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A B S T R A C T

We address the problem of the validation of fitting methodologies that determine
Parton Distribution Functions (PDFs) from experimental data.

Knowledge of PDFs is essential to perform measurements of high energy physics
processes at hadron colliders. According to the standard theory of strong interac-
tions – Quantum Chromodynamics (QCD) – cross sections are produced from the
combination of PDFs with quantities that can be computed using perturbation the-
ory in QCD. Since PDFs themselves cannot be measured directly, their determination
is an inverse problem in the sense that it consists in reconstructing their functional
form from experimental data.

In the Bayesian approach, PDF determination corresponds to understanding pos-
terior probability distributions in PDF space through the analysis of data space
probabilities. Within this framework, tests can be performed on a fitting method-
ology by comparing its output to a known underlying true set of PDFs, which can
be guessed from previous determinations. This is done by fitting artificial data,
rather than experimental, generated from chosen underlying PDFs with realistic
uncertainties. The procedure takes the name of closure test and it has been sys-
tematically used by the NNPDF collaboration since 2012.

In this thesis, we exploit closure tests to determine the impact of inconsistent
data on the NNPDF4.0 methodology. By definition, inconsistent data are such that
their real uncertainty is larger than their nominal, which is determined through
the composition of statistical and systematic errors given by experimental collab-
orations. It has been suggested that the presence of inconsistent data can impact
the measure of a PDF fit quality, the χ2, and therefore explain the large χ2 val-
ues obtained by several collaborations in the latest determinations. This follows
from the reasonable assumption that, when presented with inconsistent datasets,
a methodology would either follow the trend of consistent data, thereby increasing
the inconsistent dataset’s χ2, or behave in the opposite way and therefore increase
the χ2 of consistent datapoints.

We perform a direct measure of the impact of inconsistent data exploiting the
closure test setup. Being trained on artificially generated data, a closure test fit
is in principle free from inconsistencies. Inconsistent data can therefore be intro-
duced manually in the fitting framework by manipulations of the experimental
covariance matrix, which accounts for both systematic and statistical uncertainties.
This is done through the rescaling of a number of eigenvalues in the systematic un-
certainty matrices, which correspond to the measurement of specific observables.
In particular, we study four situations corresponding to measurements of neutral
current DIS, single inclusive jet production and electroweak Drell-Yan (DY) boson
production.

Contrary to a standard PDF fit, the output of an inconsistent closure test fit can
be compared to the underlying law selected to generate artificial training data.
This eases the introduction of a family of statistical estimators that are used to
determine whether the results of the fit are comparable with what expected. In
particular, we investigate the closure test performance both for the PDF central val-
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ues and uncertainties delivered by the closure test, and for the expected deviations
from the hypotesis made on the prior probability distributions.
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Part I

P R E L U D E

This part is devoted to the systematic review of known theoretical as-
pects of the subjects that concern the determination of parton distribu-
tion functions through deep learning techniques.





1
S T R O N G I N T E R A C T I O N S

This chapter is devoted to the review of theoretical aspects of the theory of strong
interactions, that is, Quantum Chromodynamics (QCD). For what concerns the top-
ics that will be discussed in the rest of the thesis, we shall focus our attention
on two advanced aspects of the theory, both usually referred to as factorization.
We will extensively mention and exploit several notions of Quantum Field The-
ory (QFT) – such as couplings and renormalizablilty – that are assumed to be
consolidated by the reader. If this is not the case, we refer to the book by Peskin
and Schroeder [1] for an introduction of QFT.

By factorization one means the property of QCD for which an observable can be
written as the composition of two separate families of contributions, respectively
describing the perturbative and non-perturbative regimes of QCD. From this point
of view, factorization can be thought as an application of the Wilson operator
expansion, as we will discuss in Section 1.2.

Another feature of QCD that is commonly referred to as factorization is the sub-
traction of collinear singularities. It follows from the fact that singularities associ-
ated with collinear emission of real partons in strong processes cannot be renor-
malized or cancelled systematically. The universality of such singularities allows
for their subtraction into the non-perturbative contributions of QCD cross sections,
where they are treated as fictitious consequences of the application of perturbation
theory at low energies. Their discussion is carried out from Section 1.2.2

As a consequence of the factorization of collinear singularities, Wilson coeffi-
cients acquire a dependence on a energy scale, called factorization scale. The evo-
lution of physical quantities with such scale is described by a set of differential
equations, called the Altarelli-Parisi or DGLAP equations, that will be presented in
Section 1.3

The final part, Section 1.4, is reserved to a discussion on the masses of quarks,
which are the fundamental fields of QCD with the notation that will be introduced
in Section 1.1. The latter section features a brief introduction to the QCD Lagrangian
and the running of its coupling constant in the context of the renormalization of
the theory.

1.1 quantum chromodynamics

As many fundamental theories, strong interactions are described within the frame-
work of a QFT. This paradigm takes his roots in many independent discoveries
made in the 1960s and early 70s in two separate fields: Deep Inelastic Scatter-
ing (DIS) experiments and the quark model.

The latter aimed at explaining the discovery of a huge number of strongly inter-
acting particles over a short period of time with the assumption that these particles
were nothing more than resonances of more fundamental constituents, the quarks
[2, 3]. The classification of such particles was based on the irreducible representa-
tions of the flavour symmetry group SU(3). In this picture, quarks are the elements
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4 strong interactions

of the fundamental representation and the observed resonances – among which
are baryons and mesons – can be described as bound states of quarks.

Few years later, evidence of the presence of pointlike constituents inside hadrons
was found in the first DIS experiments. Such particles, called partons, were under-
stood to behave as free in the high energy limit and form hadronic matter as their
bound states.

The success of both descriptions of strongly interacting processes suggested the
identification of partons with quarks. It was not until a systematic treatment of
renormalization, leading to the discovery of asymptotic freedom [4, 5], that the
two ideas could be incorporated into a QFT. This framework provides the correct
interpretation of quarks as fundamental fields.

1.1.1 Lagrangian formulation

QCD is the theory that describes strong interactions. Its fundamental fields are spin-
1/2 fermions of fractional electric charge – either +2/3 or −1/3 – coming in three
families, each one containing two of them and their anti-particles, for a total of six
flavours. The need for six flavours of quarks comes from the fact that the theory
must take into account all the known hadrons as their bound states. Quarks are
described by Dirac spinor fields ψA in the fundamental representation of SU(3),
that is, A = 1, 2, 3. Note that, contrary to the flavour symmetry introduced by the
quark model, the SU(3) gauge group of QCD is identified with a new charge, called
color charge. We say that the color SU(3) symmetry is exact, in the sense that it is
the fundamental symmetry of QCD.

The force carriers, called gluons, are spin-1 bosons described by the gauge fields
Aaµ in the adjoint representation of SU(3), thus a = 1, . . . , 8. Interaction between
quarks and gluons is given by the covariant derivative

Dµ = ∂µ + igTaAaµ, (1)

where Ta are the eight generators of SU(3) and g is the QCD coupling constant.
The following commutation relations hold:

[Ta, Tb] = i fabcTc, (2)

fabc being the SU(3) structure constants. The generators live in the fundamental
representation and thus, dressed with all its indices, the covariant derivative reads
(Dµ)AB. It is quite common in literature to fix the normalization of the generators
with the identification Ta = λa/2, where λa are the Gell-Mann matrices. This
choice implies that tr

(
TaTb

)
= δab/2.

Given the interaction of Equation 1, the QCD Lagrangian is

L =
∑

flavours

ψA(i /D−mf)ABψB −
1

4
FaµνF

µνa. (3)

The gauge fields are hidden inside the covariant derivative by means of Equation 1,
and into the field strenght tensor

Faµν = ∂µA
a
ν − ∂νA

a
µ − gfabcAbµA

c
ν. (4)
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Figure 1: Gluon self energy (one-loop radiative correction of the gluon propagator). The
superficial divergence resulting from the integration over loop momentum q is
of order Λ2.

We see in Equation 3 what we meant by saying that the color symmetry is
exact, while the flavour symmetry is not. Indeed, while the Lagrangian can be
factorized as a sum of flavours, interaction is described by the color indices and,
consequently, different flavours of quark do not interact with each other. The rea-
son for this choice – which is the reason for the introduction of color – is that the
presence of flavour mixing terms would prevent the QCD Lagrangian from being
renormalizable.

In addition, since QCD’s gauge group is non-abelian, the classical Lagrangian
of Equation 3 does not account for a gluon mass term. As it happens for the
Standard Model (SM) of electroweak interactions, any experimental mass correc-
tion must be realized upon possible spontaneous symmetry breaking mechanism:
however, gluons are believed to have zero mass and that is not necessary at all
in QCD. Another feature of non-abelianity is the presence of gauge fields product
in Equation 4, which gives rise to trilinear and quadrilinear interaction between
gluons. This means that, contrary to what happens for photons in Quantum Elec-
trodynamics (QED), gluons carry color charge. This difference arises at a classical
level, i. e. in the Lagrangian itself, and its consequences can be seen in the quan-
tum theory after renormalization through opposite runnings of the QED and QCD

couplings.

1.1.2 Consequences of renormalization

A brief discussion concerning the renormalization of field theories is necessary
when studying theoretical aspects of particle physics such as parton distributions.
Renormalization handles what seem to be conceptual obstacles by turning them
into fundamental and predictive features of the theory. Since the methods intro-
duced by renormalization have a common ground with factorization in QCD, this
section can ease its introduction while summarizing key concepts of QCD such as
asymptotic freedom and the properties of its vacuum.

QFTs provide computations of scattering amplitudes through perturbative expan-
sion of the operators involved in the processes. Assuming that perturbation theory
holds, i. e. growing powers of the coupling constants give smaller corrections, this
is usually done by writing Feynman diagrams. Higher order computations involve
diagrams with increasingly complicated topologies that give rise to divergent in-
tegrals. For instance, consider QCD’s gluon self energy: Figure 1 shows that inte-
gration over the loop momentum gives a quadratic superficial divergence in the
region of high momenta, called Ultraviolet (UV) region. As a consequence, every
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observable quantity computed with this diagram loses its physical sense, mean-
ing that it cannot be interpreted as a probability. Altough sometimes divergent
contributions cancel each other out, there remains an infinite number of diagrams
yielding such unphysical results.

The problem is cured by assuming that the Lagrangian of Equation 3 is built
upon bare quantities that are related to physical ones through scale dependent re-
lations, so that the poles of the physical Green functions, i. e. expectation values of
the field operators, are systematically subtracted by such dependence. This intro-
duces a dependency of physical observables on a energy scale, called renormaliza-
tion scale λR, that is described by a differential equation, called Renormalization
Group Equation (RGE).

It can be shown that Green functions that depend on the coupling constant
αS = g2/4π solve the RGE if the coupling behaves according to the following
differential equation, called the running coupling equation:

dαS
d logQ2

= β(αS)

αS(λ
2
R) = αS.

(5)

This equation states that there exists a universal function β, related to the shifts
in the coupling constant, that compensates for the shifts in the renormalization
scale. In other words, it describes the rate of the renormalization group flow of the
coupling constant.

The β function is related to the derivative of the renormalized coupling with re-
spect to the scale, which depends only on counterterms adopted during renormal-
ization and is therefore a property of the theory. Moreover, since renormalizable
theories feature dimensionless coupings, β can be written as a perturbative series
with numerical coefficients:

β(αS) = α
2
S

(
−β0 +

+∞∑
k=0

βkα
k
S

)
. (6)

For QCD, results up to five loops [6] have been computed: at Leading Order (LO),
we find

β0 =
1

12π
(33− 2Nflav) , (7)

where Nflav stands for the number of flavours that are considered at the scale Q.
Solutions of the RGE equation are found integrating Equation 5 over αS:

log
Q2

λ2R
=

∫αS
αS(Q2)

dα
β(α)

. (8)

We can adopt the perturbative expansion given by Equation 6 to find

log
Q2

λ2R
= −

∫αS
αS(Q2)

dα
β0α2

(
1+

+∞∑
k=0

βk
β0
αk

)
=

=
1

β0

(
1

αS(Q2)
−
1

αS

)
−
β1

β20
log

αS(Q
2)

αS
+O(αS).

(9)

At LO in the coupling constant, the running coupling is therefore

αS(Q
2) =

αS

1+β0αS log
(
Q2/λ2R

) (1+O(logαS)) . (10)
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Figure 2: Summary of measurements of αS as a function of the energy scale Q/ΛQCD.
The respective degree of QCD perturbation theory used in the extraction of αS is
indicated in brackets. Taken from [7].

The expression shows that, depending on the sign of the β0 coefficient, the
running coupling increases (or decreases) at logarithmic rate with Q. This means
that a positive value for β0 implies an effective coupling that becomes stronger
at large momenta and weaker at small ones, while a negative β0 determines the
opposite behavior. Since β0 is a universal parameter, such distinction allows us to
separate QFTs into two families.

For instance, QED belongs to the group of field theories for which the coupling
becomes smaller at small momenta since its β0 is positive. This can be understood
as a dieletric property of QED’s vacuum: at large distances – i. e. at small energies
– the primary electric charged is masked by the infinite particle-antiparticle pairs
created by the photon self-energy contributions. On the other hand, non-abelian
gauge theories such as QCD always account for a trilinear contributions to their
gauge boson’s self-energy. This behavior of the vacuum is paramagnetic and be-
longs to the family of field theories whose coupling strenght decreases at small
distances. This effect, shown in Figure 2, is called asymptotic freedom.

The fact that the coupling grows at small momenta means that there exists a en-
ergy scale at which αS is of order one and perturbation theory ceases to hold. This
scale is denoted by ΛQCD and clearly depends on the choice of the renormalization
scheme adopted, the order of the β-series and the number of flavors considered
when solving Equation 5. By all means we can say that ΛQCD is the characterstic
scale of QCD and any dimensionful quantity can be expressed in units of it. It
is sometimes stated that ΛQCD is the characteristic scale of confinement. This is
reasonably true in the sense that confinement is a property of the low momentum
sector of QCD for which two color-charged particles cannot be observed as isolated.
However, color confinement is a property of the inter-quark potential rather than
of the coupling of the theory and its criteria are typical of non perturbative QCD.
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Figure 3: A pictorial diagram of a DIS process. The incoming lepton ` scatters off a hadronic
target h with the exchange of a virtual photon γ with momentum q.

1.2 factorization

As we have seen in the previous section, computation of scattering amplitudes
for non-abelian gauge theories are hindered by the presence of a kinematic region
that cannot be treated within perturbation theory. With the exception of inclusive
cross sections without hadrons in the initial state, such as σ(e+ + e− → hadrons)
[8], we can state that a general strong amplitude is a combination of short and
long-distance behaviors. Its computation can therefore be carried out through fac-
torization of the non perturbative effects from the perturbative high energy contri-
butions, as indicated in the introduction.

The section is devoted to the presentation of factorization through the discussion
of the LO and Next-to-Leading Order (NLO) treatment of DIS in perturbative QCD,
respectively in Section 1.2.1 and Section 1.2.2. Since real emission diagrams only
arise ad NLO, the latter will deliver the introduction the factorization of collinear
singularities and the factorization scale that have been mentioned at the beginning
of this chapter. The final part, Section 1.2.3, will instead focus on extending factor-
ization to hadronic processes, i. e. strong processes with hadrons both in the initial
and final states.

1.2.1 Leading order DIS

As anticipated, perturbative QCD describes strong processes in terms of Parton
Distribution Functions (PDFs), assuming that quarks and gluons – the partons –
are the fundamental components of hadrons.

A process that involves scattering of bound states of such particles is therefore
described in the hypothesis that partons interact according to QCD, carrying a frac-
tion x < 1 of the total momentum of the hadron. The probability for the i-th parton
to enter the interaction is proportional to x and there exists a probability density
function fi(x), the PDF, such that Pi ∝ fi(x)dx. In this light, a general hadronic
contribution to an observable σ can always be computed within perturbative QCD

by combinations of such probability densities with the parton level amplitudes.
In order to better understand how factorization works, we shall now derive it for

the LO DIS cross sections. DIS is a leptonic strong process consisting in the inelastic
scattering of a lepton with a hadronic target, such as a proton, as pictured in Fig-
ure 3. The final state is composed by the scattered lepton and a complicated state
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of products of the disintegrated hadron. We shall restrict ourselves to the case of
a photon induced unpolarized scattering, therefore discarding the contribution of
the Z channel in the assumption that the energy scale of the process is significantly
lower than m2Z.

The form of the total cross section features a leptonic contribution Lµν, from
the upper half of the diagram, and a hadronic part Hµν expressed in terms of the
matrix elements

Lµν ∝
∑
σ,σ ′
〈`(k,σ)| jQED

µ

∣∣` ′(k ′,σ ′)〉 〈` ′(k ′,σ ′)∣∣ jQED
ν |`(k,σ)〉

Hµν ∝
∑
σ

∑
X

〈h(p,σ)| jhad
µ |X〉 〈X| jhad

ν |h(p,σ)〉 ,
(11)

such that dσ ∝ LµνHµν. The hadronic contribution has to be extracted from com-
parison between experimental data and a suitable parameterization in terms of
structure functions Fa(x,Q2). The number of such functions is determined by the
polarization states of the virtual boson exchanged in the process: within the ap-
proximations made before and discarding parity violation contributions, Hµν is
parametrized by two functions, F1 and F2.

At high energy, the double differential cross section for the considered DIS pro-
cess is

d2σ
dxdQ2

=
4πα2

xQ4

[
y2xF1(x,Q2) + (1− y)F2(x,Q2)

]
, (12)

with Q2 = −q2 and y = Q2/xs, where
√
s is the centre-of-mass energy. As we an-

ticipated, structure functions can be computed upon combinations of their parton
level counterparts with PDFs. The combination is carried out with a mathematical
operation called convolution, defined as

f(x)⊗ g(x) =
∫1
x

dξ
ξ
f

(
x

ξ

)
g(ξ). (13)

The operation is clearly symmetric as one can check with the substitution ξ ′ = x/ξ.
Factorization is the property by which the two structure functions F1 and F2 can

be written as follows:

F1(x,Q2) =
∑
i

F̂i1(x,Q2)⊗ fi(x) (14)

and
F2(x,Q2) =

∑
i

x

ξ
F̂i2(x,Q2)⊗ fi(x). (15)

where F̂1 and F̂2 are parton-level structure functions that can be computed within
perturbative QCD through the study of the subprocesses displayed in Figure 4.

At LO, the process is a QED vertex and therefore the interaction between the
photon and the quark is purely electromagnetic. Note that, for this reason, con-
tributions of gluon-initiated processes are not present at LO and will eventually
start at NLO associated with real emissions of quarks. The partonic cross section
σ̂(`+ q→ `+ q) follows from trivial QED calculations and reads

dσ̂
dxdQ2

=
4πα2

2Q4
e2
[
1+ (1− y)2

]
δ(x− ξ). (16)
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Figure 4: The LO partonic scattering of the virtual photon for a DIS subprocess with
fermionic parton in the initial states.

Therefore, we can make the following identifications for the partonic structure
functions:

F̂i2 = e
2
i δ(ξ− x) (17)

and

F̂i1 =
ξ2

2x
F̂i2. (18)

Finally, we can recover from Equation 17 and Equation 18 the values of the total
structure functions F1 and F2 which parametrized the hadronic tensor through a
direct integration of Equation 14 and Equation 15: we find

F1(x,Q2) =
∑
i

∫1
x

dξ
ξ

ξ2e2i δ(ξ− x)

2x
fi(ξ) =

1

2

∑
i

e2i fi(x) (19)

and, similarly,
F2(x,Q2) = x

∑
i

e2i fi(x). (20)

The structure functions are multiplicatively dependent on the electric charge of
the quark, which follows from the assumption that the LO interaction between the
virtual photon and quarks is purely electromagnetic.

In conclusion, we found that the LO DIS cross section can be computed from
the combination of a leptonic tensor Lµν, which is easily found through trivial
QCD calculations, and a hadronic tensor Hµν parametrized with structure func-
tions. Factorization consists in determining the values of these structure functions
through the convolution of PDFs with partonic cross sections that can be computed
with the Feynman rules deriving from Equation 3. The problem of describing the
hadronic contribution is therefore solved by the assumption that it is entirely de-
termined by more elementary processes combined together.

1.2.2 Factorization of collinear singularities

We now review the NLO treatment of DIS by computing the radiative corrections of
Figure 4 within perturbative QCD. Corrections to the LO approximation can be split
into two families: real emissions, displayed in Figure 5, and virtual loop diagrams,
as in Figure 6.

Aside from UV poles, that can be cured with renormalization at all orders in
the coupling constant, QCD’s virtual contributions suffer both UV and Infrared (IR)
singularities due to the former family. Indeed, the Lorentz invariant phase space
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Figure 5: The NLO QCD’s real emissions contributing to the scattering process. Final (5a)
and initial (5b) state gluon emissions are displayed alongside the gluon-initiated
(5c) real quark emission. 1
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Figure 6: The NLO QCD’s virtual contributions to partonic scattering for a quark initiated
process. Initial (6a) and final (6b) state quark self-energy are displayed alongside
the vertex correction (6c).

for these contributions depends on the integration over the momentum of the
virtual/real emitted parton,

dΦ ∝
∫

d3k
E
∝ log2Λ, (21)

which can be divided into transverse and longitudinal contributions that are both
logarithmically divergent.

In particular, by writing d3k ∝ dk2t dE, we can distinguish between IR singular-
ities, arising in the E → 0 region, and collinear singularities, coming from kt → 0.
The former are commonly referred to as soft singularities, since the emitted par-
ton has zero energy in the limit. Soft diagrams are safe, meaning that divergent
contributions coming from loop integrals cancel against the soft divergence of
Equation 21 [9, 10].

On the other hand, collinear divergences coming from Figure 5b and Figure 5c
must be regularized with a cutoff Qcut. For instance, the quark-initiated initial
state emission yields the following structure function:

F̂i2 = e
2
i

[
δ(ξ− x) +

xαS
2πξ2

(
Pqq(z) log

Q2

Q2cut
+ finite terms

)
+O(α2S)

]
, (22)

with z = x/ξ and

Pqq(z) =
4

3

1+ z2

1− z
. (23)
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This function, which describes the q → q parton splitting, is known as the quark
splitting function. Splitting functions are perturbative objects that can be written
for any kind of parton splitting, e. g.Pqg, Pgq, Pgg and their anti-quark corrispec-
tives. As we shall discuss later in great detail, collinear emission diagrams con-
tribute to the DGLAP evolution of PDFs: in this light, the splitting functions can be
seen as kernels of the evolution operators.

Eventually, the substitution Qcut → 0 in Equation 22 yields unphysical results
related to a collinear initial-state gluon emission. The situation belongs to the long
range regime of strong interactions and thus cannot be treated within perturbative
QCD. Hence, a suitable scale λ2F – the aforementioned factorization scale – is iden-
tified to separate hard perturbative contributions from soft ones in the logarithms
by means of the following factorization:

log
Q2

Q2cut
= log

Q2

λ2F
+ log

λ2F
Q2cut

. (24)

When computing the total structure functions, divergent behaviors are sub-
tracted inside the PDFs. If one accounts for the gluon-initiated process as well,
which is described by the Pgq splitting function, they will find that the total DIS F2
structure function reads

F2(x,Q2) =
∑
i

F̂i2

(
x,
Q2

λ2F

)
⊗ fi(x, λ2F). (25)

This formula generalizes Equation 14 and Equation 15 at higher orders in pertur-
bation theory and cures divergent behaviors with the introduction of an explicit
λ2F dependence in the PDFs. Since the factorization scale is unobservable, such de-
pendence should cancel against the one acquired by the hard coefficients F̂a. In
analogy with UV renormalization, the outcome of the factorization of collinear sin-
gularities depends on the treatment of finite terms and the regularization adopted
before the subtraction of divergent contributions into the kernel. Following the
analogy, an RGE describing the PDF behavior with the scale can be written as dis-
cussed in Section 1.3.

Upon renormalization and subtraction of collinear singularities of the process-
dependent and scheme-dependent structure function F̂2, Equation 25 reads

F2(x,Q2) =
∑
i

F̂i2

(
x,αS(Q2),

Q2

λ2F

)
⊗ fi(x, λ2F) +O

(
Λ2QCD

Q2

)
, (26)

The F̂ functions, that can be computed order by order in perturbation theory, are
sometimes indicated as scheme-dependent Wilson’s coefficients Ci2. The origin of
such nomenclature lies in the fact that the first discussion of Equation 26 was
delivered in Mellin space – see below, e. g. Equation 37 – where the factorization
theorem reads

F2(n,Q2) =
∑
i

Ci2

(
n,αS(Q2),

Q2

λ2F

)
fi(n, λ2F) +O

(
Λ2

Q2

)
(27)

and it can be seen as an application of Wilson’s operator product expansion.
To summarize, the NLO QCD contributions to scattering amplitudes show IR di-

vergent behaviors due to the emission of soft and collinear partons in the initial
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Figure 7: A pictorial diagram of a DY process. The quark anti-quark annihilation that pro-
duces a lepton anti-lepton pair is initiated inside the blobs with QCD perturbative
corrections.

state. The integration over small angles, or small kt, can be regularized with a
cutoff and separated from the perturbative scale by means of logarithm properties
of Equation 24. This yields a factorization of physical cross sections into perturba-
tive and non-perturbative contributions. As it happens with renormalization, the
price for removing the divergences is the dependence of the observables from the
factorization scale, that must come with a RGE as described in Section 1.3.

1.2.3 Hadronic processes

Before moving onto the λ2F scale dependency of the PDFs, we shall give some in-
sights into the application of factorization to more complicated strong processes.
Indeed, DIS only involves scattering of a lepton with a hadronic target – we call it
leptonic process – and therefore can be solved with the computation of a single
set of PDFs. Every time collisions happen between two hadronic states, such as the
so-called DY process shown in Figure 7, we say that the process is hadronic.

The study of hadronic processes plays a key role in experimental physics. From
the standpoint of PDF determination, data coming from hadronic processes, such
as high-energy hadron-hadron collisions or hadronization of soft QCD radiation,
aim at extending the kinematic coverage provided by DIS. A general hadron-hadron
collision can be described as

h1(p1) + h2(p2)→W(Q) +X, (28)

where the incoming hadrons produce a final state composed by en exclusive part
W with invariant mass Q2 and an inclusive part X. In Equation 28, the W state
produced can generally be a non-strongly interacting state – such as a weak boson
or the Higgs boson – or a strongly interacting heavy quark pair or jet.

During a hadronic process, both hadrons contribute with their own PDFs to the
non-perturbative region of the scattering amplitude and the hard cross section can
be computed at fixed order in αS from QCD corrections to parton-parton scattering.
This means that there exist two sets of PDFs, fi/h1 and fj/h2 , respectively describing
the partons of the first and the second hadron that enter the process. It can be
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shown that factorization accounts for both families, and therefore the observables
are computed with the following formula:

σ(p1,p2,Q) =
∑
i,j

∫1
Q2/s

dx1 dx2

fi/h1(x1, λ2F) σ̂ij

(
αS(Q

2),
Q2

sx1x2
,
Q2

λ2F

)
fj/h2(x2, λ2F) +O

(
Λ2

Q2

) (29)

where s = (p1 + p2)
2 is the centre-of-mass energy.

In conclusion, we can say that factorization for hadronic processes consists in
computing physical observables upon convolution of PDFs with the hard partonic
cross sections σ̂ij. This can be schematically written as

σ =
∑
i,j

fi/h1 ⊗ σ̂ij ⊗ fj/h2 , (30)

and it generalizes to all orders in perturbation theory.
Calculations such as the one in Equation 30 are implemented during computa-

tional approaches to the problem of PDF determination. As we shall discuss at the
end of the next section, factorization can be exploited by using pre-computed per-
turbative informations regarding both the hard cross sections σ̂ij and the evolution
of the PDFs with the factorization scale.

1.3 pdf evolution

The factorization scale dependence of the PDFs is encoded in the DGLAP evolution
equations [11, 12, 13]. Following the notation introduced in Equation 13, the DGLAP

equations for the i-th parton distribution follow from the RGE and read

λ2F
∂2

∂λ2F
fi(x, λ2F) =

αS(λ
2
F)

2π

∑
j

Pij(x,αS)⊗ fj(x, λ2F). (31)

They state that the evolution of PDFs with the factorization scale is determined by
convolution of a matrix Pij, whose entries are the hard splitting functions, with the
PDFs themselves within the ordinary linear product in Mellin space. Currently, the
splitting functions have been computed up to three-loops in perturbation theory
[14, 15].

1.3.1 Solution to the DGLAP equations

We give examples of how Equation 31 can be decoupled and solved in both ana-
lytical and numerical fashion. Needless to say, the indices i and j of Equation 31

run over quark’s flavours and gluon, and therefore the matrix Pij can be thought
in terms of blocks that possess different symmetrical features. These can be inves-
tigated by imposing physical requirements such as charge conjugation invariance
and flavour symmetry, leading to the following identifications:

Pqq = Pqq, Pqq = Pqq, Pqg = Pqg, Pgq = Pgq. (32)
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Figure 8: The NNPDF4.0 determination at Q = 5 and Q = 500 GeV, with αS(mZ) = 0.118.
PDFs were determined at Q0 = 1.65 GeV and evolved through the APFEL frame-
work.

A further simplification comes from expressing the matrix in a maximally diag-
onal basis, called evolution basis. Since the statements of Equation 32 lead to the
conclusion that the rank of Pij is not maximal, we cannot expect the equations to
decouple completely. Indeed, it can be shown that almost every rotated flavour
decouples, except from two.

If we denote the PDFs of the up (u), down (d), strange (s), charm (c), bottom (b)
and top (t) quarks by fi, we can look at the combination f±i = fi± fi. Eleven – out
of thirteen – PDFs can be obtained with suitable arrangements of the functions f±i .
These are the non-singlet combinations, composed by Nflav = 6 valences Vi = f−i ,
and the five triplet distributions

T3 = u
+ − d+

T8 = u
+ + d+ − 2s+

T15 = u
+ + d+ + s+ − 3c+

T24 = u
+ + d+ + s+ + c+ − 4b+

T35 = u
+ + d+ + s+ + c+ + b+ − 5t+.

(33)

The non-singlet distributions fNS satisfy the decoupled DGLAP equations

λ2F
∂2

∂λ2F
fNS(x, λ2F) =

αS(λ
2
F)

2π
PNS(x,αS)⊗ fNS(x, λ2F), (34)

which feature the PNS splitting functions, given by analogue rotations P± of the
splitting functions, where P− and P+ are used for the valences and triplets respec-
tively.

It might seem at first glance that such change of basis, altough facilitating com-
putations, obscures the physical meaning of the evolved PDFs. In truth, several
arguments seem to agree upon the fact that the evolution basis encodes physical
information that cannot be deduced from the flavour basis. For instance, valences
are useful when it comes to the determination of the intrinsic composition of
hadronic matter. Indeed, the peaks of the up and down valences in Figure 8 reflect
the well-known fact that two u-valence quarks and one d-valence quark carry the
entire proton electric charge and baryon number.

The remaining two PDF degrees of freedom, that do not decouple, can be in-
troduced with the following argument. Equation 32 states that the gq and qg
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splitting functions are flavour independent, therefore any difference of quark and
anti-quark distributions (f−i ) decouples from the gluon PDF. The only combination
that remains, and thus pairs with g(x, λ2F), is the so-called singlet quark distribu-
tion

Σ(x, λ2F) =
∑
i

f+i (x, λ2F), (35)

which evolves with the gluon according to the following coupled system:

λ2F
∂2

∂λ2F

(
Σ(x, λ2F)

g(x, λ2F)

)
=
αS(λ

2
F)

2π

(
PΣΣ(x,αS) PΣg(x,αS)

PgΣ(x,αS) Pgg(x,αS)

)
⊗

(
Σ(x, λ2F)

g(x, λ2F)

)
. (36)

The DGLAP equations can be solved perturbatively by computing an evolution
kernel which gives the PDFs at a final scale Q upon convolution with the distri-
butions at the reference scale Q0. It is convenient to solve the equations in Mellin
space, i. e. switching to the n-moments of the distributions. Recalling the expres-
sion anticipated in Equation 27, the moments read

fi(n, λ2F) =
∫1
0

dx xn−1fi(x, λ2F). (37)

where N ∈ C. The advantage of this transformations is that convolutions are
turned into simple product in Mellin space: however, the complex n-dependence
makes it difficult to transform the solutions back into x-space.

Practically, solutions to the DGLAP equations are found with numerical meth-
ods either by direct integration in x-space or by transformation into Mellin space.
In the context of PDF determination, the former is adopted by the NNPDF collab-
oration1 through the APFEL package [16], able to perform DGLAP evolution up
to Next-to-Next-to-Leading Order (NNLO) in QCD and to LO in QED by means of
higher order interpolations and Runge-Kutta techniques.

1.3.2 Fast Kernel interface

This final part aims at presenting how theoretical calculations based on factoriza-
tion and DGLAP evolution are performed in the NNPDF fitting methodology. What
follows represents a bridge that connects the final parts of the present chapter to
what is discussed in the next one. It can either be seen as a conclusion of the the-
oretical discussion of the DGLAP equations, or a first glance at the way PDFs are
fitted within the NNPDF methodology.

We shall restrict ourselves to the numerical implementation of the calculations of
the DIS structure functions, since more complicated hadronic processes follow the
same logic. Within the collinear QCD factorization framework, the DIS F2 structure
function can be decomposed following the general approach of Equation 30:

F2(x,Q2) =
∑
i

Ci(x,Q2)⊗ fi(x,Q2). (38)

where Ci are the process-dependent Wilson coefficients and fi are the PDFs.

1 As presented in the abstract and extensively discussed in the next chapter, the NNPDF collaboration
determines the structure of the proton using contemporary methods of artificial intelligence. This
thesis is the result of work performed on the NNPDF code within the Milan group of NNPDF.
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The DGLAP equations provide an operator Γ(Q2,Q20) that evolves the PDFs from
the initial parameterization scale Q0 into the hard-scattering scale Q. In this light,
Equation 38 can be rewritten as

F2(x,Q2) =
∑
i

Ci(x,Q2)⊗ Γij(Q2,Q20)⊗ fj(x,Q20). (39)

This is useful when computing theoretical predictions for datasets coming from
different experiments, since the PDFs are fitted at a common scale Q0 even if data
are provided at different hard scales. The latter fact is itself the reason why the
direct calculation of Equation 39 during a PDF fit is not practical. Indeed, it would
require solving the DGLAP equations for each new boundary condition that comes
with specific hard scales, and then convoluting with the process-dependent coeffi-
cients at the hard scale.

In order to increase computational efficiency, all the perturbative information
stored inside Ci and Γij can be pre-computed with a suitable interpolation basis.
The NNPDF methodology exploits the APFELgrid environment to compute such
information. Within this approach, the dependence on the PDFs at the input scale
Q0 is factorized as follows. First, the PDFs are expanded over a set of interpolating
functions Iα that span the (x,Q2) kinematic region, thus giving a collection of grid-
valued input scale PDFs fi(xα,Q20). Then, evolution is performed on such grid PDFs

to give their dependence at the hard scale. This part is encoded in the composition
of Mellin convolutions that are collectively stored inside the FK Tables, i. e. a
set of functions FKαi that operate on the grid-valued input scale PDFs to give the
structure function:

F2(x,Q2) =
∑
i

∑
α

FKαi (x, xα,Q2,Q20)fi(xα,Q20). (40)

All the information about the partonic cross sections and the DGLAP evolution is
then encoded inside the FK Tables. Hence, the APFELgrid method guarantees
that series of convolutions can be expressed and pre-computed in matrix multic-
plications, thus increasing the efficiency of DIS structure function calculations by
several orders of magnitude.

1.4 quark masses

We make some remarks on the treatment of quark masses. As discussed above,
quarks are confined inside hadrons and are not observed directly as physical par-
ticles. For this reason, quark masses must be determined through their influence
on hadronic properties, depending upon some theoretical framework. In this light,
the mf terms in Equation 3 represent bare parameters that, based on the renor-
malization scheme adopted, will contribute to theoretical predictions in different
ways.

We can make a coarse distinction of quarks into two families depending on their
mass: light quarks and heavy quarks. The former are the up, down and strange
quarks. Measures of their mass indicate that they are non-perturbative objects,
in the sense that their production threshold is considerably smaller than ΛQCD.
On the other hand, heavy quarks – the charm, bottom and top quarks – have
masses that are higher – or comparable, as it happens for the charm – than the
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QCD reference scale. For this reason, depending on the scale Q of a process, each
flavour of quark contributes to QCD features in different ways. For example, it
is generally true that the three light quarks can be considered massless since we
assume m2 � Q2. They emerge in loops and in real emission diagrams, therefore
contributing to the running of αS and the DGLAP evolution. On the other hand,
heavy quarks can be produced in the final state only for certain scales Q2 > m2,
and can be treated as massless in the limit Q2 � m2.

A general treatment of heavy quarks is subject to Appelquist and Carazzone’s
decoupling theorem [17]. The theorem states that, if a QFT features some heavy
fields whose masses are very large compared to the other fields in the Lagrangian,
then the Green functions for processes at energies Q � M are the same as those
obtained by simply omitting the heavy field in the QFT, up to corrections of inverse
powers of the heavy mass M. As a consequence, the heavy fields decouple at low
momenta except for their contribution to renormalization effects, such as the calcu-
lation of the β function. Effective theories are used to make the decoupling explicit.
One example is given by the Variable Flavour Number Scheme (VFNS), which is a
description of the running of αS where the number of considered flavours, called
active flavours, varies with the renormalization scale λR. Starting from a given
number Nflav of flavours, whenever λR increases such as to cross the production
threshold of the Nflav + 1-th flavour, the RGE is computed switching to Nflav + 1

active flavours.



2
P D F D E T E R M I N AT I O N

Knowledge of PDFs is crucial in order to make theoretical predictions of SM pro-
cesses at hadron colliders. Altough PDF universality allows to use their functional
form to describe all kind of strong interactions, it is not possible to determine
such form from first principles since the PDF x-dependence belongs to the non-
perturbative regime of QCD. Therefore, PDFs are determined by fits to experimental
data.

Among the many obstacles that this approach must overcome, the most im-
portant lies in the fact that PDFs are continuous functions and, in principle, they
cannot be determined from a discrete set of data. In this sense it can be said that
the problem of PDF determination is somewhat ill-posed, since the PDF space has
an infinite number of dimensions contrary to data space. For this reason, a par-
ticular functional form for the x-dependence of the PDFs must be chosen in terms
of a set of free parameters, tuned with experimental data. This choice clearly rep-
resents a bias introduced by human prejudice that cannot be removed from the
methodology, if not for the unrealistic case of an inifnite-dimensional parameter
space.

Another complication is represented by the fact that experimental outputs used
by fitting methodologies are measures of observable quantities – e. g. cross sections
and rapidity distributions – rather than of unobservable parton distributions, and
PDFs are obtained from those through factorization theorems. This gives rise to
many sources of error coming from Missing Higher Order Uncertainty (MHOU) in
perturbative series, as well as finite approximations made by algorithms employed
to compute the DGLAP evolution from different experimental scales to the common
parametrization scale.

Moreover, in order for a PDF set to be exploited in high precision physics, its
determination must be delivered within some faithful representation of the uncer-
tainties. Indeed PDFs represent one of the main sources of uncertainty in Higgs
physics and in precision measurements such as the determination of the W boson
mass [18]. An appropriate treatment of correlations between points coming from
different datasets, as well as a correct estimation of systematic uncertainties, is
essential to a well performing fit. For instance, systematic errors are determined
within experimental setups and can be subject to under/over-estimations, or in-
consistencies1 between different experiments, that can bias a specific kinematic
region or a PDF feature constrained by such inconsistent datasets.

In this chapter, we discuss how the methodological issues mentioned above can
be overcomed within the NNPDF approach to the determination of parton distribu-
tions. As anticipated at the end of the Chapter 1, the NNPDF collaboration is one
of the active groups that extract PDFs from experimental data through the exploita-
tion of state-of-the-art computational techniques that belong to the wide family

1 The formal definition of inconsistency between datapoints will be delivered in Chapter 4, Sec-
tion 4.3.1.
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Figure 9: The schematic approach of classical programming in Physics (9a) alongside the
machine learning approach (9b). Figure inspired by [23].

of machine learning. Other collaborations that provide results on this subject are
CTEQ [19], MSHT [20], HERAPDF [21] and ABM [22].

The chapter is structured as follows: in Section 2.1, we deliver an introduction
to machine learning focusing on deep learning and neural networks, which are
specific machine learning methodologies adopted by NNPDF for the determination
of proton’s PDF. Altough we do not have the ambition to cover a wide subject
such as machine learning in a single section, we shall provide the reader with the
informations needed to understand how the NNPDF methodology works, which
is explained in Section 2.2 and Section 2.3. While the former will focus on the
theoretical constraints that are imposed on the PDFs by the fitting framework, the
latter will deliver a detailed description of its architecture.

In the end, even if the subject is a part of the PDF fitting methodology, we shall
discuss how PDF uncertainties are estimated by NNPDF and highlight the differ-
ences with the methods employed by other collaborations. We reserve Section 2.4
to this aim.

2.1 neural networks

Physicists exploit computer science for a wide variety of tasks. For instance, they
can determine the evolution of a dynamical system by sampling probability den-
sity distributions of its Hamiltonian through Monte Carlo techniques. The same
methods are used in lattice QCD for a non-perturbative approach to strong interac-
tions. Every time a simulation is performed, computers are provided with known
theoretical rules and a set of data to be processed according to such rules, and
outputs are specific answers that depend on the input data. The assets of these
methodologies can be easily identified: provided that the underlying rules are cor-
rect and correctly implemented, the outcomes guarantee the entire knowledge of
specific states of a system and can be used to design and test physical models.

The problem of PDFs determination, however, does not belong to such paradigm.
Indeed, PDFs themselves are the rules according to which experimental data are
generated by Nature and their shape has to be be deduced through machine learn-
ing methods.
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2.1.1 Machine learning

Machine learning arises from the necessity to interpret experimental data and
find statistical structures in them to eventually learn the underlying set of rules
that govern the measured data. One can think of it as the opposite of simulation
algorithms, as pictured in Figure 9.

A typical machine learning system is trained, rather than explicitly programmed,
on a set of input data points and on examples of the expected outputs. For instance,
the input data could be images of pets that need to be classified into dogs, cats and
iguanas. Likewise, inputs may be profiles, i. e. a collection of parameters yielding a
given rating in the real subset [0, 1]. The former examples falls under the category
of classification problems, while the latter is a typical example of regression.

In both situations, the input dataset shows the same features: it is a set of pairs
(x,y) describing the input x and the expected output y that reads

D = {(x,y) | x ∈ X, y ∈ Y} , (41)

where Y ∼ [0, 1] in a regression problem and Y = {1, 2, . . . ,Nclass} for classification.
The machine learning model is trained on the input data and produces an output,
i. e. a prediction ŷ(X, θ), that depends on a set of paramters θwhich are recurrently
optimized by the model itself. The optimal set of parameters is found in a way
such that it corresponds to an output ŷ that represents the data provided. This
involves defining a function L, called loss or cost function, and finding the set of
parameters that minimize it:

θ∗ = arg min
θ

L(ŷ(X, θ),y). (42)

The nature of the cost function depends on the specific task that a machine
learning system must achieve. Maximum likelihood methods are usually compat-
ible with the least squares approach, where

L(ŷ(X, θ),y) = (ŷ(X, θ) − y)2, (43)

but classification algorithms are likely to adopt some characteristic function such
as the Hinge loss

L(ŷ(X, θ),y) = max(0, 1− yŷ(X, θ)). (44)

The minimization of the cost function is typically achieved through numerical
routines, mainly using gradient-based or Genetic Algorithms (GAs). GAs import
natural adaptation phenomena into computer science following simple evolution
rules: populations, i. e. several instances of fitting parameters, evolve by means of
random variations such mutation and recombination, followed by natural selection
of the fittest as pictured in Figure 10. Such search problems can often benefit from
an effective use of parallelism and do not require any assumption on the cost
function used to determine the evolution.

GAs have been exploited by the NNPDF collaboration over the past decades and
they have now been replaced by gradient-based search methods. The choice is
dictated by the quick developement of minimization algorithms within Python
machine learning libraries such as TensorFlow [24]. Gradient-based methods,
contrary to GAs, require that the cost function is differentiable as a function of the
model parameters.
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Figure 10: A typical GA flow chart. Populations evolve according to random mutations
of the fittest individuals and, when the stopping criterion is reached, the best
individual is chosen.

The simplest of these algorithms is Gradient Descent (GD), where the parameters
are updated at each step t, called epoch, according to the direction of the gradient
evaluated on the previous epoch’s configuration:

gt ← ∇θt−1 L(ŷ(X, θt−1),y)

θt ← θt−1 − ηgt−1,
(45)

where η is a learning rate. Small learning rates correspond to – sometimes exces-
sively – slow learning that is guaranteed to converge to a minimum of the loss
function. On the other hand, bigger learning rates may not be such that the algo-
rithm ever converges to a minimum. Moreover, GD algorithms as defined above
are usually found to remain stuck on saddle points, thereby returning a set of
parameters which do not correspond to the global minimum of the cost function.

A wide class of more efficient gradient-based minimization algorithms that aim
at improving GD goes under the name of Stochastic Gradient Descent (SGD). These
methods apply classical GD to small subsets of the training set, called batches, that
are sampled from the entire dataset with stochastic techniques. The parameter
update is identical to the one given in Equation 45, except from the fact that the
cost function is now evaluated separately for each one of the Nbatch batches:

gt−1 ← ∇θ
Nbatch∑
k=1

Lk(ŷ(Xk, θt−1),yk). (46)

For this reason, the parameters are updated Nbatch times every epoch.
Variants of this algorithm aim at improving efficiency with the introduction

of momentum terms, or real-time adaptation of the learning rate. For instance,
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Input yn−1

Transformation xn =wTnyn−1+bn

Activation yn = fn(xn)

Output yn

Figure 11: Schematic description of the n-th layer of a neural network. The information is
recieved from the previous layer and rotated according to the layer’s weigths
and biases. In the end, the output is carried to the next layer after passing
through a non-linear activation function.

the latest NNPDF exploits the Nestorov momentum algorithm, or Nadam, with the
following parameter update:

gt ← ∇θt−1 L(ŷ(X, θt−1),y)

mt ← µmt−1 + (1− µ)gt

nt ← νnt−1 + (1− ν)g2t

θt ← θt−1 − η
mt√
nt + ε

.

(47)

The choice of a specific optimizing algorithm – usually called optimizer – has an
impact on the machine learning model used for PDF determination. The choice of
the NNPDF methodology to use Nadam is the consequence of a specific tuning of
the parameters that define the architecture of the methodology, as we will discuss
in Section 2.1.4.

2.1.2 Deep learning

Deep learning is a subfield of machine learning. It is a mathematical framework
where multiple layers of representations of data are successively fitted according
to classical machine learning methods, such as the minimization of a suitable cost
function. The layered structure, from which the word deep comes from, is called
neural network.

Neural networks function as in Figure 9: they are fed with some input data and
produce predictions that are compared with the measured results, hence updating
their parameters to find the best representation of the given data. The parameters,
collectively indicated as θ in our general introduction of the previous section, are
divided in two classes: the weights w – and biases b – and the thresholds. These
parameters are linked to the successive linear transformations that the network
performs on the input data as the information travels through the layered structure,
as we shall discuss below.

In this section we shall describe the structure of a fully-connected Feed For-
ward Neural Network (FFNN), as implemented by the NNPDF collaboration within
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Figure 12: The sigmoid activation function. The region where the function is close to zero,
at the left of the activation zone, represents the inactive state.

the problem of determination of PDFs. These represent the simplest forms of neu-
ral network and their functionality is identical to more complex models, such as
Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs). In
general, the choice of a specific network is subject to its task: for instance RNNs are
useful to analyse time series, i. e. data that depend on past instances of themselves,
while CNNs are adopted in image classification or pattern recognition tasks.

As mentioned before, neural networks are built upon multiple layers stacked on
top of each other. A layer can be identified with a set of weigths that implement
a linear transformation on the input. In this context, the model learns by finding
a set of values for each layer’s weigths such that input data are correctly mapped
to their target values by the network. The first layer of a neural network, called
the input layer, implements the first of the sequence of linear transformations,
which are carried on by the middle layers, also called hidden layers. Each hidden
layer receives the information from the previous one and, after applying a linear
transformation, it filters the rotated input with a non-linear activation function
described by a set of parameters called thresholds, as pictured in Figure 11.

With the notation of the figure, we can give a formal definition of the action of
a neural network on the input data. We define a FFNN of depth d as a sequence
of layers `1, . . . , `d, each one endowed with a set of weigths w, biases b and an
activation function f, whose parameters are the thresholds. The information travels
through the network with iterative applications of the activation functions: if x0 is
the input dataset, then the prediction ŷ of the network is

ŷ = fd(bd +w
T
dfd−1(. . . f2(b2 +w

T
2 f1(b1 +w

T
1x0)))). (48)

The choice of the activation function can be optimized for a specific task. In gen-
eral, the activation function’s domain is characterized by two regions correspond-
ing to a binary activation state, i. e. on and off. However, as pictured in Figure 12,
usual activation functions provide a third region which is used to continuously
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Figure 13: The backpropagation algorithm flow chart adopted by neural networks. In the
first run, weigths are randomly generated and the stopping criterion is by-
passed.

separate the two binary states, commonly named activation region. The activation
can be non-linear, as it happens for the sigmoid

fd(x) =
1

1+ e−x
, (49)

or rectified as a ReLU
ReLU(x) = max{0, x}. (50)

Once the output is produced according to Equation 48, the network is trained
by comparing such output to the targets associated with the input data. This in-
volves defining a cost function and a method that searches its minima through
the update of the parameters. However, since a neural network is characterized
by multiple layers of parameters – weigths and thresholds – the optimization al-
gorithm must propagate the information on the updates backwards through the
network. Specifically, gradient-based minimization algorithms such as the ones de-
scribed in Section 2.1.1 are required to compute derivatives of the composition of
several functions, as in Equation 48. This is done via the chain rule by computing
the contribution to the cost function from the final layers back to the starting ones,
with a procedure called backpropagation. State of the art backpropagation algo-
rithms that exploit symbolic differentiation are implemented by machine learning
Python libraries, including TensorFlow, and their effeiciency is one of the main
reasons for the code migration implemented within the latest NNPDF release. A
schematic representation of how the algorithm functions within a neural network
is pictured in Figure 13.
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Figure 14: Flowchart describing the patience algorithm used to determine the optimal
length of the training procedure. Inspired by [25].

2.1.3 Early stopping

A fundamental part of the optimization strategy deployed by a machine learn-
ing method is represented by the way it avoids overfitting. Also referred to as
overlearning, overfitting is the phenomenon by which a machine learning method
delivers wrong predictions when presented with new data, i. e. data that have not
been used for its training. There exist a family of criteria, that can be implemented
during the minimization of the cost function, which aim at avoiding this phe-
nomenon.

Frequently in machine learning, overfitting is avoided by performing the cost
function minimization on a randomly selected subset of the input dataset, called
training dataset and indicated with Dtr. The remaining fraction of data, which
belongs to the validation dataset Dval, plays the role of a control sample and is
used to monitor the training process. Let us indicate with Ltr and Lval the cost
function evaluated respectively on the training and validation datasets.

While Ltr is generally decreasing as the number iterations grows, the usual
trend of Lval shows the presence of a minimum reached at a specific iteration
of the minimization algorithm. This suggests that, starting from the minimum of
the validation cost function, the methodology has started learning the noise in
its training data. Therefore, the presence of a minimum in Lval suggests that the
optimization algorithm should be stopped at that point. When the optimal stop-
ping point is defined as the global minimum of Lval, computed over a large fixed
number of iterations, the strategy is called look-back. Instead, if the minimization
is stopped when the validation loss no longer improves for a defined number of
iterations, we say that a patience algorithm has been deployed. The latter, which
is adopted by the latest NNPDF determination, is schematized in Figure 14.
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Figure 15: Diagrammatic representation of the k-fold algorithm used for the hyperparam-
eter optimization inspired by [25].

We point out here that ulterior checks are performed within the NNPDF mini-
mization strategy, corresponding to supplemental decision node – purple diamond-
shaped ones in Figure 14. We shall postpone the discussion on such additional
requirements to the section devoted to NNPDF architecture.

2.1.4 Hyperparameter optimization

The architecture of a machine learning system is specfied by a set of features such
as the learning rate and batch size of a gradient-based optimization, or the number
and size of hidden layers in a neural network. In order to differentiate them from
the parameters that are optimized during the learning process, i. e. the weights
and thresholds that are collectively indicated as θ, such features are called hyper-
parameters and indicated with capital letters Θ. The choice of hyperparameters
is crucial for the determination of the best model that fits the input data: for in-
stance, we already mentioned that the choice of the final layer’s activation function
is subject to the shape of the target data.

Hyperparameter setups usually depend on human prejudice and experience
and this represents a potential source of bias: for this reason, it is ideal to deter-
mine them using an automated and consistent methodology, that is, a hyperpa-
rameter scan. The basic idea behind these scans is to generate different instances
of the hyperparameter set, choose a suitable figure of merit and then train models
with different hyperparameters looping over such instances. The hyperparameters
of the model which best performs on the chosen metric are then selected as input
parameters to build the architecture of the machine learning model.

Among the motivations for choosing an automated hyperparameter optimiza-
tion procedure is the fact that there is usually a considerable degree of correlation
between hyperparameters and therefore one cannot be determined independently
from the others. For this reason, methods such grid searches in hyperparameter
space are preferred to single tuning of each subspace, even if the computational
cost can significantly increase. Regardless of the way the hyperscan is performed,
the metric adopted should be such that it does not lead to over-trained hyperpa-
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rameters. The training cost function L(ŷ(X, θ),y) is the best metric for the task,
since it validates the model architecture in the same way the model is trained.
However, it is subject to over-learning problems that can be avoided with cross-
validation methods, such as the ones introduced in Section 2.1.3.

The hyperoptimization of the NNPDF methodology adopts a k-folding cross-
validation algorithm, which is schematized in Figure 15. A k-folding algorithm
generates a large number of hyperparameter instances Θ and partitions the input
dataset into Nfolds distinct subsets Dk ⊂ D. The basic idea is to produce Nfolds

fits for each hyperparameter configuration: in each of the fits, one fold is left
out, and the remaining folds are combined into a dataset which is then separated
in training and validation subsets. For each hyperparameter configuration, Nfolds

cost functions Lk are computed for each fold that has been left out of the fitting
procedure.

The overall cost function L(Θ) is then computed as the mean of each Lk cost
function coming from the Nfolds fits:

L(Θ) =
1

Nfolds

Nfolds∑
k=1

Lk. (51)

The best hyperparameter configuration is then selected by minimization of the
overall cost function:

Θbest = arg min
Θ

L(Θ). (52)

The NNPDF methodology exploits the hyperopt [26] library to perform the hy-
perparameter scan using a Bayesian optimization algorithm. Contrary to a blind
grid search, a Bayesian optimization algorithm updates a prior probability distri-
bution of the score given the configuration for each hyperparameter as models are
trained. The possibility to perform such automated search of the hyperparameter
space is a consequence of the improved computational performance of NNPDF4.0,
mostly due to the significant changes in the architecture of the neural network and
the optimization strategy, as explained in detail in the following sections.

2.2 theoretical constraints

We review the general structure of the PDF parametrization adopted by the NNPDF

fitting methodology, and the theoretical constraints imposed upon it. Precisely, we
discuss the parametrization basis, sum rules and positivity and integrability of the
fitted PDFs.

2.2.1 Parametrization basis

A PDF analysis requires a choice of basis, i. e. a set of linearly independent flavour
combinations that are parametrized at a input scale Q0. A priori, the number
of independent PDFs is 13. In truth, under the hypothesis that heavy quarks are
generated by the perturbative evolution, one can reduce themselves to fitting a
smaller number of independent PDFs.

As it is stated in Chapter 1, a possible way to treat quark masses is to consider
different numbers of active flavours depending on the kinematic region. In the fol-
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lowing, we assume that the three light quarks always contribute to the DGLAP evo-
lution, therefore their PDFs are independently parametrized. Heavy quarks could
then be parametrized with the introduction of PDFs that are set to zero below the
mass threshold and evolve according to the DGLAP equations in the asymptotic sec-
tor. For instance, the NNPDF determination parametrizes the charm PDF just above
its threshold and do not conisder the top and the bottom since it is assumed that
their non-perturbative component is negligible.

The input scale adopted by the NNPDF collaboration in the latest releases [27, 25]
is chosen at Q0 = 1.65 GeV. The gluon and the three lightest quarks are fitted in-
dependently with their antiparticles, including the total charm PDF for an overall
eight – out of thirteen – independent PDFs. Explicitly, the NNPDF3.1 determina-
tion adopted seven flavours from the evolution basis, including an independently
parametrized total charm PDF c+, in the assumption that the charm valence c−

would vanish at the input scale:

BNNPDF = {g, c+,Σ, T3, T8,V ,V3,V8} (53)

where the triplet distributions are written in Equation 33, and the valences combi-
nations are

V = u− + d− + s+

V3 = u
− − d−

V8 = u
− + d+ − 2s−.

(54)

The latest release NNPDF4.0 adopts T15 instead of c+ as supplement to the evolution
basis: as one can see from Equation 33, this choice is completely consistent with
the assumption that that the charm valence vanishes at Q0.

2.2.2 Sum rules

The NNPDF collaboration aims at determining proton’s parton distributions. The
proton is composed by two up-valence quarks and one down-valence quark which
carry the entire proton electric charge and baryon number. Nevertheless, all types
of quark flavours can be found inside the proton as quantum effects coming from
loop corrections in perturbation theory giving rise to qq pairs.

The following sum rules translate the previous sentences into a constraint on
the first momenta of the valences:∫1

0

dx xu−(x,Q) = 2,
∫1
0

dx xd−(x,Q) = 1, (55)

and ∫1
0

dx xs−(x,Q),
∫1
0

dx xc−(x,Q),
∫1
0

dx xb−(x,Q),
∫1
0

dx xt−(x,Q) = 0. (56)

Provided that these relations hold at the input parametrization scale Q0, DGLAP

evolution equations ensure that they will hold at any scale. Valence sum rules can
also be implemented in the evolution basis, where∫1

0

dxV(x,Q) =

∫1
0

dxV8(x,Q) = 3,
∫1
0

dxV3(x,Q) = 1, (57)
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and the others momenta vanish.
An additional degree of freedom is fixed imposing the so-called momentum

sum rule, i. e. requiring that the total momentum of the proton is realized summing
over the partons momenta:∫1

0

dx xΣ(x,Q) = 1−

∫1
0

dx xg(x,Q). (58)

This agrees with the assumption that PDFs should continuously decrease towards
zero when x→ 1, which is a consequence of their continuity at x = 1. Additionally,
non perturbative arguments suggest that the behavior at x = 1 should be a power
law. Therefore, a suitable parametrization of the small and large x regions yields

f(x) = Nxα(1− x)βp(x), (59)

where N is a normalization that can be determined from the sum rules and p(x)
carries all the unknown dependence of the PDFs on the momentum fraction x.

Equation 59 represents a preprocessing tool that should speed up the training
of the fitting framework, provided that it does not bias the results. To this aim, the
exponents α and β are iteratively determined in a self-consistent way, as explained
in [28].

2.2.3 Positivity

Ulterior theoretical restrictions can be imposed upon the PDF fitting framework
by means of positivity checks. Specifically, two related quantities are involved in
positivity constraints: observables such as hadron-level cross sections and PDFs

themselves.
The former are non-negative quantities because they are probability distribu-

tions, and should remain positive at any given order in perturbation theory. For
this reason, indirect positivity limitations can be imposed that penalize the PDFs

which yield negative values for physical observables such as the DIS structure func-
tions Fu2 , Fd2 , Fs2 and FL, or the flavour-diagonal DY rapidity distributions σuu, σdd
and σss. This is done in the latest NNPDF release for the massless quarks, which
means that a further contraint on Fc2 on the charm quark can be imposed in certain
schemes.

The penalization is implemented during the cost minimization using a Lagrange
multiplier, which strongly diminishes the weight of those PDF configurations lead-
ing to negative observables by adding the following term to the cost function:

L 7→ L+

Nobs∑
k=1

Λk

Npts∑
i=1

Eluα(−σk(f(xi,Q2 = 5 GeV2))), (60)

with

Eluα(t) =

 t when t > 0

α(et − 1) when t < 0
(61)

and α is a suitable parameter. In Equation 60, Nobs is the number of observables
upon which positivity is required and Npts is the number of pseudodata points
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used to implement the positivity constraints. The values of xi are given by 10

points logarithmically spaced in the small-x region (10−7 ÷ 10−1) and 10 points
linearly spaced between 0.1 and 0.9. The Lagrange multiplier Λk increases expo-
nentially during the minimization and its maximum value must be chosen in a
way such that the effectiveness of the constraints is sufficiently accurate. For this
reason, the NNPDF methodology adopts Λmax = 1010 for the DY observables and
Λmax = 106 for all other positivity observables included in the analysis. The start-
ing value of the Lagrange multiplier is not imposed, but determined during the
hyperparameter optimization algorithm described in Section 2.1.4.

The choice of Q2 = 5 GeV in Equation 60 is the result of fine tuning. In general,
positivity is violated al small scales. For this reason, if positivity is enforced in
such kinematic region, the DGLAP evolution guarantees that it will be preserved at
all scales [29].

We now turn to direct positivity constraints that can be imposed on PDFs. The
LO pQCD treatment of hadron processes interprets PDFs as probability distributions
and, therefore, it might seem that they cannot be negative. However, beyond LO,
PDFs are defined through collinear subtractions on parton-level cross sections that
depend on the factorization scheme adopted and thus they may be negative for
specific forms of the subtraction. There exist some schemes where PDF positivity
is guaranteed at all orders, e. g. the physical scheme, and it was shown [30] that
transforming such positive schemes into the MS factorization scheme preserves PDF

positivity. For this reason, the latest NNPDF release features additional positivity
constraints that apply on the massless quark and gluon PDFs directly through a
penalty cost function similar to the one in Equation 60.

2.2.4 Integrability

The last theoretical constraint that can be imposed independently of the fitting
framework is PDF integrability. The topic was already indirectly discussed in Sec-
tion 2.2.2 and is a direct consequence of the sum rules imposed on the PDFs. Pre-
cisely, the valence sum rules of Equation 55 restrict the small-x behavior of the
valences to

lim
x→0

xV(x,Q) = lim
x→0

xV3(x,Q) = lim
x→0

xV8(x,Q) = 0 ∀Q, (62)

where we restricted ourselves to the distributions that enter the fitting basis in
Equation 53.

Moreover, the momentum sum rule imposed on the singlet and gluon distribu-
tions implies that

lim
x→0

x2Σ(x,Q) = lim
x→0

x2g(x,Q) = 0 ∀Q. (63)

A further constraint such as the ones in Equation 62 can be imposed on the T3 and
T8 parton distributions following some perturbative arguments, for a total of seven
independent rules. However, this number is reduced to five in the implementation
of the integrability restrictions, since it turns out that Equation 63 is automatically
satisfied when fitting to the experimental data.
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basis pdfs grid points

Evolution fk = T3, T8 xi = {10−9}

Flavour fk = T3, T8,V ,V3,V8 xi = {10−9, 10−8, 10−7}

Table 1: The integrability constraint specifics adopted by the latest NNPDF in evolution and
flavour basis.

The PDF integrability constraints are imposed through Lagrange multipliers in
the same way as positivity’s. The total cost function is supplemented with the
following contribution:

L 7→ L+
∑
k

Λ
(int)
k

Npts∑
i=1

[
xfk(xi,Q2i )

]2
, (64)

where this time, since the limit x→ 0 is discussed, the points xi are all taken in the
small-x region. The remaining parameters of Equation 64 depend upon the choice
of basis adopted and are listed in Table 1.

As it happens for the positivity constraint, the Lagrange multipliers grow expo-
nentially during the minimization, with maximum value Λ(int) = 100.

2.3 the nnpdf4 .0 neural network

Since the beginning of the NNPDF collaboration, PDF determination has increased
in precision and reliability thanks to recent discoveries in the machine learning
field and the availability of experimental measurements covering wider kinematic
regions. As stated in the introduction of this chapter, several collaborations are
actively delivering their own PDF sets. At the very bottom, the main difference
between them stands in how they fit the unknown x-dependence of Equation 59,
and how they propagate data space uncertainties into PDF space.

This section’s aim is to present the NNPDF approach to the former problem. This
is done through the description of the architecture of the neural network adopted
by NNPDF4.0 and its main differences with previous releases. A bayesian derivation
of the fit’s cost function χ2 is then presented, along with a description of the fitting
framework and stopping criteria.

2.3.1 Hyperparameters

The NNPDF4.0 methodology adopts a single neural network to fit the unknown
x-dependence of the PDFs. Its hyperparameters have been determined with a k-
folding hyperoptimization, as described in Section 2.1.4. Among others, this in-
cludes the network architecture, the activation functions, the optimizer, the learn-
ing rates, and the initial values of the Lagrange multipliers.

Table 2 displays a comparison between the main hyperparameters in the last two
NNPDF releases. As already mentioned, the latest NNPDF exploits the brand-new
gradient-based optimizers provided by Python libraries such as TensorFlow.
The main difference, however, is in the introduction of a flexible architecture that
fits all the eight PDF functional forms with a single densely connected network,
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parameter nnpdf4 .0 nnpdf3 .1

Architecture 2-25-20-8 2-5-3-1

Activation function Hyperbolic tangent Sigmoid

Optimizer Nadam Genetic algorithm

Learning rate 2.6×10−3 –

Free parameters 763 296

Max epochs 17×103 80 (max generations)

Table 2: The principal hyperparameters of the NNPDF4.0 and NNPDF3.1 releases compared.
Differences arise in every field and, as a consequence of that, the total number of
free parameters is almost triplicated in the latest version.

rather than using a neural net per flavour. This increases sensitivity to cross-
correlations between different PDFs.

Figure 16 shows the NNPDF4.0 neural network’s architecture, with its revisited
final eight-dimensional layer. The network performs fits to experimental data in or-
der to determine the x-dependence of Equation 59. In this framework, the relation
between the PDFs and the network ouptut is

xfk(x,Q0; θ) = Akx1−αk(1− x)βkNNk(x, θ), k = 1, . . . , 8 (65)

where NNk denotes the activation state of the k-th neuron in the final layer.

2.3.2 Cost function

The cost function adopted by the NNPDF4.0 methodology is the χ2 computed with
the published experimental covariance matrix C. Specifically, it is the sum across
all datasets of the Gaussian likelihood normalized by the number of datapoints

χ2 =
1

Ndata

Ndata∑
i,j=1

(D− T)iC
−1
ij (D− T)j, (66)

where T are the theoretical predictions computed from the neural network’s out-
put using a suitable factorization framework, and D are the experimental data-
points.

We briefly discuss how the covariance matrix is built from experimental un-
certainties. These are usually encoded in three main contributions: uncorrelated
errors σuncorr, correlated additive systematics σadd and correlated multiplicative
systematics σmult. The first ones are constructed by sum in quadrature of the pub-
lished statistical errors with the uncorrelated systematics and contribute to the
diagonal of the covariance matrix. The last two systematics are delivered in ma-
trices, σadd

ik and σmult
ik , where the index i refers to the experimental point and k

referes to the source of systematic uncertainty detected within the experiment.
The number of additive and multiplicative systematics may depend on several

aspects of the experimental measurement performed for the dataset determination,
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x ln x

xg(x, Q0) xΣ(x, Q0) xV(x, Q0) xV3(x, Q0) xT3(x, Q0) xT15(x, Q0)xT8(x, Q0)xV8(x, Q0)

xg(x, Q0) xu(x, Q0) xū(x, Q0) xd(x, Q0) xs(x, Q0) xc+(x, Q0)xs̄(x, Q0)xd̄(x, Q0)

n(4) = 8

n(3) = 20

n(2) = 25

n(1) = 2

Figure 16: The NNPDF4.0 neural network architecture. A single network is adopted, whose
outputs are the PDFs in the evolution (red box) or flavour (blue box) basis. Taken
from [25].

as we shall discuss in Chapter 4. The NNPDF4.0 covariance matrix is built in the
following way:

Cij = δijσ
uncorr
i σuncorr

j +

Nadd∑
k=1

σadd
ik σ

add
jk + ŷiŷj

Nmult∑
k=1

σmult
ik σmult

jk , (67)

where ŷi are the theoretical predictions for the observables measured by experi-
ments. Theoretical predictions are preferred to experimental central values in the
calculation of the covariance matrix in order to avoid the so-called D’Agostini bias
[31]. For this reason, the expression of Equation 67 is sometimes referred to as
t0-covariance matrix in literature.

2.3.3 Bayesian derivation of the likelihood

We present a Bayesian argument for the specific choice of Equation 66 for the
measure of the fit quality. We warn the reader that we shall make strong use of
the notation introduced in this section for the rest of this work.

Factorization theorems state that there exists a forward map φ that, given a set
of PDFs describing the non-perturbative QCD region of a strong process, computes
observable quantities by means of convolutions with Wilson coefficients. We can
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schematize the statement in the following way. Let M be the model space, i. e. PDF

space, and O the space of observables: the forward map φ is defined as

φ : M→ O

f(x,Q) 7→ σ(x,Q) =
∑
i

fi ⊗ σ̂i. (68)

In order to give a formal definition of the forward map, we require that M and P
are infinite dimensional Banach spaces.

The purpose of PDF fitting methodologies is to determine the inverse map φ−1

from experimental measurements of instances of such observables. Therefore, we
must give a definition of a second map π that projects infinite-dimensional observ-
able quantities into a finite-dimensional data space D:

π : O→ D

σ(x,Q) 7→ y = {yi |∀i = 1, . . . ,Ndata}.
(69)

Fitting methodologies are based on the fact that experimental values are repre-
sentations of the underlying PDFs through the composition π ◦φ. Hence, we can
determine the the inverse map (π ◦φ)−1 by sampling the probability distribution
in model space. This can be achieved within Bayesian statistics through maximiza-
tion of an estimator that identifies the model f∗ ∈ M which is most likely to
yield the observed data-space distribution. The procedure is usually referred to
as Maximum A Posteriori (MAP) estimator computation and its complete analysis
within the NNPDF approach to PDF determination is fully delivered in [32]. Here,
we outline its main features and derive the figures of merit adopted by the latest
NNPDF releases.

Experimental observations are published as a set of central values and uncertain-
ties, reflecting the several sources of noise in measurements such as finite precision
of experimental apparati. Assuming gaussian noise the prior probability distribu-
tion for the measure y of a certain observable σ, given its central value y0 and
data space covariance matrix C, is:

p0(y) ∝ exp
[
−
1

2

∑
i,j

(y− y0)iC
−1
ij (y− y0)j

]
. (70)

In a similar way, we can write down a prior distribution of the input model given a
central value f0 and a model space covariance matrix C ′. In the gaussian assump-
tion, this reads

p0(f) ∝ exp
[
−
1

2

∑
i,j

(f− f0)iC
′−1
ij (f− f0)j

]
. (71)

The cost function can be derived in this framework with a maximum likelihood
approach. The PDF model f∗ that is most likely to give a measured set of observ-
ables is obtained through maximization of the probability distribution in model
space, marginalized over the data:

f∗ = arg max
f∈M

∫
dyp(f |y)p0(y). (72)
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The data prior distribution is given in Equation 70, while the probability of the
model given the data can be written in terms of known quantities by means of
Bayes theorem:

p(f |y) =
p(y | f)p0(f)∫

df ′ p(y | f ′)p0(f ′)
. (73)

Discarding the normalization and the model prior, the likelihood p(y | f) is given
by the forward map π ◦φ(f) and, generally, is a distribution ρ(y− π ◦φ(f)).

Such distribution describes the correlations between the input model and the ob-
servables induced by the forward map. Uncertainties can arise when comparing
measured data with fixed-order theoretical predictions every time a methodology
updates its parameters in the optimization algorithm. Specifically, theory uncer-
tainties are results of MHOU in perturbative QCD calculations: this problem can be
addressed [33] in the assumption that there exists a theory covariance matrix S
such that the correlations induced by the forward map are distributed gaussianly
according to

ρ(y− π ◦φ(f)) ∝ exp
[
−
1

2

∑
i,j

(y− π ◦φ(f))iS−1ij (y− π ◦φ(f))j
]

. (74)

We can conclude that the likelihood used as a cost function during a PDF fit
generally depends upon three different covariance matrices: the data space covari-
ance C, the theory covariance matrix S and the covariance matrix that describes
the model priors C ′. In this picture, Equation 73 reads

p(f |y) = exp
[
−
1

2

∣∣f− f0∣∣C ′ − 12 ∣∣y− π ◦φ(f)∣∣S
]

, (75)

where we introduced the compact notation∣∣x∣∣
C
=
∑
i,j

xiC
−1
ij xj. (76)

The likelihood is then given by Equation 72 through the following integration

f∗ = arg max
f∈M

∫
dy exp

[
−
1

2

∣∣y− y0∣∣C −
1

2

∣∣f− f0∣∣C ′ − 12 ∣∣y− π ◦φ(f)∣∣S
]

(77)

It can be shown [33] that, after the transformation ∆ = y− π ◦φ(f) and integra-
tion over d∆, the terms can be re-arranged into the following expression:

f∗ = arg max
f∈M

exp
[
−
1

2

∣∣f− f0∣∣C ′ − 12 ∣∣π ◦φ(f) − y0∣∣C ′′
]

, (78)

with (C ′′)−1 = C−1 − C−1(C−1 + S−1)−1C−1. This expression leads to the iden-
tification of C ′′ with C + S. In order to prove it, one can start by showing that
C−1 + S−1 is equivalent to C−1(C+ S)S−1, and therefore its inverse must be

(C−1 + S−1)−1 = (C−1(C+ S)S−1)−1 = S(C+ S)−1C. (79)

Then, plugging Equation 79 into the expression of C ′′, one finds

(C ′′)−1 = C−1 −C−1S(C+ S)−1 =

= (C−1(C+ S) −C−1S)(C+ S)−1 = (C+ S)−1,
(80)
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Figure 17: Diagrammatic representation of the NNPDF4.0 fitting framework and the calcula-
tion of the cost function χ2. Each block represents an independent component
of the code. Figure taken from [25].

whence C ′′ = C+ S.
Through this very powerful argument, one can incorporate theory uncertainties

inside the determination of the likelihood by summing the theory covariance ma-
trix with the experimental one. The MAP PDF model f∗ is then given by maximizing
the logarithm of Equation 77. Since the aim of this work is not to investigate the
impact of MHOUs, we shall however restrict ourselves to the situation where S = 0.
This gives

f∗ = arg min
f∈M

[∣∣π ◦φ(f) − y0∣∣C +
∣∣f− f0∣∣C ′ .] (81)

Observe that the first part that is minimized in Equation 81 is nothing else than
Equation 66, with the obvious identification of π ◦ φ(f) with the theoretical pre-
dictions made from the network’s output, and y0 with the experimental data. The
presence of the second term acts as a regulator that represents all the assump-
tions that are made on the prior probability distributions of the PDFs by the fitting
methodology. From a technical standpoint, such regulator is not implemented di-
rectly with a covariance matrix, but its effect is represented by the requirements
discussed in Section 2.2.

2.3.4 Fitting framework

Up to this point, we described the principal components of the latest NNPDF fitting
framework, i. e. the network’s architecture, the PDF basis chosen, the hyperparam-
eter selected through hyperscan optimization, the preprocessing factors and the
cost function adopted. Here we show how these ingredients enter the fitting pro-
cedure and the method adopted to avoid over-learning.

The NNPDF4.0 code is characterized by a modular structure, as pictured in Fig-
ure 17. The figure shows how the fitting code evaluates the physical observables
in terms of the input fitted PDFs. Starting from a matrix of x(k)n Bjorken variables,
where n labels the experimental dataset and k the node in the x-grid, the code eval-
uates the neural network and the preprocessing factors to construct a PDF which
is subsequently normalized according to the sum rules presented in Section 2.2.2.
This produces the PDFs at the input scale, that are convoluted with the FK tables
presented in Section 1.3.2 to give the physical observables that enter the calculation
of the cost function.

As we already mentioned in our introduction to machine learning, the χ2 is com-
puted for two separate subsets of the entire dataset, that is, training and validation
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sets. This division advantages the implementation of a cross-validation method to
avoid overfitting through the patience algorithm, presented in Section 2.1.3. The
algorithm is itself subject to the hyperoptimization procedure, with a hyperopti-
mized patience of 1/10-th of the maximum number of epochs delivered in Table 2.

Once the fit quality is determined to be satisfactory, the fitted PDFs are subject
to further post-fit selection checks. According to these checks, the PDF ensamble is
pruned and biased PDF are discarded. This ensures that the final delivery of the
fit satisfies all the known theoretical constraints on PDFs that, even though already
penalized in the fit’s cost function, might have had statistical weight during the
fitting procedure.

2.4 error propagation

As discussed in the introduction of Section 2.3, what defines a PDF fitting method-
ology is how it provides the unknown x-dependence of Equation 59, and how
it consistently determines PDF uncertainties. This final section is devoted to the
discussion of the latter topic.

It is commonly agreed upon that today’s PDF determinations should be able to
provide percent-level accuracy in order to be best exploited in frontier high-energy
physics. We can summarize the problem within Bayesian statistics as follows. With
the notation introduced in Section 2.3.3, an estimation of the central value and un-
certainty of a generic observable σ ∈ O is given by the posterior model distribution
p(f |y):

E[σ] =
∫

df σ[f]p(f |y), Var[σ] =
∫

df (σ[f] − E[σ])p(f |y). (82)

From a practical standpoint, the computation of such integrals is far from trivial.
Indeed, knowledge of a closed analytic form is subject to the choice of a specific
observable and specific implementations should therefore be incorporated within
the methodology. Moreover, we have seen that giving an explicit form of the prob-
ability p(f |y) is hindered by the difficulty to understand the shape of the model
prior. For this reason, estimates of PDF uncertainties are provided in different ways.

2.4.1 The Hessian method

The Hessian method is adopted by several PDF determinations for error propaga-
tion. Recalling its main features here does not have the sole purpose of highlight-
ing its differences with the NNPDF approach. Indeed, the understanding of the
Hessian method is necessary to the developement of the arguments that motivate
the results presented in this thesis.

The Hessian method estimates uncertainties in the model’s parameters space in
terms of displacements from the optimal parameters that induce fluctuations in
the fit’s cost function. In other words, it computes the uncertainty of a quantity –
such as a PDF at a given x and Q2, or an observable – as the linear propagation of
the parameter space shifts in the model/data space respectively.

In order to deliver a formal description of the method, we make the following
definitions. Let Ω be the parameter space and χ2 : Ω → R the cost function, such
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that its global minimum is reached at θ0 ∈ Ω. Assuming that such function is
quadratic in a neighborhood U(θ0) ⊂ Ω, we can write

∆χ2 = χ2(θ) − χ2(θ0) =
1

2

∑
i,j

(θ− θ0)iHij(θ− θ0)j. (83)

Optimal parameters θ0 yield an optimal representation of a PDF set f0 = f(θ0)

through a function Ω →M – where M is defined in Section 2.3.3 – whose restric-
tion on U(θ0) is bijective. One can invert such function and, upon composition
with χ2, find a map M → R. Then, they can ask how errors are propagated from
the fluctuations of the cost function to fluctuations of PDFs by mapping hyper-
surfaces with the inverse function R → M. However, since the cost function is
quadratic by hypothesis in U(θ0), the inverse only exists upon restriction of the
domain: as we shall discuss below, this corresponds to finding pairs of eigenvector
PDF sets f±0 for each eigenvector of the parameter-space covariance matrix.

Formally, the Hessian approach can be derived in U(θ0), which can be spanned
with the eigenvectors of the covariance matrix C = H−1, that is clearly symmet-
ric upon requirement that χ2 be at least C2 in U(θ0). Provided Ω with an inner
product,

〈θ1, θ2〉 =
∑
i

(θ1)i(θ2)i, (84)

the spectral theorem states that there exists an orthonormal basis of the parameter
space consisting of eigenvectors vn of C, i. e. 〈vn, vm〉 = δmn. Such eigenvectors
can be rescaled with the square root of their eigenvalue, vn 7→ vn/

√
λn, so that

their quadratic functions will have a simple normalization.
Every θ ∈ U(θ0) can be decomposed on the diagonal basis with suitable coeffi-

cients αn = 〈θ, vn〉 to find the following expression for Equation 83:

∆χ2 =
1

2

∑
n,m

∑
i,j

(αnvn)iHij(αnvn)j =
1

2

∑
n

α2n. (85)

This is the equation of a hypersphere in U(θ0) with radius ∆χ2
√
2 that defines

the allowed parameters displacements yielding tolerated fluctuations in the cost
function. The border parameters θ±n = θ0 ± tvn define pairs of eigenvector PDF

sets f±n through the aforementioned bijective map U(θ0)→M.
Values of t can increase until they reach the value of a "tolerance" T , which de-

fines the region of acceptable fits, and is greater than one every time the quadratic
hypothesis fails to describe the behavior of the cost function about its global mini-
mum. That being the case, iterative adjustments of t are performed [34].

Once the border is defined in PDF space, any quantity F(f) – included PDFs

themselves – can be provided with symmetric uncertainties given by

σ2F =
∑
n

[
F(f+n) − F(f

−
n)
]2 . (86)

Therefore, the PDF uncertainty estimation is a direct application of Equation 86 to
the fitted functional forms.

The Hessian method relies on a consistent choice of the tolerance T . In the ideal
Gaussian case, the 68-th percentile of the quantity F(f) is given by the value that
induces a unit variation in the χ2, i. e. T2 = 1. However, it is commonly agreed
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upon that such values lead to an overall underestimation of the PDF uncertainties.
Therefore, larger tolerances are usually adopted, such as T2 = 100 instead of T2 =
2.7 for the 90-th percentile. As we shall discuss later in great detail, this tension
can be caused by the presence of inconsistencies between different datasets, by
MHOUs or by the parametrization choices made by the fitting framework.

In order to avoid underestimations of the PDF uncertainties, it was suggested
[35] that the tolerance for each independent direction in U(θ0) migth be deter-
mined separately, following the condition that all datasets should be described
within their 90-th percentile. This concept, called "dynamical tolerance", produces
uncertainties that are difficult to examine in a statistical sense, due to the large
deviation from the expected value T2 = 1 of the tolerance.

2.4.2 Monte Carlo estimation

The NNPDF approach to inverse problems and to the computation of Equation 82 is
based on a Monte Carlo estimation. While the formalism laid out in Section 2.3.3
gives a quantitative description of how data space priors propagate the informa-
tion on the uncertainties into model space, the Monte Carlo method aims at sam-
pling directly from the model posterior distribution. The posterior p(f |y) is de-
scribed in this context by an ensamble of fit results, obtained from i.i.d. random
artificial input data drawn from a multivariate distribution governed by the ex-
perimental covariance matrix and the published central values. By means of the
Central Limit Theorem (CLT), the mean and standard deviation of the fit results
are expected to propagate correctly the data space covariance and central values
into PDF space.

During a NNPDF fit, an ensamble of Nrep artificial data is generated for each
experimental point according to a multigaussian distribution given by the experi-
mental covariance matrix:

yart
k = yexp + ηk, (87)

where ηk ∈ N(0,C) for each replica k = 1, . . . ,Nrep. Then,Nrep independent fits are
performed on the artificial datasets, yielding a Monte Carlo ensamble {fk} of PDFs

replicas which provide a faithful description of the posterior model distribution
with uncertainties propagated from the input data space. The CLT guarantees that
the central value and standard deviation of the model replicas are represented by

E[f] =
1

Nrep

Nrep∑
k=1

fk, Var[f] =
1

Nrep − 1

Nrep∑
k=1

(fk − E[f])2. (88)

This approach follows the observation made in Section 2.3.3 that the NNPDF

MAP estimation is performed without assuming a specific model prior, bur rather
by regulating the likelihood with additional constraints. Contrary to the Hessian
method, it requires no assumption on the nature of the cost function at its minima,
nor the choice of a tolerance. As we have discussed, the tuning of tolerances can
be far from trivial and the discussion on the correct way to set its value is still an
open matter.

The advantages of choosing a Monte Carlo approach to the problem of PDF

uncertainties are however subject to two main constraints. Firstly, the computa-
tional cost of constructing a sufficiently copious ensemble of fit results may be
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daunting for a wide class of PDF fitting methodologies. Within the latest NNPDF re-
lease, the code has been greatly optimized thanks to the many updates discussed
throughout this chapter, and it is now possible to perform Monte Carlo analyses
in relatively short times.

It is also desirable that the Monte Carlo approach gives predictions for PDF

uncertainties that are comparable to the ones determined by the Hessian method.
In this light, a confirmation on the equivalence of the two methodologies has
been shown [34] fitting a Monte Carlo ensemble with a Gaussian distribution,
which is always assumed in a Hessian fit. The NNPDF4.0 methodology features
the possibility to produce Hessian sets from Monte Carlo via the MC2Hessian
algorithm [36, 37].





Part II

S TAT E O F T H E A RT

This part is devoted to the statement of the purpose of the thesis and
to the presentation of the state-of-the-art methods adopted to achieve
it.
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S TAT E M E N T O F T H E P R O B L E M

Among the new data introduced in the latest NNPDF release, most of them come
from high precision collider experiments, such as HERA and the LHC. Many of these
datasets are mostly affected by systematic – rather than statistical – uncertainties.
As a consequence, their χ2 often becomes highly sensitive to the model assumed
for the treatment of published experimental systematic errors.

It is not clear whether inaccuracies in the estimate of systematic uncertainties
can be the cause of poor χ2 observed in the latest PDF determinations. The χ2 of
the latest NNLO PDF sets from the NNPDF and CTEQ collaborations were determined
respectively with values of χ2 = 1.16 [25] and 1.17 (1.19) [19]. However consistent
with the previous NNPDF [27] – and consistently decreasing with growing pertur-
bative orders – these values cannot be the result of pure statistical fluctuations.
For instance, the NNPDF4.0 χ2 determined with Ndata = 4618 experimental points
is 5.44-σ away from the expected value of χ2 = 1.

Since the beginning of the past decade, it was suggested that the tension be-
tween theory predictions and experimental data could be solved by rescaling the
χ2 of a suitable factor, at least for methodologies based on the Hessian approach
that use fixed PDF functional forms. This led to the introduction of the tolerance
method in the context of Hessian determination of uncertainties, as described in
Section 2.4.1. The large tolerances adopted can therefore be understood as a man-
ifestation of an incompatibility between the experimental datasets included in a
PDF fit. This claim seems to be supported by the fact that fits to specific sets of
data, such as the ones provided by HERAPDF, still adopt a tolerance of T = 1 for
the 68-th percentile estimation in their Hessian framework. Quantitative studies
[38] suggest that the effect of inconsistencies among datasets in the Hessian ap-
proach is larger than what is predicted by Gaussian statistics, thereby validating
the T > 1 approach.

It is worth comparing this treatment of uncertainties with the Monte Carlo
approach, together with neural network parametrization adopted by the NNPDF

collaboration, which provides uncertainty bands by direct computation from the
Monte Carlo sample. It is not clear whether the necessity of a tolerance T > 1 is a
consequence of the Hessian approach – i. e. of the quadratic expansion about the
minimum of the χ2 – or of the fixed functional form parametrized by the method-
ologies that adopt such error propagation. In this light, studies performed on the
NNPDF methodology should clarify if large values of the χ2 are a consequence of
inconsistencies among experimental data.

This thesis aims at answering the questions above by determining whether in-
consistencies between experimental datasets can be detected within the NNPDF

approach and, if not, how would such inconsistencies corrupt the results for the
global uncertainties estimated by the fitting framework. It was recently shown [39]
with indirect studies on the NNPDF4.0 global dataset that, regardless of the reason
why large values of χ2 are obtained, the χ2s found do not imply an underestima-
tion of uncertainties. A direct analysis, which is not yet been carried out, should

45
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provide more accurate insights on how the methodology responds to inconsistent
data.

This can be easily achieved with the employement of a powerful tool known as
the closure test. The method, extensively described in the next chapter, consists in
performing standard NNPDF fits to fake experimental data that are generated from
theoretical predictions of a known underlying set of PDFs. For this reason, a closure
test is by definition free of experimental inconsistencies and should be delivered
with the correct χ2 = 1. It is however possible to simulate their presence through
manipulations of the experimental data. In this way, thanks to the introduction
of ad-hoc statistical estimators, one can exploit the knowledge of all prior prob-
ability distributions and quantitatively determine the methodology’s response to
inconsistent data in terms of the faithfulness of its uncertainties.
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C L O S U R E T E S T S

This chapter is devoted to the presentation of how closure tests are implemented in
the NNPDF methodology. Their definition is given in Section 4.1, while Section 4.2
introduces the main statistical estimators that can be computed from a closure test
in order to make statements about the fitting methodology. In the context of what
anticipated in Chapter 3, we shall discuss how to introduce artificial inconsisten-
cies in a closure test in Section 4.3.

4.1 basics of closure tests

Validation techniques have been adopted by the NNPDF collaboration since the
previous releases [40] in the form of closure tests. The basic idea of a closure test
is quite easy to understand in the notation of Section 2.3.3: it is designed to study
how the methodology fits the inverse map (π ◦φ)−1 for a suitable set of datapoints
artificially generated with a guessed forward map π ◦φ.

A closure test setup consists of two parts: first the information contained in
its input PDFs is carried from PDF space to data space and, second, fake data are
generated with some noise. The former step requires a precise theoretical frame-
work – e. g. NNLO pQCD, as in the latest NNPDF released fits to real data – and is
implemented through computation of theoretical predictions encoded in the FK
tables. With these informations, one can generate a set of observables σ = φ(f)

from a guessed input PDF f ∈ M, with known but realistic statistical properties.
Then, fake exprimental central values z = π(σ) are generated from the projection
of σ onto a finite-dimensional data space, by means of the map π introduced in
Equation 69.

In a closure test, the map is constructed following the reasonable assumption
that experimental data should be distributed Gaussianly around the value of the
observable σ, with some level of uncertainty given by the experimental covariance
matrix C. This leads to

z = π(σ) = σ+ η (89)

where η is sampled from a multivariate normal distribution N(0,C).
We believe that Equation 89 represents the best way to artificially reproduce the

outcome of an experimental measurement. Indeed, experimental outputs consist
of a central value z and a set of uncertainties encoded into the covariance matrix
C such that the pair (z,C) represents the measured observable. Signals of new
Physics are discovered whenever sets of data points are way distant from the
expected values that statistical fluctuations and systematic uncertainties cannot
account for them.

In this picture, by generating fake data z directly from the experimental covari-
ance matrix C and the observable σ, the pair (z,C) is by construction a representa-
tion of σ without signals of new Physics involved. This is what we mean when we
say that fake data have no internal inconsistencies and are also entirely consistent
with the theoretical model adopted to produce them.

47
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If one performs a fit to fake data, they should reproduce the assumed underly-
ing PDF within the correct uncertainties and, by manually setting the noise incor-
porated within the fake data, one can investigate further the impact of statistical
inconsistencies on the methodology. Fits are performed within the Monte Carlo
replica method adopted for error propagation in the NNPDF methodology. The
data y(k) used for the k-th replica in the PDF fit are produced by adding a further
layer of fluctuations sampled from the same multivariate normal distribution of
Equation 89. In formula, this reads

y(k) = σ+ η+ ε(k) ∀k = 1, . . . ,Nreps (90)

where each Monte Carlo replica is generated by sampling an independent noise
vector ε(k) from the same multivariate normal distribution N(0,C).

For the sake of consistency with previous works on this subject, we shall hence-
forth refer to the artificially generated data z as level-one data and to y as level-two
data. In this context, the true values of the observables, σ, are called level-zero data.
Observe that level-two data are nothing more than the data replicas adopted by a
standard NNPDF fit, while the feature introduced by a closure test is the level-zero
and level-one data.

4.2 statistical estimators

A successful closure test must be such that the resulting PDF fit yields a faithful sta-
tistical description of the known underlying law. In order to assess quantitatively
the degree of success of a closure test, we define in this section a set of statistical
estimators to measure relevant features such as deviations from Gaussianity and
under/over learning of the neural network.

The construction of these estimators should be guided by the fact that their
main purpose is to compare two quantities – e. g. model predictions, underlying
data or level-one data – and determine the presence of biases in accordance to
their uncertainties. If we define such quantities as q1 and q2, a suitable statistical
estimator will therefore be the squared norm of the difference vector δ = q1 − q2,
i. e. its inner product with itself (δ, δ), in a space where the metric is given by the
covariance matrix. Thus, the form of our estimators will schematically be δTC−1δ,
up to some arbitrary normalization.

4.2.1 Exploiting the χ2

It is easy to understand that the figure of merit adopted during fitting, and defined
in Equation 66, it not a good closure test estimator by itself since it does not exploit
the informations about the underlying PDF and the true values of the physical
observables. However, two statistical estimators can be computed from it that give
informations about overfitting and uncertainties.

The first one, called ∆χ2 , is a rather coarse estimator. It is evaluated from com-
paring the expectation value of the model predictions and the level-one data z
and the χ2 evaluated between the underlying true values σ and the same level-
one data. For this task, we introduce the following notation: we use the symbol f̂
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for the fitted PDFs, and therefore the theoretical predictions of the model will be
σ̂ = φ(f̂). Then, the ∆χ2 reads

∆χ2 =
χ2(Eε[σ̂], z) − χ2(σ, z)

χ2(σ, z)
. (91)

Since both χ2s if Equation 91 are computed with respect to the same level-one
dataset, this estimator determines whether the fit is more distant from the under-
lying truth that the level-one data. If all data were scorrelated, one would expect it
to be zero in a successful closure test. Deviations from the expected value are how-
ever seen even if the replica distribution is sampled perfectly form the posterior
distribution [41] as a consequence of the fact that expeirmental data are indeed
correlated. Therefore, values of ∆χ2 < 0 remain acceptable since they indicate that
the model predictions slightly overfit the underlying data.

A similar estimator, indicated as ϕ, can be computed from the level-zero data
instead of level-one:

ϕ =
√
Eε
[
χ2(σ̂,σ)

]
− χ2(Eε[σ̂],σ) (92)

Given that level-zero data do not fluctuate, one expects the uncertainty on the
predicted value to decrease towards zero in the limit.

4.2.2 Bias and variance

We introduce here a pair of statistical estimators that play a key role in the quan-
tification of the successful outcome of closure tests: the bias and the variance. Bias
and variance measure two different sources of error expected to contribute to the
χ2 evaluated on test datasets.

The bias is the mean squared error of the theory predictions from the underlying
truth. In other words, it is the effective uncertainty predicted by the fit in units of
the experimental covariance matrix. In this light, the variance is the nominal error,
i. e. the error computed as the mean square distance of the replica predictions from
their central value. With this terminology, one expects that the two quantities are
comparable every time the closure test has delivered a faithful representation of
the true PDFs.

In the context of a closure test, knowledge of prior model distributions capac-
itate the quantification of the bias and variance of a PDF fit. The PDF space esti-
mation of such indicators is extremely facilitated by the Monte Carlo approach
to uncertainties determination adopted by the NNPDF methodology. Indeed, the
variance is nothing more than what already presented in Equation 88, while the
bias can be easily identified with the following expression:

Bias =
1

Nrep

Nrep∑
k

(f− f̂(k))2. (93)

The two quantities can be sampled from a number Nx of points in the x-grid
and an estimation can be given by mediating over the number of points chosen.
The value of Nx must of course be such that it yields fairly stable outcomes, if
compared with the fluctuations over the grid. It turns out that, since PDFs are
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continuous functions, sampling more than a few number of points in PDF space
corresponds to using highly correlated data points. As a consequence, the PDF

covariance matrix becomes near-singular and numerical issues arise during its
inversion.

The reasons expalined above suggest that the bias and variance should be cal-
culated in data space, where the covariance matrix is given by the experimental
covariance matrix. The data space bias is defined as the difference between the cen-
tral value of the model replica predictions Eε[σ̂] and the observables σ themselves,
normalized by the number of data points:

Bias =
1

Ndata

∑
ij

(Eε[σ̂] − σ)iC
−1
ij (Eε[σ̂] − σ)j. (94)

It is worth noting that the definitions of data space and PDF bias are quite simi-
lar. Indeed, the latter can be written in the former’s fashion for C−1 = 1, which
is entirely consistent with the assumption made in Section 2.3.3 of trivial prior
distributions in model space.

The data space definition of the variance is the expectation value over the repli-
cas of the difference between the expectation value of all replica predictions Eε[σ̂]
and that specific replica prediction σ̂(k). In formula,

Variance =
1

Ndata
Eε

[∑
ij

(Eε[σ̂] − σ̂
(k))iC

−1
ij (Eε[σ̂] − σ̂

(k))j

]
, (95)

whence, again, the PDF space variance can be retrieved with C−1 = 1.
The interplay between bias and variance is fundamental in order to distinguish

"good-looking" results from truly good ones in a closure test. As we already men-
tioned, the bias represents the true error made by the methodology, while the
variance is the nominal error stated in a PDF fit. In order to better understand this,
we can distinguish between four situations that can happen in the analysis of a
closure test output, as in Figure 18.

Generally, fit predictions Eε[σ̂] are shifted away from the origin by the bias,
and have their own statistical properties, i. e. the variance. Figure 18a represents
the optimal situation where the bias is within the one-sigma confidence level of
fluctuations of the true observables, and it is comparable with the variance of the
model’s prediction. Of course, we only expect the bias to be inside the blue circle
in the 68% of the situations, and therefore this result is particularly good.

On the other hand, even when small biases are found, the closure test might be
unsuccesful if those are underestimated by the variance, as in Figure 18b. In this
sense, the PDFs still deliver a successful representation of the underlying law, but
the nominal error is underestimated.

The outcome of a PDF fit represented by Figure 18c is the opposite situation. The
prediction for the PDFs is corrupted, but still acceptable since the distance is less
than two-sigmas. The real uncertainty of the fit is however correctly accounted for
by its nominal value.

Finally, what is displayed in Figure 18d represents the worst possible outcome
of a closure test that does not fit the data correctly and does not even account for
this in its uncertainty bands.
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Figure 18: Geometric interpretation of the statistical estimators in data space. The bias is
represented by the arrow (or by the corresponding dashed circle), while the
variance is the orange circle. The origin is the true value of the observable, σ,
and the blue unit circle around it represents its observational noise.

4.2.3 Quantile statistics in PDF and data space

We present another family of estimators that determine if – and in what measure
– the fitting methodology gives a faithful representation of PDF uncertainties. This
is achieved through a quantitative estimation of how the posterior distributions
fitted by the neural network deviate from the Gaussian hypothesis imposed on
their priors. As it happens for bias and variance, we prefer sampling the posterior
distributions in data space in order to overcome numerical issues that arise from
highly correlated datapoints.

Quantiles are n-sigma characteristic functions. We thus define:

ξnσ =
1

Ndata

Ndata∑
i=1

IAi
(
Eε[σi] − σ̂i

)
, (96)

where Ai is the n-sigma interval for the theory prediction of the i-th observable,
and IAi(x) is its characteristic function:

IA(x) =

 1 if x ∈ A

0 elsewhere.
(97)
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4.2.4 Multiclosure tests

When PDF fits are performed to real data, the level-one data z of Equation 89

are fixed at the published central value. On the other hand, in the context of a
closure test fit the fake central values z are viewed as stochastic variables due to
their dependence on the shift vector η. Hence, the statistical estimators presented
in Section 4.2 are also stochastic variables and, in order to best characterize the
behavior of a methodology, we need to understand their probability distribution
rather than computing a single occurrence of them.

This can be achieved by running more than one closure test fit, generating sev-
eral instances of the random shifts η. We refer to this family of closure tests as
multiclosure tests. In principle, a multiclosure test features more than one dataset
describing the measurement of the same observable and showing different – but
consistent – central values and correlations. A situation like this is impossible
to happen in the real world, since experimental outputs only have one central
value. Thus, when one performs multiclosure tests, they truly are generating sev-
eral "runs of the Universe" [25] itself.

Studies of multiclosure tests have only been made possible by the computational
speed-up from deployment of best-performing machine learning algorithms fea-
tured by the latest release of NNPDF. Such tests are designed for the introduction of
new statistical estimators that determine the expectation values of the aforemen-
tioned probability distributions of old indicators. This is done by taking expecta-
tion values across different instances of the shift η: for example, the bias reads

Eη[bias] =
1

Ndata
Eη

[∑
ij

(Eε[σ̂] − σ)iC
−1
ij (Eε[σ̂] − σ)j

]
. (98)

The expectation value of the bias across closure fits represents the expected
distance between the central predictions and the true values in units of the co-
variance matrix averaged across all data. Of course, as it has been pointed out in
Section 4.2.2, one should measure deviations from the expected bias in terms of
the variance of the model’s predictions. We thus define the analogue expectation
value of the estimator in Equation 95 as

Eη[variance] =
1

Ndata
Eη

[
Eε

[∑
ij

(Eε[σ̂] − σ̂
(k))iC

−1
ij (Eε[σ̂] − σ̂

(k))j

]]
. (99)

We can interpret the expectation value of the variance as the uncertainty of the
predictions propagated from PDFs when averaged across all data in units of the
experimental covariance matrix. If the uncertainty associated to the PDF replicas is
faithful, we then expect to find Eη[bias] = Eη[variance] in the limit of large replicas
and large number of fits, as pointed out in Section 4.2.2.

In the context of a multiclosure test, we can give a quantitative description of
what was only qualitatively described in Figure 18. Since both bias and variance
are squared quantities, we can look at

√
Rbv =

√
Eη[bias]

Eη[variance]
(100)

as a measure of how much the uncertainty has been over or under estimated by the
methodology. If

√
Rbv < 1, replica predictions are fluctuating more than central
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Figure 19: Graphical representation of pseudo data generation normalized by the experi-
mental central value. All data sampled in the blue region must be rejected by
the methodology since observables cannot be negative. This introduces sources
of non-Gaussianity in the pseudo data generation procedure.

predictions, thus the methodology estimate of the PDF uncertainties is too gener-
ous. On the other hand,

√
Rbv > 1 corresponds to a situation where the PDF fitting

methodology has delivered underestimated uncertainties. Should one obtain devi-
ations from the value

√
Rbv = 1 in a multiclosure fit, their interpretation of the

outcome may vary with the statement that they are trying to make. For instance,
the ability of NNPDF to deliver PDF fits at the percent-level has been put in doubt
in recent works [42] and multiclosure tests performed on NNPDF4.0 can determine
whether the methodology addresses inconsistencies in the correct way.

Before moving onto the discussion of inconsistent data, we give the definition
of the quantiles for multiclosure tests. The expectation value across Nfits is simply
taken by the sampled average, yielding

ξnσ =
1

Ndata

1

Nfits

Ndata∑
i=1

Nfits∑
`=1

IA`i

(
Eε[σ

i
`] − σ̂

i
)
. (101)

The expected quantile estimators can also be computed within the Gaussianity
assumption from the bias-to-variance ratio Rbv. This is possible in the basis which
diagonalizes the experimental covariance matrix, where the sum over datapoints
is actually a sum over the eigenvectors of the covariance. In this basis, the expected
ξnσ is nothing more than the error function

ξnσ ' erf
(
nRbv√
2

)
. (102)

Agreement between the computation of ξnσ from Equation 101 and from the
error function of Equation 102 indicates that Gaussianity is overall preserved by
the fits. Sources of non-Gaussianity are however present in every PDF fit every
time data are stochastically generated. This is due to the positivity constraints on
experimental central values, that force the introduction of cutoffs in the tails of the
distributions as displayed in Figure 19.
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Figure 20: Compatibility of gaussian distributions with different central values and uncer-
tainties. The pink area is equal to the blue area.

4.3 inconsistent data

It has been suggested that poor fitting χ2 results, such as the ones presented in
Chapter 3, may be consequence of inconsistencies inside the experimental datasets.
It is quite trivial to understand the reasons that support the statement with the
following example.

Consider fitting some noisy points in R2 without assuming a particular func-
tional form. If the cost function only measures the distance of points from the fit-
ted curve, the fitting methodology will try to reach all the points at the same time,
and such massive overfitting is only avoided with cross validation and patience
algorithms. If however the cost is weighted by the covariance matrix, as it hap-
pens for NNPDF’s χ2, the fitted curve will tend to satisfy the constraints imposed
by statistically heavier points. In this light, the χ2 of the fit is clearly corrupted if
there is a subset of the training dataset whose central values or uncertainties are
inconsistent with the other points.

We aim at determining whether a methodology can simultaneously avoid over
fitting and correctly fit inconsistent data. We present in this section a method that
can be adopted to answer the question.

4.3.1 Definition of inconsistency

By inconsistency, we mean a situation where the nominal uncertainty on a data-
point is smaller than its real uncertainty. Since we always have to do with data
that are distributed according to a standard deviation, this is equivalent of saying
that inconsistencies arise whenever two datapoints are incompatible within their
uncertainties.

The statement above can be understood by looking at Figure 20. The compati-
bility of two measurements can be estimated by looking at the intersection of the
probability distributions of the data. Figure 20a represents a situation where the
distributions of two observables with central values indicated by the dashed black
lines are compatible in the pink area. On the other hand, the two observables are
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also compatible in Figure 20b even though their central values have incremented
their distance, since the distribution at the right also incremented its width. When
we say that shifts to central values are somewhat equivalent to changes in the un-
certainties, we mean that for a given shift of the central value there always exists a
corresponding shift of the standard deviation such that the pink area is equivalent
to the blue one.

Therefore, manipulations of the covariance matrix are sufficient to produce in-
consistencies in experimental datasets. These manipulations should be performed
such as to reproduce an inconsistency by means of the definition given above,
i. e. in a way that the nominal uncertainty is smaller than the real one. This can be
done within a closure test in the following way:

1. generate the level-one fake experimental central values z = π(σ) according
to Equation 89 with the correct experimental uncertainties, i. e.η ∈ N(0,C);

2. produce the Monte Carlo fits ensemble and calculate their figures of merit
using a covariance matrix C ′, which underestimates the uncertainties of C.

In this way, the closure test is performed adopting C ′ in every step that is common
to a standard PDF fit, while the real experimental covariance matrix is only used
for the additional generation of fake data.

4.3.2 Underestimation of systematic errors

In order to reproduce a realistic experimental situation, the covariance matrix
should be manipulated at the level of systematic uncertainties. The main differ-
ence between systematic and statistical errors is that, unlike the latter, systematic
uncertainties cannot be arbitrarily reduced in magnitude by increasing the num-
ber of measurements of a specific observable. Rather, systematic uncertainties are
intrinsic features of the measurement system. Since it is usually challenging to
precisely determine their magnitude or functional dependence, inconsistent sys-
tematic biases are likely to appear in a PDF fit.

For this reason, the principles introduced in Section 4.3.1 should not be applied
to the total covariance matrix of Equation 67, but only to the σadd

ik and σmult
ik cor-

related matrices. If we call Sij the matrix obtained considering only the last two
addenda of Equation 67, the best way to produce a covariance matrix S ′ that un-
derestimates the uncertainties of S is to determine S ′ by changing one eigenvalue
of S in the subspace corresponding to the inconsistent dataset.

Since S is symmetric by construction, there exists an orthogonal transformation
V such that S can be described in terms of a diagonal matrix D

S = VDVT , (103)

and the diagonal elements of D are the positive eigenvalues λα ∈ R+ of S, ob-
tained through the eigenvalue equation Svα = λαvα, with eigenvectors vα. Con-
sider a set of indices A ⊆ {1, . . . ,Ndata}: with the operation

λα 7→ λ ′α < λα ∀α ∈ A (104)

the inconsistencies are introduced in the diagonal basis on D, thereby yielding
the manipulated diagonal covariance D ′(A). Such matrix can then be transformed
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back into the experimental basis with the same orthogonal matrix V , to give the
inconsistent covariance matrix

S ′(A) = VD ′(A)VT . (105)

The substitution of Equation 104 has an important physical meaning. It corre-
sponds to a situation where experimental collaborations have given nominal un-
certainties smaller than the actual ones and, in the limit λ ′α = 0, the uncertainty
on the datapoints has been completely forgotten. Even though the latter is a rather
unrealistic situation, it will be considered in this thesis in order to provide a solid
baseline for further studies on this subject.

4.3.3 An equivalent way to introduce inconsistencies

The method introduced in the previous section aims at simulating a situation
where uncertainties are underestimated by changing a subset of the covariance
matrix eigenvalues.

Suppose that we change only one eigenvalue by setting it to zero. In that case,
we can state that an equivalent way to manipulate the covariance matrix is to re-
move a systematic uncertainty from the determination of S. With the notation of
Equation 67 and of Section 4.3.2, we can formalize the statement as follows. The
matrix Sij of Section 4.3.2 is constructed by a product ŜT Ŝ, where Ŝik encodes the
value of the k-th systematic uncertainty on the i-th datapoint. For a given system-
atic uncertainty β, the substitution Ŝiβ → 0 implies that the matrix S computed
from Ŝ has a vanishing eigenvalue.

It is indeed quite trivial to show that a matrix with a vanishing column must
have an eigenvalue which is zero. For simplicity, consider the matrix M ∈ Rp×q

with elements of the first column equal to zero: mi1 = 0 for i = 1, . . . ,p. The
eigenvalue equation is found through the computation of the determinant

det(M− λ1) =

∣∣∣∣∣∣∣∣
−λ m12 . . . m1q

...
. . . . . .

...

−λ mp2 . . . mpq

∣∣∣∣∣∣∣∣ = 0. (106)

By means of the Laplace expansion about the first column of M, the determinant
is

det(M− λ1) =

p∑
i=1

(mi1 − λ)(−1)
i+1cof(mi1 − λ) =

= −λ

p∑
i=1

(−1)i+1cof(mi1 − λ),

(107)

and therefore λ = 0 is always a solution of Equation 106. The statement is therefore
demonstrated by arguing that, if Ŝ has a vanishing eigenvalue, there exists a vector
v such that Ŝv = 0, whence ŜT Ŝv = 0 and the matrix S = ŜT Ŝ has a null eigenvalue
as well.

The fact that inconsistencies can be equivalently introduced by removing a sys-
tematic uncertainty from the construction of the covariance matrix is important
for two reasons. First of all, this eases the implementation and the numerical ef-
ficiency of the manipulations, since inversion in the dataset subspace is avoided
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and the inconsistency is introduced during the construction of the covariance ma-
trix. Secondly, the fact that the user can choose a specific systematic uncertainty to
remove from the covariance matrix makes the manipulation more transparent and
calibrable.

4.4 experimental and theoretical inputs

Before delivering the results of this thesis, we shall describe the dataset used to
produce them. Experimental inputs are needed for the construction of the covari-
ance matrix, used to produce level-one and level-two data, compute the fitting
χ2 and derive the closure test’s statistical estimators. In what follows, soon after
a brief discussion on how to divide them in order to compute the closure test
estimators, we present the datasets adopted by this work.

4.4.1 The in-sample and out-of-sample division

It is a standard procedure to compute data space estimators for a closure test with
data that have been left out of the fitting sample, in the same manner as fitting
methodologies perform the training/validation splitting to avoid over learning.

The in-sample and out-of-sample dataset division for closure test estimators is
however not as essential as the latter, since post-fit analyses do not risk to over fit
informations. Above all, such division represents a way to understand if the fitting
methodology is able to deliver correct predictions out of the training data range.
For this reason, normal closure test analyses such as the one delivered in [25] do
not consider in-sample statistics. It is assumed that the methodology does not fail
to mimic the input training data, and therefore any in-sample statistical estimator
is by definition equivalent to the global χ2 of the fit.

However, this changes when inconsistencies are introduced. To the best of our
knowledge, the impact of inconsistent data on PDF fitting methodologies is un-
known. Because of the fact that the forward map is corrupted at some point dur-
ing a closure test fit, it cannot be stated that in-sample statistic is equivalent to the
figures of merit adopted during the fit. When fitting artificially generated inconsis-
tent data, not only the assumption of a-priori well-performing in-sample statistic
fails, but it is not even clear whether it should in princple outperform the out-of-
sample counterpart. In other words, one must not discard the possibility to find
worse in-sample indicators than the out-of-sample. Indeed, the latter investigate
how results are generalized by the methodology while the former validate it, and
there is no overlap between the two since the partition on datapoints is exclusive.

For such reasons, we shall adopt a in-sample and out-of-sample division in the
analyses delivered in this thesis, focusing with the same effort on the results given
by both.

4.4.2 Closure test datsets

The analyses performed in this thesis almost exploit the entire NNPDF4.0 baseline
dataset. It consists of 4004 in-sample and 606 out-of-samle experimental points
coming from the main international experiments and covering a wide kinematic
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region both in x (down to 10−4) and Q2 (up to over 107 GeV2), as displayed in Fig-
ure 21. In order to ensure continuity in the results provided, we adopt the dataset
division already used in [25], which has an historical interest since it consists in
performing the closure tests with data from the NNPDF3.1 determination and use
all the new data introduced in NNPDF4.0 for out-of-sample statistics.

The main processes considered are fixed-target and collider DIS, DY and jet pro-
duction, electroweak boson production and top quark pair production. DIS data
provide almost 75% of the experimental points for the in-sample dataset, with
2100 measurements of neutral current processes and 989 of charged current from
the NMC, SLAC, BCDMS and HERA combination. In particular, neutral current DIS

from a proton target is used to probe the quark sea distribution fi+ fi and flavour
separation. Additional information on the valence quark distributions comes from
neutrino scattering on nuclear targets, provided by the experiments CHORUS and
NuTeV.

The remaining fraction of in-sample datapoints comes, for instance, from fixed-
target DY measurements from the Fermilab experiments, which constrain the u/d
combination, or from the earliest measurements of pp collisions recorded by the
Tevatron colliders, which provide information on the quark flavour separation at
large-x. The same collaborations also provide single-inclusive jet production cross
sections, which are of great importance for the determination of the gluon PDF

alongside data for the top pair production cross sections recorded at the LHC. For
additional informations on the in-sample data we refer to [27], while the out-of-
sample dataset is described in [25].

4.4.3 Choice of the underlying PDFs

We discuss the underlying PDFs that have been used in this thesis.
The choice of an input PDF is the foundation of a closure test and, in order for the

test to be nontrivial, it is necessary to select it as sufficiently complex as possible
so as to stress the methodology. We choose to perform the validation by assuming
that the input PDF is a single specific replica selected out of the 1000 replicas of the
NNPDF4.0 NNLO global determination. We refer to such PDF set as the underlying
set, while the selected replica is the underlying PDF.

One could argue that the choice would compromise the consistency of the clo-
sure test, since the attempt at validating the methodology must be independent
from its output. It is easy to find several reasons why it is not the case. First of all,
since the closure test is performed within the NNPDF methodology, sampling from
its replica ensemble guarantees that the underlying PDF satisfies known theoretical
constraints and that the test performance is the highest possible thanks to the op-
timized hyperparameters. Secondly – and definitely most importantly – a closure
test is not to determine whether the methodology returns the real physical PDFs:
it rather endorses the absence of biases and inconsistencies in it by comparing the
central values and uncertainties of its predictions to the underlying inputs.

The foremost criterion that can be used to determine the underlying PDF is
what better guarantees model-independency and consists in picking a random
replica from the underlying set. Nevertheless, there are ways of better stressing
the closure tests within the adopted set by introducing some bias in the choice of
the input PDF. This produces closure tests outputs that can be compared to the
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ones coming from the unbiased underlying law in an effort to determine whether
the methodology can offset fluctuations in level-one data. Such alternative input
PDFs can be determined either by looking at the most fluctuating replica of the
underlying set, or by sampling the farthest from the central value.

Analyses on the performance of closure tests with different underlying PDFs

have been carried out in this thesis and are presented in Section 5.1.2



Part III

F U G U E

We deliver the results of this thesis and derive from them a number of
conclusions regarding the problems stated in the previous parts.





5
R E S U LT S

In this chapter, we present the results of closure test analyses performed on the
NNPDF4.0 fitting methodology with inconsistent data. The aim of the analyses is
to determine the impact of inconsistencies in the fitting framework by perform-
ing the manipulations described in Chapter 4 on four different datasets that are
included in the training closure test sample, as described in Section 4.4.2. Results
are presented in four different sections, starting from Section 5.2.

An introduction is delivered in Section 5.1 and aims at providing the results of
preliminary analyses made on the closure test framework in order to determine
the number of fits and replicas to be used in the fits, the underlying PDFs and the
systematic uncertainties to be removed in inconsistent datasets. Conclusions are
left to Section 5.6.

5.1 introduction

We describe the methods and results used to tune the choice of inconsistent datasets,
number of fits and replicas used.

5.1.1 Inconsistent datasets

The processes studied are single inclusive jet production, neutral current DIS and
DY electroweak boson production. Both jet and electroweak boson productions are
measured at the LHC by the ATLAS and the LHCb detectors, while the DIS measure-
ments come from the combination of the HERA and H1 experiments. These datasets
belong to different kinematic regions: as one can see from Figure 22, DIS data cover
the small-Q region with a sufficient number of measurements both in the small-
x and large-x limits, while DY and jet rapidity measurements provide kinematic
coverage of Q2 > 104 GeV. Different kinematic regions are linked by the DGLAP

evolution, and we expect that the inconsistencies will propagate and have effects
outside of their region. This means that, in principle, results can be dependent on
the constraints given by a specific dataset on its kinematic region.

In particular, we can study different situations. Firstly, we can introduce incon-
sistencies in a kinematic region covered by a single group of data. Considering
Figure 21, we see that the large-x and large-Q2 region is mainly covered by jet
data and therefore this situation corresponds to the closure test performed with
inconsistencies in the single inclusive jet production. Another region which is con-
strained by a single group of data is the small-x region at Q2 = 104 GeV, which is
covered by LHCb data. However, the region is linked to points at smaller Q2 and
larger x by the DGLAP evolution and we should not discard the possibility that the
behavior of LHCb data will differ from the one obtained from jet data.

On the other hand, inconsistencies can be introduced in a kinematic region cov-
ered by two sets of data, corresponding to different processes. This is the case of
DIS and DY data from the ATLAS detector. We see from Figure 21 and from Fig-
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Figure 22: Kinematic coverage of the inconsistent data used in the analyses presented in
this chapter.

ure 22 that the two groups of data are linked to each other by DGLAP evolution.
It can be possible that, in such cases, the presence of inconsistent data has a dif-
ferent impact on the fitting methodology, if compared to the previous situation.
Indeed, two datasets that constrain the same features of the PDFs are incompatible
whenever one of them is inconsistent: we expect that the PDF fit will "trust" either
the inconsistent data or the consistent ones. In this light, we cannot discard the
possibility that the fit does not recognize the inconsistency, thereby following the
trend of the heavier set of data.

In Table 3, we show the systematic uncertainties removed for each closure test.
The last column shows the impact on the trace of the covariance matrix – which

datasets points systematic impact

ATLAS jets 201 Jet flav. comp. ∼ 10−5%

HERA DIS NC 447 δrel ∼ 10−11%

δγp ∼ 10−11%

δhad ∼ 10−12%

ATLAS DY 46 Luminosity ∼ 36%

LHCb DY 30 Luminosity ∼ 0.12%

Beam ∼ 0.08%

Table 3: The systematic uncertainties chosen to perform the inconsistent closure tests,
along with the impact of their absence on the covariance matrix trace.
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Figure 23: The central value and 68% confidence band for charm (23a) and gluon (23b)
PDF at the input parametrization scale Q = 1.65 GeV from the NNPDF4.0 NNLO

PDF set.

is the sum of its eigenvalues – obtained removing such systematic uncertianties.
For each group of closure tests, the systematic uncertainties chosen were the ones
which had greater impact in the inconsistent data.

In all this cases, we do expect to see that the inconsistent closure test estimators
– or, at least, one of them – differ from the ones computed for a standard NNPDF4.0

closure test performed on the same input data and underlying PDF. For this reason,
we shall provide our results as comparisons with the values obtained for such
closure test.

5.1.2 Effects of different underlying PDFs

As anticipated in Section 4.4.3, there is no guarantee that the choice of the un-
derlying PDF for a closure test fit will not have an impact on the methodology’s
response. We investigate here the outcomes of closure tests performed using three
different underlying PDFs from the latest NNPDF4.0 determination. As already dis-
cussed in the previous chapter, there is no point in using particularly inaccurate
shapes for the underlying PDF and therefore we do not explore the possibility of
using a non-NNPDF input.

We perform here some preliminary analyses aimed at determining whether the
choice of a particular underlying PDF from the NNPDF4.0 set has an impact on
the outcomes of a closure test. The NNPDF4.0 NNLO ensemble features 1000 Monte
Carlo replicas from the latest NNPDF determination: its central replica represents
the methodology’s best guess for the true PDFs. We determine the underlying PDF

for three different closure tests by sampling from the aforementioned ensemble:

1. a random replica;

2. the most distant replica from the central value of the set;

3. the replica which fluctuates the most, i. e. whose arc-length is maximal in the
set.
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replica arc length l1 distance kl divergence

Maximized arc length 8.507 56.31 −21.35

Maximized distance 8.505 109.1 119.3

Random PDF 8.486 51.46 3.731

Table 4: Values of arc length, distance and KL divergence for the three replicas chosen as
underlying PDFs for the preliminary studies on the NNPDF4.0 closure tests.

While the first criterion is what better guarantees the flexibility of a closure test,
the second an third ones aim at stressing the methodology in order to see if non-
negligible changes in the closure test outputs are produced.

The most distant replica can be found in two ways that turn out to be equivalent
for the cases studied, i. e. through maximization of the L1 distance or the Kullback-
Leibler (KL) divergence between replicas and central values. Both L1 and KL are
distances in PDF space, defined as follows. If c(α)(x) is the central value for the
α-th flavour and q(α)k (x) is the k-th replica for the same flavour α, the L1 distance
is

d
(α)
k =

∫1
0

∣∣∣c(α)(x) − q(α)k (x)
∣∣∣dx , (108)

while the KL distance is

d
(α)
k =

∫1
0

q
(α)
k (x) log

c(α)(x)

q
(α)
k (x)

dx . (109)

We maximize the set of distances over the replica index k, and find a finite set
containing the indices of the most distant replicas for each flavour α:{

arg max
k
d
(α)
k ∀α ∈ flavs

}
. (110)

The index with the highest number of occurences is then chosen as input PDF for
the closure tests. If there is more than one replica with such features, the choice
is random within the subset. As anticipated, the replica which maximizes the L1

distance turned out to be the one with the maximum KL divergence as well.
The third input replica is chosen according to the arc-length of the PDFs, i. e.

through maximization of the following collection of integrals:

`
(α)
k =

∫1
0

√
1+

[
dq(α)k

dx

]2
dx (111)

over the k-th Monte Carlo replica and the α-th flavour of the NNPDF4.0 NNLO set, as
done in Equation 110. The three underlying PDFs produced are shown in Figure 23

for the charm and gluon, while the values of distance and arc length are listed in
Table 4. From a posterior analysis, we see that the arc length is a rather coarse
indicator since all replicas show similar values for `(α)k . For this reason, we discard
the arc length criterion in this preliminary tuning analyses.

The results of such analyses are delivered here in Table 5 for the statistical esti-
mators computed from the χ2, and in the following studies on finite size effects,
Section 5.1.3, for the

√
Rbv ratio estimator. Both outcomes emphasyze the fact that

choosing a random PDF is equivalent to selecting the most distant of the NNPDF4.0

set.
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group data Eη[χ
2] Eη[∆χ2 ] Eη[ϕ]

rand dist rand dist rand dist

DIS NC 2100 0.986 0.988 −0.008 −0.004 0.123 0.145

DIS CC 989 0.956 0.967 −0.008 −0.009 0.123 0.131

DY 731 0.839 0.849 −0.019 −0.015 0.199 0.225

Top 13 0.976 0.989 −0.011 −0.045 0.303 0.274

Jets 171 1.011 1.077 −0.026 0.005 0.151 0.127

Total 4004 0.953 0.966 −0.011 −0.007 / /

Table 5: First moments of the χ2, ∆χ2 and ϕ distributions for the closure tests performed
with random (rand) and maximally distant (dist) underlying PDFs.

5.1.3 Finite size effects

The estimators presented in Chapter 4 are expected to deliver a faithful description
of the outcome of a closure test in a sufficiently large limit of fits and replicas
adopted. For instance, in this thesis we performed 25 fits of 50 replicas for each
family of closure test considered. When calculations are carried out with a finite
number of samples, one expects their results to be different from the true value
of such indicators, and that this difference will decrease when additional samples
are considered. We refer to this situation as a finite size effect.

Naturally, finite size effects cannot be measured directly since the true value of
a statistical estimator is not known a priori. However, one can perform indirect
measures of these effects by looking at the trend of the computed indicators with
increasing number of fits and replicas used to produced them. Such indirect search
methods have been used in this thesis as a preliminary study on the performance
of NNPDF4.0 closure tests, aimed at determining the minimum amount of fits and
replicas for which finite size effects can be discarded from the conclusions of this
work. The results of the study are given here.

Figure 24 shows the trend of the
√
Rbv indicator for increasing number of fits,

computed within a standard NNPDF4.0 closure test with a random underlying PDF

from the latest NNPDF determination. The upper diagram shows the values of the
ratio alongside their uncertainty. The green curve is a simple 5-points moving aver-
age, which represents for each Nfits > 5 the average of the indicator computed us-
ing Nfits − 4, . . . ,Nfits fits. The moving average gives sufficient informations about
the trend of

√
Rbv and, therefore, convergence can be measured by taking deriva-

tives of the green curve. This is done in the second panel of Figure 24, where the
first and second derivative of the moving average are shown as a function of Nfits.
We can see that, as Nfits inreases towards Nfits = 25, both curves tend to zero.
Additionally, one can observe that the two derivatives have opposite signs almost
everywhere, thereby indicating that convergence of the moving average is taking
place as a dampened oscillation.

The bottom panel of Figure 24 displays a second method used to determine
whether convergence is reached for

√
Rbv with Nfits 6 25. The 10-points and

15-points variance are displayed. For each point in the Nfits axis, the curves in-
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Figure 24: Trend of
√
Rbv for a standard closure test, performed with increasing number

of fits. The 5-points moving average is displayed in green, and its first and
second derivative are shown in the second panel. The third panel shows the
10-points and 15-points variance of the data.

dicate the variance of the values of
√
Rbv computed using Nfits − k+ 1, . . . ,Nfits

fits, where k = 10 and k = 15 respectively. We can see that the two variance curves
quickly decrease towards zero in the first steps and then maintain the value until
Nfits = 25 is reached.

The analysis carried out leads to the following conclusions. Given a fixed num-
ber of 50 replicas for each fit, a closure test performed with 25 fits trained on
different stochastic instances of the level-one data is sufficient to determine the
distribution of the statistical estimators. The decision to study the case of fixed
number of replicas and variable number of fits comes from the following con-
sideration. The replica number determines how precise will be the uncertainties
delivered by the fitting methodology within the Monte Carlo approach, while the
number of fits determines how many samples are drawned from the distributions
of the statistical estimators. Clearly, a closure test performed using a small number
of fits yields inaccurate predictions for the distributions of statistical estimators. At
a fixed value of the computational power used by closure tests, preference must
be given to the number of fits since we are particularly interested in seeing how
such distributions change when inconsistencies are present. By doing so, we do
not discard the possibility that the number of replicas is small enough to yield
some small fluctuations in the uncertainties predicted by the methodology. Even if
such situation was present in the analyses carried out, it would not bias the results
obtained comparing the standard closure test outputs with the inconsistent ones
as long as both are perforemd with the same number of replicas.



5.1 introduction 69

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Rbv  indicator

5 point moving average
Ideal
Measured Rbv

0.03
0.02
0.01
0.00
0.01 First derivative Second derivative

5 10 15 20 25
Number of fits

0.0000

0.0002

0.0004

0.0006 10 point variance
15 point variance

Figure 25: Trend of
√
Rbv for a standard closure test, performed with increasing number

of fits, and with underlying PDF chosen according to the distance criterion.

In conclusion, we show in Figure 25 the same convergence plot of Figure 24 for
a closure test performed with the underlying PDF which is most distant from the
central value of the NNPDF4.0 NNLO determination. As we can see, results are con-
sistent with what found for a random input PDF. Therefore, the following analyses
will be performed with the random PDF.
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group Eη [χ
2 ] ∆ from reference ct

∆Eη [χ
2 ] ∆Eη [∆χ2 ] ∆Eη [ϕ]

DIS NC 0.991 0.594σ < 0.001 < 0.001

DIS CC 0.979 1.812σ −0.002 −0.002

DY 0.854 0.976σ −0.003 −0.001

Top 1.091 1.037σ 0.052 −0.003

Jets 0.980 −1.004σ 0.018 −0.007

Total 0.963 1.585σ < 0.001 /

Table 6: In-sample values of χ2, and differences of χ2, ∆χ2 and ϕ between an inconsistent
closure test obtained removing jet systematic uncertainty and the reference clo-
sure test.

5.2 single inclusive jets

We now present the results of this thesis, starting from the analyses performed
on the closure tests obtained with inconsistent systematic uncertainties correlated
through the following datasets:

1. exclusive ATLAS measurements for W± production associated with Njets > 1

jets of light quarks at
√
s = 8 TeV [43], for a total of Ndata = 30 datapoints;

2. single-inclusive ATLAS jet production at
√
s = 8 TeV [44], with Ndata = 171.

The measurements are recorded by the ATLAS experiment at the LHC at CERN for
jets defined by the anti-kt jet clustering algorithm, using data corresponding to an
integrated luminosity of 20.2 fb−1.

The information on experimental uncertainties is retrieved from the correspond-
ing HEPDATA entry. We treat the jet flavour composition uncertainty as fully corre-
lated between the W±+ jet data and the inclusive jet data, even if the jet radius
parameter used in the clustering algorithm by the former (R = 0.4) differs from
the latter (R = 0.6). This is supported by the fact that mild differences in PDF fits
arise when the uncertainties are treated as uncorrelated [45].

5.2.1 χ2 estimators

The first statistical estimators that can measure the presence of inconsistencies in
jet data are the ones derived from the χ2. Table 6 displays the difference between
the values of Eη[χ2], Eη[∆χ2 ] and Eη[ϕ] calculated from a reference closure test
and the closure tests with inconsistent jet data. We can see that changes in the χ2

for the inconsistent closure test are at the level of statistical fluctuations. Here, the
χ2 standard deviation is computed considering that the total degrees of freedom
is equal to the number of datapoints times the number of fits performed:

σχ2 =
2√

NfitsNdata
. (112)
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Figure 26: The
√
Rbv bootstrap distributions for jets and DY data, compared to the refer-

ence closure test.

The only process that shows a relevant improvement in the χ2 is the inconsistent
one, i. e. the jets. If comparable changes were also seen for other process, this would
suggest that the methodology has followed the trend of the new uncertainties in jet
data, penalizing every other dataset. The impact on non-jet processes is however
small and cannot lead to such conclusion. Additionally, the impact on ∆χ2 and
ϕ of the inconsistencies is negligible and values obtained are almost equal to the
ones of the reference closure test. The only exception is represented by top data,
which however consist of only 13 datapoints in sample and, therefore, their impact
is negligible.

5.2.2 Bias and variance

We turn now to the statistical indicator used to determine whether the closure test
delivered faithful uncertainties. As already mentioned in Chapter 4, the main inter-
est in performing more than one closure test fit is in determining the distribution
of statistical indicators, rather than sampling a single occurrence. For this reason,
distributions of

√
Rbv are generated through resampling techniques – using boot-

strap resampling [46] – starting from the 25 values obtained for each fit performed.
Such distributions are shown for each main process considered in the in-sample
and out-of-sample data in Appendix A, Figure 37 and Figure 38 respectively. The
plots display the

√
Rbv distributions for the consistent and inconsistent closure
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Figure 27: Trend of
√
Rbv for different levels of inconsistency incorporated within the jets

systematic uncertainty.

tests and the distance between the two is expressed in units of the variance of the
inconsistent distribution.

In order to facilitate the discussion, we report in Figure 26 the DY and jet data
distributions for the in-sample and out-of-sample division. The plots suggest that
the bias and variance ellipsoids in data space have indeed modified their shapes
as a consequence of the methodology’s reaction to inconsistent data. In particu-
lar, there is a strong indication that the uncertainties for the jet data have been
overestimated with respect to the consistent closure test, both in-sample and out-
of-sample. This is implied by the fact that the two distributions are separated by
a distance over 5σ. An additional 2σ tension is seen for the in-sample DY distribu-
tions, suggesting a slight underestimation of the uncertainties in that data region,
which is reduced out of sample.

In order to determine whether the displacements of the distributions for incon-
sistent data do indicate an overfitting of the uncertainties or they are simple fluc-
tuations, we perform a third closure test retaining the 33% of the systematic. The
trend is shown in Figure 27 and it confirms the observations made above about jet
data in and out of sample, with smaller effects propagated into the out-of-sample
dijet region. The behavior of Rbv on in-sample DY data suggests that the effect on
such process is negligible, since we do not find a visible trend in the values of the
estimator.
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group ξ1σ ∆ξ1σ

inconsistent reference inconsistent reference

DY 0.712 0.715 −0.169σ −1.788σ

Top 0.759 0.772 0.745σ 0.776σ

Dijet 0.778 0.726 −0.434σ −0.012σ

Photon 0.760 0.801 −1.260σ −0.321σ

Singletop 0.784 0.789 0.102σ 0.285σ

Jets 0.771 0.716 0.451σ 2.444σ

Total 0.755 0.731 0.560σ −0.107σ

Table 7: Out-of-sample measured ξ1σ and deviation from the expected value in terms of
the bootstrap error for inconsistencies in jet data and reference fit.

5.2.3 Sources of non-gaussianity

We now turn to non-Gaussianity, which can be determined by looking at the values
of ξ1σ and, in particular, at the difference ∆ξ1σ between the expected value of
the indicator – see Equation 102 – and the computed one. In the second cand
third column of Table 7 one finds measures of ξ1σ for the inconsistent closure
test and the reference fits which suggest that the uncertainties have been globally
overestimated in both closure tests and in the same amount. The distance ∆ξ1σ
between the measured ξ1σ and its expected value computed from

√
Rbv is given

in the last two columns in units of the bootstrap error. We see that differences are
at the level of statistical fluctuations and, as expected, the global amount of non-
Gaussianity is slightly increased in the inconsistent fit: however, the effects can be
explained as a consequence of statistical noise and we do not make assumptions
based on such values of ∆ξ1σ.

5.2.4 Concluding remarks

The analyses performed suggest that the impact of inconsistent jet data on the
NNPDF4.0 methodology is measurable in the context of a closure test, but not from
standard fit quality estimators such as the χ2.

The negligible deterioration of the χ2 suggests that this indicatore is incapable
of distinguishing whether a PDF fit was performed on inconsistent data. The values
of χ2 also suggest that the replica central values have been correctly fitted by the
methodology, even in presence of inconsistent training data in the jet region. What
did change are the uncertainties delivered, as was seen from the bias-to-variance
ratio distributions. This suggests that the PDF replica distribution yield a similar
central value, but its spread grows in a inconsistent fit and therefore uncertainties
are overestimated in the jet data region. We are led to conclude that the fit detected
the inconsistency and, in order to deliver a result which is consistent with the χ2

computed, overfitted the nominal uncertainty of the inconsistent data.
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group Eη [χ
2 ] ∆ from reference ct

∆Eη [χ
2 ] ∆Eη [∆χ2 ] ∆Eη [ϕ]

DIS NC 0.989 0.389σ < 0.001 −0.001

DIS CC 0.963 0.521σ < 0.001 −0.001

DY 0.843 0.270σ −0.002 < 0.001

Top 0.966 −0.091σ 0.045 −0.010

Jets 1.047 1.183σ 0.018 −0.014

Total 0.959 0.858σ < 0.001 /

Table 8: In-sample values of χ2, and differences of χ2, ∆χ2 and ϕ between a closure test
obtained removing the δrel systematic uncertainty and the reference closure test.

5.3 neutral current hera combined

The section is devoted to the investigation of the impact of inconsistencies in the
collider neutral current cross-section data from the HERA measurement combina-
tion, which was already included in the NNPDF3.1 PDF determination. Specifically,
we introduce artificial inconsistencies in the following datasets [21]:

1. inclusive DIS e±p scattering at
√
s = 820 GeV, with Ndata = 70;

2. inclusive DIS e±p scattering at
√
s = 920 GeV featuring a total of Ndata = 377

datapoints.

We remove the correlated sources of systematic uncertainties arising from the
combination procedure. In particular, we perform two closure tests by removing
the δrel systematic uncertainty in the first one, and additionally removing the δγp
and δhad errors in the second one. The former uncertainty is introduced as the
difference between the χ2 computed by treating all uncertainties as multiplicative,
and the χ2 obtained with all additive uncertainties except from the normalization
uncertainty. On the other hand, the latter are defined as the differences between
the nominal combination and the combinations in which systematic uncertainties
associated with the photoproduction background and hadronic energy scale were
taken as correlated across dataset.

As one can see from Table 8, the global χ2 shows a slight improvement with
respect to the consistent closure test, mainly due to the diminished jet χ2. Changes
are however at the level of statistical fluctuations and suggest that there is no
correlation between them and the presence of inconsistent data, as indicated by
the differences in ∆χ2 and ϕ.

The in-sample and out-of-sample
√
Rbv distributions for each process consid-

ered are shown in Appendix A for the reference closure test and the one obtained
removing all three systematic uncertainties. Here, we display the most interesting
distributions in Figure 28 and the trend of the indicator with increasing incon-
sistencies in Figure 29. We can appreciate how the distributions for jet data are
separated, thereby indicating that the effect of inconsistent data is clearly not a
statistical fluctuation. This happens both in sample and out of sample, with values
that are reduced in the inconsistent closure test.
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(a) Jets in sample.
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(b) Jets out of sample.
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(c) Out-of-sample dijet and DY.

Figure 28: The
√
Rbv bootstrap distributions for jets, dijets and DY data, compared to the

reference closure test.
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group ξ1σ ∆ξ1σ

inconsistent reference inconsistent reference

DY 0.727 0.715 −0.386σ −1.788σ

Top 0.764 0.772 0.207σ 0.776σ

Dijet 0.742 0.726 0.108σ −0.012σ

Photon 0.691 0.801 −1.576σ −0.321σ

Singletop 0.767 0.789 −0.756σ 0.285σ

Jets 0.745 0.716 0.073σ 2.444σ

Total 0.736 0.731 −0.244σ −0.107σ

Table 9: Out-of-sample measured ξ1σ and deviation from the expected value in terms of
the bootstrap error. Results are provided for the inconsistent fit without the δrel
uncertainty alongside the reference closure test.

Again, the out-of-sample data region sees a decrease of
√
Rbv for dijet data, which

are correlated with jets. The opposite happens for DY data, even though we clearly
see from Figure 28c that the two distributions have still a non-negligible region of
overlap.

The trend of
√
Rbv as the inconsistency increases enforces the hypotesis that DY

and jet data have an opposite behavior. It is interesting seeing that there is no trend
of
√
Rbv for neutral current DIS. This suggests that the methodology response is

different from the previous situation.
In conclusion, we can deduce the impact of inconsistent data on sources of non-

Gaussianity in Table 9. Results for ∆ξ1σ are again similar for the inconsistent fits
compared to the refernce closure test, thereby confirming the negligible impact of
inconsistent data on the Gaussian assumptions. Values of ξ1σ are also similar for
the two closure tests, both indicating a small overestimation of the uncertainties.

5.3.1 Concluding remarks

The analyses performed on the inconsistent closure tests suggest that the fit quality
cannot measure the impact of inconsistent data on the methodology, as happened
for jet data in Section 5.2.

Among the closure test estimators, we can draw a large amount of information
from the bias-to-variance ratio. Contrary to what happened for jet data, the PDF

fits delivered the correct uncertainties for DIS data, i. e. where the inconsistencies
were introduced. We note that uncertainties have been overestimated for jet data
and in the correlated dijet subset, while the opposite happened for DY data.

We conclude that, given the weight of DIS datapoints in the training dataset, the
methodology learned the inconsistencies in the data and delivered biased predic-
tions for the PDFs. In particular, we observe from Figure 30 that the small-x kine-
matic region is covered mostly by DIS data from HERA and LHCb DY data. Since the
methodology was trained on inconsistent data, it delivered biased small-x depen-
dences of PDFs and, as a consequence, the

√
Rbv indicator for out-of-sample DY
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Figure 30: Kinematic coverage of the out-of-sample data compared to the in-sample incon-
sistent HERA datasets.

data has increased. This is most likely due to underestimation of LHCb uncertain-
ties in that region.
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group Eη [χ
2 ] ∆ from reference ct

∆Eη [χ
2 ] ∆Eη [∆χ2 ] ∆Eη [ϕ]

DIS NC 0.981 −0.569σ 0.001 0.002

DIS CC 0.971 1.198σ −0.001 0.001

DY 0.854 0.978σ −0.003 0.005

Top 1.128 1.368σ 0.003 −0.005

Jets 0.997 −0.441σ 0.017 −0.006

Total 0.957 0.600σ 0.001 /

Table 10: In-sample values of χ2, and differences of χ2, ∆χ2 and ϕ between a closure test
obtained removing the ATLAS luminosity systematic uncertainty and the refer-
ence closure test.

5.4 atlas electroweak boson production

We investigate the impact of inconsistencies in measurements of the electron and
muon decay channels of inclusive DY gauge boson production. We consider the
combination of measurements of production cross sections for the inclusive DY

processes W± → `ν and Z/γ∗ → ``, with ` = e,µ, performed in proton-proton
collisions at

√
s = 7 TeV with the ATLAS detector. The analysis uses data taken in

the year 2010 [47] with proton beam energies of 3.5 TeV. For the electron channels
the luminosity is 36.2 pb−1, while a smaller value is used for the muon channel,
32.6 pb−1.

Since the electron and muon W± and Z cross sections are combined to form a
single joint measurement, systematic uncertainties have been correlated between
the various datasets by the experimental collaboration. In the notation of Equa-
tion 67, it means that the sum over the systematic errors k of the σik matrices has
already been performed and we cannot distinguish between different sources of
systematic uncertainty. The only source of systematic uncertainty which has not
been correlated is the one on the luminosity of the ATLAS detector. Therefore, we
perform a closure test removing such systematic and a second one also rescaling
the correlated uncertainties by a factor 2.

The χ2, ∆χ2 and ϕ estimators are shown in Table 10. We can see how the changes
in the χ2 are at the level of statistical fluctuations. The same conclusions can be
drawned for the ∆2χ and ϕ estimators, suggesting once again that inconsistencies
were not detected by the fit quality.

The
√
Rbv distributions are shown in Appendix A, Figure 41 and Figure 42,

where one can find the complete set of bootstrap distributions of the indicator for
in-sample and out-of-sample data respectively. We display here the trend of

√
Rbv

for increasing level of inconsistency in the data. As we can see from Figure 31,
the impact of inconsistencies is higher than what was seen in the previous cases.
Indeed, contrary to the previous situations, this time almost every correlated sys-
tematic uncertainty was artificially modified. In the in-sample and out-of-sample
data region, Figure 31 does not show clearly the impact on DY: for this reason, we
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Figure 31: Trend of
√
Rbv for different levels of inconsistency incorporated within ATLAS

luminosity systematic uncertainty.

report here the complete distributions in Figure 32 in order to highlight the fact
that uncertainties have been overestimated for the inconsistent data region.
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(a) DY in sample.
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(b) DY out of sample.

Figure 32: The
√
Rbv bootstrap distributions for DY data, compared to the reference clo-

sure test.

In conclusion, we can see from Table 11 that the measured values of ξ1σ are
similar for the inconsistent closure test and the reference one, as happened in the
previous cases. On the other hand, we can observe that the ∆ξ1σ indicator has
increased in the photon data region for the inconsistent fits, thereby indicating
that sources of non-Gaussianity might have arised in the region constrained by
such data. As a consequence, the overall ∆ξ1σ increased but, since it remains in
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group ξ1σ ∆ξ1σ

inconsistent reference inconsistent reference

DY 0.682 0.715 −0.535σ −1.788σ

Top 0.731 0.772 0.515σ 0.776σ

Dijet 0.746 0.726 −0.411σ −0.012σ

Photon 0.752 0.801 −2.624σ −0.321σ

Singletop 0.804 0.789 −1.098σ 0.285σ

Jets 0.773 0.716 0.854σ 2.444σ

Total 0.734 0.731 0.611σ −0.107σ

Table 11: Out-of-sample measured ξ1σ and deviation from the expected value in terms
of the bootstrap error. Results are provided for the inconsistent fit without the
ATLAS luminosity uncertainty alongside the reference closure test.

the 1σ confidence band, we cannot conclude that inconsistent data had an impact
on non-Gaussinaity in this closure test.
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Figure 33: Kinematic coverage of the out-of-sample data compared to the in-sample incon-
sistent ATLAS datasets.

5.4.1 Concluding remarks

We make some final remarks on the results of the closure tests performed on
inconsistent training data from the ATLAS DY weak boson production. As happened
for jet data and for neutral current DIS in the previous sections, the fit quality
cannot determine whether inconsistencies had an impact on the PDF fit.
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Informations from the bootstrap distributions of
√
Rbv suggest that uncertain-

ties have been wrongly delivered for DY processes – which include the inconsistent
data – in and out of sample, as pictured in Figure 32. On the other hand, top data
seem to have been delivered with underestimated uncertainties both in sample
and out of sample.

Note that, even though the in-sample DY blue and pink distributions of Fig-
ure 32a are separated from each other, their width is particularly small if com-
pared to the expected value of

√
Rbv = 1. Therefore, such distributions are not

as different has in the out-of-sample region: this leads to the conclusion that the
methodology made wrong deductions from the training dataset, i. e. that it pre-
dicted similar – although slightly different – uncertainties for the inconsistent data.
From Figure 33, we see that the inconsistent x-region is shared by DY with top and
jet data mainly. As expected, the effects of the inconsistencies introduced can be
seen in the fact that the uncertainty on such datasets has been wrongly predicted,
i. e. underestimated for the former and overestimated for the latter.
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group Eη [χ
2 ] ∆ from reference ct

∆Eη [χ
2 ] ∆Eη [∆χ2 ] ∆Eη [ϕ]

DIS NC 0.999 1.533σ < 0.001 < 0.001

DIS CC 0.959 0.225σ −0.003 < 0.001

DY 0.851 0.808σ 0.003 0.003

Top 1.044 −0.036σ 0.025 −0.008

Jets 1.007 −0.139σ 0.010 −0.008

Total 0.963 1.565σ < 0.001 /

Table 12: In-sample values of χ2, and differences of χ2, ∆χ2 and ϕ between a closure test
obtained removing the LHCb luminosity systematic uncertainty and the reference
closure test.
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Figure 34: The in-sample
√
Rbv bootstrap distributions for jets and charged current DIS

data, compared to the reference closure test.

We investigate the impact of inconsistencies in LHCb [48] measurements of elec-
troweak boson production at

√
s = 8 TeV. Contrary to what has been presented in

Section 5.4 for the ATLAS experiment, LHCb data only come from the muon chan-
nel at a luminosity of 2.0 fb−1. As stated in the paper, sources of uncertainty that
come from external input, such as the beam energy and luminosity determina-
tions, are delivered as separate from other contributions. For this reason, we focus
on that kind of systematic errors to perform the manipulation of the experimental
covariance matrix, first removing the luminosity and then also the beam energy.

As expected, we see in Table 12 that changes in the χ2-based estimators are at
the level of statistical fluctuations, which is consistent with the observations made
in the previous sections.

The
√
Rbv distributions are shown in Appendix A, Figure 43 and Figure 44, as

bootstrap distributions of the indicator for in-sample and out-of-sample data re-
spectively. We display here the trend of

√
Rbv for increasing level of inconsistency

in the data and some interesting distributions for the in-sample dataset. Figure 34
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group ξ1σ ∆ξ1σ

inconsistent reference inconsistent reference

DY 0.704 0.715 −1.245σ −1.788σ

Top 0.812 0.772 −1.337σ 0.776σ

Dijet 0.777 0.726 −1.431σ −0.012σ

Photon 0.714 0.801 −0.618σ −0.321σ

Singletop 0.876 0.789 −0.127σ 0.285σ

Jets 0.768 0.716 1.608σ 2.444σ

Total 0.756 0.731 0.045σ −0.107σ

Table 13: Out-of-sample measured ξ1σ and deviation from the expected value in terms of
the bootstrap error. Results are provided for the inconsistent fit without the LHCb

luminosity uncertainty alongside the reference closure test.

shows the bootstrap distributions of jet data and charged current DIS in sample.
We can see a strong increase of

√
Rbv in the DIS region, while the value of the

estimator has dropped for jet data less than what was seen in the previous cases
studied. From Figure 35, we see that the trend of the first moments of the

√
Rbv

distributions for in-sample DIS and jet data suggests that their uncertainties have
been underfitted and overfitted respectively, while fluctuations are observed for
the value of

√
Rbv for other processes. This is enforced in the out-of-sample data

region, where jet data seem to be delivered with overestimated uncertainties.
In conclusion, we understand from Table 13 that sources of non-Gaussianity are

present in the same amount for the reference and the inconsistent closure tests.
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Figure 36: Kinematic coverage of the out-of-sample data compared to the in-sample incon-
sistent LHCb datasets.
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Figure 35: Trend of
√
Rbv for different levels of inconsistency incorporated within LHCb

systematic uncertainties.

5.5.1 Conclusive remarks

First of all, we conclude that the χ2 and the related statistical estimators are inca-
pable of determining whether the PDF fit was performed on inconsistent data. This
agrees with the observations made in the previous sections, where inconsistencies
were introduced in different kinematic regions and processes.

The most interesting conclusion can be made from the in-sample DIS bootstrap
distribution of the bias-variance ratio. Indeed, as one can see from Figure 36 and
Figure 21, LHCb data and charged current DIS data are sensitive to the large-x
behavior of PDFs. We see in Figure 34 that, as a consequence of the introduction
of inconsistencies at large-x, in-sample DIS data’s uncertainties were underfitted.
The opposite happened at small-x where, as already observed in Section 5.3, the
neutral current DIS data dominate over the DY data among which LHCb contributes.
As expected, the neutral current DIS uncertainties were correctly predicted by the
closure test.

5.6 final remarks

We recall here the results obtained in the four closure tests and the conclusions
anticipated for each of them. As explained in Section 5.1, inconsistencies have been
introduced in four different datasets, corresponding to different kinematic region
and number of datapoints in the training set. We found that the four closure test
led to as many different outcomes and, even though it is difficult to generalize
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without performing a larger number of analyses for each situation, we can make
the following reasonable conclusions.

The impact of inconsistent data on a PDF fit can be seen in the way it determines
the uncertainties, but not in the central values. This is suggested by the fact that the
differences in the χ2 for the reference closure test and all four inconsistent fits is at
the level of statistical fluctuations. From the distributions of the bias-to-variance in-
dicator, we conclude that the impact of inconsistent data on uncertainties depends
on the dataset in which they are introduced. We can distinguish two situations:

1. the inconsistent data cover a wide kinematic region without being constrained
by PDFs determined from other data and evolved through the DGLAP equa-
tions;

2. several groups of data constrain a kinematic region, and inconsistencies are
introduced in one of them.

The first situation happens for jet data in Section 5.2 and for LHCb data in Sec-
tion 5.5. In the former case, almost every uncertainty has been correctly delivered
by the closure test except from the one of jet data, i. e. where the inconsistency was
placed. In the latter, uncertainties on DY data – among which were the inconsisten-
cies – have not been corrupted. On the other hand, the charged current DIS sector
was fitted with underestimated unceratinties, opposite to jet data. This seems to
suggest that LHCb data are constrained by a PDF feature which is determined in
the charged current DIS region, where the PDFs were parametrized, and evolved
throug the DGLAP equations into the inconsistent data region. If such is the case,
the LHCb closure tests are a good example of how the DGLAP causality domain can
influence the outcomes of PDF fits with inconsistent data.

The second situation, where several groups of data constrain a kinematic region,
happens in closure tests performed with inconsistent HERA and ATLAS data. The
former fits, presented in Section 5.3, are trained on inconsistent data that are part
of a process which covers more than the 75% of the training data. For this reason,
the methodology most likely produced a set of PDFs that are constrained by such
inconsistencies. Indeed, we see that uncertainties have been correctly predicted
for the DIS data region and, on the contrary, DY data have been delivered with
underfitted uncertainties both in and out of sample. This suggests that the weight
of DIS was too large that the methodology could not consistently minimize the
χ2 without learning the inconsistency in the data, thereby penalizing the other
datasets in the same kineamtic region.

Confirmations on the statement made above come from the analysis of the re-
sults of Section 5.4. Here, the inconsistent DY data could not be fitted with cor-
rect uncertainties due to the presence of a heavier dataset, DIS data, that led the
methodology detect the inconsistency.

With the results gathered in this thesis, we can assume that the presence of in-
consistencies in experimental dataset has an impact on the fitting methodology
that entirely depends on the inconsistent data. Additional tests can be made in or-
der to confirm the hypotesis. First of all, one can choose a different in-sample and
out-of-sample dataset division. For instance, one can make folds of experimental
datasets in order to use half of their datapoints in sample and the other half out of
sample. Such dataset division would shed more light on the behavior of DIS data
out of sample, or jet data in sample.
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Another possible follow-up analysis could be performed on the same dataset
division used here, by manually setting the weigths of a specific dataset in the
calculation of the χ2, so as to simulate what happened here with DIS data. In
this way, the observations made in this thesis as a consequence of the four trends
measured can be stressed with the presence of a wider set of situations.



6
C O N C L U S I O N S

In this work, we performed an explicit measurement of the impact of inconsistent
data on the NNPDF4.0 fitting methodology. The main motivation for this research
can be found in the fact that inconsistencies are one of the possible explainations
for large values of χ2 found in the latest PDF determinations.

We compared the results of a standard NNPDF4.0 closure test, which is by defini-
tion free of inconsistencies, with four different closure tests performed on incon-
sistent data. Inconsistencies arise whenever the nominal uncertainty on a certain
set of experimental data is smaller than its actual one. For this reason, the incon-
sistent closure test are produce by fitting artificially generated data with an under-
estimated covariance matrix, obtained through manipulations of the experimental
covariance matrix eigenvalues and columns.

The results, which have been layed out in Chapter 5, lead to the following conclu-
sions. First of all, we can state that the presence of inconsistencies in experimental
data has a minimal impact on the fit χ2. This is observed for all four cases studied
in this thesis in the fact that changes in the global χ2 are at the level of statistical
fluctuations, as well as the χ2 evaluated for each single process. Moreover, the
closure test estimators that depend explicitly on the fit quality, i. e.∆χ2 and ϕ, are
indeed unchanged when comparing the inconsistent closure tests to the reference
one. We conclude that, using standard fit quality parameters that are computed
also in a PDF fit to experimental data, the impact of inconsistent data cannot be
measured.

It is easy to identify two possible reasons why this happens: either the χ2 is
unable to measure the fit response to inconsistencies, or inconsistent data do not
affect a PDF fit at all. In order to determine which assumption is correct, we turn
to closure test estimators. By looking at the changes in the bias-variance ellipsoids
in data space, given by the ratio

√
Rbv, we can state that the impact of inconsistent

data on a PDF fit is not negligible and can be measured in a closure test. The PDF

fitting methodology responds to the presence of inconsistent data by delivering
uncertainties that are over/under estimated depending on the kinematic region
and weight of the inconsistent dataset.

The results of this work seem to agree with the hypotesis that inconsistencies
are learned by the methodology if the inconsistent dataset has a sufficiently large
impact in the minimization strategy. On this behalf, two opposite situations hap-
pen for jets and DIS data. When inconsistencies are introduced in the former, based
on the impact of such dataset on the overall training dataset, the fit compensates
for inconsistent data by overfitting their uncertainties. On the other hand, when
trained on inconsistent DIS data, the fit learns the inconsistencies and delivers the
uncertainties for such process in the same way as the reference unbiased closure
test. As a consequence of the fact that inconsistent data have not been detected
and properly treated, in the latter case the PDF determination delivers wrong pre-
dictions for consistent data that cover the same kinematic region of inconsistent
ones.

87
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The analyses performed in this thesis indicate that the impact of inconsistentcies
on the NNPDF fitting framework depends on the dataset upon which they were
included. This opens the possibility for future work on the subject. First of all,
one can perform the same analyses with a different in-sample and out-of-sample
dataset division, in order to have the same amount of data for a single process in
and out of sample. Secondly, one can use the division adopted here and manually
set the weigths of single datasets in the calculation of the fit quality, in order to
simulate what happened naturally here for DIS data.
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We display the entire set of figures showing the bootstrap distribution of the
√
Rbv

estimator, divided by process, for the results delivered in Chapter 5.

single inclusive jets

The following plots integrate the results of Section 5.2.
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Figure 37: In-sample
√
Rbv bootstrap distribution. Inconsistencies in jet flavour composi-

tion are compared with standard closure test.
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Figure 38: Out-of-sample
√
Rbv bootstrap distribution. Inconsistencies in jet flavour com-

position are compared with standard closure test.
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neutral current hera combined

The following plots integrate the results of Section 5.3.
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Figure 39: In-sample
√
Rbv bootstrap distribution. Inconsistencies in neutral current DIS

are compared with standard closure test.
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Figure 40: Out-of-sample
√
Rbv bootstrap distribution. Inconsistencies in neutral current

DIS are compared with standard closure test.
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atlas electroweak boson production

The following plots integrate the results of Section 5.4.
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Figure 41: In-sample
√
Rbv bootstrap distribution. Inconsistencies in ATLAS DY data are

compared with standard closure test.
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Figure 42: Out-of-sample
√
Rbv bootstrap distribution. Inconsistencies in ATLAS DY data

are compared with standard closure test.
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lhcb electroweak boson production

The following plots integrate the results of Section 5.5.
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Figure 43: In-sample
√
Rbv bootstrap distribution. Inconsistencies in LHCb DY data are

compared with standard closure test.
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Figure 44: Out-of-sample
√
Rbv bootstrap distribution. Inconsistencies in LHCb DY data are

compared with standard closure test.
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