` . . .
ı

, (1.36)

and similarly to coupling constants the physical parton distribution is defined at a
factorization scale µ2:

qpx, µ2
q “ q0pxq `

αs

2π

ż 1

x

dξ

ξ
q0pξq

!

P p
x

ξ
q ln

µ2

ε
` Cp

x

ξ
q

)

` . . . . (1.37)

These functions cannot be calculated in perturbation theory since they receive
contributions from the low-momentum sector of the strong interaction. They need
then to be fitted to experimental data of observables (such as the structure functions
above). Given the introduction of a new scale µ, also PDFs obey some kind of RGE:
these are known as D’Altarelli, Parisi (DGLAP) evolution equations, which will be
the topic of the next section. Before getting into said topic, let us briefly mention
how factorization is treated for the hadronic processes.

Hadronic processes

Everything said up until now concerns only DIS processes, which involve only one
hadron in the initial states. Thanks to the factorization theorem also a scattering
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between two hadrons can be factorized in long-distance and short-distance behaviour.
The scattering process of two hadrons can be generally written down as follows:

h1pp1q ` h2pp2q ÝÑ W pQ2
q ` X, (1.38)

where W and X respectively refer to an exclusive and inclusive part of the final state.

p1

p2

l1

l2

Figure 1.7: Drell-Yan process with lepton pair production.

Being there two hadrons in the initial state the factorization theorem will yield a
more complicated formula for the factorized cross section, which involves two sets of
PDFs. A general hadronic cross section takes then the following form:

σpp1, p2q “
ÿ

i,j

ż

dx1 dx2qipx1, µ
2
qqjpx2, µ

2
qσ̂qiqjÑl`l´ , (1.39)

where σ̂ is the parton level cross section and pi “ ξPi as in the DIS case. An example
of a hadronic process can be lepton pair production in what is called to be a Drell-Yan
process, which is shown in the diagram (1.7)

1.4 Parton evolution
The full form of evolution equations can be justified only through a Wilson Product
Expansion. For the scope of this thesis it is only useful to actually write down the
DGLAP equations, which are a set of coupled partial differential equations:

t
B

Bt

«

qipx, tq

gpx, tq

ff

“
αsptq

2π

ÿ

qj ,qj

ż 1

x

dξ

ξ
ˆ

ˆ

«

Pqi,qjp
x
ξ
, αsptqq Pqi,gpx

ξ
, αsptqq

Pg,qjp
x
ξ
, αsptqq Pg,gpx

ξ
, αsptqq

ff «

qipx, tq

gpx, tq

ff

, (1.40)
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where each splitting function Pq,g is calculable as a power series in the coupling. The
system of coupled equations of (1.40) can be partially de-coupled introducing a new
basis called evolution basis. This de-coupling is possible thanks to a few properties
of the splitting functions coming from physical laws which have to be respected [15].

The evolution basis is defined as follows:

Vi “ q´
i

T3 “ u`
´ d`

T8 “ u`
` d`

´ 2s`

T15 “ u`
` d`

` s`
´ 3c`

T24 “ u`
` d`

` s`
` c`

´ 4b`

T35 “ u`
` d`

` s`
` c`

` b`
´ 5t`

(1.41)

where q˘
i “ qi ˘ qi. The only one remaining contribution is given by the singlet

distribution defined as:
Σ “

ÿ

i

q`
i , (1.42)

which is coupled to the gluon evolution. Knowing then the evolution for the 6Vi,
the 5Tk and the singlet Σ one can compute the evolution of the 12 individual PDFs,
which become 13 when we introduce the gluon one.



Chapter 2

Error Propagation and Inverse
Problems

The previous chapter was devoted to the introduction of the PDFs, whose numerical
determination is at the core of the present work. As already said in the introduction
a point of fundamental importance is the propagation of error from the experimental
data to the fitted PDFs themselves.

It becomes then essential to have a good methodology for propagating error:
following the steps presented in [13] we are going to show the validity of the method
chosen by NNPDF for propagating error.

In order to do so we are going to lay down some basics regarding a Bayesian
approach to inverse problems [19]. Roughly speaking an inverse problem corresponds
to a situation in which we have a measurement of some quantity Y which depends on
another quantity X which we want to know. It is clear then that PDF determination
falls under this category of problems, being Y the experimental data and X the PDFs
themselves.

2.1 Inverse problems formalism
Call X the input space and Y the output space. In the case of the present work these
spaces respectively denote the space where PDFs live and the space of observables.
Notice that both X and Y are sets of functions: in order to keep the discussion
rigorous these spaces should be regarded as Banach spaces, even if in the end just a
finite approximation will be kept.

21
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These spaces are connected by a map, which we shall call the observable map M :

M : X Ñ Y. (2.1)

This map represents in general any physical observable depending on objects living
in X. For the case of PDFs an example can be the structure functions of hadronic
cross sections at NLO already described in chapter (1), such as:

M : pqipx,Q
2
q, qipx,Q

2
q, gpx,Q2

qq ÞÑ F2px,Q
2
q. (2.2)

In general we denote by M the function which maps the PDFs to all the possible
physical observables involving them. In order to make notation lighter a general
element belonging to X will be denoted as u, thus:

M : u ÞÑ Mpuq. (2.3)

Actual experiments do not have access to the whole image-functions living in Y .
This is common to any experimental setup, since experiments necessarily consist in a
finite amount of measurements. To formalize this, a second map O can be introduced:

O : Y Ñ RNdata , (2.4)

where in general Ndata is equal to the number of actual measurements taken into
consideration. Finally the composition between the two maps formalizes the actual
measurement operation of an experiment:

O :“ O ˝ M. (2.5)

Furthermore every measurement is affected by random noise, which means that
experimental central values can be written as:

y0 “ Opuq ` η (2.6)

where η is a Random Variable (R.V.) distributed according to some probability den-
sity function ρ. In the context of this work we will always deal with a multi-variate
normal:

ρ “ N p0, Cexpq, (2.7)

where Cexp is the experimental covariance matrix.
Starting from a set of experimental central values y0 the goal is to find a sensible

value for u knowing the map O: this is roughly the definition of inverse problem. The
main complication in this kind of inverse problem is two-fold:
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• The complexity of the forward map O.

• The presence of noise in the measurement.

The presence of noise leads to the need for propagation of error in the determination
of PDFs. In order to show the validity of the method employed by NNPDF we are
going to treat this inverse problem following a Bayesian approach.

2.2 Bayesian approach
In order to simplify the discussion, X “ RNmodel where Nmodel is the number of param-
eters defining the model, which in the case of PDFs consists in the parametrization of
the functions, topic which will be discussed in later chapters regarding the specifics
of the code implementation.

In a Bayesian approach the goal is to define a posterior probability measure
µXpu|yq of the model u given a noisy observation of some data y as in (2.6). The
crucial passage in order to define such a measure of probability is to make use of
Bayes’ theorem, which in its most general form can be written down as:

P pA|Bq “
P pB|AqP pAq

P pBq
9P pB|AqP pAq, (2.8)

µXpu|yq9µY py|uqµ0
Xpuq. (2.9)

The unconditioned probability P pAq is known as the prior probability. In order to
translate Bayes’ theorem to the case of interest, first of all we need to encode some
kind of prior knowledge of the model in what is known as the prior measure µ0puq.
In second place the conditional measure µY py|uq can be found simply by looking at
the definition of y0 given in (2.6). In the end Bayes’ theorem yields:

µXpu|yq9µ0
XpuqρpOpuq ´ yq. (2.10)

Let us now specialize the discussion to the case which will be taken into consider-
ation: consider O to be a linear map, thus a matrix, and consider also the prior µ0

X

to be gaussian:
µ0
Xpuq “ exp

´

pu ´ u0qiC
1´1
ij pu ´ u0qj

¯

, (2.11)

where the model u P RNmodel and where C 1 denotes some covariance related to the
model prior. Suppose also that the probability density function of the noise ρ is
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Gaussian:
ρpηq “ exp

´

ηiC
´1
ij ηj

¯

, (2.12)

where C would stand for the experimental covariance matrix in the particular case
of PDF fitting. Equation (2.10) becomes then:

µpu|yq9 exp
´

|u ´ u0|C1 ` |y ´ Gpuq|C

¯

“ exppSpuqq. (2.13)

Considering the case of uniformative prior, we get to the analytical expression for
the covariance and mean of the posterior distribution in equation (2.13):

CX “

´

OTC´1
Y G

¯

, (2.14)

u “ CXO
TC´1

Y y0. (2.15)

It is under these assumptions that we are going to show the equivalence of the
NNPDF approach for propagating error.

2.3 Monte Carlo error propagation
In this section we want to give more details to the statistical properties of the NNPDF
approach to the inverse problem. In particular the core of the discussion revolves
around the treatment of experimental error and its propagation to the fitted PDFs.
Broadly speaking the NNPDF framework adopts what is generally known as a Monte
Carlo (MC) approach for error propagation: broadly speaking a Monte Carlo ap-
proach delivers error propagation directly by generating a distribution of the final
object which we are fitting. By looking at the properties of the sample of this distri-
bution one can then estimate the error. The MC approach is opposed to the Hessian
approach for error propagation which has been thoroughly described in [12].

The starting input of any fitting procedure are the central values of an experiment
y0 and the correlated noise defined by the measure of probability ρ. In order to use this
information to both infer the value of the PDFs and their error we need to generate
some distribution of PDFs as said in the introduction. First of all we generate several
pseudo-data replicas as written below:

µpkq
“ y0 ` εpkq, (2.16)

where the additive noise ε is taken from the same probability distribution as the
experimental noise, i.e. N p0, Cexpq.
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After generating this set of pseudo-data a model replica is fitted to each data
replica by minimizing the χ2

k between predictions and the replica values:

upkq
˚ “ argmin

uPX
χ2
k. (2.17)

The replica chi square is defined as:

χ2
k :“ pµpkq

´ Opuqq
TC´1

Y pµpkq
´ Opuqq. (2.18)

First of all we need to properly address the definition of the map O in the context
of PDFs. We need to perform some linearization operation in order to actually get
to the result of this sections.

As explained before consider the model space X to be finite dimensional, so:

X “ RNmodel , (2.19)

which means discretizing the PDFs on a grid of points:

u ÞÑ upxiq i “ 1...Nmodel. (2.20)

Consider linear observables such as structure functions, which at LO can then be
simply considered linear maps F of the parametrization of the PDFs:1

yi “

Nmodel
ÿ

j“1

Fijuj. (2.21)

In order to get analytical results for error propagation, the second approximation
needed is hidden in the NN parametrization of the uj values. The value of the PDFs
at each point can be though of as a function of the set of weights ~θ of the NN:

uj “ upxjq “ upxj, ~θq. (2.22)

Then again if the weights have a peaked enough distribution around some central
value θ the following approximation is valid:

yi “

Nmodel
ÿ

j“1

Fij

”

ujpθq `
ÿ

k

Bu

Bθk
pθ ´ θqk

ı

. (2.23)

1As in [13] we are not going to explicitly talk about hadronic observables, which are linear in the
PDFs; also for that case though one can simply expand one more time the observable map around
the most peaked value linearizing that map too.
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In order to retrieve the previously adopted notation, call O the linearized map:

O :“
ÿ

j

Fij
Bu

Bθk
(2.24)

The final assumption needed to get analytical results for the NNPDF propagation is
the requirement that the matrix F has linearly independent rows.

We can now get to the aforementioned equivalence between this approach and the
Bayesian posterior. By explicit minimization of (2.18) we get:

upkq
˚ “ pOTC´1

Y Oq
´1

pOTC´1
Y y0 ` OTC´1

Y εpkq
q, (2.25)

which is the explicit form of the model in term of both the noise and the central values.
Since u

pkq
˚ depends linearly on the gaussian R.V. ε, also u˚ is gaussianly distributed.

It is easy to compute the mean and covariance of this gaussian, which read:

CX “

´

OTC´1
Y G

¯

, (2.26)

u “ CXO
TC´1

Y y0. (2.27)

These are exactly the same defining moments as the posterior probability distribution
given by the Bayesian approach in equation (2.15).



Chapter 3

Machine Learning and PDF
Determination

This chapter is devoted to a brief introduction to Machine Learning, specifically
focusing on Neural Networks, which are at the core of the methodology for PDF
determination used in the context of this thesis. In this brief introduction first of all
we are going to give the general idea of functioning of Neural Networks in order to
then specialize the discussion to the code used in the context of this work.

3.1 Neural Networks

Computer simulations have gained importance in the field of physics given their ca-
pability to solve numerically intricate problems: some examples can be the solution
of differential equations to predict the evolution of some dynamical system or also
problems in the area of statistical mechanics. Machine Learning and more specifi-
cally Neural Networks deviate from the normal way of programming as will be briefly
explained in the subsequent section. Clearly this really brief introduction does not
give justice to this field which is extremely wide and complex: the only goal here is
to give a rough explanation of the topic in order to make the reader able to follow
the rest of this work.

27
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Standard programming

A classical program could be summarized as a set of rules according to which a set
of inputs is transformed to give a certain output. A really simple flowchart of this
structure is depicted in figure (3.1).

Input Program Output

Figure 3.1: Simple classical program flowchart

A practical example could be the resolution of the problem of the time evolution of
a dynamical system: knowing the physical rules describing the motion of the system
and given the initial conditions, the system can be simulated yielding its evolution
through time.

Machine Learning

Machine Learning works following a different philosophy. In the context of physics,
Machine Learning can be employed in situations in which the rules of Nature are not
known in order to try to understand them. Roughly speaking, when programming
a Machine Learning tool what is actually implemented by the programmer is an
architecture which contains a variety of possible rules. This set of rules is explored,
and a particular element is then chosen during the so-called training phase. The best
set of rules is chosen according to some specific metric which is dependent on the
specific case. Just to give an over-used example consider the problem of writing a
program which classifies a set of images representing cats and dogs, labeling each
image as C if it represents a cat and as D if it represents a dog. Clearly we do not
know the function which associates a random image of 28x28 pixels to the correct
class C or D. A Machine Learning program in this case can be thought of as an
ensemble comprising all1 the possible functions which divide all possible images into
the two classes: then during the training phase a set of images already labeled as C
or D are used in order to choose which function best approximates the already given
labeling. This best approximation is performed by minimizing what is known as the

1The topic of the power of a Machine Learning tool is clearly complex, and by ‘any ’we mean
that the set of possibilities is very wide.
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loss function, which can be defined as a metric which quantifies the distance between
the predictions of the Machine Learning tool and expected labels.

Neural Networks

An important subclass of Machine Learning are Neural Networks. Neural Networks
can be thought of as functions parametrized by a set of parameters:

NN : RNinput Ñ RNoutput , (3.1)
fpx, θq : x ÞÑ y. (3.2)

The basic unit of a Neural Network is what is called a neuron. A neuron is a
simple operator whose action on the input is defined by a set of weights and by
an activation function. Given a multi-dimensional numerical input x, the neuron’s
output is determined by:

Neuron : x ÞÑ y “ factivationpW T
¨ xq, (3.3)

where W is the set of parameters called weights and factivation is the activation function.
Usually f is chosen from a set of commonly used ones such as the sigmoid. The
output of a Neural Network is determined by a successive composition of the Neuron’s
functions: the number of neurons and of connections between them is what completely
defines the action of the NN. Below is reported a simple example. In (3.2) the action

Scalar input: x

Neuron 1

Neuron 2

Neuron 3 Scalar output

ω11 ˚ `θ1

ω12 ˚ `θ2

ω21 ˚ `θ3

ω22 ˚ `θ4

Figure 3.2: simple NN 1-2-1. The symbol ˚ represents the output coming from the
start of the connection
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of the NN on the input is represented graphically. The scalar input is modified by
neuron 1 and neuron 2; succesively the 2 intermediate outputs are combined and used
as inputs of neuron 3, which then determines the output of the NN. Given a certain
activation function for each neuron called gpxq, the output of the NN would be a
successive composition of this function:

y “ gpω21gpω11x ` θ1q ` ω22gpω12x ` θ2q ` θ3 ` θ4q, (3.4)

where ωij and θi are the free parameters determining the action of each neuron. It
is clear from (3.4) that the parameters are what define the output of the Neural
Network and these are the parameters that are modified during the training phase of
the algorithm. The example in (3.2) is really simple, but the number of parameters
and the complexity of the final function can be arbitrarily2 enhanced by making the
network more complex.

Just to give more terminology of NN the example of (3.2) is said to have one layer
of Neurons of width 2. The structure of the NN can be made more complex by adding
neurons and disposing them in different layers. As the number of neuron increases
the analytical form of the NN ‘map’ becomes too intricate to even write down. The
potential of a NN to represent any kind of function is what goes under the name
of ‘universal approximation theorem’ which roughly states that any function can be
approximated arbitrarily well by a complex enough NN.

Training phase: comparison between classical approach and NN

Consider the following inverse problem, which has already been introduced in the
previous chapter: given a set of data subject to noise the goal is to infer the underlying
function f which the data indirectly measure:

Di “ Oipfpxqq ` η, (3.5)

where Di indicate the measurements, η is the sample of a Random Variable repre-
senting noise and O is a known functional which maps f to the data:

Oi : f ÞÑ Di. (3.6)

Here we want to take a slight detour including in the discussion also the classical
way of approaching the problem of inferring a function given some noisy measurement.

2As before there are limits to the arbitrariness in this complexification of the NNs
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The classical approach to the issue described in equation (3.5) consists in guessing a
functional form for f :

f :“ fpx, λq, (3.7)

where λ is a set of parameters which define the function f . The fitting is then
performed by absolute minimization of some metric which measures the distance
between the proposed function fpx, λq and the measured data Di.

It is clear that such a method heavily depends on how well the functional for for
f has been chosen, thus introducing the risk of biasing the final result.

NNs can also be employed to infer the value of f : define the so-called loss function
L as:

Lpλq “

Ndata
ÿ

i“1

||Di ´ NNpxi, λq||
2. (3.8)

where NNpxi, λq denotes a NN labeled by xi and whose output is defined by the set
of weights λ.

The minimization of (3.8) becomes then a problem of great importance which
needs its own discussion. We have to keep into account the fact the the values Di

are not the true values of the observable, but the shifted ones. Thus we do not want
to actually reach the absolute minimum of the loss functions as for the classical case:
given the fact that the NN can approximate essentially any function, reaching the
absolute minimum of the loss would consist in reproducing the noise and not the
underlying true value. Reproducing the noise when training a Neural Network is a
phenomenon called overfitting.

In order to avoid such a problem a few techniques can be employed: in particular
in the context of the NNPDF collaboration a cross-validation minimization method
is employed, which works as follows. The training data are split in two sub-sets, one
called training and the other validation set: the training set is the one over which
we actually perform the minimization of the loss function; the other, the validation
set, is used as a checking tool which tells us when to stop the minimization process.
Figure (3.3) clearly represents the functioning of such a method.

When designing a NN for a specific fitting task, there is a number of hyperparam-
eters to be chosen, some of which are listed below:

• layer number,

• activation function,
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Figure 3.3: Graphical depiction of cross validation stopping point

• minimization strategy.

Hyperparameters are all those characteristics of the Neural Network which define its
action before the actual fitting procedure. The choice of these hyperparameters can
be carried out during a phase called hyperparameter optimization, whose process will
be described for the case of the NNPDF Neural Network.

3.2 Neural Networks for PDF fitting: NNPDF
As mentioned in Chapter 1, hadronic cross sections are explainable in terms of the
long range and the short range part of QCD. The short distance part, the PDFs,
cannot be computed perturbatively and have to be fitted from experimental data..
First of all the specifics of the Neural Network of NNPDF will be described.

PDF fitting can be generally viewed as a really complex fitting procedure. The
actual values of the masurements depend in a convoluted way on the PDFs; thanks to
the factorization theorem we can view any observable as the result of the application
of some functional to the PDFs. Take for example equation (1.26):

σlh
“

ÿ

i

ÿ

f

ż

dxi

ż

dΦfqipxi, Q
2
F q

dσlpÑf pxi,Φf , Q
2
F q

dxi dQ2
F

. (3.9)

This could be simply made shorter by writing it down as

σlh
“ F pqipxi, Q

2
F qq, (3.10)

where F represents the suitable forward map from the space of PDFs to the space
of observables. Then, from a practical point of view, the implementation of such
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a forward map becomes of great importance, topic which will be covered at the
beginning of this section.

Furthermore the PDFs themselves need to obey to a lot of constraints coming from
theoretical conclusions such as the ones briefly introduced in (1). As an example of
these constraints one can consider the DGLAP evolution; in the following section we
are going to introduce more constraints and elucidate how these are implemented in
the fitting framework.

FK tables

FK tables are the numerical implementation of the observable map briefly mentioned
in the above introduction. PDFs are parametrized at a reference scale Q0 chosen here
at Q0 “ 1.65 GeV. PDFs can be discetized on a grid of xgrid points:

tfipxα, Q
2
0q, i “ 1...Nfu, (3.11)

where the index i ranges over the flavours and the gluon, and α ranges over the grid
of points on x-axis. Observables can be then written in terms of (3.11). A generic
DIS observable takes the form:

FIpxJ , QJq “

Nf
ÿ

i“1

Ngrid
ÿ

α“1

σI,J
i,α fipxα, Q

2
0q, (3.12)

where the tensor σI,J
i,α represents a pre-computed table for the observable FI at a scale

indexed by J . Hadronic observables on the other hand can be similarly written down
as:

FIpxJ , QJq “

Nf
ÿ

i,j“1

Ngrid
ÿ

α,β“1

W I,J
i,j,α,βfipxα, Q

2
0qfjpxβ, Q

2
0q, (3.13)

where clearly the pre-computed table W has to take into account the convolution of 2
different PDFs. The pre-computed tables σ for DIS and W for hadronic observables
are the actual FK tables. It is important to notice that these take into account all
theoretical information on an observable, especially enforcing DGLAP evolution onto
the PDFs.

Hyperoptimization

Before deploying the actual fitting procedure the specifics of the NN used have to be
defined. As said before these include qualitative characteristics that define the NN,
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such as neuron number, number of layers, structure of the NN etc. The characteristics
of the latest NNPDF 4.0 release can be summarized in the following table:

Parameter NNPDF 4.0
Architecture 2-25-20-8

Activation function Hyperbolic tangent
Optimizer Nadam

Loss function χ2

Learning rate 2.6 ˆ 10´3

Free parameters 763
Max epochs 17 ˆ 103

These hyperparameters are chosen during the so called hyperparameter optimization
phase, whose exact functioning is described in [10].

NN architecture and flowchart

Having outlined the hyperparameters of the NN, we shall give an overview on the
technical aspect of the NN. The Neural Network adopted by NNPDF is a fully con-
nected neural network with the following structure:

As it can be seen from figure (3.4), the NN inputs are the points on the x-grid.
The Neural Network is then the direct parametrization of the PDFs, which can be
computed in evolution or in flavour basis.

NN : px, lnpxqq ÞÑ tfipx,Q
2
0qu. (3.14)

The training of the Neural Network can be summarised with the flowchart in figure
(3.5). This flowchart briefly resumes the basic NNPDF procedure. The central block
in particular refers to the actual fitting procedure: for each cycle the loss χ2 is evalu-
ated for a certain set of parameters. In order to make the discussion clearer we give
here the definition of the loss function. The loss function in the contexxt of NNPDF
is defined as the chi square of the differences between NN predictions and observable
values:

1

Ndata

Ndata
ÿ

i,j“1

pD ´ T qiC
´1
i,j pD ´ T qj, (3.15)

where D are the data values, T are the predictions of the NN and C is the experimental
covariance matrix. We will dwell into the actual functioning of the minimization in
the following section.
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Figure 3.4: Neural Network adopted by NNPDF. Image taken from [7]

During each optimization iteration the set of weights of the NN is updated until
a good stopping point is reached. The final three blocks of the flowchart (3.5) refer
to the postfit selection; in particular the APFEL evolution refers to the DGLAP
evolution which is deployed via the so called LHAPDF grids [8].

Monte Carlo replica approach

As already mentioned in the chapter related to error propagation, the NNPDF method
for error propagation consists in a Monte-Carlo replica approach. From a technical
point of view the method works as follows: as it can be seen in equation (2.16) we
generate data replicas according to the experimental noise distribution. The actual
generation of replicas is performed in the following way:

µ “ p1 ` rnormσnorm
qpy0 `

Nobs
ÿ

p“1

rp,sysσp,sys
` rstatσstat

q, (3.16)

where the various σs refer to the various sizes of the errors, and r denote the actual
R.V.s which are sampled when generating the shifts. In the end a fitting procedure
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Figure 3.5: NNPDF flowchart

yields an ensemble of PDFs replicas which in turn yield a distribution for any kind of
observable quantity.

Each PDF in particular is then obtained by the minimization of the χ2 defined
in equation (3.15). The way this minimization takes place is actually through the
cross validation method, briefly introduced in the first section of the chapter and
graphically shown in figure (3.3).

Figure 3.6: Stopping criterion employed by NNPDF. Image taken from [7]

In the NNPDF case the training/validation split amounts to keeping 75% of the
data in the training set and the remaining 25% in the validation set. In figure (3.6)
we are showing the functioning for the stopping criterion employed by NNPDF.
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Parametrization basis

As said in Chapter 1 the DGLAP evolution equations are a set of coupled differential
equations. These can be partially decoupled choosing a suitable basis of functions
called evolution basis. In order to solve the DGLAP evolution equation one needs to
parametrize the PDFs at the input evolution scale which is chosen at Q0 “ 1.65 GeV.
Specifically the parametrized combinations are the following ones:

Σ “ u ` u ` d ` d ` s ` s ` 2c,

T3 “ pu ` uq ´ pd ` dq,

T8 “ pu ` u ` d ` dq ´ 2ps ` sq,

V “ pu ´ uq ` pd ´ dq ` ps ´ sq,

V3 “ pu ´ uq ´ pd ´ dq,

V8 “ pu ´ u ` d ´ dq ´ 2ps ´ sq,

T15 “ pu ` u ` u ` u ` u ` uq ´ 3pc ` cq.

(3.17)

It can be seen that here not all 13 independent PDFs are fitted; this is due to the fact
that it is reasonable to think that some PDFs are equal to 0 at the evolution scale 1.65
Gev, thus making the set of functions smaller. PDFs can obviously also be given in
flavour basis: both possibilities have their own advantages and disadvantages, but the
choice that has been taken is to use the evolution basis as standard. Given the choice
of the basis as the evolution one, a preprocessing of the PDFs can be implemented in
order to speed up the training procedure (see later). PDFs are explicitly written in
terms of the NN as:

xfkpx,Q0|λq “ Akx
1´αkp1 ´ xq

βkNNkpx|λq, (3.18)

where α and β represent the preprocessing exponents and λ collectively represent
the neural networks weights. The independence of the result of the preprocessing
parameters has been proven in [11].

Theoretical constraints

PDFs are subject to a number of theoretical constraints as said in the introduction of
the chapter. In the following subsection the implementation of these in the framework
will be inspected.
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Sum rules Irrespectively of the choice of the basis, PDFs must obey the so-called
sum rules. These are a consequence of momentum conservation and in evolution basis
read:

ż 1

0

dxxpgpx,Qq ` Σpx,Qqq “ 1,

ż 1

0

dxV px,Qq “

ż 1

0

dxV8px,Qq “ 3,

ż 1

0

dxV3px,Qq “ 1.

(3.19)

This set of 4 equations imposes constraints on the PDFs. These must be valid for
each value of Q but given their validity at any Q0 scale, DGLAP equations ensure
their validity at any other Q dQ0. Recalling (3.18) these sum rules are imposed by
fixing the normalization constants Ak which in this case namely are Ag, AV , AV3 , AV8 .

Positivity of PDFs and observables Cross sections are observables whose mean-
ing is that of a probability, thus they are all positive. PDFs beyond leading order on
the other hand cannot be treated as probability density functions; in particular this
character of PDFs is encoded by the specific renormalization scheme chosen. It has
been proven in [9] that in the MS scheme PDFs have to be positive. The positivity
of PDFs is enforced by introducing a penalty system: the loss function is augmented
by a factor depending on positivity

χ2
Ñ χ2

`

8
ÿ

k“1

Λk

ni
ÿ

i“1

Eluαp´f̃kpxi, Q
2
qq, (3.20)

where f̃ refers to the PDFs in flavour basis, Q2 “ 5GeV2 and Λk are Lagrange
multipliers. The functions Elu is defined as follows:

Eluαptq “

$

&

%

t if t ą 0

αpet ´ 1q if t ă 0.
(3.21)

The xi points in (3.20) are chosen logarithmically spaced between 5 910´7 and 10´1

and then linearly spaced between 0.1 and 0.9. The parameter in (3.21) is α “ 10´7:
it can be seen from the equation that the penalty is proportional to both the absolute
value of the PDF and to the Lagrange multiplier.

Integrability conditions and postfit PDFs have to be integrable functions, con-
dition which is related to the small-x behaviour. From equation (3.19), it can be seen
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that sum rules imply the following:

lim
xÑ0

x2gpx,Q2
q “ lim

xÑ0
x2Σpx,Q2

q “ 0 @Q,

lim
xÑ0

V px,Q2
q “ lim

xÑ0
V3px,Q

2
q “ lim

xÑ0
V8px,Q

2
q “ 0 @Q.

(3.22)

From other results coming from standard Regge theory it can be also seen that non-
singlet combinations T3 and T8 have to abide by similar conditions. The penalty
system for integrability takes this structure:

χ2
Ñ χ2

`

8
ÿ

k“1

Λk

ni
ÿ

i“1

”

xfkpxi
int, Q

2
q

ı2

, (3.23)

where the further label on the x points comes from the fact that we are only interested
in the small x region. Finally also after training the integrability is imposed through a
post-fit selection criterion which consists in discarding the PDFs which do not satisfy
the following:

ni
ÿ

i“1

ˇ

ˇ

ˇ
xi

intfkpxi
intq

ˇ

ˇ

ˇ
ă

1

2
. (3.24)
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Chapter 4

Methodology Validation: Closure
Test

This chapter is devoted to the accurate description of the framework of this thesis,
which is the methodology validation of PDF determination. By methodology vali-
dation we mean a way which checks if the chosen method properly works in dealing
with the assigned problem. In particular in this case we will be talking about the
closure test.

4.1 Closure test mechanics

In this section we want to explain in detail what a closure test is. Since its first
introduction in the context of NNPDF in [6], the closure test has been used to analyze
the efficiency and accuracy of the NN in propagating uncertainties. The main idea
behind a closure test is to test the NN behaviour in a controlled setting, in the sense
that the true underlying value of each observable is known.

In a realistic situation the experimental collaborations provide us with the central
value y0 for an observable and an associated covariance matrix Cexp. As already
mentioned, from a statistical point of view this set of information has the following
meaning:

y0 “ f ` η. (4.1)

The true underlying value is called f and the experimental error is encoded in the
random shift η, whose probability distribution is a multi-variate normal with mean 0

41
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and covariance matrix given by the Cexp, that is N p0, Cexpq.
In a normal situation the value of f is not known. The starting point of a closure

test is to choose a value for f and set it as underlying truth. From a practical point
of view this means choosing a true value for the PDFs themselves, which are used
to compute any observable. Knowing the true value f makes it possible to generate
pseudo-data which resemble the realistic experimental measurements, sampling from
equation (4.1). In the NNPDF jargon the various steps of pseudo-data generation are
denoted as follows:

• Level 0 data: a set of underlying true PDFs is chosen. These are then used to
compute the true value f of any observable, called level 0 data.

• Level 1 data: the level 1 data are the ‘copy’ of the experimental central val-
ues. Equation (4.1) is used in order to generate these and the random noise is
sampled as said above.

• Level 2 data: as in any standard NNPDF fitting procedure the pseudo-data
replicas are generated starting from the central values (see chapter 3).

Given the fact that we can generate multiple instances of level 1 data starting
from the same set of level 0 data, we can perform several fitting procedures which
will yield several samples of PDFs, to be compared to the underlying truth.

4.2 Statistical test
Having roughly defined the idea and framework behind a closure test the main prob-
lem is building a good statistical analysis of the results. We will start from the
previously adopted figure of merit, following the steps in [13].

Let us start by defining an output error of the closure test in the following way:

Eout “
1

Ndata
pO1

pu˚q ´ y1
0q

TCexppO1
pu˚q ´ y1

0q. (4.2)

This figure of merit is defined in accordance with the standard figure of merit for
the normal tests, the χ2-loss previously defined. The prime in the equation above
indicates the fact that for testing the goodness of fit we are using data which were
not included in the training set. Even if we could use the same set also for testing
we want to check to generalization power of the NN itself. In order to keep all
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information possible the ideal situation would be to have testing and training set
statistically independent:

Covpy0, y
1
0q “

˜

CY 0

0 CY 1

¸

. (4.3)

Just to be clearer the fake central values y1
0 are defined as usual:

y1
0 “ f 1

` η1, (4.4)

where η1 has to be regarded as a R.V. to be sampled from the same distribution of
the level 1 shifts.

In order to have a better idea of the practical implementation of such an analysis,
it is better to specialize the notation, which is going to be adopted through the rest
of the work.

• ηl: this refers to the instance l of the noise generating level 1 data where l

ranges from 1 to Nfits. Nfits samples of noise will yield Nfits samples of level 1
data defined as:

yl0 “ f ` ηl. (4.5)

• εlr: this refers to instance r related to fit l of level 2 noise. r ranges from 1 to
Nrep. Level 2 data samples are then indexed in the following way:

µl
r “ yl0 ` εlr. (4.6)

• Given the two definitions above it is natural to define the best model fitted from
each replica in the following way:

ul
˚,r :“ best model obtained from fitting replica r of fit l. (4.7)

• Testing central values y1
0: the out of sample central values which appear in the

definition of Eout are defined similarly to the central values for the fits:

y1l
0 “ f 1

` η1l
„ ρ. (4.8)

in accordance with the standard fitting procedure. In a real case scenario even
the out of sample set would be a collection of experimental central values.
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The output error defined in (4.2) has to be regarded as a random variable, thus
a sample of such a R.V. will inherit all the indices above said. This means that for
each fit and for each replica we can define an error:

Eoutpη
l, εlr, η

1l
q :“

1

Ndata
pO1

pul
˚,r ´ y1l

0 q
TC 1

exppO1
pul

˚,r ´ y1l
0 q. (4.9)

For each fit l we can then use as figure of reference the mean across replicas:

El
out “

ÿ

r

1

Nrep
Eoutpη

l, εlr, η
1l
q. (4.10)

It is implicit that Nrep does not carry any dependence on the fit index l, which
practically means that each fit should have the same number of replicas.

Let us further split this equation into quantities of interest. The starting point is
the following expression, which is just a rewriting of (4.10):

El
out “

1

Ndata
ˆ

ÿ

r

1

Nrep

”

pO1
pul

˚,rq ´ f 1
q
TC 1

exppO1
pul

˚,rq ´ f 1
q`

` pf 1
´ y1l

0 q
TC 1

exppf 1
´ y1l

0 q ` 2pO1
pul

˚,rq ´ f 1
q
TC 1

exppf 1
´ y1l

0 q

ı

. (4.11)

In this way we are highlighting the important components of the error, which are going
to be analyzed in the following part. In order to further simplify this expression,
following [13], we take the mean over the l index. From a practical point of view
this means generating multiple level 1 data instances then deploying several fitting
procedures. This is what is known as a multiclosure test.

Eout “
ÿ

l

1

Nfits
El

out (4.12)

This averaging operation removes the cross term present in (4.11), leaving us with
only the following:

Eout “
ÿ

l

1

Nfits
El

out “
ÿ

l

1

NdataNfits
ˆ

ˆ
ÿ

r

1

Nrep

”

pO1
pul

˚,rq ´ f 1
q
TC 1

exppO1
pul

˚,rq ´ f 1
q ` pf 1

´ y1l
0 q

TC 1
exppf 1

´ y1l
0 qq

ı

(4.13)

A further thing to notice is the fact that the last term in (4.13) is simply noise
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related, and its expected value is 1 given the definition of y1
0. This yields

Eout “
ÿ

l

1

Nfits
El

out “
ÿ

l

1

NdataNfits
ˆ

ˆ
ÿ

r

1

Nrep

”

pO1
pul

˚,rq ´ f 1
q
TC 1

exppO1
pul

˚,rq ´ f 1
q ` 1

ı

(4.14)

in the limit of infinite fits. This leaves only the first term, which can be further
decomposed:

pO1
pul

˚,rq ´ f 1
q
TC 1

exppO1
pul

˚,rq ´ f 1
q “

“ pO1
pul

˚,rq ´
ÿ

r

rO1
pul

˚,rqsq
TC 1

exppO1
pul

˚,rq ´
ÿ

r

rO1
pul

˚,rqsq`

` pf 1
´

ÿ

r

rO1
pul

˚,rqsq
TC 1

exppf 1
´

ÿ

r

rO1
pul

˚,rqsq, (4.15)

where we have made use of the fact that if reinserted in the general expression, the
cross term vanishes. The two expressions added together are respectively called bias
and variance. Just to be explicit these read:

Biasl :“ pf 1
´

ÿ

r

rO1
pul

˚,rqsqCpf 1
´

ÿ

r

rO1
pul

˚,rqsq “: ∆l
BC∆l

B (4.16)

and

Variancel : “
ÿ

r

”

pO1
pul

˚,rq ´
ÿ

j

rO1
pul

˚,jqsq
TC 1

exppO1
pul

˚,rq ´
ÿ

j

rO1
pul

˚,jqsq

ı

(4.17)

“:
ÿ

r

∆l
V,rC∆l

V,r. (4.18)

We want to underline the implicit definitions in the above equation:

∆l
V,r “ pO1

pul
˚,rq ´

ÿ

j

rO1
pul

˚,jqsq,

∆l
B “ pf 1

´
ÿ

r

rO1
pul

˚,rqsq,
(4.19)

which are going to be useful in the next paragraphs.
These quantities are essentially chi squared values calculated for different sets of

points. The bias represents how far the central predictions are from the underlying
truth, while the variance represents the spread of each fit replicas around their central
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x axis

y axis

bias

variance

Figure 4.1: Graphical representation of bias-variance tradeoff. The blue circle repre-
sents the mean squared distance between central values and underlying truth. The
red circles represent the mean square distance between central values and replicas.

value. The interplay between these two quantities can be used in order to understand
whether a result is truly good or just ‘good-looking’ as it is graphically shown in
figure (4.1):

The image shows the ideal situation: the blue circle represents the mean squared
distance from the true underlying value, while the red circles represent the mean
squared distances of each replica around the mean of each fit. The situation is ideal
since the radii of the circles are of similar magnitude.

The figure of merit introduced to check consistency between the spreads of these
quantities is the square root bias variance ratio, defined in (4.20).

a

Rbv :“

d

ř

l Variancel
ř

l Biasl
. (4.20)

If
?
Rbv “ 1 then the NN is faithfully delivering uncertainties. For computational

time reasons the number of samples of fits l is low (around 25 replicas) thus Rbv could
be affected by great oscillations. Taking the square root of the quantity diminishes
this effect, making the figure of merit more stable.



Chapter 5

Results

This final chapter is devoted to the results of the thesis. First of all we are going
to show the problem which arose with the previous closure test methodology; after
that we are going to introduce a new formalization chosen for the closure test which
constitutes the first part of the results. After that we are going to dwell into the topic
of inconsistent closure tests, the second part of this work.

5.1 Consistent closure test results

In this section we are going to show the results for the consistent closure test per-
formed with the standard NNPDF method. First of all we are going to elucidate the
technical details of the procedure.

Numerical setup

In each multiclosure test there is a number of defining free parameters that need to
be chosen. These are mainly:

1. Number of replicas for each fit

2. Number of fits

3. Choice of underlying true value

4. Splitting between training data and out of sample testing data

47
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Concerning point 1 and 2 the chosen numbers were „ 25 fits, so 25 instances of
level 1 data with 100 replicas each. The choice for these numbers comes from previous
studies regarding the stability of the progressive mean of bias/variance ratio, which
has been here repeated.

Figure 5.1: Progressive square root ratio. The errorbars are computed as the pro-
gressive standard deviation

Figure 5.1 shows that after 25 fits the square root ratio stabilizes on a value which
in this case is 0.92. This plot shows that the chosen values for the closure tests
gauranteee stability of this figure of merit.

The underlying true value for the PDFs was chosen arbitrarily. This was also
based on previous studies regarding the independence on the choice of underlying
truth, which have not been repeated in the context of this thesis. Results can be
found in [20]. In particular we choose the central set of PDFs of a previous fitting
procedure in order to test the NN in a realistic context, which ensures to not have
catastrophic outcomes related to the physical constraints which the PDFs must obey
to.

The final point is the most delicate one, since it brings us to the core of the problem
which affects the bias variance ratio. The splitting between in and out of sample of
the data is useful since we want to test the performance of the methodology on data
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Figure 5.2: Kinematic coverage plot. Highlighted datasets are the out of sample ones
comprised in the testing set

which was not included in the fit. This strategy is employed in order to simulate
the performance of the NN on unseen data, so the power of the NN to generalize
the information. In order to avoid biasing the result, the split between training and
testing set must be made in the most homogeneous way possible.

The choice for such a split has been taken from the strategy of K-Folding, which
consists in an automated choice for splitting. More details on the definition of the
K-folding procedure can be found in [16].

In the following section we are going to present the results related to a global
Consistent Closure Test. The global adjective refers to the fact that we are making
use of the whole NNPDF 4.0 dataset, since we are also going to show results for
smaller sets of data.
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As it can be seen in Fig. (5.1), the square root ratio stabilizes on a value of 0.92.
While this could be considered a good approximation to 1, the error bars computed
as the progressive standard deviation of the sample of the ratio itself show that this
final value should not be considered compatible with the expected one.

The inconsistency between the found result and the expected one needs to be
properly addressed. Let us recall the notation for the consistent closure test: l denotes
the index of the fit and r denotes the replica number. The raw output of a multiclosure
test is a sample of PDFs u indexed in the following way:

ul
r :“ best PDF set of fit l replica r. (5.1)

Since the analysis of the performance is performed in data space, these PDFs
replicas yield the following predictions for observables:

µl
r,i :“ Oi

pul
rq (5.2)

where O is the forward map and i indexes the specific observable. Let us for now
consider a single observable and a single fit: this means fixing the indices l “ L and
i “ I.

The prediction µL
r,I can be considered a R.V. of which we have a sample, indexed

by the replica number r. It is obvious though that we do not have any information
regarding the distribution of this variable, apart from the fact that we have a sample
for it.

The problem in the bias variance ratio as previously defined is that we are mix-
ing information related to the distribution of experimental measurements with the
distribution of the output of a NNPDF fit.

In particular this has the following effect on the bias and the variance: while they
are defined essentially as χ2 quantities they do not have any property related to the
generalized chi square of a multivariate gaussian: this is because we are using as set
of weights the experimental covariance matrix, which has no relation to the output
distribution of the multi-closure test.

This can be easily seen by computing separately the bias and the variance for an
ensemble of datasets. In figure (5.3) it can be clearly seen that there is no trend of
the bias and the variance with respect to the dataset size: if the bias and the variance
were actually χ2 their expected values should both follow the line y “ x

This problem requires a new formalization for the closure test figure of merit,
explained in the following section.
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Figure 5.3: Bias and variance means for different datasets vs number of data points
for each dataset

5.2 Closure test revisited
In this work the closure test formalism has been changed. The fitting operations and
setup have been kept completely equal as already described, but the results have been
analyzed in a different way. The main idea behind this proposal is avoiding the usage
of the experimental covariance matrix, in order to avoid biasing the bias variance
ratio.

The quantities of interest are going to be:

• ∆l
V,r,i

• ∆l
B,i

which are the bias and variance distances previously defined for observable i.
Checking the consistency in error propagation of the NN consists in checking

whether the R.V. ∆l
B,i is compatible with the R.V. ∆l

V,r,i.
First of all we tried to simply redefine the bias variance ratio figure of merit

replacing the experimental covariance matrix with the sample covariance matrix of
the samples themselves. From a practical point of view this means the following:
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• Select an out of sample testing set

• Compute a sample covariance matrix CPDF for each fit using as sample the
instances of ∆l

V,r,i.

• Define the bias and the variance as:

Bl :“ ∆l
B,iC

´1
PDF,ij∆

l
B,j (5.3)

V l :“
1

Nrep

ÿ

r

∆l
V,r,iC

´1
PDF,ij∆

l
V,r,j. (5.4)

• Compute the bias variance ratio as usual.

In this way the quantities ∆B and ∆V are correctly weighted. The problem though
in this approach resides in the inversion of the PDF covariance matrix. Remember
that we are considering the predictions of the PDFs replicas in data space: it is
obvious that the correlation between them is induced by the forward map which we
are using to compute theoretical predictions. Consider a simple but realistic case:
suppose the out of sample testing set comprises two observables which are almost the
same. This could mean that we have included in the testing set e.g. the structure
function measured for two really similar values of x. It is then straightforward that
the predictions for these two quantities will lie almost on a straight line.

Two linearly dependent R.V.s are 100% correlated, yielding a singular matrix, thus
rendering its inversion impossible. In the context of this work we tried the following
approach.

First of all in order to avoid problems related to dimensionality we considered the
correlation matrix instead of the covariance one:

Corr “

˜ Varpµ1q

Varpµ1q

Covpµ1,µ2q
a

Varpµ1qVarpµ2q

Covpµ2,µ1q
a

Varpµ1qVarpµ2q

Varpµ2q

Varpµ2q

¸

. (5.5)

We then numerically found the diagonalizing change of basis matrix V and the
set of eigenvalues λ. After this we delete the couples of eigenvalue-eigenvector if the
eigenvalue λ is below a certain threshold. This yields a modified change of basis
matrix V 1 and a new set of eigenvalues λ1. After this we can restore the original
shrinked correlation matrix by the following operation:

New Corr “ V Tdiagpλ1
qV (5.6)
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This new correlation matrix can be then inverted avoiding problems related to nu-
merical instability of the inversion.

The problem with this approach is that the threshold on the eigenvalues does not
gaurantee stability: from figure (5.4) to figure (5.7) a series of plots of the

b

B
V

for
different values of the threshold, which can be clearly seen to vary as the threshold
increases.

Number of fits

b

B
V

Figure 5.4: Bias variance square root ratio computed with regulated PDF covariance
matrix. Threshold is ´1

From the plots shown between figure (5.4) and figure (5.7) it is clear that we
cannot approach the closure test with the proposed method keeping the correlations.

We can still check the liability of the NN in propagating uncertainties by looking
at the single observables, without taking into account the correlations between them
induced by the forward map. We are essentially going to make use of a kind of bias
variance ratio once again as will be explained in the following section.

Define yet again the testing set as a collection of observables which have not been
used in the training of the NN:

Testing set :“ tµiu where i “ 1...Nobs. (5.7)
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Number of fits

b

B
V

Figure 5.5: Bias variance square root ratio computed with regulated PDF covariance
matrix. Threshold is 10´14

Number of fits

b

B
V

Figure 5.6: Bias variance square root ratio computed with regulated PDF covariance
matrix. Threshold is 10´7
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Number of fits

b

B
V

Figure 5.7: Bias variance square root ratio computed with regulated PDF covariance
matrix. Threshold is 10´1

We know that PDFs are gaussianly distributed thanks to a previous study con-
ducted in [8]. Assuming linearity of the forward map we can still assume gaussianity
in the distribution of the observables, thus we know that the R.V. ∆V is gaussianly
distribruted:

∆i
V „ N p0, σi

pdf q, (5.8)

where σpdf is the standard deviation of the sample.
Checking the NN consistency in propagating error consists in checking whether

the quantity ∆i
B is distributed according to:

∆i
B

!
„ N p0, σi

pdf q, (5.9)

which can be reformulated as:
∆i

B

σi
pdf

!
„ N p0, 1q (5.10)

This change in the definition of the closure test gives us the possiblity of checking
point by point the validity of the algorithm, thus making it also possible to find the
regions in px,Q2q space over which the NN performs better or worse. In the following
section we are giving the new results for the Consistent Closure Test.
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Results for consistent closure test

We can here show the results for the consistent closure test.
As said above the null hypothesis for testing states the equality between two

distributions:
∆i

B

σV i

„ N p0, 1q, (5.11)

which indicates the fact that the NN is correctly propagating uncertainty.
In order to show the results for the consistent test we are going to show first of

all a histogram which plots the instances of the R.V. ∆i
B

σV i
aggregating all the data

together. This means not making any distinction between the various observables
labelled by i.

The problem with this kind of histogram is that it does not keep into account the
fact that all observables are inevitable correlated by the forward map. In an extreme
case this could mean counting several times the same observable which would bias
the distribution itself. We still show the histogram in force of the fact that the out-of-
sample testing set has homogeneous characteristics given by the K-Folding procedure.

Figure 5.8: Results over all out of sample data for consistent closure test

The mean and the standard deviation of this histogram are:

µ “ 0.09, (5.12)
σ “ 0.86. (5.13)
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As it can be seen we are slightly over-estimating the uncertainty: in the ideal case
the value of σ would be “ 1, but, as said before, this could be related to the wrong
weighting of some processes which slightly bias the histogram.

This figure of merit, while being rough, still gives an idea of the performance of
the NN: in particular it will be interesting to look at this figure of merit in the context
of the inconsistent closure tests.

In order to give an idea of the performance relating it also to the kind of process,
we want to show the plot in figure (5.9): we plot each single data point in the px,Q2q

plane also specifying the process type in the legend. The colorbar represents the
standard deviation of the sample of the quantity ∆i

B

σV i
.

Figure 5.9: px,Q2q plane for out of sample testing set.

Also in this plot we can see that we are slightly overestimating the error given
the presence of some point lying in the blue region, which corresponds to the interval
r0.4, 0.6s, while no point lies in the symmetric brown region r1.4, 1.6s.

The proposed method of analysis is going to be adopted also for the inconsistent
closure tests, which are the topic of the next subsection.

5.3 Inconsistent closure test

In the following subsection we are going to dwell into the topic of inconsistent closure
test. The need for inconsistent closure tests arises when we want to simulate the
situation in which the experimental collaborations have made a mistake in estimating
sources of uncertainties affecting some observables. First of all then we are going to
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define what is meant by inconsistent data, then we are going to present the results
for a couple of cases of study which have been taken into consideration the context
of this work.

Inconsistent data

Before talking about inconsistent closure tests we need to give the definition of in-
consistent data. A measurement is said to be inconsistent if its nominal uncertainty
is smaller than its real uncertainty. When we are talking about single measurements,
thus scalar ones, this can only mean that the nominal standard deviation is smaller
than the true one. On the other hand, when we are talking about correlated mea-
surements, thus multi-dimensional ones, this can also mean a mistake in estimating
the correlations between measurements has been made. In order to give a precise def-
inition we are going to review the case of inconsistent data in the context of NNPDF
fitting.

As said many times in the course of this work, also in the context of a normal fitting
procedure the Monte Carlo replicas are generated by adding a stochastic noise to the
central values. In order to relate this shift to the actual nominal uncertainties given
by the experimental collaborations we need to properly define how the experimental
covariance matrix is built. Taking a look at the definition in [14], the covariance
matrix is built as:

covij “

´

Nsys
ÿ

k“1

σi,kσj,k ` FiFjσ
2
N

¯

` δijσ
2
i,t, (5.14)

where Fi, Fj are the experimental central values, σi,k are the Nsys correlated system-
atic uncertainties, σN is the total normalization uncertainty and σi,t is the uncorre-
lated uncertainty.

We say that a set of data is not consistent if some of these errors have been
wrongly estimated. In the context of an inconsistent closure test we can reproduce
the situation in which some of these uncertainties have been underestimated: the final
goal is to understand whether the NN procedure for fitting the PDFs learns this error
and propagates it to the PDFs themselves. In order to give a more technical insight
into the exact procedure of the inconsistent closure test, let us repeat the terminology
for the closure test in a slimmer fashion adapting it to the inconsistent case.
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A set of true PDFs is chosen, which is then used to compute the underlying truth,
the level 0 data.

After this a set of level 1 data is generated sampling a noise from a known proba-
bility distribution in data space ρ. For each level 1 instance a set of level 2 instances is
sampled adding a further noise to the level 1 data, this time sampling from a different
distribution, ρ1.

Lvl 1 data : y0 “ f ` η „ ρ,

Lvl 2 data : µ “ y0 ` ε „ ρ1.
(5.15)

The distribution ρ1 comes exactly from modifying the covariance matrix defined
in equation (5.14). Depending on the situation we chose some of the systematic
uncertainties and rescaled them by a factor λ P r0, 1s, being 1 the consistent case and
0 the extreme opposite in which we remove the systematic completely. This means
then considering a modified covariance matrix defined as:

cov1
ij “

´

Nsys
ÿ

k“1

λkσi,kλkσj,k ` FiFjσ
2
N

¯

` δijσ
2
i,t, (5.16)

where the factor λk “ 1 if we do not affect that uncertainty, and λk ă 1 if we decide
to affect that uncertainty.

Inconsistent closure test results

The goal of this study is understanding the impact of inconsistencies on the output
of the Neural Network. Being the inverse problem really complex it is impossible to
analytically understand in which regions of data space the resulting PDFs will yield
problems, thus the only viable option is inserting inconsistencies in different datasets
and processes in order to understand the NN response to the inconsistent input.

In order to understand this feature, the proposed method is the following: a set
of data-points coming from a specific dataset is made inconsistent varying its error
as explained in equation (5.15). An inconsistent closure test is deployed and then
tested on a testing set set which has more or less the same characteristics as the
training one. In particular it is important to include observables which closely match
the inconsistent ones in the training, since we expect the NN to perfom badly on
these data-points. In the context of this work we have studied the impact of the
inconsistency in three different cases:
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• DIS-only fit.

• Drell-Yan inconsistencies.

• Jets data inconsistencies.

DIS inconsistent closure test

We first study the impact of inconsistencies on an only-DIS closure test. In this
closure test we have used only DIS observables to perform both the training and the
testing.

This can be seen as a preliminary study for the global tests since the Deep Inelastic
Scattering observables are linear in the PDFs. Given the linearity at leading order
of the forward map, we can expect the NN to propagate the errors learned in the
inconsistent datasets to the out of sample testing set.

Choice of datasets and of uncertainties

In order to settle down the specifics for the inconsistent closure test, we need to
choose which datasets we want to make inconsistent and which uncertainties we want
to manipulate. We chose to make inconsistent the measurements coming from the
HERA experiments [3], [4]. In particular we chose to insert inconsistencies in the
following processes:

• inclusive DIS measurements of e˘p collisions at
?
s “ 575 GeV.

• inclusive DIS measurements of e˘p collisions at
?
s “ 820 GeV.

• inclusive DIS measurements of e˘p collisions at
?
s “ 920 GeV.

• inclusive DIS measurements of e˘p collisions at
?
s “ 320 GeV.

These datasets’ fraction with respect to the whole number of data-points is Ninc “ 860

against a total of Ntr “ 2576 training data.
In second place we need to choose which uncertainties we want to modify. In order

to measure the weight of the systematic uncertainties which we chose, we decided to
use as a metric the trace of the covariance matrix. The trace of the covariance matrix
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can be thought of as representing the ‘size’ of the overall uncertainty since:

Trpcovq “

D
ÿ

i“1

λi, (5.17)

where λi are the eigenvalues of the covariance matrix. In the gaussian case the eigen-
values of the covariance matrix are the variances of the observables in the diagonal
basis.

Figure 5.10: Trace variation vs λ

The plot in figure (5.10) shows the following ratio:

TrpCpλq

TrpCexpq
, (5.18)

where the covariance matrix taken into consideration is the one related only to the
inconsistent datasets, thus:

C “

¨

˚

˚

˚

˝

CHERA1 0 0 0

0 CHERA2 0 0

0 0 CHERA3 0

0 0 0 CHERA4

˛

‹

‹

‹

‚

. (5.19)

We could have shown the same plot using the ratio of the covariance matrix of
the whole training dataset, but the impact on the trace variation is so small that it
cannot be seen. Having defined all the premises, we can show the results of the DIS
inconsistent closure test.
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Results for inconsistent DIS fits

First of all we want to show the kinematic coverage of the training data, highlighting
the inconsistent data points. As it can be seen the inconsistent data points cover a
wide region in px,Q2q space, given also the fact that they constitute a third of the
total training data. As already said in the initial part of this chapter related to the

Figure 5.11: Inconsistency coverage

results, we are going to show the same plots and analysis proposed for the consistent
closure test.

First of all we show the histograms of the ∆B

σV
for all the data in the out of sample

test aggregated together.
It can be seen that as λ diminishes the shape of the histogram worsens, as it

becomes wider. Qualitatively we can see that the inconsistency becomes really vis-
ible only when λ “ 0, thus when we simulate the situation in which an experiment
completely missed several sources of uncertainty.

More quantitatively we can also see how the mean and standard deviations of the
histograms evolve with the inconsistency. The values are the following:
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Figure 5.12: Histogram showing normalized ∆B for consistent fit

Figure 5.13: Histogram showing normalized ∆B for inconsistent fit; λ “ 0.6
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Figure 5.14: Histogram showing normalized ∆B for inconsistent fit λ “ 0.0

• Consistent test, λ “ 1: µ “ ´0.07 and σ “ 0.92,

• Inconsistent test, λ “ 0.6: µ “ ´0.02 and σ “ 1.08,

• Inconsistent test, λ “ 0.0: µ “ ´0.80 and σ “ 2.75.

We can see that the values of σ for the intermediate inconsistent fit is as compatible
with 1 as the value of the consistent fit itself. We could actually say that a smaller
inconsistency would bring the NN to behave ‘perfectly’, thus yielding a value of
σ “ 1. Still we need to remark the fact that this figure of merit is surely biased by
the correlations between data points. The final inconsistent fit for λ “ 0 which is the
extreme case points out that the NN is not able to absorb the inconsistency anymore
and behaves corrupting the results.

On the other hand this histogram does not give any information on which particu-
lar observables are worsened by the inconsistency: in order to highlight this character-
istsic we can see the evolution of the heatmap of the consistent closure test until the
inconsistent case. As previously said the colourbar represents the standard deviation
of the sample of the R.V. ∆i

B

σi
pdf

.
This series of heatmaps gives more detailed information related to the impact of
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Figure 5.15: Standard deviation plot for consistent DIS. λ “ 1.0

Figure 5.16: Standard deviation plot for inconsistent DIS. λ “ 0.0
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Figure 5.17: Standard deviation plot for inconsistent DIS. λ “ 0.0

the inconsistency since we are not aggregating any set of data; in particular these
heatmaps are telling us that the inconsistency placed in Neutral Current experiments
in the training set affects the PDFs in such a way that mainly Neutral Current
observables are predicted in the wrong way. More results are shown in the appendix
wich highlight this feature.

Conclusions for DIS inconsistent fits

The performed analysis suggests a couple of interesting patterns in the response of
the methodology to the inconsistency in DIS data.

First of all we can see by looking at the trend of mean and standard deviation
two effects: first of all the NN almost completely reabsorbs the inconsistency in the
intermediate case, λ “ 0.6. In second place in the extreme case, not only the standard
deviation is worsened, but also the mean is shifted away from the expected value of
0. It is interesting to remark the fact that only with a great amount of inconsistency
the effect is clearly visible.

Getting more specifically into which observables are the affected ones, it can be
seen that these are the ones related to Neutral Current DIS experiments, which are
the inconsistent ones in the training set. It can be also seen though that not all the
Neutral Current observables are affected by the inconsistency. What is especially
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interesting to notice is the fact that the observables in the same kinematic region as
the one in which the inconsistency was inserted have been affected more than the
rest.

These results related to the DIS inconsistent closure test show that the NN prop-
agates the inconsistency from training data to testing data, affecting only the same
kinds of processes which were made inconsistent in the training data.

Drell Yan inconsistent closure test

In the following subsection we want to study a more general example than the only-
DIS fit previously studied. In this case we are going to show the results for a global
inconsistent closure test, thus comprising also hadronic observables. This case is
surely more realistic than the previous one studied since it is closer to the standard
fitting procedure employed in real data fitting.

Choice of datasets and uncertainties

The inconsistency has been inserted in a Drell-Yan process. In particular we take into
consideration the measurement of the double-differential high-mass Drell-Yan cross
section in pp collisions at

?
s “ 8 TeV measured by the ATLAS collaboration [2].

In this case we are only affecting one dataset, thus the quantity shown in the plot
(5.18) is simply:

y “
TrpCpλq

TrpCexp
. (5.20)

In figure (5.18) we show the evolution of this quantity with λ Ñ 0.
In this case we are actually affecting all the systematic uncertainties which concur

in defining the covariance matrix.

Results for inconsistent DY fit

As for the DIS fits we are going to show first the kinematic coverage of the inconsistent
data. The number of inconsistent data points in this case is Ninc “ 48, against a total
number of data points for the fitting Nfit “ 3772: It is clear that in this case we have
put an inconsistency in a much smaller number of data points. First of all we are
going to show once again the out of sample histograms of the normalized ∆B. If we
take a look only at the histograms of figures (5.20), (5.21) and (5.22), we can see that
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Figure 5.18: Impact on trace of inconsistency

Figure 5.19: Kin coverage inconsistency DY
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Figure 5.20: Histogram showing normalized ∆B for consistent fit

Figure 5.21: Histogram showing normalized ∆B for inconsistent fit λ “ 0.8



70 CHAPTER 5. RESULTS

Figure 5.22: Histogram showing normalized ∆B for inconsistent fit λ “ 0.0

the introduction of the inconsistency yields two effects: on the one hand it broadens
the shape of the sample but on the other it also renders it less symmetric. In fact the
values of the mean and standard deviation for each fit are:

• Consistent test, λ “ 1: µ “ 0.09 and σ “ 0.86,

• Inconsistent test, λ “ 0.8: µ “ 0.21 and σ “ 0.87,

• Inconsistent test, λ “ 0.0: µ “ 0.18 and σ “ 1.51.

First of all we can see that consistent fit is overestimating uncertainties more than
the DIS one, yielding a standard deviation of 0.86. Progressively augmenting the
inconsistency we see that in the intermediate case the mean is worsened while the
spread of the values remains almost the same. As the previous DIS case, the extreme
λ “ 0 inconsistent fit worsens both the mean and the standard deviation by a visible
amount.

Viewing the information for the single observables as heatmaps, we can see the
broadening effect introduced by the inconsistency in the Drell-Yan observables. Sim-
ply by looking at the heat-maps it is safe to say that the impact of the inconsistency
is less visible rather than the DIS case. This can be mainly attributed to the size of
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Figure 5.23: Standard deviation plot for consistent DIS. λ “ 1.0

Figure 5.24: Standard deviation plot for inconsistent DY. λ “ 0.8
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Figure 5.25: Standard deviation plot for inconsistent DY. λ “ 0.0

the inconsistent dataset; anyway also in this case there is a correspondence between
introduced inconsistency and out of sample performance. This correspondence can
be seen more clearly in the histograms in the appendix, in which it will be easier to
see which are the impacted data points.

Conclusions for Drell Yan fits

The inconsistent datasets in this case covered a much smaller portion in data space
compared to the DIS case previously studied. It is interesting to notice that in this
case the change in the global standard deviation for the intermediate inconsistency
case is even less visible when compared to the DIS one; on the other hand we can
see a visible worsening of the mean of the normalized ∆B. This phenomenon might
be related to two things: first of all, as already said, performing the analysis in data
space implies having to deal with correlated variables which might bias the result.
On the other hand this could be related to the presence of hadronic observable in the
global set, which might introduce sources of non-gaussianity in the distribution of the
normalized ∆Bs.

As in the case of DIS observables the change in the standard deviation becomes
really visible only in the extreme λ “ 0 case. It is interesting to notice that here the
ratio of inconsistent data to whole training size is much smaller than the DIS case,
but we are still able to see a worsening of the NN performance overall.
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Jets inconsistencies

In the following subsection we are going to show the setup and results for inconsis-
tencies in jets cross section data. The chosen data are still measured by the ATLAS
collaboration and they refer to the measurement of the inclusive jet cross-sections
in proton-proton collisions at

?
s “ 8 TeV [1]. Once again we show the weight of

the uncertainties which were made inconsistent in this study. Also here we take into

Figure 5.26: Impact on trace of inconsistency

consideration an extreme example, affecting all the correlated uncertainties in the
chosen dataset.

Results for inconsistent JETS fit

As in the previous examples we want to highlight the trend with λ of the histograms
plotting the normalized ∆Bs. First of all we show the kinematic coverage of the
inconsistent data with respect to the whole training set. In this case the number of
inconsistent data points is Ninc “ 171 against a total of training points. Ntr “ 3793.
We show again the histograms for the normalized ∆B for the whole out of sample
testing set. Also In this case it can be seen that the overall fit quality is worsened
by introduction of inconsistencies. In particular the mean and standard deviation
of the fits take the following values:

• Consistent test, λ “ 1: µ “ 0.17 and σ “ 0.84,
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Figure 5.27: Kin coverage inconsistency JETS

Figure 5.28: Histogram showing normalized ∆B for consistent fit
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Figure 5.29: Histogram showing normalized ∆B for inconsistent fit λ “ 0.6

Figure 5.30: Histogram showing normalized ∆B for inconsistent fit λ “ 0.0
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• Inconsistent test, λ “ 0.6: µ “ 0.25 and σ “ 0.87,

• Inconsistent test, λ “ 0.0: µ “ 0.41 and σ “ 3.33.

Also in this case we see a trend which is similar to the Drell Yan case: in par-
ticular also here we see a corruption in the mean visible in the middle point of the
inconsistency (λ “ 0.6) while the standard deviation remains almost the same. On
the other hand in this case the most inconsistent case shows an even larger increase
in the standard deviation: this can be safely attributed to the fact that the size of
the points which were made inconsistent is much larger than before, roughly 4 times
more.

In order to check the single data point performance of the NN we also show the
heatmap of the predictions:

Figure 5.31: Standard deviation plot for consistent JETS. λ “ 1.0

In this case it is evident that the region over which the NN performs badly is
much broader than the Drell Yan case, once again given the larger size of inconsistent
data in the training. It is still interesting to notice that a correspondence between
inconsistent observables in the training and badly behaving ones in the out of sample
testing does not cease to hold.

Conclusions for JETS fits

In this second case of global inconsistent fit, we notice a trend similar to the DY
case. The main difference with the DY case is that we inserted the inconsistency
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Figure 5.32: Standard deviation plot for inconsistent JETS. λ “ 0.6

Figure 5.33: Standard deviation plot for inconsistent JETS. λ “ 0.0
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in a much broader set of data points. This can be easily seen by the fact that the
overall standard deviation of the normalized ∆B is much larger for the λ “ 0 case
and consequently that many more observables perform badly.

It is interesting to notice that also here the mean of the R.V. ∆B is shifted from the
expected value 0: this once again suggests that the presence of hadronic observables
affects the behaviour of this figure of merit. Finally we can see also here that the NN
learns the inconsistency in the extreme case propagating it essentially to the same
kinds of observable.

5.3.1 Final remarks

In this conclusive section we want to sum up the findings of this study.
We have inserted an inconsistency in three kinds of different setups: one only-

DIS setup and two global fits, making respectively Drell-Yan and Jets observables
inconsistent. We have studied extreme examples since we corrupted a large part of
the systematic uncertainties affecting particular datasets. In all three setups we varied
the size of the introduced inconsistency by varying a parameter λ ranging from 1 to
0.

All the three cases of study show common characteristics: in the intermediate
situation with λ P p0, 1q the NN is able to reabsorb the inconsistency and it performs
as if no inconsistency was introduced. On the other hand in the extreme case of
λ “ 0 in all three cases the performance of the NN is heavily worsened, overall
overestimating uncertainties.

Another feature common to all three setups is the fact that the NN propagates
inconsistency in data space only in those regions which have the same characteristics
as the inconsistent datasets. In all three setups, given an inconsistent process in
the training data, the same process in the out of sample testing set shows the worst
performance of the NN.

A feature which is peculiar only to the two global fits is the fact that in both
the mean of the normalized ∆Bs is greatly shifted away from 0 as the inconsistency
increases. This could be caused by the non-linearity in the PDFs of the observables
which were made inconsistent during the training.

There are a few possible follow-ups to this work: first of all the problem to be
properly addressed is the correlation in data space induced by the forward map. In
this work we relied on the homogeneity of the testing set which can justify the results
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of this work. A possible way of solving this problem would be to actually build from
scratch a testing set which is free of problems when dealing with uncertainties.
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Conclusions

At the beginning of this work the idea was to expand previous studies related to
the inconsistent closure tests, which can be found in [20]. Specifically, our aim was
to conduct more realistic inconsistent closure tests than those eventually executed,
involving the introduction of significantly greater inconsistencies.

Throughout our research, we discovered the necessity to revise the closure test
formalism, prompting us to make adjustments to the previous approach.

In the first part of this work, we changed the figure of merit used as a diagnostic
for the NN performance, partially removing the bias which affected the previously
adopted one. Employing this new methodology, we can say that the standard func-
tioning of the NN slightly overestimates uncertainties: still for a perfect assessment
of the NN performance, additional research in this direction is required.

The second part of the work is devoted to the inconsistent closure tests. The first
inconsistent closure test has been performed in a simple setting: we included only DIS
observables which at LO are linear in the PDFs. The two other cases include also
hadronic observables, and the inconsistency has been placed first in a set including
Drell Yan process data, and in second place in a set of Jet cross sections data.

The studied examples are extreme in the sense that we are simulating the situation
in which almost all the uncertainties were estimated in the wrong way. This is for sure
more irrealistic if compared to previous studies regarding inconsistent closure test,
but the good advantage is that it can give us more insights into the response of the
NN to inconsistencies. In fact it is interesting to notice that also in this extreme case
the NN performs in a consistent way if the systematic uncertainties are only rescaled
by a λ factor below 1 but different from zero; only in the case in which we completely
remove the systematic uncertainties the NN starts performing in an inconsistent way.

In second place we can see that in the extreme case in which we set λ “ 0 the NN
affects only the testing data which measure the same observables made inconsistent
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during the training. This suggests that the NN somehow is able to distinguish the
various kind of processes, translating the inconsistency in data space to the PDF level
following a simple pattern.

One crucial aspect requiring further attention in future studies is the rigorous
handling of correlations during the evaluation of the NN in data space. Although this
thesis has made strides in enhancing previous results, it still exhibits a slight bias
when assessing the performance of the NN in data space. Future research in this area
holds significant importance as it enables a more nuanced examination of inconsistent
closure tests in increasingly realistic scenarios, where the magnitude of inconsistency
is reduced compared to the cases under investigation.



Appendix A

Further results

In the following appendix we are going to list a few more histograms which have not
been shown in the main body of the work for presentation reasons.
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A.1 DIS fits

(a) λ “ 1; DIS consistent fit

(b) λ “ 0.6; DIS inconsistent fit

(c) λ “ 0.0; DIS inconsistent fit
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(a) λ “ 1; DIS consistent fit

(b) λ “ 0.6; DIS inconsistent fit

(c) λ “ 0.0; DIS inconsistent fit
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(a) λ “ 1; DIS consistent fit

(b) λ “ 0.6; DIS inconsistent fit

(c) λ “ 0.0; DIS inconsistent fit
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A.2 DY fits

(a) λ “ 1; DY consistent fit

(b) λ “ 0.8; DY inconsistent fit

(c) λ “ 0.0; DY inconsistent fit
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(a) λ “ 1; DY consistent fit

(b) λ “ 0.8; DY inconsistent fit

(c) λ “ 0.0; DY inconsistent fit
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(a) λ “ 1; DY consistent fit

(b) λ “ 0.8; DY inconsistent fit

(c) λ “ 0.0; DY inconsistent fit
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(a) λ “ 1; DY consistent fit

(b) λ “ 0.8; DY inconsistent fit

(c) λ “ 0.0; DY inconsistent fit
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(a) λ “ 1; DY consistent fit

(b) λ “ 0.8; DY inconsistent fit

(c) λ “ 0.0; DY inconsistent fit
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A.3 JETS fits

(a) λ “ 1; JETS consistent fit

(b) λ “ 0.6; JETS inconsistent fit

(c) λ “ 0.0; JETS inconsistent fit
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(a) λ “ 1; JETS consistent fit

(b) λ “ 0.6; JETS inconsistent fit

(c) λ “ 0.0; JETS inconsistent fit
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(a) λ “ 1; JETS consistent fit

(b) λ “ 0.6; JETS inconsistent fit

(c) λ “ 0.0; JETS inconsistent fit
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(a) λ “ 1; JETS consistent fit

(b) λ “ 0.6; JETS inconsistent fit

(c) λ “ 0.0; JETS inconsistent fit



96 APPENDIX A. FURTHER RESULTS



Bibliography

[1] Morad Aaboud et al. “Measurement of the inclusive jet cross-sections in proton-
proton collisions at

?
s “ 8 TeV with the ATLAS detector”. In: J. High Energy

Phys. 9 (2017), pp. 1–54.

[2] Georges Aad et al. “Measurement of the double-differential high-mass Drell-Yan
cross section in pp collisions at

?
s “ 8 TeV with the ATLAS detector”. In: J.

High Energy Phys. 8 (2016), pp. 1–61.

[3] Francise D. Aaron et al. “Combined measurement and QCD analysis of the
inclusive e˘p scattering cross sections at HERA”. In: J. High Energy Phys. 1
(2010), pp. 1–63.

[4] Halina Abramowicz et al. “Combination of measurements of inclusive deep in-
elastic e˘p scattering cross sections and QCD analysis of HERA data: H1 and
ZEUS Collaborations”. In: Eur. Phys. J. C 75 (2015), pp. 1–98.

[5] J. R. Andersen et al. “Les Houches 2015: Physics at TeV Colliders Standard
Model Working Group Report”. In: 9th Les Houches Workshop on Physics at
TeV Colliders. May 2016. arXiv: 1605.04692 [hep-ph].

[6] Richard D. Ball et al. “Parton distributions for the LHC Run II”. In: J. High
Energy Phys. 4 (2015), pp. 1–148.

[7] Richard D. Ball et al. “The path to proton structure at 1% accuracy: NNPDF
Collaboration”. In: Eur. Phys. J. C 82.5 (2022), p. 428.

[8] Andy Buckley et al. “LHAPDF6: parton density access in the LHC precision
era”. In: Eur. Phys. J. C 75 (2015), pp. 1–20.

[9] Alessandro Candido, Stefano Forte, and Felix Hekhorn. “Can MS parton dis-
tributions be negative?” In: J. High Energy Phys. 11 (2020), pp. 1–30.

97



98 BIBLIOGRAPHY

[10] Stefano Carrazza and Juan Cruz-Martinez. “Towards a new generation of par-
ton densities with deep learning models”. In: Eur. Phys. J. C 79 (2019), pp. 1–
9.

[11] Stefano Carrazza, Juan Cruz-Martinez, and Roy Stegeman. “A data-based
parametrization of parton distribution functions”. In: Eur. Phys. J. C 82.2
(2022), p. 163.

[12] Stefano Carrazza et al. “An unbiased Hessian representation for Monte Carlo
PDFs”. In: Eur. Phys. J. C 75 (2015), pp. 1–20.

[13] Luigi Del Debbio, Tommaso Giani, and Michael Wilson. “Bayesian approach to
inverse problems: an application to NNPDF closure testing”. In: Eur. Phys. J.
C 82.4 (2022), p. 330.

[14] Luigi Del Debbio et al. “Unbiased determination of the proton structure func-
tion F p

2 with faithful uncertainty estimation”. In: J. High Energy Phys. 3 (2005),
p. 80.

[15] R. Keith Ellis, W. James Stirling, and Bryan R. Webber. QCD and Collider
Physics. Cambridge Univ. Press, 2010.

[16] Stefano Forte and Stefano Carrazza. “Parton distribution functions”. In: Ar-
tificial Intelligence For High Energy Physics. World Scientific, 2022, pp. 715–
762.

[17] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators”. In: Neural Networks 2.5 (1989),
pp. 359–366.

[18] Michael E. Peskin. An Introduction to Quantum Field Theory. Addison-Wesley
Publishing Company, Advanced Book Program, Reading, MA, 1995.CRC press,
1995.

[19] Andrew M. Stuart. “Inverse problems: a Bayesian perspective”. In: Acta Numer.
19 (2010), pp. 451–559.

[20] Samuele Voltan. Validation criteria in the determination of parton distribu-
tions. Master’s thesis. Available at https://n3pdf.mi.infn.it/documents/
theses/. 2022.


