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Motivation

σ(x,Q2) =
∑
i

∫ 1

x

dz

z
Lij(z, µ

2)σ̂ij

(
x

z
,
Q2

µ2
, αs

)

Predictions for collider processes rely on PDFs
and matrix elements

PDF uncertainties often the dominant source of
uncertainty

Current standard in PDF fits is NNLO in QCD

Progress towards the next generation of PDFs:

QED effects

(approximate) N3LO

Accounting for missing higher order uncertainties Uncertainties for inclusive Higgs production
[Dulat, Lazopoulos, Mistleberger: 1802.00827]
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QED effects in PDFs
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Including QED corrections in a PDF set

The current standard for PDFs determination is at NNLO in QCD, however α(Mz) ∼ α2
s(MZ)

Including QED corrections in PDFs consists of

QED corrections to DGLAP (at O(α), O(ααs)
and O(α2)):

PQED = αP
(0,1)
ij + ααsP

(1,1)
ij + α2P

(0,2)
ij + . . .

Adding a photon PDF and including photon
initiated contributions to cross-sections
The momenum sumrule is modified accordingly:∫ 1

0

dx
(
xΣ(x,Q2) + xg(x,Q2) + xγ(x,Q2)

)
= 1 Example: EW corrections in DY

[C. Schwan DIS 2021]
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Determination of the photon PDF

Initially the photon PDF has been determined in different ways:

physical model: sensitive to underlying model

fitting: data does not provide strong constraints

However with the LUXqed approach it can be computed
perturbatively
based on the observation that the heavy-lepton production
cross-section can be written in two ways:

in terms of structure functions F2, FL

in terms of PDFs (including the photon)

luxQED result [Manohar, Nason, Salam, Zanderighi: 1607.04266,

1708.01256]:

xγ(x, µ2) =
2

α(µ2)

1∫
x

dz

z

{∫ µ2

1−z

m2
px2

1−z

dQ2

Q2
α2(Q2)

[
−z2FL(x/z,Q

2)

+

(
zPγq(z) +

2x2m2
p

Q2

)
F2(x/z,Q

2)

]
− α2(µ2)z2F2(x/z, µ

2)

}

Input to construct F2 and FL

Sources of uncertainty
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LUXqed PDF determinations

LUXqed has been used in all of the most recent QED PDFs:

LUXqed plus PDF4LHC15 [1607.04266]

LUXqed17 plus PDF4LHC15 [1708.01256]

MMHT2015qed [1907.02750]

NNPDF3.1luxQED [1712.07053]

CT18lux and CT18qed [2106.10299]

MSHT20QED [2111.05357]

MSHT20qed an3lo [2312.07665]

NNPDF4.0QED [2401.08749 ]
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The photon PDF

An iterative procedure is used to address the interplay between
the photon and other PDFs due to the momentum sumrule∫ 1

0

dx
(
xΣ(x,Q2) + xg(x,Q2) + xγ(x,Q2)

)
= 1

QCD fit

Compute
photon

Perform fit

Converged?

QED fit

No

Yes

Compute photon at 100 GeV
Evolve down to fitting scale

[NNPDF3.1QED: 1712.07053]
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Results: Impact of the photon on other PDFs
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Non-negligible impact, but PDFs are in agreement within uncertainty

Gluon reduced due to momentum sum rule with photon carrying additional momentum
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Results: phenomenological impact
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NLO in both QCD and QED, only PDF uncertainties are shown

Non-negligable QED corrections (up to 5%) in the large invariant mass and large-pT regions relevant for
new physics searches

In most other cases studied, QED corrections are at the percent level
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Theory in puts for approximate N3LO PDFs
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Theory requirements for PDFs at N3LO

Several theory inputs are needed in a PDF fit:

Splitting functions for DGLAP evolution

Matching conditions for heavy-quark mass schemes

f
(nf+1)
i

(
x,Q2

)
= Aij (x, αs) f

(nf )
j

(
x,Q2

)
DIS coefficient functions

Hadronic cross sections,

Not all available at N3LO, but information is available for all. What is the best we can do?

Use N3LO calculations where known

Construct approximate results where possible

Account for theory uncertainties of the missing or incomplete higher order

No need to wait for complete N3LO results and more information can be included as it becomes available
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Splitting functions

Complete results for the N3LO splitting functions are not yet available, but a lot of information exists (with
important contributions from Liverpool and Edinburgh):

Small-x limits (BFKL resummation) [Bonvini and Marzani: 1805.06460] [Davies, Kom, Moch, Vogt:

2202.10362]

Large-x limits (threshold resummation) [Soar, Moch, Vermaseren, Vogt: 0912.0369], [Henn, Korchemsky,

Mistlberger: 1911.10174], [Duhr, Mistlberger, Vita 2205.04493]

Large-nf limit [Davies, Ruijl, Ueda, Vermaseren, Vogt: 1610.0744], [Gehrmann, Manteuffel, Sotnikov, Yan:

2308.07958]

Mellin moments [Falcioni, Herzog, Moch, Ruijl, Ueda, Vermaseren, Vogt: 1707.08315, 2111.15561, 2302.07593,

2307.04158]

How can we use this information to construct approximate splitting functions?
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Splitting functions

1. The approximation is performed in Mellin space as an expansion in nf , where any double counting terms
present in the resummed small-x and large-x expressions are removed

γ
(3)
ij = γ

(3)
ij,nf

+ γ
(3)
ij,N→∞ + γ

(3)
ij,N→0 + γ

(3)
ij,N→1 + γ̃

(3)
ij

2. The remainder term γ̃
(3)
ij is constructed as a linear combination of interpolating functions:

A function for the leading unknown large-N contribution
A function for the two leading unknown small-N contribution
Functions for the subleading small-N and large-N contributions

3. The weights of these interpolating functions are determined by equating to the known moments

4. Then, vary the subleading contributions included in the basis of interpolating functions to estimate
incomplete higher order uncertainties (IHOU) on the splitting functions

More details on how to account for IHOUs in a fit follows later
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Splitting functions
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Dark blue band is IHOU only, light blue is sum in quadrature of MHOU and IHOU

Good perturbative agreement at large-x

IHOU are not negligible



15/ 1

DGLAP evolution

NNPDF4.0 evolved from Q = 1.65 GeV to Q = 100 GeV
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Effects of N3LO corrections to
DGLAP evolution at most percent
level, except at small-x and large-x

Good perturbative convergence
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DIS coefficient functions

DIS coefficient functions are known up to N3LO in the massless limit (again with contributions from
Liverpool) [Larin, Nogueira, Van Ritbergen, Vermaseren: 9605317], [Moch Vermaseren Vogt: 0411112, 0504242],

[Davies, Moch, Vermaseren, Vogt: 0812.4168, 1606.08907]

Massive coefficient functions can be constructed by smoothly joining the known limits from high energy
and threshold resummations and the massless limit (Q2 → m2

h, x → 0, and Q2 ≫ m2
h) [Barontini,

Bonvini, Laurenti: in preparation]

C(3)(x,m2
h/Q

2) = C(3),thr(x,m2
h/Q

2)f1(x)+C(3),asy(x,m2
h/Q

2)f2(x)

f1(x) −−−→
x→0

0, f1(x) −−−−−→
x→xmax

1 ,

f2(x) −−−→
x→0

1, f1(x) −−−−−→
x→xmax

0 ,
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xC
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Exact

We can validate the procedure at NNLO
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DIS variable flavor number scheme (VFNS)

In a PDF fit different flavour number schemes are joined in
a variable flavour number scheme (VFNS) to ensure reliable
results from Q2 ∼ m2

h up to Q2 ≫ m2
h

The matching conditions encoding the transition between
schemes have almost completely been computed up to
N3LO

The VFNS used in NNPDF is the FONLL scheme below

FONLL extended for arbitrary number of mass scales in the
recent EKO (DGLAP) and yadism (DIS) codes
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DIS structure functions
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The uncertainty band corresponds to IHOU of the massive coefficient functions

N3LO corrections are significant at low-Q
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Hadronic processes

Corrections to collider DY and W production can be included through k-factors
N3LO effects around 1 to 2% for LHC observables
For many processes N3LO corrections are not available, for those we introduce account for MHOU
through µr variations
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Inclusion of theory uncertainties
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Theory errors from scale variations

Missing higher order uncertainties are estimated through variations of the nonphysical factorization (µf )
and renormalization (µr) scales

µr and µf are varied sumultaneously following the 7-point prescription

5,7,9 point prescription

Factorization scale variations estimate MHOUs in DGLAP evolution

Renormalization scale variations estimate MHOUs in matrix elements
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Missing higher order uncertainties covmat

How can we account for theory uncertainties in a PDF fit?

In a fit we minimize the χ2:
P (T |D) ∝ exp

[
− 1

2
(T −D)C−1

exp (T −D)
]
∝ exp

[
− 1

2
χ2

]
Include theory covmat CMHOU at same footing as exp covmat Cexp: Cexp → Cexp + CMHOU

CMHOU,ij = nm

∑
Vm

(Ti(ρf , ρr)− Ti(0, 0)) (Tj(ρf , ρr)− Tj(0, 0))

Can we trust the faithfulness of these uncertainties on the unknown order?
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Missing higher order uncertainties covmat

Validate the MHOU procedure by testing the NLO MHOU covmat
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Incomplete higher order uncertainties covmat

We construct an IHOU matrix following a similar approach by varying the subleading functions

IHOU are independent of MHOU so the uncertainties are added in quadrature

C = Cexp + CMHOU + CIHOU
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Results
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Fit quality
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Without MHOUs the χ2 improves with the perturbative accuracy

With MHOUs the χ2 stabilizes significantly

At N3LO MHOUs have a small impact
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Perturbative convergence
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Good perturbative convergence

Moderate impact of N3LO corrections, especially for the quark luminosities

∼ 2% suppression of gg luminosity around the Higgs mass
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Impact of MHOUs at N3LO
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Non-negligible impact of MHOUs even at N3LO

⇒ reason to include exact N3LO calculations for hadronic processes
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LHC phenomenology
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Higgs production
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Matrix elements for both Higgs in gluon fusiona and VBF available at N3LO

N3LO correction to Higgs in gluon fusion, small suppression compared to NNLO

Higgs in VBF perturbatively stable
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Drell-Yan
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Good convergence also for quark initiated processes
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Summary and outlook
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Summary and outlook

N3LO PDFs and QED corrections are a requirement for LHC predictions at 1% accuracy

All sources of theory uncertainty should be accounted for

NNPDF4.0 aN3LO allows for consistent N3LO calculations. Initial results for Higgs and DY production
suggest good perturbative convergence

Work towards combining N3LO, MHOU and QED is ongoing
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Thank you for your attention!


