

COLLINEAR STRUCTURE LECTURE 1

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

CFNS EIC school

Stony Brook, June 6 2024

THE EIC-LHC SYNERGY

DEFINITION EXCAVATION

ATION BUILDINGS

WHY IS IT INTERESTING?

UNCERTAINTIES: HIGGS IN GLUON FUSION

(R. Röntsch, Les Houches 2023)

- (COLLINEAR) PARTON DISTRIBUTIONS \Rightarrow DOMINANT UNCERTAINTY AT HADRON COLLIDERS
- deep-inelastic scattering at EIC \Rightarrow dominant source of information on PDF in the HL-LHC era

QUESTIONS (AND ANSWERS)

- \bullet How does factorization relate physical observables to PDFs?
- HOW DO PDFs LOOK LIKE, AND WHY?
- HOW ARE PHYSICAL OBSERVABLES AFFECTED BY PDFS, AND HOW CAN PDFS BE EXTRACTED FROM PHYSICAL OBSERVABLES?
- WHAT ARE PDF UNCERTAINTIES, AND WHERE DO THEY COME FROM?

THESE LECTURES

- A PRACTICAL APPROACH
- TRY TO ANSWER NAIVE QUESTIONS...
- HOPEFULLY RAISE **DEEP QUESTIONS!**

FACTORIZATION: REMINDER SIMPLEST CASE: TOTALLY INCLUSIVE CROSS-SECTION

LEPTON-HADRON

- SCALE $Q^2 = -q^2$
- SCALING VARIABLE $x = \frac{Q^2}{2p \cdot q}$
- FACTORIZATION ⇔ ONLY ONE INCOMING PARTON

HADRON-HADRON

- SCALE M^2
- SCALING VARIABLE $\tau = \frac{M^2}{s}$
- FACTORIZATION
 ⇔ ONE INCOMING PARTON FROM EACH HADRON

A FIRST LOOK AT PROTON PDFS (NNPDF4.0, 2021)

- A SET OF CORRELATED PROBABILITY DISTRIBUTIONS OF QUASI-PROBABILITY DISTRIBUTIONS
- $xf_i(x)$ PLOTTED VS. $\ln x \Rightarrow AREA = NUMBER$
- "VALENCE" $u_v = u \bar{u}, d_v = d \bar{d} \Rightarrow \text{PEAK}$ (AROUND $x \sim 0.3$) \Rightarrow FINITE NUMBER & MOM. FRACTION
- "SEA" $\bar{u}, \bar{d}, s + \bar{s}, c + \bar{c}, g \Rightarrow$ SMALL x GROWTH \Rightarrow INFINITE NUMBER, FINITE MOMENTUM FRACTION

FACTORIZATION KINEMATICS: HADRONIC VS PARTONIC ONE HADRON IN THE INITIAL STATE

$$\sigma(x) = \int_0^1 dz \int_x^1 dy \delta(x - yz) q(y) \hat{\sigma}(z) = \int_x^1 \frac{dy}{y} q(y) \hat{\sigma}\left(\frac{x}{y}\right) = \int_x^1 \frac{dy}{y} q\left(\frac{x}{y}\right) \hat{\sigma}(y) = [\sigma \otimes q](x)$$

- $x = x_B = \frac{Q^2}{2p \cdot q}$: SCALING VARIABLE FOR HADRONIC PROCESS \Rightarrow MEASURED HADRON KINEMATICS: p PROTON MOMENTUM, q GAUGE BOSON MOMENTUM
- $z = \frac{Q^2}{2\hat{p} \cdot q}$: SCALING VARIABLE FOR PARTONIC PROCESS (COMPUTED PARTONIC FEYNMAN DIAGRAM) $\Rightarrow \hat{p}$ PARTON MOMENTUM
- y: INCOMING PARTON MOMENTUM FRACTION $\Rightarrow \hat{p} = yp$

TWO HADRONS IN THE INITIAL STATE

$$\begin{aligned} \sigma(\tau) &= \int_0^1 dz \int_{\tau}^1 dx_1 dx_2 \delta(\tau - x_1 x_2 z) q_1(x_1) q_2(x_2) \hat{\sigma}(z) = \int_{\tau}^1 \frac{dx_1}{x_1} \int_{\tau}^1 \frac{dx_2}{x_2} q_1(x_1) q_2(x_2) \hat{\sigma}\left(\frac{\tau}{x_1 x_2}\right) \\ &= \int_{\tau}^1 \frac{dy}{y} \mathcal{L}(y) \hat{\sigma}\left(\frac{\tau}{y}\right) = [\mathcal{L} \otimes \hat{\sigma}](\tau); \qquad \mathcal{L}(y) \equiv \int_y^1 \frac{dx_1}{x_1} q_1(x_1) q_2(y/x_1) = [q_1 \otimes q_2](y) \end{aligned}$$

- $\tau = \frac{M^2}{s}$: SCALING VARIABLE FOR HADRONIC PROCESS $\Rightarrow s = (p_1 + p_2)^2$ COLLIDER C.M. ENERGY, M^2 FINAL STATE MASS
- $z = \frac{M^2}{\hat{s}}$: SCALING VARIABLE FOR PARTONIC PROCESS (COMPUTED PARTONIC FEYNMAN DIAGRAM) $\Rightarrow \hat{s} = (\hat{p}_1 + \hat{p}_2)^2$ C.M. ENERGY OF PARTON COLLISION
- x_1, x_2 : INCOMING PARTON MOMENTUM FRACTIONS $\Rightarrow \hat{p}_i = x_i p_i$
- $z \le 1 \Rightarrow x_i \ge \tau$
- \mathcal{L} : PARTON LUMINOSITY

DIS: A CLOSER LOOK

CROSS SECTION & STRUCTURE FUNCTIONS • gauge boson virtuality: $q^2 = -Q^2$

• Bjorken
$$x$$
: $x = \frac{Q^2}{2p \cdot q}$

- Lepton fractional energy loss: $y = \frac{p \cdot q}{p \cdot k}$
- lepton-nucleon CM energy: $s = \frac{Q^2}{xy}$;
- virtual boson-nucleon CM energy $W^2 = Q^2 \frac{1-x}{x}$;
- $\lambda_l \rightarrow$ lepton helicity; $\lambda_p \rightarrow$ proton helicity

$$\frac{d^2 \sigma^{\lambda_p \lambda_\ell}(x, y, Q^2)}{dx dy} = \frac{G_F^2}{2\pi (1 + Q^2/m_W^2)^2} \frac{Q^2}{xy} \left\{ \left[-\lambda_\ell y \left(1 - \frac{y}{2} \right) x F_3(x, Q^2) + (1 - y) F_2(x, Q^2) \right] \right\}$$

$$+y^{2}xF_{1}(x,Q^{2})]-2\lambda_{p}\left[-\lambda_{\ell}y(2-y)xg_{1}(x,Q^{2})-(1-y)g_{4}(x,Q^{2})-y^{2}xg_{5}(x,Q^{2})\right]\bigg\}$$

$$\begin{split} F^{i}(x,Q^{2}) &= x \sum_{j} \int_{x}^{1} \frac{dy}{y} C_{j}^{i} \left(\alpha_{s}(Q^{2}), \frac{x}{y} \right) f_{j}(y,Q^{2}) \\ g^{i}(x,Q^{2}) &= x \sum_{j} \int_{x}^{1} \frac{dy}{y} C_{j}^{i} \left(\alpha_{s}(Q^{2}), \frac{x}{y} \right) \Delta f_{j}(y,Q^{2}) \\ f_{i}, \Delta f_{i} \Rightarrow \text{UNPOL., POL., QUARK, ANTIQUARK & GLUON PDFS } \end{split}$$

k'

k

		PARITY CONS.	PARITY VIOL.
	UNPOL.	F_1,F_2	F_3
	POL.	g_1	g_4 , g_5

FULLY DIFFERENTIAL: $\frac{d\sigma}{dM^2d\vec{p}_Tdy} \Rightarrow M^2$ invariant mass; Y rapidity; p_T transverse momentum RAPIDITY DISTRIBUTION

RAPIDITY: LONGITUDINAL BOOST OF FINAL STATE WR TO CM OF HADRONIC COLLISION; $Y \Rightarrow$ HADRONIC CM; $y \Rightarrow$ PARTONIC CM

$$\frac{d\sigma(s,M^2)}{dYdM^2} = \sum_{a,b} \int_{\tau}^{1} dx_2 \, dy \, f_{a/h_1}(x_1) f_{b/h_2}(x_2) \frac{d\hat{\sigma}_{ab \to X}}{dydM^2} \left(x_1 x_2 s, M_X^2 \right) \delta\left(Y - \frac{1}{2} \ln \frac{x_1}{x_2} - y \right)$$

• LEADING ORDER: $\frac{d\hat{\sigma}_{ab \to X}}{dy dM^2} = \sigma_0 \delta(y) \tau \delta(1 - \frac{\tau}{x_1 x_2}) \Rightarrow \frac{d\sigma(s, M_X^2)}{dY dM^2} = \sigma_0 \tau \sum_{ab} f_a(x_1) f_b(x_2);$ $x_i^{\text{LO}} = \tau e^{\pm Y} \tau = \frac{M^2}{s} \Rightarrow$ BOOST DETERMINED BY IMBALANCE OF MOMENTUM FRACTIONS BEYOND LO $x_i^{\min} = x_i^{\text{LO}}$

DRELL-YAN: A CLOSER LOOK BEYOND TOTAL CROSS-SECTIONS $P_{\Lambda} \neq \bigcup_{x \land P_{\Lambda}} \bigvee_{q} \stackrel{\tilde{e}}{=} \left(\int \Pi^{2} + \tilde{p}_{\tau}^{2} \cosh \gamma, \tilde{p}_{\tau}, \int \Pi^{2} + \tilde{p}_{\tau}^{2} \sinh \gamma \right)$ $P_{2} \neq \bigcup_{x \land P_{\Lambda}} \bigvee_{q} \stackrel{\tilde{e}}{=} \left(\int \Pi^{2} + \tilde{p}_{\tau}^{2} \cosh \gamma, \tilde{p}_{\tau}, \int \Pi^{2} + \tilde{p}_{\tau}^{2} \sinh \gamma \right)$

TRANSVERSE MOMENTUM DISTRIBUTION

۲

$$\frac{d\sigma(s, M^2, p_t^2)}{dp_t^2 dM^2} = \sum_{a, b} \int_{x_i^{\min}}^1 dx_1 \, dx_2 \, dy \, f_{a/h_1}(x_1) f_{b/h_2}(x_2) \frac{d\hat{\sigma}_{ab \to X}}{dp_t^2 dM^2} \left(x_1 x_2 s, M^2, p_t^2 \right)$$

• AT FIXED
$$|p_t|, \hat{s} = x_1 x_2 s \ge \hat{s}_{\min} = (\sqrt{M^2 + p_t^2} + \sqrt{p_t^2})^2$$

 $\Rightarrow x_1, x_2 \ge \frac{\hat{s}_{\min}}{s} = \tau \left(\sqrt{1 + \frac{p_t^2}{Q^2}} + \sqrt{\frac{p_t^2}{Q^2}}\right)^2 = \frac{\tau}{\left(\sqrt{1 + \frac{p_t^2}{Q^2}} - \sqrt{\frac{p_t^2}{Q^2}}\right)^2}$

INTEGRAL OVER x_1 , x_2 NOT A CONVOLUTION!

• NEW SCALE VARIABLE $Q^2 = \hat{s}_{\min} \Rightarrow$ NEW SCALING VARIABLE $\tau' = \frac{Q^2}{s} \Rightarrow$ CONVOLUTION! $\frac{d\sigma}{dp_t^2 dM^2}(\tau', p_t^2, M^2) = \tau' \sum_{ij} \int_{\tau'}^1 \frac{dx}{x} \mathcal{L}_{ij}\left(\frac{\tau'}{x}\right) \frac{1}{x} \frac{d\hat{\sigma}_{ij}}{dp_t^2}(x, p_t^2, M^2)$

MELLIN TRANSFORM

$$F(N) = \int_0^1 dx x^{N-1} f(x)$$

INVERSION FORMULA

$$f(x) = \int_{-i\infty}^{+i\infty} dN x^{-N} F(N)$$

 $0 \le x \le 1 \text{ COMPACT} \Leftrightarrow N \text{ COMPLEX}$ CONVOLUTIONS $h(x) = \int_x^1 \frac{dy}{y} f\left(\frac{x}{y}\right) g(y) = [f \otimes g](x) \Leftrightarrow H(N) = F(N)G(N)$

N-space factorized expressions:

- LEPTON-HADRON $F(N,Q^2) = \sum_i C_i \left(\alpha(Q^2), N \right) f_i(N,Q^2)$
- HADRON-HADRON $\sigma(x, N) = \sum_{ij} \hat{\sigma}_{ij} \left(\alpha(Q^2), N \right) \mathcal{L}_{ij}(N, Q^2)$ $\mathcal{L}_{ij}(Q^2, N) = f_i(N) f_j(N)$

 $x < 1 \Rightarrow \text{LARGE}/\text{SMALL } x \Leftrightarrow \text{LARGE}/\text{SMALL } N$

PARTON KINEMATICS vs. HADRON KINEMATICS

$$\sigma(\tau) = \sum_{ij} \int_{\tau}^{1} \frac{dy}{y} \mathcal{L}_{ij}(y) \hat{\sigma}\left(\frac{\tau}{y}\right); \quad \mathcal{L}_{ij}(y) \equiv \int_{y}^{1} \frac{dx_{1}}{x_{1}} f_{i}(y) f_{j}\left(\frac{y}{x_{1}}\right)$$

WHICH PARTON MOMENTUM FRACTION CONTRIBUTES TO A GIVEN HADRONIC PROCESS ? INVERSION OF MELLIN TRANSFORMS $\Sigma(N) = \int_0^1 dx x^{N-1} \sigma(x) \Leftrightarrow \sigma(x) = \int_{-i\infty}^{+i\infty} dN x^{-N} \Sigma(N)$ if M

- INFINITE NUMBER OF SEA PARTONS $\Rightarrow N = 1$ divergence
- INTEGRATE TO THE RIGHT OF CONVERGENCE ABSCISSA

SADDLE POINT INTEGRATION

- SADDLE METHOD: $\int_{-i\infty}^{+i\infty} dN x^{-N} \Sigma(N) = \int_{-i\infty}^{+i\infty} dN e^{E(x,N)}$, TAYLOR EXPAND E(x, N) ABOUT STATIONARY PT N_0 (SADDLE)
- SADDLE CONDITION $\frac{d}{dN} \left[-N \ln x + \ln \Sigma(N) \right] \Big|_{N=N_0} = 0$

 $\Rightarrow N_0(x,Q^2)$ dep on hadronic kinematics

•
$$\Sigma(N) = \sum_{ij} \hat{\sigma}_{ij}(N) f_i(N) f_j(N)$$

- PARTONIC $\hat{\sigma}_{ij}$: LO CONSTANT IN N SPACE
- PDF: $f_i(x) \sim x^{1-k} \Leftrightarrow f(N) \sim \frac{1}{N-k}$ DROPS
- x^{N-1} : $x < 1 \Rightarrow$ GROWS ON REAL N AXIS

$$\sigma(x) = \frac{1}{\sqrt{2\pi E''(x, N_0)}} \Sigma(N_0) = \frac{1}{\sqrt{2\pi E''(x, N_0)}} \sum_{ij} f_i(N_0) f_j(N_0) \hat{\sigma}(N_0)$$

- HADRONIC CROSS-SECTION FACTORIZES WITH N FIXED BY HADRONIC KINEMATICS
- Smaller $x \Rightarrow x^{N-1}$ grows faster with $N \Rightarrow$ saddle moves to the left $\Rightarrow \hat{\sigma}$ & PDF evaluated at smaller N

HADRONIC vs PARTONIC QUALITATIVE BEHAVIOUR

SADDLE VS $\tau = Q^2/s$

- THE EVALUATION: SEA, GLUON GROW FASTER THAN VALENCE $\Rightarrow N$ POLE MORE TO THE RIGHT \Rightarrow SADDLE MOVES TO LARGER N
- THE INTERPRETATION: GLUON & ANTIQUARK SEA MORE LIKELY TO CARRY SMALL MOMENTUM FRACTION \Rightarrow PARTONIC PROCESS CLOSER TO THRESHOLD \Rightarrow LARGE x, LARGE N
- HIGGS ⇔ GLUONS; DRELL-YAN ⇔ QUARK-ANTIQUARK NOTE ANTIQUARK IN ANTIPROTON IS VALENCE!

FACTORIZATION & KINEMATICS SUMMARY

- LONGITUDINAL & TRANSVERSE KINEMATICS DECOUPLE
- LONGITUDINAL KINEMATICS FACTORIZES UPON CONVOLUTION
 ⇒ (COLLINEAR) PDF (LEPTON-HADRON) OR LUMINOSITY (HADRON-HADRON)
 ⊗ PARTONIC CROSS SECTIONS
- CONVOLUTION UNDONE BY MELLIN
- SADDLE POINT MAPS HADRONIC KINEMATICS

 \Rightarrow (REAL) *N*-MELLIN VALUE FOR PDF/LUMI & PARTONIC CROSS SECTION

PDFs: QUALITATIVE FEATURES

- NOTE $xf_i(x)$ (MOMENTUM DENSITY) SHOWN VS. $\ln x$ (AREA = NUMBER)
- NOTE GLUON DIVIDED BY 10
- VALENCE UP AND DOWN: PEAKED AT $x\sim 0.3$
- SEA ANTIQUARK AND GLUON GROW AT SMALL x
- LARGE x VALENCE SOMEWHAT SMALLER AT HIGH SCALE
- SMALL x SEA AND GLUON MUCH LARGER AT HIGH SCALE

SUM RULES

CONSTRUCT CONSERVED QUANTUM NUMBERS CARRIED BY PARTON DISTRIBUTIONS:

BARYON NUMBER

$$\int_{0}^{1} dx \left(u^{p} - \bar{u}^{p} \right) = 2 = 2 \int_{0}^{1} dx \left(d^{p} - \bar{d}^{p} \right)$$

$$\int_0^1 dx \left(s^p - \bar{s}^p \right) = \int_0^1 dx \left(c^p - \bar{c}^p \right) = \int_0^1 dx \left(b^p - \bar{b}^p \right) = \int_0^1 dx \left(t^p - \bar{t}^p \right) = 0$$

MOMENTUM

$$\int_{0}^{1} dxx \left[\sum_{i=1}^{N_{f}} \left(q_{i}(x) + \bar{q}_{i}(x) \right) + g(x) \right] = 1$$

AT ALL SCALES

THE VALENCE BUMP

- IMPOSE SUM RULES, VANISHING AT x = 1
- FIT RANDOM DATA WITH A GAUSSIAN PROCESS
- QUALITATIVE SHAPE OF VALENCE PDFS REPRODUCED!

THE SCALE DEPENDENCE OF PDFs EVOLUTION EQUATIONS

$$\frac{d}{dt}q_{NS}(N,Q^2) = \frac{\alpha_s(t)}{2\pi}\gamma_{qq}^{NS}(N,\alpha_s(t))q_{NS}(N,Q^2),$$

$$\frac{d}{dt} \left(\begin{array}{c} \Sigma(N,Q^2) \\ g(N,Q^2) \end{array} \right) = \frac{\alpha_s(t)}{2\pi} \left(\begin{array}{c} \gamma_{qq}^S(N,\alpha_s(t)) & 2n_f \gamma_{qg}^S(N,\alpha_s(t)) \\ \gamma_{gq}^S(N,\alpha_s(t)) & \gamma_{gg}^S(N,\alpha_s(t)) \end{array} \right) \left(\begin{array}{c} \Sigma(N,Q^2) \\ g(N,Q^2) \end{array} \right).$$

- LOG SCALE $t = \ln \frac{Q^2}{\Lambda^2}$:
- ANOMALOUS DIMENSIONS VS. SPLITTING FUNCTIONS $\gamma(N, \alpha_s(t)) \equiv \int_0^1 dx \, x^{N-1} P(x, \alpha_s(t))$ INTEGRODIFFERENTIAL x SPACE VS. ODE N SPACE
- SINGLET $\Sigma(x, Q^2) = \sum_{i=1}^{n_f} (q_i(x, Q^2) + \bar{q}_i(x, Q^2))$ VS. NONSINGLET $q^{NS}(x, Q^2) = q_i(x, Q^2) - q_j(x, Q^2)$ COMBINATIONS OF QUARK PDFS
- **PERTURBATIVE EXPANSION** OF ANOMALOUS DIMENSION $\gamma_i(N, \alpha_s(t)) = \gamma_i^{(0)}(N) + \alpha_s(t)\gamma_i^{(1)}(N) + \dots$ \Rightarrow LOG RESUMMATION: LO \Leftrightarrow LLQ²; NLO \Leftrightarrow LLQ², ...

THE SCALE DEPENDENCE OF PDFs THE EVOLUTION BASIS

$$\frac{d}{dt}q_{NS}(N,Q^2) = \frac{\alpha_s(t)}{2\pi}\gamma_{qq}^{NS}(N,\alpha_s(t))q_{NS}(N,Q^2),$$

$$\frac{d}{dt}\left(\begin{array}{c}\Sigma(N,Q^2)\\g(N,Q^2)\end{array}\right) = \frac{\alpha_s(t)}{2\pi}\left(\begin{array}{c}\gamma_{qq}^S(N,\alpha_s(t)) & 2n_f\gamma_{qg}^S(N,\alpha_s(t))\\\gamma_{gq}^S(N,\alpha_s(t)) & \gamma_{gg}^S(N,\alpha_s(t))\end{array}\right)\left(\begin{array}{c}\Sigma(N,Q^2)\\g(N,Q^2)\end{array}\right).$$

HOW MANY DIFFERENT ANOMALOUS ARE THERE?

- LO: $\gamma_{qq}^{NS} = \gamma_{qq}^{S}$; $\Rightarrow 4$ indep. Anomalous dimensions
- NLO: $\gamma_{qq}^S \neq \gamma_{qq}^{NS, +} \neq \gamma_{qq}^{NS, -} q^+ = q + \bar{q} \text{ VS } q^- = q \bar{q} \Rightarrow 6 \text{ INDEP.}$ An. dims.
- NNLO: $\gamma_{qq}^{NS, -} \neq \gamma_{qq}^{NS, s} q_i \bar{q}_j i = j$ vs. $i \neq j \Rightarrow 7$ indep. Anomalous dimensions WHICH PDF COMBINATIONS EVOLVE INDEPENDENTLY?
- LO: $g, \Sigma = \sum_{i=1}^{n_f} (q_i(x, Q^2) + \bar{q}_i(x, Q^2)), \text{ ANY } 2N_f 1 \text{ LINEAR COMB. OF } q_i, \bar{q}_i$
- NLO: g, Σ , any N_f linear comb. of $q_i \bar{q}_i$, any $N_f 1$ linear comb. of $q_i + \bar{q}_i$
- NNLO: g, Σ , valence $V = \sum_{i=1}^{n_f} (q_i(x, Q^2) \bar{q}_i(x, Q^2))$, any $N_f 1$ linear comb. Of $q_i \bar{q}_i$, any $N_f 1$ linear comb. Of $q_i + \bar{q}_i$

A COMMON CHOICE

- GLUON g, SINGLET Σ , VALENCE V
- ITERATIVE NS COMBINATIONS OF $q_i^+ = q_i + \bar{q}_i$: $T_3 = u^+ d^+$, $T_8 = u^+ + d^+ 2s^+$, $T_{15} = u^+ + d^+ + s^+ 3c^+ \dots$ (labels \rightarrow SU(N) gens.)
- ITERATIVE NS COMBINATIONS $q_i^- = q_i \bar{q}_i$: $V_3 = u^- d^-$, $V_8 = u^- + d^- 2s^-$, $V_{15} = u^- + d^- + s^- 3c^-$, ...

• AS Q^2 INCREASES, PDFS DECREASE AT LARGE x & INCREASE AT SMALL x DUE TO RADIATION

- Gluon sector singular at $N = 1 \Rightarrow$ gluon grows more at small x
- $\gamma_{qq}(1) = 0 \Rightarrow$ baryon number conservation (beyond LO $\Rightarrow \gamma_{qq}(1) = \gamma_{q\bar{q}}(1)$)
- $\gamma_{qq}(2) + \gamma_{qg}(2) = \gamma_{gq}(2) + \gamma_{gg}(2) = 0$ momentum conservation

PDFs: QUALITATIVE FEATURES

- SUM RULES \Leftrightarrow VALENCE BUMP
- GLUON ANOMALOUS DIMENSION SINGULAR AT $N = 1 \Leftrightarrow$ SMALL x Growth of Gluon
- SINGLET-GLUON MIXING \Leftrightarrow UNIVERSAL SMALL x BEHAVIOR OF ALL PDFs
- SIGN CHANGE OF ANOMALOUS DIMENSIONS (BARYON & MOMENTUM CONSERVATION) \Leftrightarrow DEPLETION OF LARGE *x* PDFs at high scale
- $\gamma_{qq}^{NS, -} \neq \gamma_{qq}^{NS, s} \Leftrightarrow q_i(x) \bar{q}_i(x)$ does not evolve multiplicatively \Rightarrow cannot vanish at all scales

PDF FEATURES: SUMMARY

- VALENCE SUM RULE + KINEMATIC VANISHING \Leftrightarrow VALENCE PEAK
- COLLINEAR FACTORIZATION \Rightarrow ANOMALOUS DIMENSIONS & PDFS SHARE SINGULARITIES
- PERTURBATIVE EVOLUTION \Rightarrow SMALL x RISE
- MOMENTUM SUM RULE \Rightarrow STRONGER SMALL x RISE \Leftrightarrow LARGE x DEPLETION

FOOD FOR THOUGHT

QUESTIONS

- 1. ARE PDFs PROBABILITIES? ARE THEY POSITIVE? IF NOT, WHY NOT?
- 2. CAN YOU UNDERSTAND WHY AT HIGHER ORDERS THERE ARE MORE INDEPENDENT ANOMALOUS DIMENSIONS?

FOR INSTANCE WHY IS γ_{qq} FOR SINGLET AND NONSINGLET THE SAME AT LO AND NOT AT NLO?

WHICH ARE THE **FEYNMAN DIAGRAMS** THAT DRIVE THE DIFFERENCE?

- 3. WHY DO SUM RULES HOLD AT ALL SCALES? CAN YOU EXPLAIN THIS IN TERMS OF ANOMALOUS DIMENSIONS OF OPERATORS?
- 4. DO YOU EXPECT PDFs to vanish when $x \to 1$? Why?