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In many cases ￼  is determined by extracting it from a 
parabolic fit to the ￼  profile
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Ideally minimise ￼  and PDF simultaneouslyαs
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How to account for correlations between PDFs and ￼ ?αs

NNPDF can’t (easily) treat ￼  as another trainable parameter 


Rerunning Monte Carlo generators and DGLAP evolution at every training 
step is not feasible, therefore predictions are stored in precomputed grids


Unlike partonic cross-sections, DGLAP is not a simple expansion in ￼

αs

αs



How to account for correlations between PDFs and ￼ ?αs

NNPDF can’t (easily) treat ￼  as another trainable parameter 


Rerunning Monte Carlo generators and DGLAP evolution at every training 
step is not feasible, therefore predictions are stored in precomputed grids


Unlike partonic cross-sections, DGLAP is not a simple expansion in ￼

αs

αs

Correlated replicas fitted to the same data replica at different ￼αs

Two methods have been developed to avoid this limitation:

1) Multiple fits of the same data replica, changing only the value of 

￼ , thereby correlating PDFs at different ￼   
[NNPDF, 1802.03398] 

2) Based on a single fit with an ￼  theory covmat, and computing 
the fit’s preferred value for alphas a posteriori in a Bayesian framework 
[Ball, Pearson, 2105.05114] 

The results shown in this talk correspond to the theory covmat method, but 
agreement is always within 1 per-mille

αs(mZ) αs(mZ)

αs(mZ)

https://arxiv.org/pdf/1802.03398.pdf
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Q: How to validate the methodologies? 
A: Closure tests

￼6

Basic idea: generate a global pseudo dataset from theory predictions 
and extract ￼  from thisαs

PDFs at input  
scale ￼Q0

Wilson coefficients + DGLAP 
depending on ￼  αs pseudodata extracted ￼αs⊗ methodology

Is ￼  the same?*αs

[Del Debio, Giani, Wilson, 2111.05787 ]
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Basic idea: generate a global pseudo dataset from theory predictions 
and extract ￼  from thisαs

PDFs at input  
scale ￼Q0

Wilson coefficients + DGLAP 
depending on ￼  αs pseudodata extracted ￼αs⊗ methodology

Is ￼  the same?*αs

Experimental data is sampled from a distribution, therefore 
                    pseudodata = prediction + noise

*

[Del Debio, Giani, Wilson, 2111.05787 ]

https://arxiv.org/pdf/2111.05787.pdf


Validating the methodologies
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1) Generate pseudodata samples around αs(mZ) = 0.118

2) Extract  for each pseudodata sampleαs(mZ)

Theory covmat method Correlated replicas method



Validating the methodologies
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￼αs(mZ) = 0.11800(4) ￼αs(mZ) = 0.11804(8)

1) Generate pseudodata samples around αs(mZ) = 0.118

2) Extract  for each pseudodata sampleαs(mZ)

3) Check that our method returns the correct answer

Both methodologies 
pass the closure test!

Theory covmat method Correlated replicas method



Closure tests are a non-trivial check
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Initially we were getting very large values for ￼ 


Was this correct, or were we making a mistake? 
How can we know?
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Initially we were getting very large values for ￼ 


Was this correct, or were we making a mistake? 
How can we know?


αs(mZ)

We can find out with a closure test! 

Closure test pseudodata: ￼ 


Closure test result: ￼ 


This confirmed a problem with our methodology that we 
identified and fixed!

αs(mZ) = 0.118

αs(mZ) = 0.1197(6)
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NNPDF3.1: ￼  [NNPDF, 1802.03398] 

Changes in this determination based on NNPDF4.0:


• Fitting methodology (gradient descent, hyperoptimisation, single NN 
for all flavours… )


• Theory (MHOU, QED, aN￼ LO)


• Data

αs(MZ) = 0.1185(5)PDF

3

Comparing to ￼  based on NNPDF3.1 -  methodologyαs(MZ)

https://arxiv.org/abs/1802.03398
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Changes in this determination based on NNPDF4.0:


• Fitting methodology (gradient descent, hyperoptimisation, single NN 
for all flavours… )


• Theory (MHOU, QED, aN￼ LO)


• Data

αs(MZ) = 0.1185(5)PDF

3

Comparing to ￼  based on NNPDF3.1 -  methodologyαs(MZ)

Let’s first look at the methodology:


NNPDF4.0 methodology, NNPDF3.1-like dataset: ￼ 


Consistent with the NNPDF3.1 result!

αs(MZ) = 0.1188(5)PDF

https://arxiv.org/abs/1802.03398


Comparing to ￼  based on NNPDF3.1 
missing higher order uncertainties 
 

αs(MZ)
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A big change is in the treatment of missing higher order uncertainties


MHOUs in NNPDF3.1 from ￼ 


In this NNPDF4.0-based determination we include a theory covariance 
matrix from scale variations at the level of the fit [NNPDF, 2401.10319]


NNPDF3.1: ￼          
NNPDF4.0, NNPDF3.1-like data: ￼  

αs(mZ)NNLO − αs(mZ)NLO

αs(mZ) = 0.1185(5)PDF(1)meth(11)MHOU = 0.1185(12)
αs(mZ) = 0.1190(7)PDF+MHOU

This determination also benefits from the full NNPDF4.0 dataset

https://arxiv.org/abs/2401.10319


Impact of missing higher order uncertainties (MHOUs) 
and aN￼ LO3

￼12

No MHOUs

PRELIMINARY

These and following results for the 
NNPDF4.0 dataset

[NNPDF, 2402.18635]

https://arxiv.org/abs/2402.18635
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Impact of missing higher order uncertainties (MHOUs) 
and aN￼ LO3
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No MHOUs

With MHOUs

Fewer LHC data points 
reduces impact of MHOUs?

PRELIMINARY

These and following results for the 
NNPDF4.0 dataset

[NNPDF, 2402.18635]

https://arxiv.org/abs/2402.18635


Impact of QED corrections and the photon PDF
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QED has a bigger impact at NNLO than at aN3LO

PRELIMINARY • NLO QED corrections to 
DGLAP evolution


• Determine also the photon PDF

[NNPDF, 2401.08749]



Impact of PDF-￼  correlationsαs

￼14

PRELIMINARY

Correlations increase the uncertainty by 25% to 60%



￼  at different values of ￼  pole massαs(mZ) mt

￼15

mt NNLO NNLO, MHOU

175 0.1208(4) 0.1200(6)

172.5 0.1204(4) 0.1200(7)

170 0.1200(4) 0.1198(6)

• PDG value is ￼ 


How should we account for these uncertainties?


• Include ￼  covmat requires computing grids for all 
datasets at the given ￼  values (expensive)


• Add in quadrature, interpolating to the PDG 
uncertainties (negligible)

mt = 172.4(7)

mt
mt

PRELIMINARY



Our most accurate results
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￼ 
αs(MZ)aN3LO,QED,MHOU = 0.1194(7)

PRELIMINARY



Summary and Outlook
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• Strong correlations between the PDFs and ￼  means that a 
simultaneous determination is needed 


• Two methods agree within 1 per-mille for all cases


• Our methodologies have been validated by means of closure testing


• MHOUs improve the perturbative stability of ￼ 


• All effects (aN3LO, MHOU, QED) have to be considered 
simultaneously! Other methodological or theoretical effects to 
explore?


• ￼ 


• Next: simultaneous ￼ , ￼ , … ?

αs

αs

αs(MZ)aN3LO,QED,MHOU = 0.1194(7)

mt sin θW
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Summary and Outlook
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• Strong correlations between the PDFs and ￼  means that a 
simultaneous determination is needed 


• Two methods agree within 1 per-mille for all cases


• Our methodologies have been validated by means of closure testing


• MHOUs improve the perturbative stability of ￼ 


• All effects (aN3LO, MHOU, QED) have to be considered 
simultaneously! Other methodological or theoretical effects to 
explore?


• ￼ 


• Next: simultaneous ￼ , ￼ , … ?

αs

αs

αs(MZ)aN3LO,QED,MHOU = 0.1194(7)

mt sin θW

Thank you for your attention!

￼17
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Backup slides



Propagating experimental uncertainty to PDFs 
An NNPDF set (usually) consists of 100 PDF replicas produced as 
follows:

1. Assume experimental data is defined by a vector of central 

values and a covariance matrix

2. Sample this distribution to create 100 Monte Carlo replicas in 

data space

3. Perform a fit to each of the data replicas


➡A PDF set encoding experimental uncertainties 

￼19



Simultaneous minimization of PDF and ￼  
Correlated replicas method

αs
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Fit the same data replica at different values of ￼  and 
fit a parabola for each replica …

αs



Simultaneous minimization of PDF and ￼  
Correlated replicas method

αs

￼20

Fit the same data replica at different values of ￼  and 
fit a parabola for each replica …

αs … then look at the distribution of minima of the parabolas



￼  from correlated theory uncertainties 
Theory Covariance Method
αs

The “correlated replicas” method is computationally costly because it involves fitting 
PDFs at many values of ￼ 


Alternatively, ￼  can be determined in a Bayesian framework from nuisance 
parameters:


1. Model the theory uncertainty as a shift correlated for all datapoints 
￼ , for ￼  

￼ 


2. Choose a prior 

￼ 


3. Marginalise over ￼  to get ￼ 


4. Compute the posterior for ￼  

￼

αs

αs

T → T + λ ⋅ β β ≡ T(α+
s ) − T(α−

s )

P(T ∣ D, λ) ∝ exp(χ2) = exp (−
1
2

(T + λ ⋅ β − D)TC−1(T + λ ⋅ β − D))
P(Δαs) ∝ exp (−

1
2

λ2)
λ P (T |D)

λ

P(λ ∣ T, D) =
P(T ∣ D, λ)P(λ)

P(T ∣ D)
∝ exp [−

1
2

Z−1(λ − λ)]

￼21

[arXiv:2105.05114] 

λ(T, D) = βT(C + ββT)−1(D − T )Z = 1 − βT(C + ββT)−1β

This idea can be extended to a real PDF fit [arXiv:2105.05114] 

1) Perform fit with ￼ , ￼ 


2) Once the fit has completed, compute ￼  shift preferred by 
data as encoded in the fit

Cexp → Cexp + Cαs Cαs = ββT

αs



Prior dependence in the Theory Covariance Method
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Prior dependence in the Theory Covariance Method
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For some aspects of the fit we have to assume a 
value of ￼ , in reality we don’t know the 
result so what if we choose “wrong”?


Consider the following 


Pseudodata at ￼ 


Prior assumption is ￼ 


Result moves towards the true result. We update 
assumption and iterate!

αs(mZ)

αs(mZ) = 0.118

αs(MZ) = 0.117



Theory uncertainties in PDFs
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Missing higher order uncertainties (MHOUs) are estimated through 7 point scale variations

5pt 7pt 9pt

• In a fit we minimize the ￼ : 
 

        ￼ 


• To account for MHOUs we treat the theory covmat on the same footing as the experimental covmat: ￼  
 

      ￼

χ2

P(T ∣ Dλ) ∝ exp (−
1
2

(T − D)TC−1(T − D)) ≡ exp (χ2)
C = Cexp + CMHOU

CMHOU,ij = nm
1

Vm ∑ (Ti(κf , κr) − Ti(0,0)) (Tj(κf , κr) − Tj(0,0))



Validating the MHOU covmat
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The MHOU covmat is validated by comparing the shifts from scale variations at NLO to the known NNLO-NLO shifts


