

PDFs at approximate N3LO accuracy

Felix Hekhorn

Particle Physics Day 2023

Overview

- 1. Introduction
- 2. Theory Uncertainties
- 3. Cross-Sections
- 4. Evolution

5. NNPDF4.0 with QCD@aN3LO (preliminary)

6. Summary

Introduction

Parton Distribution Functions

Parton Distribution Functions (PDF) $\mathbf{f}(x, \mu_F^2)$

- describe the fundamental constituents of the proton: quarks, gluons
- μ_F-dependence: DGLAP equations!
- *x*-dependence: fit!

How to fit a PDF?

Experiment:

p _T [GeV]	Dimuon cross section (pb)	Dielectron cross section (pb)	Dilepton cross section (pb)
0 - 1.0	8.8345 10.29955	9.0042 18.29994	9.2821 задетти
1.0 - 2.0	23.05 29.82494	23.462 18.9999	22.786 an.wrws
2.0 - 3.0	31.799 passage	32.848 xx.##0F	32.062 28.96987
3.0 - 4.0	35.663 anaxer	37.025 as.mes	35.225 31.0011
4.0 - 5.0	30.455 на жили	37.578 налия	35.502 14.000
5.0 - 6.0	35.093 10.0005	35.201 +6.8990	35.579 11.4146
6.0 - 7.0	33.122 10.00100	34.275 11.4479	33.547 зализи
7.0 - 8.0	30.967 peakss	32.2 11.000	31.324 даляны
8.0 - 9.0	28,702 (0.74654	29.834 (883)00	23.009 as arres
9.0-10.0	20.003 so.mass	27.300 +8.84793	25.933 ea.mare

taken from [JHEP12.061]


```
taken from [EPJC82.428]
```

Theory: $s^{2} \frac{d_{\mu_{1}(M,M)}^{d(M,M)}}{dq_{1}dw_{1}} = \cos \sigma_{0}^{2} g_{0}^{2} g_{0}^{K} g_{N} N_{c} C_{F} \left[-\frac{2}{w_{1}} P_{m_{1}(F}^{M}(\epsilon_{1}) + \frac{2}{w_{1}} \left[H_{c_{1}(M)}^{(2)} \left(h \right) \left(h \left(\frac{1}{m_{1}^{K}(\epsilon_{1}+m_{1}^{K})} \right) - h (q_{1}^{2}/m^{2}) - 2 H_{c_{1}(M)}^{(2)}(x, h_{i}) \right) \right. \\ \left. + C_{1} \frac{2\pi}{2\epsilon(\epsilon_{1}+m_{1}^{K})} \left(\int d\Omega L_{R(c_{0})} \right)^{home} \right. \\ \left. + 2C_{2} \frac{2\pi}{2\epsilon(\epsilon_{1}+m_{1}^{K})} \int d\Omega L_{R(c_{0})} \right] . \quad (5.36)$

taken from [1910.01536]

Strategy:

repeat until converged:

guess candidate PDF $f(Q_0^2) \rightarrow$ compute theory predictions $T \rightarrow$ compare to data D

Call for Precision

Experiment:

taken from ATL-PHYS-PUB-2022-009

taken from [EPJC82.428]

Theory:

taken from [JHEP03.116]

h		• •	
D	L		
	-		•

which PDF to use?

Ingredients for an aN3LO PDF Fit

Factorization:

DIS

$$T(Q^2) = C(Q^2) \otimes f(Q^2) = C(Q^2) \otimes E(Q^2 \leftarrow Q_0^2) \otimes f(Q_0^2)$$
(1)

Upgrade perturbative elements:

$$X = X^{(0)} + a_s X^{(1)} + a_s^2 X^{(2)} + a_s^3 X^{(3)} + \dots$$
(2)

partonic cross-sections C:

evolution E:

splitting functions

LHC (and everything else)

transition matrix elements

Account for uncertainties!

Theory Uncertainties

Covariance Matrix Formalism [EPJC79.931]

To maximize the (Bayesian) probability P(T|D) for a theory prediction T to describe a data point D we minimize

$$\chi^{2} = (T - D)^{T} C^{-1} (T - D)$$
(3)

and assuming the experimental cov. matrix *C* is independent of a theoretical cov. matrix *S* we can minimize:

$$\chi^{2} = (T - D)^{T} (C + S)^{-1} (T - D)$$
(4)

Both can contain:

- statistical uncertainties (e.g. QM vs. MC)
- systematic uncertainties (e.g. resolution vs. scale)

Strategy:

decompose $S^{\rm tot} = S^{\rm MHOU} + S^{\rm IHOU}$

MHOU Using Scale Variations [EPJC79.931]

$$T(Q^2,\mu_r^2,\mu_f^2) = C(Q^2,\mu_r^2) \otimes E(Q^2 \leftarrow Q_0^2,\mu_f^2) \otimes f(Q_0^2)$$

Factorization scale variations:

- finite knowledge of splitting functions
- correlated across datasets as PDFs are universal

Renormalization scale variations:

- finite knowledge of partonic cross-sections
- correlated for a given process (DIS NC, DIS CC, TOP, JETS, ...)

Choose:

$$\mu = \kappa \mu_0 \qquad \kappa \in \{1/2, 1, 2\}$$
 (6)

(5)

Cross-Sections

DIS with QCD@N3LO

- ▶ light coefficient functions [VVM05],[MVV05],[MV00],[MRV08],[MVV09] ✓
- ► massive coefficient functions → approximation in MSc thesis of N. Laurenti √ i.e. combine in a suitable way:
 - threshold limit $s \rightarrow 4m^2$
 - ▶ high-energy limit $s \to \infty$
 - asymptotic limit $Q^2 \gg m^2$

DY with QCD@N3LO

- even if available, most codes are private
- use n3loxs [JHEP12.066] to obtain k-factor for inclusive distributions, e.g. [PLB725.223]

Evolution

Transition Matrix Elements

Use whatever is available in literature:

- I. Bierenbaum, J.Blümlein, and S. Klein. Mellin Moments of the *O(a³₂)* Heavy Flavor Contributions to unpolarized Deep-Inelastic Scattering at Q² >> m² and Anomalous Dimensions. Nucl. Phys. B, 820:417–482, 2009. arXiv:0904.3563, doi:10.1016/j.nuclphysb.2009.06.005.
- J. Blümlein. Analytic continuation of mellin transforms up to two-loop order. Computer Physics Communications, 133(1):76–104, Dec 2000. URL: http:// dx.doi.org/10.1016/S0010-4655(00)00156-9, doi:10.1016/s0010-4655(00)00156-9.
- J. Ablinger, A. Behring, J. Blümkin, A. De Freitas, A. Hassellubn, A. von Manteuffel, M. Round, C. Schneider, and F. Wißbrock. The 3-Loop Non-Singlet Heavy Flavor Contributions and Anomalous Dimensions for the Structure Function F₂(x, Q²) and Transversity. Nucl. Phys. B, 886:733-823, 2014. arXiv:1406.46854, doi:10.1016/j.nuclphysb.2014.07.010.
- J. Ablinger, A. Bahring, J. Blümlein, A. De Freitas, A. von Manteuffel, and C. Schneider. The 3-loop pure singlet heavy flavor contributions to the structure function f2(xo2) and the anomalous dimension. Nuclear Physics B, 890:48–151, Jan 2015. URL: http://dx.doi.org/10.1016/ jmuclphysb.2014.10.008, doi:10.1016/jmuclphysb.2014.10.008.
- J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, and C. Schneider. The Ø(a¹₂T²₂) contributions to the Gluonic Operator Matrix Element. Nucl. Phys. B, 885:280–317, 2014. arXiv:1405.4259, doi:10.1016/j.nuclphysb.2014.05.028.
- J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, and F. Wißbrock. The transition matrix element a_gq(n) of the variable flavor number scheme at o(q. s⁻³). Nuclear Physics B, 882:263-288, May 2014. URL: http://dx.doi.org/10.1016/ jnuclehysb.2014.02.007, doi:10.1016/j.nuclehysb.2014.02.007.
- A. Behring, I. Bierenbaum, J. Blümlein, A. De Freitas, S. Klein, and F. Wißbrock. The logarithmic contributions to the (*iai*) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering. *Eur. Phys. J. C*, 74(0):3033, 2014. arXiv:1403.6356, doi:10.1140/epjc/ s1058-2014-3033-k.
- J. Ablinger, J. Blümlein, S. Klein, C. Schneider, and F. Wissbrock. The *U(a²_i)* Massive Operator Matrix Elements of *U(n_j)* for the Structure Function *F₃(x,Q²)* and Transversity. Nucl. Phys. B, 844:26–54, 2011. arXiv:1008.3347, doi:10.1016/j.nuclphysb.2010.10.021.
- J. Blümlein, J. Ablinger, A. Behring, A.De Freitas, A. von Manteuffel, and C. Schneider. Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering: Recent Results. PoS, QCDEV2017:031, 2017. arXiv:1711.07057, doi:10.22232/1.308.0031.
- J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. Goedicke, A. von Manteuffel, C. Schneider and K. Schonwald. The Unpolarized and Polarized Single-Mass Three-Loop Heavy Flavor Operator Matrix Elements A_{ex,O} and ΔA_{ex,O} arXiv:2211.0546

Approximating Splitting Functions

Splitting functions are not known fully analytically, but some partial information:

- large n_f contributions [NPB915.335], [JHEP10.041], [2310.01245]
- small x limit (from BFKL) [JHEP06.145], [JHEP08.135]
- large x limit (from soft) [NPB832.152], [JHEP04.018], [JHEP09.155]
- some (low) moments [JHEP10.041], [PLB825.136853], [PLB842.137944], [2307.04158], [2310.05744]

Strategy:

combine known limits and add sub-leading functions to ensure moments \Rightarrow IHOU

Non-Singlet Splitting Functions

8 known moments \checkmark

Singlet Splitting Functions

Comparison with MSHT [EPJC83.185]

NNPDF4.0 with QCD@aN3LO (preliminary)

PDFs

Luminosities

Some First Pheno ...

17

Summary

Summary

For PDFs at % accurarcy we need:

- ▶ include QED and EW effects \rightarrow NNPDF4.0QED
- ▶ account for theory uncertainties \rightarrow NNPDF4.0MHOU
- use N3LO accuracy \rightarrow NNPDF4.0aN3LO

For PDFs with QCD@aN3LO we need:

- approximate splitting functions
- upgrade as many processes as possible
- account for theory uncertainties

Summary

For PDFs at % accurarcy we need:

- ▶ include QED and EW effects \rightarrow NNPDF4.0QED
- ▶ account for theory uncertainties \rightarrow NNPDF4.0MHOU
- use N3LO accuracy \rightarrow NNPDF4.0aN3LO

For PDFs with QCD@aN3LO we need:

- approximate splitting functions
- upgrade as many processes as possible
- account for theory uncertainties

Danke! Thanks! Kiitos!

Backup slides

New Theory Prediction Pipeline Pineline [2302.12124]

Produce FastKernel (FK) tables!

The workhorse in the background: PineAPPL

Usage of PDFs with Theory Uncertainties [EPJC79.931]

PDFs are universal

we can assume uncertainties for a given process independent of the PDF

In the end we can just do:

$$(\delta\sigma^{tot})^2 = (\delta\sigma^{MHOU})^2 + (\delta\sigma^{PDF})^2$$
(7)

with (as usual):

$$(\delta\sigma^{MHOU})^2 = \langle (T_{\sigma}[\mu] - T_{\sigma}[\mu_0])^2 \rangle_{\mu \in V_{\mu}}$$
(8)

$$(\delta\sigma^{PDF})^2 = \langle (T_{\sigma}[f^{(k)}] - T_{\sigma}[f^{(0)}])^2 \rangle_{k=1\dots N_{rep}}$$
(9)

Intrinsic Charm: Strategy [Nature608.483]

based on NNPDF4.0 [EPJC82.428]

Intrinsic Charm: PDF plot [Nature608.483]

[BHPS] or [Meson/Baryon Cloud Model]

- in 3FNS a valence-like peak is present
- for $x \le 0.2$ the perturbative uncertainties are quite large
- the carried momentum fraction is within 1%