

WHAT DOES PROTON STRUCTURE TEACH US ON MACHINE LEARNING AND VICE-VERSA

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

THEORY SEMINAR

TUM, DECEMBER 14, 2023

SUMMARY

- THE PROBLEM
 - PDFS AND THEIR UNCERTAINTIES
 - WHY WE NEED MACHINE LEARNING
- WHAT PDFs TEACH US ON MACHINE LEARNING
 - PDF DETERMINATION AS MACHINE LEARNING
 - TESTING UNCERTAINTIES
 - TOWARDS XAI
- WHAT MACHINE LEARNING TEACHES US ON PDFs
 - THE NATURE OF PDF UNCERTAINTIES
 - CORRELATING INFORMATION
 - SERENDIPITOUS DISCOVERY

PROLOGUE WHAT'S THE PROBLEM WITH PDFS?

PDFs AND THEIR UNCERTAINTIES

UNCERTAINTIES: HIGGS IN GLUON FUSION

⁽R. Röntsch, Les Houches 2023)

- FACTORIZED "PROBABILITY" OF A QUARK OR GLUON (PARTONS) TO PARTICIPATE IN HARD INTERACTION
- **REQUIRED FOR THE COMPUTATION OF ANY PROCESS AT THE LHC**
- DOMINANT SOURCE OF UNCERTAINTY

PDFs AND DATA

THE NNPDF4.0 DATASET

Kinematic coverage

- LHC CROSS SECTION: $- \sigma = \sum_{ij} \hat{\sigma}_{ij} \otimes f_i^{(1)} \otimes f_j^{(2)}$ - $\hat{\sigma}_{ij}$ partonic cross section, INCOMING PARTONS i, j- $f_i^{(j)}(x,Q^2)$ PDF for parton of species iIN j-TH INCOMING PROTON - \otimes CONVOLUTION OVER x- PDF DEPENDS ON Q^2 AND x, OTHER KINEMATIC VARIABLES IN $\hat{\sigma}$
- PARTONIC CROSS SECTION COMPUTED PERTUR-BATIVELY
- PDFs determined comparing σ to data
 - About 4600 datapoints
 - LEPTOPRODUCTION & HADROPRODUCTION, COLLIDER & FIXED-TARGET

PDFs: THE STATE OF THE ART (NNPDF4.0, 2021) NNPDF4.0 NNLO Q= 3.2 GeV 1.0 g/10 8.0 d_v S S 0.6 000 d 🔨 0.4 0.2 0.0 - 10^{-2} 10-3 10^{-1} 10⁰ Х

- A SET OF PROBABILITY DISTRIBUTIONS OF PROBABILITY DISTRIBUTIONS
- FULL (INFINITE DIMENSIONAL) COVARIANCE MATRIX
- MUST BE DETERMINED FROM FINITE SET OF DISCRETE DATA

WHY WE NEED MACHINE LEARNING I ALTERNATIVE: A MODEL-DEPENDENT APPROACH PARAMETRIZATIONS

- CTEQ5 2002: $xg(x, Q_0^2) = A_0 x^{A_1} (1-x)^{A_2} (1+A_3 x^{A_4})$
- MRST-HERALHC 2005: $xg(x, Q_0^2) = A_g x^{\delta_g} (1-x)^{\eta_g} (1+\epsilon_g x^{0.5} + \gamma_g x) + A_{g'} x^{\delta_{g'}} (1-x)^{\eta_{g'}} (1-x)$
- CT18: $g(x, Q = Q_0) = x^{a_1 1} (1 x)^{a_2} \left[a_3 (1 y)^3 + a_4 3y (1 y)^2 + a_5 3y^2 (1 y) + y^3 \right];$ $y = \sqrt{x}; a_5 = (3 + 2a_1)/3.$

 The CT18 family of PDFs includes LHC data available up to 2018, i.e. mostly 7 and 8 TeV data

• CT18 is the primary PDF; CT18A includes the ATLAS 7 TeV W/Z data (excluded from CT18 due to very poor fit); CT18X includes scale to simulate effects of low x resummation for DIS; CT18Z includes both effects

- CT18As (new) allows a more flexible parametrization for strange
- CT18As_Lat (new) adds lattice constraint

(J. Huston, PDF4LHC 11/2023)

MORE DATA \Rightarrow **BIGGER** UNCERTAINTIES (!)

WHY WE NEED MACHINE LEARNING II DISCOVERY PHYSICS 1995

- DISCREPANCY BETWEEN QCD CALCULATION AND CDF JET DATA (1995)
- EVIDENCE FOR QUARK COMPOSITENESS
- NO INFO ON PARTON UNCERTAINTY \Rightarrow RESULT STRONGLY DEPENDS ON GLUON AT $x \ge 0.1$

DISCREPANCY REMOVED IF JET DATA INCLUDED IN THE FIT NEW CTEQ FIT (1996)

FINAL CTEQ FIT (1998)

WHY WE NEED MACHINE LEARNING III "TOLERANCE"

MSHT PDFS (2020)

e-vector	+ t	+ T	Most constraining data set	— t
1	3.71	3.75	ATLAS 7 TeV high prec. W, Z	4.76
2	3.12	3.33	NuTeV $\nu N \rightarrow \mu \mu X$	2.85
3	2.48	2.58	NuTeV $\nu N \rightarrow \mu \mu X$	4.07
4	3.61	3.60	CMS 8 TeV W	2.93
5	2.64	3.00	ATLAS 7 TeV high prec. W, Z	2.72
6	5.22	5.46	ATLAS 8 TeV double dif Z	5.01
7	4.07	4.37	NMC/ F_L	2.90
8	3.90	3.50	LHCb 2015 W,Z	3.90
9	5.48	5.59	LHCb 2015 W,Z	3.73
10	3.55	3.58	BCDMS $\mu p F_2$	4.87
11	3.06	2.91	DØ W asym.	4.83
12	1.42	1.71	DØ W asym.	3.40
13	3.87	4.10	CMS asym. $p_T > 25, 30 \text{ GeV}$	4.38
14	1.36	1.50	E866/NuSea <i>pd</i> / <i>pp</i> DY	3.67
15	5.53	5.89	E866/NuSea <i>pd</i> / <i>pp</i> DY	3.17
16	1.89	0.52	E866/NuSea pd/pp DY	5.64
17	2.51	2.54	E866/NuSea <i>pd</i> / <i>pp</i> DY	2.69
18	1.80	1.88	DØ W asym.	2.47
19	2.47	2.18	CMS 8 TeV W	1.37
20	1.82	2.22	DØ W asym.	4.69
21	4.41	5.36	ATLAS 8 TeV $Z p_T$	4.68
22	3.49	3.23	DØ W asym.	3.04
23	1.84	2.43	ATLAS 8TeV sing dif $t\bar{t}$ dilep	4.96
24	0.99	1.23	E866/NuSea pd/pp DY	4.61
25	2.01	1.35	DØ W asym.	2.77
26	2.25	2.51	NuTeV $\nu N x F_3$	2.06
27	2.83	3.65	ATLAS 8 TeV $t\bar{t}$, dilepton	2.64
28	1.74	1.92	DØ W asym.	2.65
29	2.57	2.85	CMS 7 TeV $W + c$	1.79
30	4.76	3.92	CCFR $\nu N \to \mu \mu X$	2.25
31	2.79	4.81	ATLAS 7TeV high prec W,Z	2.07
32	2.57	4.27	CCFR $\nu N \rightarrow \mu \mu X$	2.58

FIRST PDFS WITH UNCERTAINTIES (2002) one sigma & ten sigma intervals for typical covariance matrix eigenvalue

vs best value and uncertainty from individual experiments

- PDF uncertainties rescaled by "tolerance" $T \sim 4 \div 10$
- DETERMINED FROM SPREAD OF BEST-FIT FROM DIFFERENT DATA

ACT I PDF LESSONS ON ML

PROTON STRUCTURE AS A ML PROBLEM NNPDF

PROBABILITY REGRESSION

REPLICA SAMPLE OF FUNCTIONS ⇔ PROBABILITY DENSITY IN FUNCTION SPACE KNOWLEDGE OF LIKELIHHOD SHAPE (FUNCTIONAL FORM) NOT NECESSARY

FINAL PDF SET: $f_i^{(a)}(x,\mu)$; i =up, antiup, down, antidown, strange, antistrange, charm, gluon; $j = 1, 2, ... N_{\text{rep}}$

CROSS-VALIDATED LEARNING

- NEURAL NET PARAMETERS DETERMINED BY χ^2 MINIMIZATION THROUGH GRADIENT DESCENT
- RANDOM TRAINING-VALIDATION SPLIT, χ^2 to training data replicas minimized
- TRAINING STOPS IF VALIDATION χ^2 GROWS FOR A WHILE (PATIENCE)
- LOWEST VALIDATION $\chi^2 \Rightarrow$ OPTIMAL FIT

NEURAL NETWORK	FIT OPTIONS
NUMBER OF LAYERS (*)	Optimizer (*)
SIZE OF EACH LAYER	Initial learning rate (*)
DROPOUT	MAXIMUM NUMBER OF EPOCHS (*)
ACTIVATION FUNCTIONS (*)	Stopping Patience (*)
INITIALIZATION FUNCTIONS (*)	Positivity multiplier (*)

- SCAN PARAMETER SPACE
- OPTIMIZE FIGURE OF MERIT: K-FOLDING LOSS

K-FOLD OPTIMIZATION

	Fold 1	
CHORUS σ^{ν}_{CC}	HERA I+II inc NC e^+p 920 GeV	BCDMS p
LHCb Z 940 pb	ATLAS W, Z 7 TeV 2010	CMS Z p_T 8 TeV (p_T^{ll}, y_{ll})
DY E605 σ_{DY}^{p}	CMS Drell-Yan 2D 7 TeV 2011	CMS 3D dijets 8 TeV
ATLAS single- $\bar{t} y$ (normalised)	ATLAS single top R_t 7 TeV	CMS $t\bar{t}$ rapidity $y_{t\bar{t}}$
CMS single top R_t 8 TeV		
	Fold 2	
HERA I+II inc CC e^-p	HERA I+II inc NC e^+p 460 GeV	HERA comb. $\sigma_{b\bar{b}}^{red}$
NMC p	NuTeV σ_c^p	LHCb $Z \rightarrow ee~2$ fb
CMS W asymmetry 840 pb	ATLAS Z p_T 8 TeV (p_T^{ll}, M_{ll})	D0 $W \rightarrow \mu\nu$ asymmetry
DY E886 σ_{DY}^{p}	ATLAS direct photon 13 TeV	ATLAS dijets 7 TeV, R=0.6
ATLAS single antitop y (normalised)	CMS $\sigma_{tt}^{\rm tot}$	CMS single top $\sigma_t + \sigma_{\bar{t}}$ 7 TeV
	Fold 3	
HERA I+II inc CC e^+p	HERA I+II inc NC e^+p 575 GeV	NMC d/p
NuTeV σ_c^{ν}	LHCb $W, Z \rightarrow \mu$ 7 TeV	LHCb $Z \rightarrow ee$
ATLAS W, Z 7 TeV 2011 Central selection	ATLAS W^+ +jet 8 TeV	ATLAS HM DY 7 TeV
CMS W asymmetry 4.7 fb	DYE 866 $\sigma_{DY}^d / \sigma_{DY}^p$	CDF Z rapidity (new)
ATLAS σ_{tt}^{tot}	ATLAS single top y_t (normalised)	CMS σ_{tt}^{tot} 5 TeV
CMS $t\bar{t}$ double diff. $(m_{t\bar{t}},y_t)$		
	Fold 4	
CHORUS $\sigma_{CC}^{\bar{\nu}}$	HERA I+II inc NC e^+p 820 GeV	LHC b $W,Z \rightarrow \mu$ 8 TeV
LHCb $Z \rightarrow \mu \mu$	ATLAS W, Z 7 TeV 2011 Fwd	ATLAS W^- +jet 8 TeV
ATLAS low-mass DY 2011	ATLAS Z p_T 8 TeV (p_T^{ll}, y_{ll})	CMS W rapidity 8 TeV
D0 Z rapidity	CMS dijets 7 TeV	ATLAS single top y_t (normalised
ATTAC : 1 . D 10 TO M	CMC -in-later D 12 T-V	

K-FOLDING VS NO K-FOLDING

- EACH FOLD REPRODUCES FEATURES OF FULL DATASET
- LOSS: AVERAGE χ^2 OF NON-FITTED FOLDS
- OVERFITTING REMOVED \Rightarrow CORRECT GENERALIZATION

- TYPICAL UNCERTAINTIES IN DATA REGION: SINGLET $\sim 3\%$, NONSINGLET $\sim 5\%$
- DATA REGION: $10^2 \lesssim M_X \lesssim 10^3$ TeV, $-2 \lesssim y \lesssim 2$

UNCERTAINTIES 2022

- TYPICAL UNCERTAINTIES IN DATA REGION: SINGLET $\sim 1\%$, NONSINGLET $\sim 2-3\%$
- DATA REGION: $10 \lesssim M_X \lesssim 3 \cdot 10^3$ TeV, $-4 \lesssim y \lesssim 4$

VALIDATING UNCERTAINTIES I: OVERFITTING METRIC

- RECOMPUTE VALIDATION $\chi^2_{\rm val'}$ FOR ALL DATA REPLICAS
 - **KEEPING SAME** TRAINING-VALIDATION SPLIT
 - BUT DIFFERENT FLUCTUATED VALIDATION DATA
- COMPUTE AVERAGE OVER REPLICAS $\langle \chi^2_{val'} \rangle$ & DETERMINE DIFFERENCE TO STANDARD VALIDATION χ^2_{val} OVERFITNESS: $\mathcal{R}_O = \chi^2_{val} - \langle \chi^2_{val'} \rangle$
- **NEGATIVE** OVERFITNESS $\mathcal{R}_O \Rightarrow$ OVERFIT

VALIDATING UNCERTAINTIES II: CLOSURE TESTS

FAITHFUL UNCERTAINTIES IN DATA REGION?

- ASSUME "TRUE" UNDERLYING PDF \Rightarrow E.G. SOME RANDOM PDF REPLICA
- GENERATE DATA DISTRIBUTED ACCORDING TO EXPERIMENTAL COVARIANCE MATRIX
- RUN WHOLE METHDOLOGY ON THESE DATA
- DO STATISTICS ON "RUNS OF THE UNIVERSE", POSSIBLE THANKS TO EFFICIENT METHDOLOGY: COMPARE TO TRUE VALUES OF OBSERVABLES (NOT FITTED)
 - BIAS/VARIANCE: MEAN SQUARE DEVIATION WR TO TRUTH VS UNCERTAINTY
 - $\xi_{1\sigma}^{(pdf)}$: IS TRUTH WITHIN ONE SIGMA 68% OF TIMES?
 - $\operatorname{erf}(R_{bv}/\sqrt{2})$: is the <u>:</u>ue one-sigma Gaussian quantile 68%?

CLOSURE TEST RESULTS:

NUMBERS

BIAS/VARIANCE RATIO AND ONE- σ QUANTILE

DATA-SPACE, DATA COVARIANCE MATRIX, OUT-OF-SAMPLE

PDF-SPACE & COV MATRIX

Dataset	$\sqrt{b/v}$	$\xi_{1\sigma}^{ m (data)}$	$\operatorname{erf}(R_{bv}/\sqrt{2})$	flavour	$\xi_{1\sigma}^{(\mathrm{pdf})}$
DY Top-pair Jets Dijets Direct photon Single top Total	$\begin{array}{c} 0.99 \pm 0.08 \\ 0.75 \pm 0.06 \\ 1.14 \pm 0.05 \\ 0.99 \pm 0.07 \\ 0.71 \pm 0.06 \\ 0.87 \pm 0.07 \\ 1.03 \pm 0.05 \end{array}$	$\begin{array}{c} 0.69 \pm 0.02 \\ 0.75 \pm 0.03 \\ 0.63 \pm 0.03 \\ 0.70 \pm 0.03 \\ 0.81 \pm 0.03 \\ 0.69 \pm 0.04 \\ 0.68 \pm 0.02 \end{array}$	$\begin{array}{c} 0.69 \pm 0.04 \\ 0.82 \pm 0.03 \\ 0.62 \pm 0.02 \\ 0.69 \pm 0.04 \\ 0.84 \pm 0.03 \\ 0.75 \pm 0.04 \\ 0.67 \pm 0.03 \end{array}$	$\Sigma g \ V \ V_3 \ V_8 \ T_3 \ T_8 \ Total$	$\begin{array}{c} 0.82 \pm 0.04 \\ 0.70 \pm 0.05 \\ 0.65 \pm 0.05 \\ 0.63 \pm 0.05 \\ 0.72 \pm 0.04 \\ 0.71 \pm 0.05 \\ 0.71 \pm 0.05 \\ 0.71 \pm 0.02 \end{array}$

- 25 "UNIVERSE RUNS", 45 REPLICAS EACH
- IN-SAMPLE DATA: PRE 2015
- OUT OF SAMPLE DATA: 2015-2020, MOSTLY LHC
- PDFs highly correlated \Rightarrow sampled at 4 points each

CLOSURE TEST RESULTS:

PICTURES

DISTRIBUTION OF DEVIATIONS FROM TRUTH

• PDF-SPACE MORE NOISY THAN DATA SPACE

- DEFINE "PRE-HERA", " PRE-LHC" AND "CURRENT" DATASETS EACH LATER DATASET IS EXTRAPOLATION OF PREVIOUS
- DETERMINE PDFs & COMPARE TO "FUTURE" DATA
- COMPUTE χ^2 to future data:
 - WITHOUT PDF UNCERTAINTIES \Rightarrow IF \gg 1, missing information
 - WITH PDF UNCERTAINTY \Rightarrow IF \sim 1, TEST PASSED MISSING INFO REPRODUCED BY UNCERTAINTY

ASSESSING EXTRAPOLATION UNCERTAINTIES FUTURE TEST RESULTS (NNPDF4.0)

Process	PRE-HERA	PRE-LHC	NNPDF4.0
FT DIS (NC)	1.05	1.18	1.23
FT DIS (CC)	0.80	0.85	0.87
FT DY	0.92	1.27	1.59
HERA	27.20 /1.23	1.22	1.20
Coll. DY (Tev.)	5.52 /1.02	0.99	1.11
Coll. DY (LHC)	18.91/1.31	<mark>2.63</mark> /1.58	1.53
Top guark	20.01 /1.06	1.30/0.87	1.01
JETS	2.69 /0.98	2.12 /1.10	1.26
TOTAL OUT OF SAMPLE	19.48/1.16	2.10 /1.15	-

χ^2 : FITTED VS EXTRAPOLATED: WITHOUT/WITH PDF UNC.

PDF UNCERTAINTIES DO ACCOUNT FOR EXTRAPOLATION UNCERTAINTIES

UNDERSTANDING UNCERTAINTIES THE REPLICA DISTRIBUTION

- PLOT RESULTS IN (σ_H, σ_Z) PREDICTION SPACE \Rightarrow GAUSSIAN!
- DISTRIBUTION OF REPLICAS \Rightarrow OPTIMAL IMPORTANCE SAMPLING

DISTRIBUTION OF REPLICAS DRIVEN BY

- DATA UNCERTAINTIES \Rightarrow DATA REPLICA FLUCTUATION
- INTERPOLATION, EXTRAPOLATION AND FUNCTIONAL UNCERTAINTIES \Rightarrow BEST FIT DEGENERACY

THE REPLICA DISTRIBUTION

ARE ALL FITS EQUALLY GOOD?

- COMPARE TRAINING AND VALIDATION χ^2 FOR EACH REPLICA
- NO CORRELATION BETWEEN FIT QUALITY AND POSITION IN THE (σ_H, σ_Z) PLANE
- UNIFORM FIT QUALITY

THE REPLICA DISTRIBUTION COMPARISON TO CENTRAL DATA

- EACH PDF REPLICA FITTED TO A DATA REPLICA
- FIT QUALITY TO CENTRAL DATA STATISTICALLY DISTRIBUTED

- AVERAGE BEST FIT $PDF \Rightarrow LOW \chi^2$
- NOT NECESSARILY LOWEST

THE REPLICA DISTRIBUTION COMPARISON TO CENTRAL DATA

• ARE FITS WITH HIGH χ^2 to central data poor (underlearnt)?

- NO CORRELATION BETWEEN χ^2 TO CENTRAL DATA AND TRAINING, VALIDATION χ^2
- UNIFORM FIT QUALITY
- DISPERSION DUE
 - − DATA REPLICA FLUCTUATION \Rightarrow DATA UNCERTAINTIES
 - BEST FIT DEGENERACY \Rightarrow INTERPOLATION, EXTRAPOLATION AND FUNCTIONAL UNCERTAINTIES

REPLICA LOSS DISTRIBUTION CORRELATION TO FEATURES

- CORRELATED TO POSITION IN (σ_H, σ_z) PLANE
- CORRELATED TO A FEATURE?

- REPLICAS CLOSER TO CENTRAL DATA \Rightarrow MORE STRUCTURE
- CORRELATED TO A FEATURE?

$$\mathrm{KE} = \sqrt{1 + \left(\frac{d}{d\ln x}xf(x,Q^2)\right)^2}$$

ARCLENGTH OF THE NN OUTPUT IN TERMS OF INPUT THE GLUON

- REPLICAS CLOSER TO CENTRAL DATA \Rightarrow MORE STRUCTURE
- HIGHER KINETIC ENERGY

EXPLAINING UNCERTAINTIES OVERLEARNING?

• INDUCE OVERLEARING: DOUBLE TRAINING LENGTH

THE GLUON

g at 1.7 GeV

• LOOK AT THE OUTPUT \Rightarrow MORE STRUCTURE IN GLUON

EXPLAINING UNCERTAINTIES A PARADOX?

- BEST FIT TO CENTRAL DATA CORRELATED TO HIGH ARCLENGTH
- HIGH ARCLENGTH CORRELATED TO OVERLEARNING
- TRAINING/VALIDATION LOSS

UNCORRELATED TO QUALITY OF FIT TO CENTRAL DATA

UNDERSTANDING UNCERTAINTIES: TOWARDS XAI GENERALIZATION!

- OVERFITTING CAN MEAN POOR GENERALIZATION
- KEPT IN CHECK BY K-FOLDING (NOT CROSS-VALIDATION)
- LOOK AT BEST χ^2 to fitted vs. excluded folds

THE GLUON

- BEST VS WORST REVERSED
- HIGH K.E. SOLUTIONS DO NOT GENERALIZE

ACT II ML LESSONS ON PDFS

UNDERSTANDING UNCERTAINTIES: PDFs DIFFERENT KINDS OF CLOSURE TESTS

- LEVEL 0:
 - EACH DATAPOINT EQUAL TO THE "TRUTH VALUE"; ZERO UNCERTAINTY
 - FIT \rightarrow MUST FIND $\chi^2=0$ (GET BACK "TRUTH")
 - $\chi^2 pprox 0$ both replica to replica and average to truth
 - INTERPOLATION/EXTRAPOLATION UNCERTAINTY
- LEVEL 1:
 - EACH PSEUDO- DATAPOINT IS OBTAINED AS A RANDOM FLUCTUATION WITH GIVEN COVARIANCE MATRIX ABOUT "TRUTH"
 ⇒ "RUN OF THE UNIVERSE"
 - FIT DATA OVER AND OVER AGAIN
 - $\chi^2 pprox 1$ both replica to replica and average to truth
 - FUNCTIONAL UNCERTAINTY

• LEVEL 2:

- data as in level 1
- GENERATE DATA REPLICAS OF THESE "DATA"
- FIT PDF REPLICAS TO DATA REPLICAS
- $\chi^2 \approx 2$ replica to replica; $\chi^2 \approx 1$ average to truth
- DATA UNCERTAINTY

UNCERTAINTIES: TYPE AND SIZE CLOSURE TEST RESULTS (NNPDF4.0)

LEVEL 0 χ^2 VS TRAINING

- LEVEL 0 (TRUTH DATA) $\Rightarrow \chi^2 \approx 0$, YET UNCERTAINTY NONZERO \Rightarrow NEURAL NETS \Leftrightarrow MANY FUNCTIONAL FORMS
- LEVEL 1 (RUNS OF UNIVERSE) ⇒ REPLICAS ALL FITTED TO SAME DATA, YET UNCERTAINTY NONZERO ⇒ DITTO
- Level 0, 1 and 2 uncertainties comparable in size

LEVEL 0/1/2 UNCERTAINTIES

GLUON

UNDERSTANDING PDF CORRELATIONS: DATA example: up vs down PDFs covariance: $Cov[u,d](x,x') = \langle u(x,Q_0^2)d(x',Q_0^2) \rangle - \langle u(x,Q_0^2) \rangle \langle d(x',Q_0^2) \rangle;$ correlation: $\rho[u,d](x,x') = \frac{Cov[u,d](x,x')}{\sqrt{Var[u](x)Var[d](x')}}$ computation in MC approach: $\langle u(x,Q_0^2)d(x',Q_0^2) \rangle = \frac{1}{N} \sum_{r=1}^N u^{(r)}(x,Q_0^2)d^{(r)}(x',Q_0^2);$ $u^{(r)}(x,Q_0^2)$ REPLICAS

- CORRELATION INDUCED BY DATA, THEORY (E.G. SUM RULES), METHODOLOGY (E.G. ASSUMPTIONS ON EXTRAPOLATION)
- USED E.G. TO ASSESS CORRELATION BETWEEN SIGNAL AND BACKGROUND PROCESSES

PDF-INDUCED CORRELATIONS BETWEEN HIGGS SIGNAL & BACKGROUND PROCESSES (HXSWG, YR2, 2011) Higgs in gluon fusion vs. W production

PDF MODEL CORRELATIONS

CORRELATE PDFs in different sets

example: up NN model vs down parametric model

 $\operatorname{Cov}[u^{N}, d^{P}](x, x') = \langle u^{N}(x, Q_{0}^{2})d^{P}(x', Q_{0}^{2})\rangle - \langle u^{N}(x, Q_{0}^{2})\rangle \langle d^{P}(x', Q_{0}^{2})\rangle$ S-CORRELATION VS F-CORRELATION

 $\rho[u^N, u^P]$ different sets, same PDF vs. $\rho[u^N, d^N]$ same set, different PDFs

• SAME REPLICA MUST BE USED FOR NONZERO CORRELATION: IF REPLICAS UNCORRELATED $\langle u(x, Q_0^2)d(x, Q_0^2)\rangle \stackrel{?}{=} \frac{1}{N} \sum_{r=1}^N u^{(r)}(x, Q_0^2)d^{(r')}(x, Q_0^2) = \langle u \rangle \langle d \rangle$ THEN CORRELATION VANISHES

REPLICA CORRELATION

- FIT PDF REPLICAS $f_i^{(r, N)}(x, Q_0^2)$ & $f_i^{(r, P)}(x, Q_0^2)$ for all x, i to same data replica
- COMPUTE COVARIANCE & CORRELATION USING

$$\langle u(x,Q_0^2)d(x,Q_0^2)\rangle = \frac{1}{N}\sum_{r=1}^N u^{(r,N)}(x,Q_0^2)d^{(r,P)}(x,Q_0^2)$$

DATA vs MODEL CORRELATION

- NONZERO LEVEL-1 UNCERTAINTY \Rightarrow DATA REPLICA DOES NOT DETERMINE UNIQUELY THE PDF REPLICA
- IN PRINCIPLE FULL CORRELATION: $r \Leftrightarrow$ DATA REPLICA AND $r' \Leftrightarrow$ LEVEL-1 (METHDOLOLOGY) REPLICAS REPLICAS (UP QUARK) $u^{(r,r')}(x,Q_0^2)$;

 $\left| \frac{1}{N} \sum_{r=1}^{N} u^{(r,r')}(x,Q_0^2) d^{(r,r'')}(x,Q_0^2) - \langle u \rangle \langle d \rangle \right| \le \left| \frac{1}{NM} \sum_{r=1}^{N} \sum_{r'=1}^{M} u^{(r,r')}(x,Q_0^2) d^{(r,r')}(x,Q_0^2) - \langle u \rangle \langle d \rangle \right|$

• IN PRACTICE METHODOLOGY CORRELATION NOT INCLUDED \Rightarrow CORRELATION LOSS

FULL VS DATA-INDUCED

MEASURING MODEL (DE)CORRELATION

- SELF-CORRELATION: S-CORRELATION OF A PDF SET TO ITSELF = F-CORRELATION OF A PDF TO ITSELF
- USE TWO DIFFERENT SETS OF PDF REPLICAS FITTED TO THE SAME DATA REPLICAS

$$\langle u(x, Q_0^2)u(x, Q_0^2)\rangle = \frac{1}{N} \sum_{r=1}^N u^{(r, r')}(x, Q_0^2)u^{(r, r'')}(x, Q_0^2)$$

- DEVIATION OF CORRELATION FROM 100% MEASURES THE CORRELATION LOSS \Rightarrow UNCORRELATED FUNCTIONAL UNCERTAINTY
- **HIGHER** CORRELATION \Rightarrow MORE EFFICIENT METHODOLOGY

- SEA PDFS AT HIGH SCALE ALL LOOK ALIKE
- IF $Q \gg m_c$, CHARM MASS NEGLIGIBLE: $\ln \frac{Q^2 + m_c^2}{m_c^2} \approx \ln \frac{Q^2}{m_c^2}$
- GLUON RADIATION IS FLAVOR BLIND

DECOUPLING EVOLVE CHARM PDF ($N_f = 4$ SCHEME) DOWN TO $Q \sim m_c$

- IF $Q \sim m_c$ ($m_c = 1.51 \text{ GeV}$), CHARM QUARK DECOUPLES (Collins, Wilczek, Zee, 1978): $\ln \frac{Q^2 + m_c^2}{m_c^2} \approx \frac{m_c^2}{Q^2}$
- $N_f = 3$ active flavors in β function & evolution equations
- DECOUPLING VS $\overline{\mathrm{MS}} \Leftrightarrow$ DIFFERENT RENORMALIZATION & FACTORIZATION SCHEMES

MATCHING

OME CONTRIBUTING

TO THE CHARM PDF

SOLID \Rightarrow HEAVY; DASHED \Rightarrow LIGHT

- PDFS, α_s in $N_f = 3$ & $N_f = 4$ RELATED BY MATCHING CONDITIONS
- DETERMINED BY COMPUTING OPERATOR MATRIX ELEMENTS IN EITHER SCHEME AND EQUATING: NNLO (Buza, et al., 1998), N³LO (Ablinger, Blümlein et al, 2009-2017)

Fig. 2. $O(\alpha_s^2)$ contributions to the purely-singlet OME $A_{q'q}^{PS}$. Here q and q' are represented by the *dashed* and *solid lines* respectively. In the case of q' = H these graphs contribute to the heavy-quark OME A_{Hq}^{PS}

PERTURBATIVE CHARM

- NO CHARM PDF IN $N_f = 3$ Scheme
- IN $N_f = 4$ Scheme, charm determined by perturbative matching starting at NNLO (two loops) does not vanish at any scale (heavy guark loops)

M. Buza et al.: Charm

INTRINSIC CHARM

• **DEFINE** CHARM PDF AS OME:

$$\langle p|\bar{c}\gamma^{\mu_1}D^{\mu_2}\dots D^{\mu_n}c|p\rangle = A_c^n p^{\mu_1}\dots p^{\mu_n} - \text{traces}$$
$$A_c^n = \int_0^1 dx \, x^{n-1}c(x)$$

- DO NOT FACTOR CHARM MASS SINGULARITIES INTO OME
- \Rightarrow CHOOSE $n_f = 3$ SCHEME
- CHARM PDF PURELY INTRINSIC, SCALE-INDEPENDENT

INTRINSIC CHARM IS CHARM IN THE $N_F = 3$ (decoupling) scheme

INTRINSIC CHARM

- MHOU ESTIMATED FROM N³LO-NNLO MATCHING DIFFERENCE
 - LARGE UNCERTAINTY AT SMALL x
 - NEGLIGIBLE UNCERTAINTY IN VALENCE REGION
- COMPATIBLE WITH ZERO AT SMALL \boldsymbol{x}
- CLEAR EVIDENCE FOR INTRINSIC VALENCE PEAK

3FNS

CHARM AT AN³LO

- IMPROVED N^3LO MATCHING (Blümlein, Ablinger et al., 2023) \Rightarrow SOMEWHAT REDUCED INSTABILITY
- (APPROXIMATE) $N^{3}LO$ PDFs \Rightarrow "True" MHOU
- MHOU (THEORY COVMAT FROM SCALE VARIATION) INCLUDED IN $N^{3}LO$ RESULTS

3FNS

A VALENCE CHARM PDF?

- INDEPENDENT PARAMETRIZATION FOR "SEA" $c^+ = c + \bar{c}$ AND "VALENCE" $c^- = c - \bar{c}$ PDFS
- TOTAL CHARM UNCHANGED

- NNLO $n_f = 4$ valence PDF from <u>perturbative</u> matching vanishes
- NONVANISHING VALENCE CHARM PDF IN VALENCE REGION \Rightarrow INTRINSIC CHARM

EPILOGUE WHAT REMAINS TO BE DONE?

A TO DO LIST

• MACHINE LEARNING: XAI

- $-\,$ how does the ML model respond to data inconsistencies?
- AN ON-THE-FLY OVERLEARNING METRIC?
- NEURAL NETWORKS VS. GAUSSIAN PROCESSES/BAYESIAN INFERENCE?
- CORRELATION BETWEEN DATA FEATURES AND MODEL FEATURES?
- PDFs: PRECISION AND ACCURACY
 - AUTOMATIC K-FOLDS
 - HYPEROPT BEYOND χ^2 LOSS
 - Full QCDxEW Theory beyond K-factors
 - $-2 \rightarrow 2$ processes (VBS)