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PRECISION HIGH-ENERGY PHYSICS
PARTICLE PRODUCTION PROCESSES AT LHC RATIO TO THEORY

• PRODUCTION RATE PREDICTED OVER ∼ 10 ORDERS OF MAGNITUDE

• TYPICAL ACCURACY APPROACHING PERCENT

• LOOKING FOR DEVIATIONS



THE THEORY BOTTLENECK
PROTON STRUCTURE

QCD FACTORIZATION

UNCERTAINTIES:
HIGGS IN GLUON FUSION

(R. Röntsch, Les Houches 2023)

• PARTON DISTRIBUTIONS (PDF) “PROBABILITY” TO PULL OUT A PROTON CONSTITUENT

• IMPOSSIBLE TO COMPUTE AT PRESENT

• DOMINANT SOURCE OF UNCERTAINTY



A PATTERN RECOGNITION PROBLEM

• COLLISION WITH PROTON(S) ⇒
RESULT DEPENDS ON PDF

• COMPUTE RESULT FOR MANY PROCESSES

• COMPARE TO (LOTS) OF DATA

A CURRENT DATASET
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Direct photon production
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Black edge: new in NNPDF4.0



QUALITATIVE BEHAVIOR,
QUANTITATIVE PROBLEMS
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• A SET OF PROBABILITY DISTRIBUTIONS OF PROBABILITY DISTRIBUTIONS

• FULL (INFINITE DIMENSIONAL) COVARIANCE MATRIX

• MUST BE DETERMINED FROM FINITE SET OF DISCRETE DATA



DO WE REALLY NEED MACHINE LEARNING?
ALTERNATIVE: A MODEL-DEPENDENT APPROACH

PARAMETRIZATIONS

• CTEQ5 2002: xg(x,Q2
0) = A0x

A1 (1− x)A2 (1 + A3x
A4 )

• MRST-HERALHC 2005: xg(x,Q2
0) = Agx

δg (1− x)ηg (1 + εgx
0.5 + γgx) + Ag′x

δ
g′ (1− x)ηg′

• CT18: g(x,Q = Q0) = xa1−1(1− x)a2
[
a3(1− y)3 + a43y(1− y)2 + a53y

2(1− y) + y3
]
;

y =
√
x; a5 = (3 + 2a1)/3.

MORE DATA ⇒ BIGGER PARAMETRIZATION (?)
PROLIFERATION OF PDF SETS

(J. Huston, PDF4LHC 11/2023)

MORE DATA ⇒ BIGGER UNCERTAINTIES (!)



WHAT HAPPENED IN THE PREHISTORY
DISCOVERY PHYSICS 1995

CDF 1995

• HUGE DATA-THEORY DISCREPANCY

• COMPOSITE QUARKS???
• BAD MODELING!

BETTER MODELING ⇒ NO DISCREPANCY
FINAL RESULTS (1998)



WHAT STILL HAPPENS TODAY
“TOLERANCE UNCERTAINTIES”

FIRST PDFS WITH UNCERTAINTIES (2002)
one sigma & ten sigma intervals for typical

covariance matrix eigenvalue
vs best value and uncertainty from individual experiments

MSHT PDFS (2020)

A COOKBOOK RECIPE

• UNCERTAINTIES RESCALED BY “TOLERANCE” T ∼ 4÷ 10

• DETERMINED FROM SPREAD OF BEST-FIT FROM DIFFERENT DATA



PROTON STRUCTURE AS A ML PROBLEM
NNPDF



PROBABILITY REGRESSION
REPLICA SAMPLE OF FUNCTIONS ⇔ PROBABILITY DENSITY IN FUNCTION SPACE
KNOWLEDGE OF LIKELIHHOD SHAPE (FUNCTIONAL FORM) NOT NECESSARY

FINAL PDF SET: f (a)i (x, µ);
i =up, antiup, down, antidown, strange, antistrange, charm, gluon; j = 1, 2, . . . Nrep



CROSS-VALIDATED LEARNING
• MODEL PARAMETERS DETERMINED BY LOSS MINIMIZATION THROUGH GRADIENT DESCENT

• RANDOM TRAINING-VALIDATION SPLIT, LOSS TO TRAINING DATA MINIMIZED

• STOP TRAINING IF VALIDATION LOSS GROWS FOR A WHILE (PATIENCE)

• LOWEST VALIDATION LOSS OPTIMAL LEARNING FIT



WHICH MODEL?
NEURAL NETWORKS

ARCHITECTURE

• HOW MANY INPUTS?

• HOW MANY INDEPENDENT NNS?

ONE NN PER PDF
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ONE SINGLE NN
x ln x
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WHICH MODEL?
NEURAL NETWORKS
ACTIVATION FUNCTION

F
(i)
out(~xin) = F

∑
j

ωijx
j
in − θi



• LINEAR ACTIVATION ⇒ MULTILINEAR REGRESSION

• + NONLINEAR PROFILE ⇒ UNIVERSAL INTERPOL.
– sigmoid F (x) = 1

1+e−x

– arctan F (x) = 1
2 + 1

π arctanx

– RELU F (x)

{
0; x < 0
x; x > 0



WHICH LEARNING?
GENETIC ALGORITHMS

• BASIC IDEA: RANDOM MUTATION OF THE NN PARAMETER

• SELECTION OF THE FITTEST



WHICH LEARNING?
GRADIENT DESCENT

• BASIC IDEA: COMPUTE GRADIENT OF LOSS W.R. TO PARAMETERS

• SELECT DIRECTION OF DESCENT



WHICH LEARNING?
DESIDERATA

• FAST CONVERGENCE

• DO NOT STOP ON LOCAL MINIMA

• EXPLORE SPACE OF MINIMA (DEGENERATE CASE)

GENETIC ALGORITHMS
• DIFFERENT EPOCHS; VARIABLE MUTATION RATE

• REWEIGHTING DIFFERENT DATA CONTRIBUTIONS TO LOSS

• NODAL MUTATION

• COVARIANCE MATRIX ADAPTATION (CMA)

GRADIENT DESCENT
• GLOROT NORMAL/UNIFORM INITALIZATION

• ADAPTIVE GRADIENT / ADAPTIVE MOMENT

• STOCHASTIC GD
• BATCH GD

NAIVE GA VS. CMA GA (NAIVE) VS GD (ADADELTA)



METHODOLOGY HYPEROPTIMIZATION

Adam RMSprop Adadelta
optimizer
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learning rate
glorot_uniform glorot_normal

initializer
10000 20000 30000 40000

epochs
0.1 0.2 0.3 0.4

stopping patience
1.00 1.05 1.10

positivity multiplier
1 2 3 4

number of layers
sigmoid tanh

activation function

HYPEROPT PARAMETERS

NEURAL NETWORK FIT OPTIONS
NUMBER OF LAYERS (*) OPTIMIZER (*)
SIZE OF EACH LAYER INITIAL LEARNING RATE (*)

DROPOUT MAXIMUM NUMBER OF EPOCHS (*)
ACTIVATION FUNCTIONS (*) STOPPING PATIENCE (*)

INITIALIZATION FUNCTIONS (*) POSITIVITY MULTIPLIER (*)

• SCAN PARAMETER SPACE

• OPTIMIZE FIGURE OF MERIT: K-FOLDING LOSS



K-FOLDING LOSS??
BEST RESULT ⇒ BEST GENERALIZATION

• EACH FOLD REPRODUCES
FEATURES OF FULL DATASET

• LOSS: AVERAGE FIT QUALITY OF NON-FITTED
FOLDS

• OVERFITTING REMOVED ⇒
CORRECT GENERALIZATION

K-FOLDING VS NO K-FOLDING
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WHAT DOES ML BUY US?
PRECISION + ACCURACY

• AGREEMENT (χ2) WITH DATA PUBLISHED AFTER PUBLICATION OF NNPDF4.0 PDF SET

• EXP, EXP+TH AND TOTAL (EXP+TH+PDF) UNCERTAINTIES
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• EXP χ2 LOWER ⇒ NNPDF4.0 AGREES BETTER WITH DATA ⇒ MORE PRECISE

• EXP AND TOTALχ2 CLOSER ⇒ NNPDF4.0 PDF UNCERTAINTIES SMALLER

• AGREEMENT WITH DATA OF ALL PDF SETS COMPARABLE ⇒ ALL UNCERTAINTIES FAITHFUL ⇒
EQUALLY ACCURATE



SYSTEMATIC UNCERTAINTY VALIDATION:

CLOSURE TESTS

• ASSUME “TRUE” UNDERLYING PDF ⇒ E.G. SOME RANDOM PDF REPLICA

• GENERATE DATA DISTRIBUTED ACCORDING TO EXPERIMENTAL COVARIANCE MATRIX

• RUN WHOLE METHDOLOGY ON THESE DATA

• DO STATISTICS ON “RUNS OF THE UNIVERSE”: IS TRUTH WITHIN ONE SIGMA 68% OF TIMES?



TESTING UNCERTAINTIES
DISTRIBUTION OF DEVIATIONS FROM TRUTH

4 2 0 2 4
Difference to underlying prediction

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 Normal distribution
Central prediction distribution

• COMPARISON OF PREDICTIONS TO TRUTH

• STATISTICS OVER RUNS OF THE UNIVERSE

• CORRECTLY NORMALIZED GAUSSIAN DISTRIBUTION OF OUTCOMES



CLOSURE TEST
UNDERSTANDING UNCERTAINTIES

• LEVEL 0 (TRUTH DATA) ⇒ PERFECT AGREEMENT (χ2 ≈ 0)
YET UNCERTAINTY NONZERO
⇒ NEURAL NETS⇔ MANY FUNCTIONAL FORMS

• LEVEL 1 (RUNS OF UNIVERSE) ⇒ REPLICAS ALL FITTED TO
SAME DATA,
YET UNCERTAINTY NONZERO
⇒ DITTO

• LEVEL 0, 1 AND 2 UNCERTAINTIES COMPARABLE IN SIZE

LEVEL 0 LOSS VS TRAINING
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LEVEL 0/1/2 UNCERTAINTIES
ANTIDOWN GLUON



UNDERSTANDING UNCERTAINTIES
THE REPLICA DISTRIBUTION

• PLOT RESULTS IN (σH , σZ) PREDICTION SPACE ⇒ GAUSSIAN!
• REPLICA FLUCTUATION ⇒ DATA UNCERTAINTIES

• NO REPLICA FLUCTUATION ⇒ MODEL UNCERTAINTY
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DISTRIBUTION OF REPLICAS DRIVEN BY

• DATA UNCERTAINTIES ⇒ DATA REPLICA FLUCTUATION

• INTERPOLATION, EXTRAPOLATION AND FUNCTIONAL UNCERTAINTIES ⇒ BEST FIT DEGENERACY



UNDERSTANDING UNCERTAINTIES
THE REPLICA DISTRIBUTION

ARE ALL FITS EQUALLY GOOD?
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• COMPARE TRAINING AND VALIDATION LOSS FOR EACH REPLICA

• NO CORRELATION BETWEEN FIT QUALITY AND POSITION IN THE (σH , σZ) PLANE

• UNIFORM FIT QUALITY



UNDERSTANDING UNCERTAINTIES
THE REPLICA DISTRIBUTION

COMPARISON TO CENTRAL DATA

• EACH PDF REPLICA FITTED TO A DATA REPLICA

• FIT QUALITY TO CENTRAL DATA STATISTICALLY DISTRIBUTED

1000 REPLICAS VS. 3000 REPLICAS
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• AVERAGE BEST FIT PDF ⇒ BETTER AGREEMENT

• NOT NECESSARILY BEST



UNDERSTANDING UNCERTAINTIES
COMPARISON TO CENTRAL DATA

• ARE FITS WITH WORSE AGREEMENT WITH CENTRAL DATA POOR (UNDERLEARNT)?

• NO CORRELATION BETWEEN AGREEMENT WITH CENTRAL DATA AND TRAINING, VALIDATION
LOSS

• UNIFORM FIT QUALITY

• DISPERSION DUE

– DATA REPLICA FLUCTUATION ⇒ DATA UNCERTAINTIES

– BEST FIT DEGENERACY
⇒ INTERPOLATION, EXTRAPOLATION AND FUNCTIONAL UNCERTAINTIES



UNDERSTANDING UNCERTAINTIES
EXPLAINING THE DISTRIBUTION

THE GLUON
REPLICAS WITH BEST & WORST AGREEMENT WITH CENTRAL DATA

• CENTRAL INTERMEDIATE STRUCTURE ⇒ OUTLIERS WITH MORE/LESS STRUCTURE

• MORE STRUCTURE ⇒ BETTER AGREEMENT WITH (CENTRAL) DATA

• WHY IS MORE STRUCTURE OUTLIER DESPITE BETTER AGREEMENT?



UNDERSTANDING UNCERTAINTIES
EXPLAINING THE DISTRIBUTION

AGREEMENT WITH DATA SUBSET VS HEIGHT OF THE GLUON PEAK
WORST VS BEST AGREEMENT WITH TOTAL DATASET

DATA FAVORING HIGH PEAK (MORE STRUCTURE)
DATA FAVORING LOW PEAK (LESS STRUCTURE)

• MORE OR LESS STRUCTURE (HIGH/LOW PEAK) FAVORED BY

• MORE OR LESS STRUCTURE (HIGH/LOW PEAK) FAVORED BY DIFFERENT DATA
SUBSETS

• HIGH PEAK SUBSET MORE NUMEROUS ⇒ HIGH PEAK BETTER GLOBAL AGREEMENT

• HIGH PEAK WOULD NOT GENERALIZE ⇒ OUTLIER

• MACHINE LEARNING ⇒ OPTIMAL MODEL



NO EFFECT THAT REQUIRES MORE THAN 10% ACCURACY IN
MEASUREMENT IS WORTH INVESTIGATING

Walther Nernst



NO EFFECT THAT REQUIRES MORE THAN 10% ACCURACY IN
MEASUREMENT IS WORTH INVESTIGATING

Walther Nernst

ACCURACY OF OBSERVATION IS THE EQUIVALENT OF
ACCURACY OF THINKING

Wallace Stevens


