

COLLINEAR STRUCTURE LECTURE 2

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

CFNS EIC school

Stony Brook, June 7 2024

PDF DETERMINATION $DATA \rightarrow PARTON DISTRIBUTIONS$

Experimental data in NNPDF4.0

More than 4000 datapoints!

New processes:

- direct photon
- single top
- dijets
- W+jet
- DIS jet

ISSUES AND TASKS:

- FROM PHYSICAL OBSERVABLES TO PDFS: SOLVE EVOLUTION EQUATIONS, CONVOLUTE WITH PARTON-LEVEL CROSS-SECTIONS
- DISENTANGLING PDFS: CHOOSE A BASIS OF PDFS ($2N_f$ guarks + 1 gluon) & a set of SUITABLE PHYSICAL PROCESSES TO DETERMINE THEM ALL
- PROBABILITY IN THE SPACE OF FUNCTIONS: CHOOSE A STATISTICAL APPROACH • (MULTIGAUSSIAN, MONTE CARLO, ...)
- **UNCERTAINTY ON FUNCTIONS:** CHOOSE A REGRESSION MODEL

DISENTANGLING PDFs

- DIS STRUCTURE FUNCTIONS CC F_1 AND $F_3 \Rightarrow$ FOUR COMBINATIONS, AND NC F_1 TWO MORE \Rightarrow ALL LIGHT FLAVORS
- W^{\pm} AND Z PRODUCTION (INCLUDING DOUBLE DIFFERENTIAL: MASS AND RAPIDITY) \Rightarrow INDEPENDENT COMBINATIONS
- TAGGED CHARM \Rightarrow HEAVY FLAVORS IN INITAL STATE
- DIS+DY \Rightarrow Gluon from scale dependence or higher orders $p_T \Rightarrow$ Gluon at LO
- JETS \Rightarrow GLUON AT LO

FLAVOR SEPARATION (DIS & DY) LEADING ORDER PARTON CONTENT

DEEP-INELASTIC SCATTERING

	NC	$F_1^{\gamma} = \sum_i e_i^2 \left(q_i + \bar{q}_i \right)$	ℓ	e	V	A
A	NC	$F_{1}^{Z, \text{ int.}} = \sum_{i} B_{i} (q_{i} + \bar{q}_{i})$	u,c,t	+2/3	$(+1/2 - 4/3\sin^2\theta_W)$	+1/2
	NC	$F_{3}^{Z, \text{ int.}} = \sum_{i} D_{i} (q_{i} + \bar{q}_{i})$	$_{\rm d,s,b}$	-1/3	$(-1/2 + 2/3\sin^2\theta_W)$	-1/2
	CC	$F_1^{W^+} = \bar{u} + d + s + \bar{c}$	ν	Ó	+1/2	+1/2
-	CC	$-F_3^{W^+}/2 = \bar{u} - d - s + \bar{c}$	$_{\mathrm{e},\mu,\tau}$	-1	$(-1/2 + 2\sin^2\theta_W)$	-1/2

 $B_q(Q^2) = -2e_q V_\ell V_q P_Z + (V_\ell^2 + A_\ell^2)(V_q^2 + A_q^2) P_Z^2; D_q(Q^2) = -2e_q A_\ell A_q P_Z + 4V_\ell A_\ell V_q A_q P_Z^2; P_Z = Q^2/(Q^2 + M_Z^2)$

$$W^+ \to W^- \Rightarrow u \leftrightarrow d, c \leftrightarrow s; p \to n \Rightarrow u \leftrightarrow d$$

DRELL-YAN

ISOSPIN

PROTON VS. NEUTRON $u^p = d^n$; $d^p = u^n$; $\bar{u}^p = \bar{d}^n$; $\bar{d}^p = \bar{u}^n$; $s^p = s^n$; $\bar{s}^p = \bar{s}^n$; $\bar{c}^p = \bar{c}^n$

FIXED-TARGET DRELL-YAN (TEVATRON) QUARK ANTIQUARK SEPARATION

CHARGE CONJUGATION $\Rightarrow \bar{q}_{\bar{P}} = q_p$

DRELL-YAN p/d ASYMMETRY

COLLIDER DRELL-YAN (LHC)

CMS (2013)

W, Z + TAGGED JET: HEAVIER FLAVORS W + c

- CHARM TAG \Rightarrow STRANGENESS
- $W^{\pm} \Rightarrow$ STRANGE-ANTISTRANGE SEPARA-TION

Z + c

- CHARM TAG \Rightarrow CHARM
- LARGE RAPIDITY $Rightarrow \ x_1 \gg x_2$ \Rightarrow ACCESS SMALL & LARGE x
- INTRINSIC CHARM!

LHCb (2022)

GLUON FROM SCALING VIOLATIONS THE GLUON HAS ONLY QCD INTERACTIONS!

SCALE DEPENDENCE OF SINGLET STRUCTURE FUNCTION

 \Rightarrow GLUON AT SMALL *x* ONLY

CMS (2015)

 $v^* < 0.5$

CMS (2018)

10¹⁰

- ONE-JET/DIJET INCLUSIVE USED TO LARGE x GLUON
- WIDE KINEMATIC • REGION AT LHC

• WIDE RAPIDITY RANGE \Rightarrow MEDIUM AND LARGE x RE-GION

PDF DETERMINATION SUMMARY

- DEEP-INELASTIC SCATTERING \Rightarrow CLEAN AND ABUNDANT INFORMATION ON PDFs:
 - HERA $e^{\pm}p$ CC+NC data \Rightarrow four independent combinations, wide kinematic region \Rightarrow light quarks and antiquarks
 - FIXED-TARGET $\mu p \& \mu d \Rightarrow$ DIRECT HANDLE ON UP-DOWN SEPARATION
 - HERA \Rightarrow SMALL x GLUON FROM SCALE DEPENDENCE
 - NEUTRINO (ALSO TAGGED c) \Rightarrow STRANGENESS
- Drell-Yan γ^* on fixed p and d target \Rightarrow UP-down separation at large x
- LHC W, Z HIGH AND LOW MASS
 - ANTIUP/ANTDOWN FROM W ASYMMETRY
 - FULL FLAVOR SEPARATION IN WIDE KINEMATIC REGION
 - STRANGENESS \Leftarrow TOTAL CROSS-SECTION AND TAGGED W+c FINAL STATE
 - CHARM \Leftarrow TAGGED Z + c FINAL STATE
 - GLUON $\Leftarrow Z$ TRANSVERSE MOMENTUM DISTRIBUTION
- GLUON AT LHC:
 - TOP \Rightarrow MEDIUM x, FEW DATAPOINTS, HIGH ACCURACY

DATA UNCERTAINTIES: COVARIANCE MATRIX APPROACH

PREDICTIONS VS. DATA

$$\chi^{2} = \sum_{i,j}^{N_{\rm pt}} (T_{i} - D_{i}) (\operatorname{cov}^{-1})_{ij} (T_{j} - D_{j})$$

THE COVARIANCE MATRIX

$$\operatorname{cov}_{ij} = \delta_{ij} s_i^2 + \sum_{\alpha=1}^{N_c} \sigma_{i,\alpha}^{(c)} \sigma_{j,\alpha}^{(c)} + \left(\sum_{\alpha=1}^{N_{\mathcal{L}}} \sigma_{i,\alpha}^{(\mathcal{L})} \sigma_{j,\alpha}^{(\mathcal{L})}\right) D_i D_j$$

- D_i : DATA; T_i : PREDICTION
- s_i : UNCORRELATED STATISTICAL UNCERTAINTY FOR *i*-TH DATAPOINT
- $\sigma_{i,\alpha}^{(c)}$: α -th correlated additive systematics for *i*-th datapoint
- $\sigma_{i,\alpha}^{(\mathcal{L})}$: α -TH CORRELATED MULTIPLICATIVE SYSTEMATICS FOR *i*-TH DATAPOINT

DATA UNCERTAINTIES: NUISANCE PARAMETER APPROACH THE PARAMETERS

$$\chi^2(\{a\},\{\lambda\}) = \sum_{k=1}^{N_{\text{pt}}} \frac{1}{s_k^2} \left(D_k - T_k - \sum_{\alpha=1}^{N_\lambda} \beta_{k,\alpha} \lambda_\alpha \right)^2 + \sum_{\alpha=1}^{N_\lambda} \lambda_\alpha^2$$

 $\beta_{i,\alpha} = \sigma_{i,\alpha}^{(c)} \text{ for } \alpha = 1, \dots, N_c; \ \beta_{i,\alpha} = \sigma_{j,\alpha}^{(\mathcal{L})} D_i \text{ for } \alpha = N_c + 1, \dots, N_{\mathcal{L}}$ BEST-FIT VALUES

$$\lambda_{0\alpha} = \sum_{i=1}^{N_{\text{pt}}} \frac{D_i - T_i}{s_i} \sum_{\delta=1}^{N_{\lambda}} \mathcal{A}_{\alpha\delta}^{-1} \frac{\beta_{i,\delta}}{s_i}$$

REDUCED COVARIANCE MATRIX

$$\mathcal{A}_{lphaeta} = \delta_{lphaeta} + \sum_{k=1}^{N_{ ext{pt}}} rac{eta_{k,lpha}eta_{k,eta}}{s_k^2}$$

CONSTRUCTION OF THE COVARIANCE MATRIX: INVERSE

$$(\operatorname{cov})_{ij}^{-1} = \left[\frac{\delta_{ij}}{s_i^2} - \sum_{\alpha,\beta=1}^{N_{\lambda}} \frac{\beta_{i,\alpha}}{s_i^2} \mathcal{A}_{\alpha\beta}^{-1} \frac{\beta_{j,\beta}}{s_j^2}\right],\,$$

THE COVARIANCE MATRIX

$$(\operatorname{cov})_{ij} \equiv s_i^2 \delta_{ij} + \sum_{\alpha=1}^{N_{\lambda}} \beta_{i,\alpha} \beta_{j,\alpha}$$

A LOOK AT THE EXPERIMENTAL COVARIANCE MATRIX

HESSIAN UNCERTAINTIES

• CHOOSE A FIXED FUNCTIONAL FORM $f(x, Q^2; \vec{p}), p_i, i = 1, ..., N_{\text{par}}$ parameters

- SINCE 1973, PHYSICALLY MOTIVATED ANSATZ $f_i(x, Q_0^2) = x^{\alpha}(1-x)^{\beta}g_i(x);$ $g_i(x)$ polynomial in x or \sqrt{x}
- MMHT 2015:
 - * BASIS FUNCTIONS $g; u_v = u \bar{u}; d_v = d \bar{d}; S = 2(\bar{u} + \bar{d}) + s + \bar{s}; s_+ = s + \bar{s}; \Delta = \bar{d} \bar{u}; s_- = s \bar{s}.$
 - * FOR ALL BUT $\Delta s_{-}, g \Rightarrow x f_i(x, Q_0^2) = A x^{\alpha} (1-x)^{\beta} \left(1 + \sum_{i=1}^4 a_i T_i(y(x))\right);$ T_i CHEBYSHEV POLYNOMIALS, $y = 1 - 2\sqrt{x} \leftrightarrow$ MUST MAP x = [0, 1] INTO y = [-1, 1]; $T_i(-1) = T_i(1) = 1$
 - * GLUON $xg(x, Q_0^2) = Ax^{\alpha}(1-x)^{\beta} \left(1 + \sum_{i=1}^2 a_i T_i(y(x))\right) + A'xT\alpha'(1-x)^{\beta'}$
 - * SEA ASYMMETRY $x\Delta(x, Q_0^2) = Ax^{\alpha}(1-x)^{\beta}(1+\gamma x+\epsilon x^2)$
 - * STRANGENESS ASYMMETRY $x\Delta(x, Q_0^2) = Ax^{\alpha}(1-x)^{\beta}(1-x/x_0)$
 - * 41 parameters, 4 fixed by sum rules
 - * 12 parms fixed at best fit, remaining 25 used for covariance matrix \Rightarrow increased to 30 in MSHT 2019
- EVOLVE TO DESIRED SCALE & COMPUTE PHYSICAL OBSERVABLES
- MINIMUM OF $\chi^2(\vec{p})$ BEST-FIT VALUES OF PARAMETERS $p_i^{(0)}$
- COVARIANCE MATRIX IN PARM. SPACE $\sigma_{ij} = \partial_i \partial_j \chi^2(\vec{p})$

HESSIAN UNCERTAINTY PROPOAGATION ONE SIGMA PARM. RANGE $\Rightarrow \Delta \chi^2 = 1$ (Error propagation) "PARADOX"

- THE STANDARD DEVIATION OF χ^2 FOR N_{dat} DATA $\sigma_{\chi^2} = \sqrt{2N_{dat}}$ HYPOTESIS-TESTING RANGE: COMPARE $\Delta \chi^2 = \chi^2 - \langle \chi^2 \rangle$ TO $\sigma_{\chi^2}^2$. IF TOO LARGE, SOMETHING WRONG WITH THEORY (OR DATA)
- BUT THE ONE- σ RANGE FOR A PARM. OF THE THEORY IS THE CURVE $\chi^2 \chi^2_{min} = 1$ PARAMETER-FITTING RANGE: UNIT DEVIATION FROM THE PARAMETRIC MINIMUM χ^2_{min}
- CONSIDER DEVIATIONS Δ_i FROM LINEAR FIT y = x + k; DETERMINE INTERCEPT k AS FREE PARAMETER
- IF STANDARD DEVIATION FOR EACH Δ_i is σ_{Δ} , Then average square deviation in units of σ_{Δ} for $N_{\rm dat}$ data: $\sigma_{\chi^2} = N_{\rm dat}$
- BEST-FIT INTERCEPT: $k = \langle \Delta_i \rangle$
- UNCERTAINTY ON IT: $\sigma_k = \frac{\sigma_{\Delta}}{N_{\text{dat}}}$
- If $\Delta k = \sigma_k$, then $\Delta \chi^2 = 1$

TOLERANCE

- IN GLOBAL HESSIAN FITS, UNCERTAINTITES OBTAINED BY $\Delta\chi^2 = 1$ UNREALISTICALLY SMALL
- UNCERTAINTIES TUNED TO DISTRIBUTION OF DEVIATIONS FROM BEST-FITS FOR INDIVIDUAL EXPERIMENTS

- (MSTW/MMHT) FOR EACH EIGENVECTOR IN PARAMETER SPACE DETERMINE CONFIDENCE LIMIT FOR THE DISTRIBUTION OF BEST-FITS OF EACH EXPERIMENT
- Rescale $\Delta \chi^2 = T$ interval such that correct confidence intervals are reproduced

MONTE CARLO UNCERTAINTIES

- DATA+UNCERTAINTIES \Rightarrow probability $P(\vec{z})$ (multigaussian); $z_i, i = 1, \dots, N_{dat}$
- MEAN $\langle \vec{z} \rangle = \int d^d z X(\vec{z}) P(\vec{z})$; COVARIANCE $\sigma_{ij} = \langle (z_i \langle z_i \rangle)(z_j \langle z_j \rangle) \rangle$
- GENERATE REPLICAS OF ORIGINAL DATA $ec{z}^{(k)}$, $k=1,\ldots,N_{\mathrm{rep}}$

Experimental data

• MEAN
$$\langle \vec{z} \rangle = \frac{1}{M_{rep}} \sum_{1}^{N_{rep}} \vec{z}^{(k)}$$

replica averages
vs. central values
 100
 100
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100

10 REPLICAS ENOUGH FOR CENTRAL VALS, 100 FOR UNCERTAINTIES, 1000 FOR CORRELNS

10

MONTE CARLO UNCERTAINTY PROPAGATION

- Determine best-fit PDF replca $f^i(x,Q_0^)$ for each data replica \Rightarrow does not have to be min. Of χ^2
- MC REPRESENTATION OF PROBABILITY DISTRIBUTION IN PDF SPACE

MONTE CARLO UNCERTAINTIES IMPORTANCE SAMPLING

- PROBABILITY DISTRIBUTION SAMPLED DIRECTLY \Rightarrow ALL INSTANCES EQUALLY WEIGHTED $\langle f \rangle = \frac{1}{N} \sum_{I=1}^{N} f_i$
- CONTRAST TO A MODEL DEPENDING ON PARAMETERS θ_i WITH KNOWN PROBABILITY $p(\theta_i)$:
- $\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(\theta_i) p(\theta_i) = \frac{1}{N} \sum_{i=1}^{N} f(\theta_i^p);$ θ_i^p sampled with probability $p(\theta_i)$
 - IF $p(\theta_i)$ SMALL FOR SOME $\theta_i \Rightarrow$ INEFFICIENCY
 - REDEFINE $\langle f \rangle = \frac{1}{N} \sum_{I=1}^{N} f(\theta_i) \frac{p(\theta_i)}{q(\theta_i)} q(\theta_i) = \frac{1}{N} \sum_{I=1}^{N} f(\theta_i) \frac{p(\theta_i^q)}{q(\theta_i^q)};$
 - θ_i^q sampled with probability $q(\theta_i)$
 - OPTIMIZE CHOICE OF $q(heta_i)$
- EQUAL WEIGHTING \Rightarrow OPTIMAL CHOICE

WHY IT IS IMPORTANT

- Space of functions huge 5 bins for 10 pts \times 7 fctns \rightarrow $5^{70} \sim 10^{49}$ bins
- BUT OBSERVABLES CORRELATED \Rightarrow DATA TELL US WHICH BINS ARE POPULATED

$MC \Leftrightarrow HESSIAN$

- TO CONVERT HESSIAN INTO MONTECARLO GENERATE MULTIGAUSSIAN REPLICAS IN PARAMETER SPACE
- ACCURATE WHEN NUMBER OF REPLICAS SIMILAR TO THAT WHICH REPRODUCES DATA

- TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE REPLICAS $f_i(x)$ AT A DISCRETE SET OF POINTS & CON-STRUCT THE ENSUING COVARIANCE MATRIX
- EIGENVECTORS OF THE COVARIANCE MATRIX \Rightarrow A BASIS IN VECTOR SPACE SPANNED BY REPLICAS BY SINGULAR-VALUE DECOMPOSITION
- NUMBER OF DOMINANT EIGENVECTORS \sim TO NUMBER OF REPLICAS \Rightarrow ACCURATE REPRESENTATION

ARE UNCERTAINTIES GAUSSIAN?

- REPLICA HISTOGRAM *i*-TH DATAPOINT z_i FROM MC \Rightarrow CONTINUOUS DISTRIBUTION WITH KDE
 - POINT \Rightarrow KERNEL: $P(z) = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} K(z-z_i);$
 - Gaussian kernel $K(z z_i) \equiv \frac{1}{h\sqrt{2\pi}} \exp\left(-\frac{(z z_i)^2}{h}\right)$
 - Silverman bandwidth $h = \sigma_i \left(\frac{4}{3N_{\text{rep}}}\right)^{\frac{1}{5}} \Rightarrow \text{MINIMIZES DIFFERENCE TO GAUSSIAN}$
- DEFINE KULLBACK-LEIBLER DIVERGENCE $D_{\text{KL}} = \int_{-\infty}^{\infty} P(x) \ln \frac{P(x)}{Q(x)} dx$ BETWEEN A PRIOR P AND ITS REPRESENTATION Q
- COMPUTE $D_{\rm KL}$ MC prior vs representation & MC prior vs gaussian
- **REPRESENTATIONS** SHOWN: MULTIGAUSSIAN OR MC COMPRESSION (OPTIMAL MC WITH SAME NUMBER OF REPLICAS)

 D_{KL} to Gaussian small!: $D_{KL} \sim$ percentage difference

CAN WE TRUST UNCERTAINTIES? CLOSURE TESTS

- ASSUME UNDERLYING "TRUTH" PDF (SAY A RANDOM PDF REPLICA)
- GENERATE DATA ACCORDING TO STATISTICAL AND CORRELATED SYSTEMATICS (SAY FOR NNPDF4.0 DATASET)
- DETERMINE PDFs & COMPARED TO "TRUTH" BASED ON INDICATORS

THE NATURE OF UNCERTAINTIES

- LEVEL 0:
 - EACH DATAPOINT EQUAL TO THE "TRUTH VALUE"; ZERO UNCERTAINTY
 - FIT \rightarrow MUST FIND $\chi^2=0$ (GET BACK "TRUTH")
 - $\chi^2 pprox 0$ both replica to replica and average to truth
 - INTERPOLATION/EXTRAPOLATION UNCERTAINTY
- LEVEL 1:
 - EACH PSEUDO- DATAPOINT IS OBTAINED AS A RANDOM FLUCTUATION WITH GIVEN COVARIANCE MATRIX ABOUT "TRUTH"
 - \Rightarrow "RUN OF THE UNIVERSE"
 - FIT DATA OVER AND OVER AGAIN
 - $\chi^2 pprox 1$ both replica to replica and average to truth
 - FUNCTIONAL UNCERTAINTY
- LEVEL 2:
 - data as in level 1
 - GENERATE DATA REPLICAS OF THESE "DATA"
 - FIT PDF REPLICAS TO DATA REPLICAS
 - $~\chi^2 \approx 2$ replica to replica; $\chi^2 \approx 1$ average to truth
 - DATA UNCERTAINTY

UNCERTAINTIES: TYPE AND SIZE CLOSURE TEST RESULTS (NNPDF4.0)

level $0~\chi^2$ vs training

- LEVEL 0 (TRUTH DATA) $\Rightarrow \chi^2 \approx 0$ UNCERTAINTY NONZERO \Rightarrow INTERPOLATE DISCRETE DATA
- LEVEL 1 (RUNS OF UNIVERSE) ⇒ REPLICAS ALL FITTED TO SAME DATA, UNCERTAINTY NONZERO
 ⇒ DEGENERACY OF BEST-FITS (FUNCTIONAL FORMS)
- Level 0, 1 and 2 uncertainties comparable in size

LEVEL 0/1/2 UNCERTAINTIES

GLUON

"PDF" UNCERTAINTIES SUMMARY

- DATA UNCERTAINTIES \Rightarrow MULTIGAUSSIAN
- "PDF" UNCERTAINTIES
 - DATA UNCERTAINTY PROPAGATION + MODEL
 - HESSIAN
 - * ABSOLUTE MINIMUM OF χ^2 IN PARAMETER SPACE
 - * MULTIGAUSSIAN
 - MONTECARLO
 - * IMPORTANCE SAMPLING IN PDF SPACE
 - * CAN TEST FOR GAUSSIANITY
 - INTERPOLATION, MODEL, DATA \Rightarrow COMPARABLE SIZE
 - GENERALLY GAUSSIAN

MISSING HIGHER ORDER (THEORY) UNCERTAINTIES

• MAXIMIZE LIKELIHOOD

$$P = N \exp - \left(\frac{d-t}{2\sigma_{exp}^2}\right)$$

 $d,\,t$ are really vectors and $1/\sigma^2$ the inverse covariance matrix

• PROBABILITY OF THEORY t GIVEN DATA d; BAYES \Rightarrow

 $P(t|d) \propto P(d|t)P(t)$

- THEORY KNOWN EXACTLY $\Rightarrow P(t) = \delta(t t^{\text{exact}})$
- THEORY KNOWN PERTURBATIVELY: $t_p \Rightarrow t^{\text{exact}} = t_p + \Delta_p$; $\Delta_p \Leftrightarrow \text{MHO}$
- Δ GAUSSIAN WITH UNCERTAINTY $\sigma_{\rm th}$; INTEGRATE OUT

$$P = N \exp\left[\frac{d - t_p}{2\left(\sigma_{exp}^2 + \sigma_{th}^2\right)}\right]$$

• MHOU + EXP COMBINE IN QUADRATURE

MISSING HIGHER ORDER (THEORY) UNCERTAINTIES

• FACTORIZED OBSERVABLE (NONSINGLET STRUCTURE FUNCTION):

$$F_2^{\rm NS}(N,Q^2) = xC_{\rm NS}(\alpha_s(Q^2),N) \exp\left[\int_{Q_0^2}^{Q^2} \frac{d\lambda^2}{\lambda^2} \gamma_{\rm NS}\left(\alpha_s(\mu^2),N\right)\right] f^{\rm NS}(Q_0^2)$$

• SOURCES OF MHOU

$$- \gamma_{\rm NS}^{N^k LO}(\alpha_s, N) = \alpha_s \gamma_{\rm NS}^{(0)}(N) + \alpha_s^2 \gamma_{\rm NS}^{(1)}(N) + \alpha_s^{k+1} \cdots + \gamma_{\rm NS}^{(k)}(N) \\ - C_{\rm NS}^{N^k LO}(\alpha_s(Q^2), N) = 1 + \alpha_s C_{\rm NS}^{(1)}(N) + \cdots + \alpha_s^{k+1} C_{\rm NS}^{(k)}(N)$$

SCALE VARIATION

• BASIC IDEA: $\alpha_s(\kappa^2\mu^2) = \alpha_s(\mu^2)[1 + O(\alpha_s)]$; at N^kLO difference $\Leftrightarrow \beta$ -fctn up to β_k

$$- \bar{C}(\alpha_s(\kappa_r^2 Q^2, \kappa_r^2) = C\alpha_s(Q^2)[1 + O(\alpha_s)] \Rightarrow \text{FIXES } \bar{C}^{(k)} \text{ IN TERMS OF } C^{(k)})$$
$$- \bar{\gamma}(\alpha_s(\kappa_f^2 Q^2, \kappa_f^2) = \gamma \alpha_s(Q^2)[1 + O(\alpha_s)] \Rightarrow \text{FIXES } \bar{\gamma}^{(k)} \text{ IN TERMS OF } \gamma^{(k)})$$

- $\Delta C = \bar{\gamma}(\alpha_s(\kappa_r^2 Q^2, \kappa_r^2) \gamma(\alpha_s(Q^2) \text{ RENORMALIZATION SCALE } \mu_r = \kappa_r Q \text{ VARN SCALE AT WHICH UV DIVS ARE SUBTRACTED}$
- $\Delta \gamma = \bar{\gamma}(\alpha_s(\kappa_f^2 Q^2, \kappa_f^2) \gamma(\alpha_s(Q^2) \text{ factorization scale } \mu_f = \kappa_f Q \text{ VARN} \text{ scale at which collinear divs are factorized}$
 - Change in $\gamma \Rightarrow$ change in PDF $f(Q^2) \Rightarrow$ can include $\Delta \gamma$ as Δf
 - Fixed F factorized as $C\otimes f$ \Rightarrow can include Δf as ΔC

MHOU PRESCRIPTIONS

prediction for datapoint *i*, scale choice $\mu_r^{(k)}, \mu_f^{(k)}$, default μ_r^0, μ_f^0 ; $\Delta^k(\sigma_i) = \sigma_i[\{\mu^{(k)}\}] - \sigma_i[\{\mu_0\}]$

- VARY μ_r , μ_f ABOUT μ_0
- PICK A SET OF POSSIBLE VARIATIONS
 - 3pt $\mu_r=\mu_f$, $\kappa=2,\,1/2$
 - 9 pt μ_r , μ_f varied indep. $\kappa=2,\,1/2$
 - -~7 PT $\mu_r,\,\mu_f$ varied indep. $\kappa=2,\,1/2,$ avoid $mu_r/\mu_f=4$
- ENVELOPE: TAKE LARGEST AND SMALLEST σ AS UNCERTAINTY BAND
- THEORY COVARIANCE MATRIX:

$$\sigma_{i,j} = \frac{1}{N} \sum_{k} \Delta^{k}(\sigma_{i}) \Delta^{k}(\sigma_{j})$$

- SINGLE PROCESS: k runs over common set of scale choices
- MANY PROCESSES:
 - * UNCORRELATED RENORMALIZATION: DIFFERENT FOR DIFFERENT HARD PROCESSES
 - * CORRELATED FACTORIZATION: MHOU OF PERTURBATIVE EVOLUTION UNIVERSAL

A LOOK AT THE THEORY COVARIANCE MATRIX

HEAVY QUARKS: DECOUPLING

- DECOUPLING SCHEME \Rightarrow HEAVY FLAVOR GRAPHS SUBTRACTED AT ZERO MOMENTUM (Collins, Wilczek, Zee, 1978)
- $N_f = 3$ active flavors in β function & evolution equations
- DECOUPLING VS $\overline{\mathrm{MS}} \Leftrightarrow$ DIFFERENT RENORMALIZATION & FACTORIZATION SCHEMES

EXAMPLE: PHOTON SELF-ENERGY

$$\Pi^{R}(q^{2}) = \frac{2\alpha}{\pi} \int_{0}^{1} dx x(1-x) \ln \frac{m^{2} - x(1-x)q^{2}}{\mu_{r}^{2}}$$

•
$$\overline{\text{MS}} \ln \frac{m^2 - x(1-x)q^2}{\mu_r^2} = \ln \frac{q^2}{\mu_r^2} + O\left(\frac{m^2}{q^2}\right) \Rightarrow \text{RUNNING } \alpha$$

• DECOUPLING: $\ln \frac{m^2 - x(1-x)q^2}{\mu_r^2} = O\left(\frac{q^2}{m^2}\right)$

SOLID \Rightarrow HEAVY; DASHED \Rightarrow LIGHT

M. Buza et al.: Charm

MATCHING

- PDFS, α_s IN $N_f = 3$ & $N_f = 4$ RELATED BY MATCHING CONDITIONS
- DETERMINED BY COMPUTING OPERATOR MATRIX ELEMENTS IN EITHER SCHEME AND EQUATING

Fig. 2. $O(\alpha_s^2)$ contributions to the purely-singlet OME $A_{q'q}^{PS}$. Here q and q' are represented by the *dashed* and *solid lines* vertices q' = H these graphs contribute to the heavy-quark OME A_{Hq}^{PS}

HEAVY QUARKS IN DIS

- $\overline{\text{MS}}$ Scheme \Rightarrow HQ massless parton $\Rightarrow \ln Q^2/m_h^2$ resummed to all orders by evolution eqns, $O(m^2/Q^2)$ contributions neglected
- DECOUPLING SCHEME \Rightarrow HQ in hard xsect \Rightarrow $O(m^2/Q^2)$ contributions included, $\ln Q^2/m_h^2$ treated at fixed order

THE BEST OF TWO WORLDS MATCHED SCHEMES ACOT

FONLL

COMBINE $N^i LL$ massless resummed & $N^j LO$ massive fixed-order \Rightarrow EXPAND RESUMMED RESULT; REPLACE THE FIRST j orders with their massive COUNTERPARTS

$$F(x,Q^{2}) = F^{(3)}(x,Q^{2}) + F^{(4)}(x,Q^{2}) - F^{\text{overlap}}(x,Q^{2})$$

$$F^{(3)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}} C_i^{(3)} \left(\frac{x}{y}, \frac{Q^2}{m_h^2}, \alpha_s^{(3)}(Q^2)\right) f_i^{(3)}(y,Q^2)$$

$$F^{(4)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},h,\bar{h}} C_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y,Q^2)$$

ADVANTAGES

- RELIES ON STANDARD FACTORIZATION & DECOUPLING
- THE RESUMMED AND UNRESUMMED ORDERS CAN BE CHOSEN FREELY & INDEPENDENTLY

COMPLICATION

• RESUMMED & FIXED-ORDER CALCULATION ARE PERFORMED IN DIFFERENT RENORMALIZATION & FACTORIZATION SCHEMES: 3F (MASSIVE, DECOUPLING) VS. 4F (MASSLESS)

SOLUTIONS

- EITHER RE-EXPRESS 3F-SCHEME PDFs & α_s in terms of the 4F-scheme ones
- OR HAVE SIMULTANEOUSLY 3F & 4F SCHEME α_s & PDFs

THE CHARM PDF PERTURBATIVE CHARM

- IN $N_f = 3$ scheme charm PDF vanishes
- IN $N_f = 4$ scheme, charm determined by perturbative matching
- STARTING AT NNLO (TWO LOOPS) DOES NOT VANISH AT ANY SCALE

INTRINSIC CHARM

• **DEFINE** CHARM PDF AS OME:

 $\langle p|\bar{c}\gamma^{\mu_1}D^{\mu_2}\dots D^{\mu_n}c|p\rangle = A_c^n p^{\mu_1}\dots p^{\mu_n} - \text{traces}$

$$A_c^n = \int_0^1 dx \, x^{n-1} c(x)$$

- Decouple charm mass logs \Rightarrow choose $N_f = 3$ scheme
- ALLOW NONVANISHING (SCALE-INDEPENDENT) CHARM PDF
- IN $N_f = 4$ scheme charm PDF differs from that fixed by matching

NONVANISHING CHARM IN THE $N_F=3$ (decoupling) scheme \Rightarrow intrinsic charm

THEORY UNCERTAINTIES SUMMARY

- THEORY UNCERTAINTIES \Rightarrow THEORY COVARIANCE MATRIX
- SCALE VARIATION:
 - RENORMALIZATION \Rightarrow MHOU IN PARTONIC CROSS-SECTION
 - FACTORIZATION \Rightarrow MHOU IN ANOMALOUS DIMENSION
- HEAVY QUARKS
 - **DECOUPLING** SCHEME \Rightarrow QUARK MASS EFFECTS INCLUDED
 - $\overline{\mathrm{MS}}$ scheme \Rightarrow collinear mass logs resummed
 - MATCHING \Rightarrow BOTH INCLUDED
 - HQ PDF differs from result of matching \Rightarrow intrinsic HQ

FOOD FOR THOUGHT

- CAN YOU THINK OF NEW PROCESSES AT EIC FOR PDF DETERMINATION? AND CAN YOU THINK OF A SYNERGY BETWEEN EIC & LHC?
- WHAT MIGHT BE THE REASON WHY TOLERANCE IS NEEDED? AND CAN YOU THINK HOW TO TEST IT?
- CAN YOU THINK OF ALTERNATIVE WAYS OF ESTIMATING MHOUS?
- IF INTRINSIC HQ PDFS ARE NONZERO, HOW DO YOU EXPECT THEIR SIZE TO SCALE WITH THE HQ MASS?