

NNPDF updates and the path towards NNPDF4.1: Data, theory, and Methodology

Tanjona R. Rabemananjara on behalf of the NNPDF collaboration DIS 2025, March 25th 2025 Cape Town, South Africa

Motivation: Why do we still care about PDFs?

- incomplete knowledge of $\alpha_s \iff New Physics$
- & NC/CC DY processes requires N3LO PDFs
- determination of parton densities more accurate
- accuracy/uncertainties on MHOUs & IHOUs

Duhr, Mistlberger [arXiv:2111.10379]

NNPDF Timeline

2Q 2026	NNPDF4.1	
3Q 2025	PDFs with Higher-Twist corrections	₲₽₽₩₩₽₽₩₽₽₽₽₩₽₽₽₩₽₽₽₩₽₽₩₽₽₽₩₽₽₽₩₽₽₽₩₽₽₽
2Q 2025	Closure test with inconsistencies	
2Q 2025	alpha_s determination with aN3LO⊗QED⊗MHOU	[WIP] (see RS's talk this afte
03/2025	NNPDFpol2.0 - helicity dependent PDFs	[arXiv:2503.11814] (presented in
01/2025	Implications of NNPDF4.0 for LHC	[arXiv:2501
11/2024	Combination of aN3LO PDFs (w/ MSHT)	[arXiv:2411
11/2024	Ensemble-based Hyperparameter Optimisation	[arXiv:2410
06/2024	NNPDF4.0 for MC event generators	[arXiv:2406
06/2024	NNPDF4.0 aN3LO⊗QED⊗MHOU	[arXiv:2406
02/2024	NNPDF4.0 aN3LO	[arXiv:2402
01/2024	NNPDF4.0 NNLO⊗MHOU	[arXiv:2401
01/2024	NNPDF4.0 QED	[arXiv:2401
11/2023	Intrinsic charm asymmetry	[arXiv:2311
09/2022	PDFs and New Physics (Afb asymmetry)	[arXiv:2209
08/2022	Intrinsic charm	[arXiv:2208
09/2021	NNPDF4.0 (code paper)	[arXiv:2109
09/2021	NNPDF4.0 (main release)	[arXiv:2109

2Q 2026	NNPDF4.1	
3Q 2025	PDFs with Higher-Twist corrections	ระได้แนดขึ้นหม่งใหญ่ขนระดารได้แปดใหญ่มาไขของกระจะให้แมดขึ้นหมังใหญ่มาใหญ่มากระบบใหญ่มากระบบให้แก่ไขขับมาใหญ่มาใ
2Q 2025	Closure test with inconsistencies	
2Q 2025	As determination with aN3LO⊗QED⊗MHOU	[WIP] (see RS's talk this afte
03/2025	NNPDFpol2.0 - helicity dependent PDFs	[arXiv:2503.11814] (presented in
01/2025	Implications of NNPDF4.0 for LHC	[arXiv:250]
11/2024	Combination of aN3LO PDFs (w/ MSHT)	[arXiv:241]
11/2024	Ensemble-based Hyperparameter Optimisation	[arXiv:2410
06/2024	NNPDF4.0 for MC event generators	[arXiv:2406
06/2024	NNPDF4.0 aN3LO⊗QED⊗MHOU	[arXiv:2406
02/2024	NNPDF4.0 aN3LO	[arXiv:2402
01/2024	NNPDF4.0 NNLO⊗MHOU	[arXiv:240]
01/2024	NNPDF4.0 QED	[arXiv:240]
11/2023	Intrinsic charm asymmetry	[arXiv:231]
09/2022	PDFs and New Physics (Afb asymmetry)	[arXiv:2209
08/2022	Intrinsic charm	[arXiv:2208
09/2021	NNPDF4.0 (code paper)	[arXiv:2109
09/2021	NNPDF4.0 (main release)	[arXiv:2109

Missing Higher Order Uncertainties (MHOUs) @ (a)N{2,3}LO

For a given observable *O*, **MHOUs** are commonly estimated by **varying the** unphysical scales in the parton evolutions and in the partonic crosssections:

$$\mathcal{O}\left(\alpha_{s}\left(\mu^{2}\right),\frac{Q^{2}}{\mu_{F}^{2}},\frac{Q^{2}}{\mu_{R}^{2}}\right) = \mathscr{L}\left(\alpha_{s}\left(\mu_{F}^{2}\right),\frac{Q^{2}}{\mu_{F}^{2}}\right) \mathcal{O}\left(\alpha_{s}\left(\mu_{R}^{2}\right),\frac{Q^{2}}{\mu_{R}^{2}}\right)$$

Variation of Factorisation Scale $\kappa_F = Q^2/\mu_R^2$ estimates MHOUs from Anomalous Dimensions in the evolution while variation of **Renormalisation** Scale $\kappa_R = Q^2 / \mu_R^2$ estimates MHOUs from partonic cross-sections.

MHOUs can be added as a nuisance parameter to the Covariance Matrix [arXiv:1906.10698; arXiv:2105.05114]

$$\operatorname{cov}_{i,j} = \operatorname{cov}_{i,j}^{\exp} + \operatorname{cov}_{i,j}^{\operatorname{MHOU}}, \quad \operatorname{cov}_{i,j}^{\operatorname{MHOU}} = \frac{1}{N_{\operatorname{var}} - 1} \sum_{k=1}^{N_{\operatorname{var}}} \left(S_{i,k} - \bar{S}_i \right) \left(S_{j,k} - \bar{S}_j \right)$$

7-point scale variation prescription is used. Points belonging to the same process are **CORRELATED** by κ_R -variation while κ_F correlates all the points.

Approximate N3LO (aN3LO) determination

NNPDF4.0 determination of aN3LO PDFs:

- DGLAP Evolution: accurate numerical approximations splitting functions (10) lowest moments, large-*x* and small-*x* limits)
- Matching conditions: all relevant terms are known (all exact, $a_{H_{\varrho}}^{(3)}$ parametrised)
- DIS Coefficients Functions: massless coefficients (both NC and CC) are known. Massive NC can be approximated
- Hadronic coefficients: some DY coefficients are known, but not yet available in a format suitable for PDFs fits, corrections to Jets and processes are still unknown

<u>New N3LO terms that will be part of NNPDF4.1</u>:

- Higher splitting function moments: $P_{gg}^{(3)}$, $P_{gg}^{(3)}$ [arXiv:2404.09701; arXiv:2410.08089]
- Improved parametrisation for $a_{H,g}^{(3)}$ matching conditions [arXiv:2403.00513]

Approximate N3LO (aN3LO) determination

NNPDF4.0 determination of aN3LO PDFs:

- DGLAP Evolution: accurate numerical approximations splitting functions (10) lowest moments, large-*x* and small-*x* limits)
- Matching conditions: all relevant terms are known (all exact
- DIS Coefficients Functions: massless coefficients (both NC and CC) are known. Massive NC can be approximated
- Hadronic coefficients: some DY coefficients are known, but not yet available in a format suitable for PDFs fits, corrections to Jets and processes are still unknown

<u>New N3LO terms that will be part of NNPDF4.1</u>:

• Higher splitting function moments: $P_{gg}^{(3)}$, $P_{gg}^{(3)}$ [arXiv:2404.09701; arXiv:2410.08089]

• Improved parametrisation for $a_{H,g}^{(3)}$ matching conditions [arXiv:2403.00513]

$$a_{Hg}^{(3)}$$
 parametrised)

QED corrections & Photon PDF

γ-PDFs are computed from **DIS structure functions** [arXiv:1607.04266]:

$$\begin{aligned} x\gamma\left(x,\mu^{2}\right) &= \frac{2}{a_{em}\left(\mu^{2}\right)} \int_{x}^{1} \frac{dz}{z} \left\{ \int_{\frac{m_{p}^{2}x^{2}}{(1-z)}}^{\frac{\mu^{2}}{(1-z)}} \frac{dQ^{2}}{Q^{2}} a_{em}^{2}(Q^{2}) \left[-z^{2}F_{L}\left(x/z,Q^{2}\right) \right. \\ &\left. + \left(zP_{\gamma q}(z) + \frac{2x^{2}m_{p}^{2}}{Q^{2}} \right) F_{2}\left(x/z,Q^{2}\right) \right] - a_{em}^{2}\left(\mu^{2}\right) z^{2}F_{2}\left(x/z,\mu^{2}\right) \right\} \end{aligned}$$

- Depending on the kinematic region the structure functions are computed form: Elastic DIS, Resonance, Shallow Inelastic, DIS
- $\checkmark \gamma(x, Q^2)$ is computed <u>iteratively</u> during the fit
- Mixed QED QCD DGLAP evolution: more difficult to diagonalise due to how γ couples differently to up-like and down-like quarks → Unified Evolution Basis
- While $\gamma(x, Q^2)$ depends on the PDFs through the structure functions, it affects their determination during the iterative procedure.
- Additional mixed QED QCD Momentum Sum rules:

$$\int_0^1 dx \left(x\Sigma + xg + x\gamma \right) (x, Q^2) = 1$$

State-of-the-Art: "aN3LO⊗QED⊗MHOU"

QED corrections & γ -PDF are key for LHC phenomenology:

✤ QED effects are of the same size as aN3LO

Photon suppresses gluon momentum by up to 1%

Various LHC processes receive seizable γ -initiated contributions:

- ✤ aN3LO⊗QED result in a few percent suppression for ggH
- Difference between NNLO & N3LO predictions are reduced when using the appropriate PDFs at each order

2Q 2026	NNPDF4.1
3Q 2025	PDFs with Higher-Twist cor
2Q 2025	Closure test with inconsister
2Q 2025	As determination with aN3L
03/2025	NNPDFpol2.0 - helicity depe
01/2025	Implications of NNPDF4.0 for
11/2024	Combination of aN3LO PDF
11/2024	Ensemble-based Hyperparar
06/2024	NNPDF4.0 for MC event gen
06/2024	NNPDF4.0 aN3LO⊗QED⊗M
02/2024	NNPDF4.0 aN3LO
01/2024	NNPDF4.0 NNLO⊗MHOU
01/2024	NNPDF4.0 QED
11/2023	Intrinsic charm asymmetry
09/2022	PDFs and New Physics (Afb
08/2022	Intrinsic charm
09/2021	NNPDF4.0 (code paper)
09/2021	NNPDF4.0 (main release)

Part II: Methodology

rections	
ncies	
∕O⊗QED⊗MHOU	[WIP] (see RS's talk this afte
endent PDFs	[arXiv:2503.11814] (presented in
or LHC	[arXiv:2501
s (w/ MSHT)	[arXiv:2411
neter Optimisation	[arXiv:2410
nerators	[arXiv:2406
IHOU	[arXiv:2406
	[arXiv:2402
	[arXiv:2401
	[arXiv:2401
	[arXiv:2311
asymmetry)	[arXiv:2209
	[arXiv:2208
	[arXiv:2109
	[arXiv:2109
a harden a harden andere andere andere andere a harden andere andere andere andere andere andere andere andere a	有一些有一些,一有一些有一些有一些有一些有一些有一些有一些有一些有些有些,有有些有些人们有些有些有些人们有的有效,也有有些有些人们有些有些有些有些有些有效的。而且有有有的人们有有有效的有效。如果们只能有有的人们有少少不能

Separate determination of *c*/*c* **PDFs**

- There is no reason why intrinsic charm valence should vanish
- Projections for Z + c-jet at the LHCb favours non-vanishing valence charm
- Future LHC data will verify or falsify a non-zero charm valence.
- NNPDF4.1 will be based on a determination of a separate charm and anticharm PDFs

Ensemble-based Hyperparameter Optimisation

- ML applications rely on a large number of hyperparameters with each combination defining a particular model
- ♦ Selection of the set of hyperparameters is crucial for a model to describe best the data & able to generalise ⇔ Uncertainty quantifications
- In NNPDF4.1, hyperparameter optimisation will be done accounting for the full PDF distribution
- The methodology still relies on the *k*-fold procedure but using a different $L_{hopt}^{(\chi^2)}$ definition:

$$L_{\text{hopt}}^{\left(\chi_{\text{pdf}}^{2}\right)}(\hat{\boldsymbol{\theta}}) = \frac{1}{n_{\text{fold}}} \sum_{p=1}^{n_{\text{fold}}} \min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left(\left\langle \chi_{\text{PDF},p}^{2}(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}) \right\rangle_{\text{rep}} \right)$$

With an additional selection metric that maximises the generalisation power of the models:

$$\varphi_{\chi^2}^2 = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} (\text{cov})_{ij}^{-1} T_{ji}, \quad L_{\text{hopt}}^{(\varphi^2)}(\hat{\theta}) \equiv \left(\frac{1}{n_{\text{K}}} \sum_{p=1}^{n_{\text{K}}} \varphi_{\chi_p^2}^2(\hat{\theta})\right)^{-1}$$

The outcome is not a single Model

Randomly sample over the complete population of acceptable hyperparameters displaying comparable performance

Ensemble-based Hyperparameter Optimisation: Results

Ensemble-based hyperparameter optimisation is only possible with hardware acceleration (GPUs) and that provide various technical advantages:

# Replicas	10	50
Energy reduction	78%	87%
Cost reduction	-45%	47%

✤ Speed scales with the number of replicas (up to a factor of ~200)

- No significant increase of memory with the number of replicas
- \clubsuit Up to 90% energy reduction \iff More sustainable ML training

At the PDF level:

Excellent consistency with NNPDF4.0 with a moderate increase of the uncertainties in the extrapolation regions

Non-trivial validation of the NNPDF methodology

qq luminosity $\sqrt{s} = 14 \text{ TeV}$

2Q 2026	NNPDF4.1	
3Q 2025	PDFs with Higher-Twist corrections	⋇⋰ [⋣] ⋰⋷⋰⋑∊⋎⋈∊∊⋑⋝⋻⋈∊⋭⋬⋳⋳⋽∊⋺⋗⋏⋌⋇⋑⋼⋇⋎⋣⋰⋷⋰⋑∊⋎⋈∊∊⋑⋜⋻⋈⋳⋬⋽⋑⋶∊⋺⋗⋺⋏∊∊⋑⋜⋻⋈⋳⋏⋬⋽⋑⋶∊⋺⋗⋏∊⋗⋭⋇∊⋳∊⋎⋳∊⋎⋳⋎∊⋑∊⋑∊⋑∊⋑∊⋑∊⋑∊⋑∊⋑∊⋑∊⋗⋏∊⋗⋭⋇
2Q 2025	Closure test with inconsistencies	
2Q 2025	As determination with aN3LO⊗QED⊗MHOU	[WIP] (see RS's talk this afte
03/2025	NNPDFpol2.0 - helicity dependent PDFs	[arXiv:2503.11814] (presented in
01/2025	Implications of NNPDF4.0 for LHC	[arXiv:250]
11/2024	Combination of aN3LO PDFs (w/ MSHT)	[arXiv:241]
11/2024	Ensemble-based Hyperparameter Optimisation	[arXiv:2410
06/2024	NNPDF4.0 for MC event generators	[arXiv:2406
06/2024	NNPDF4.0 aN3LO⊗QED⊗MHOU	[arXiv:2406
02/2024	NNPDF4.0 aN3LO	[arXiv:2402
01/2024	NNPDF4.0 NNLO⊗MHOU	[arXiv:240]
01/2024	NNPDF4.0 QED	[arXiv:240]
11/2023	Intrinsic charm asymmetry	[arXiv:231]
09/2022	PDFs and New Physics (Afb asymmetry)	[arXiv:2209
08/2022	Intrinsic charm	[arXiv:2208
09/2021	NNPDF4.0 (code paper)	[arXiv:2109
09/2021	NNPDF4.0 (main release)	[arXiv:2109

How well do PDFs accommodate new data?

- Test PDF sets against new precise measurements from Run I/II using NNLO theories (w/o K-factors)
- Aim to assess how well PDF sets describe unseen data and whether these data will have effects on fits
- ★ Agreement between data and theoretical predictions are quantified using the χ^2 definition:

$$\chi^{2} = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} \left(T_{i}^{(0)} - D_{i} \right) \left(\text{cov}^{-1} \right)_{ij} \left(T_{j}^{(0)} - D_{j} \right)$$

Contributions to the covariance matrix include all sources of theoretical uncertainties:

$$\begin{aligned} \operatorname{cov}_{ij} &= \left(\operatorname{cov}_{\exp} \right)_{ij} + \left(\operatorname{cov}_{\mathrm{th}} \right)_{ij} \\ \left(\operatorname{cov}_{\mathrm{th}} \right)_{ij} &= \left(\operatorname{cov}_{\mathrm{mho}} \right)_{ij} + \left(\operatorname{cov}_{\mathrm{pdf}} \right)_{ij} + \left(\operatorname{cov}_{\mathrm{as}} \right)_{ij} \\ \left(\operatorname{cov}_{\mathrm{pdf}}^{\mathrm{HES}} \right)_{ij} &= \sum_{k=1}^{n_{\mathrm{cig}}} \left(T_i^{(k)} - T_i^{(0)} \right) \left(T_j^{(k)} - T_j^{(0)} \right) \\ \left(\operatorname{cov}_{\mathrm{pdf}}^{\mathrm{MC}} \right)_{ij} &= \frac{1}{n_{\mathrm{rep}}} \sum_{k=1}^{n_{\mathrm{rep}}} \left(T_i^{(k)} - \left\langle T_i \right\rangle_{\mathrm{rep}} \right) \left(T_j^{(k)} - \left\langle T_j \right\rangle_{\mathrm{rep}} \right) \end{aligned}$$

PineAPPL

https://github.com/NNPDF/pineappl

https://matrix.hepforge.org/

https://ploughshare.web.cern.ch/ploughshare/

$$(\operatorname{cov}_{\mathrm{mho}})_{ij} = \frac{1}{3} \left\{ \Delta_i^{+0} \Delta_j^{+0} + \Delta_i^{-0} \Delta_j^{-0} + \Delta_i^{0+} \Delta_j^{0+} + \Delta_i^{0-} \Delta_j^{0-} + \Delta_i^{++} \Delta_j^{++} + \Delta_i^{--} \Delta_j^{--} \Delta_i^{--} \Delta_i^{--}$$

$$(\operatorname{cov}_{\operatorname{as}})_{ij} = \frac{1}{2} \left\{ \Delta_{i,\alpha_s}^+ \Delta_{j,\alpha_s}^+ + \Delta_{i,\alpha_s}^- \Delta_{j,\alpha_s}^- \right\}$$
$$\Delta_{i,\alpha_s}^+ \equiv T_i \left(\alpha_s = 0.119 \right) - T_i \left(\alpha_s = 0.118 \right)$$
$$\Delta_{i,\alpha_s}^- \equiv T_i \left(\alpha_s = 0.118 \right) - T_i \left(\alpha_s = 0.117 \right)$$

Experimental Data included in the study

Process	Experiment	Final State	Observable	\sqrt{s} (TeV)	$\mathcal{L}~(\mathrm{fb}^{-1})$	$n_{ m dat}$		ATLAS	incl. jet $R = 0.6$	$\frac{d^2\sigma}{dp_Td y }$	13	3.2	
LHC W, Z	ATLAS	Z p_T spectrum	$(\underline{1}) \underline{d\sigma}$	13	36.1	38	- LHC jets	\mathbf{CMS}	incl. jets $R = 0.4$ (0.7)	$\frac{d^2\sigma}{dp_Td y }$	13	36.3 (33	
			$(\sigma) dp_T^{\ell\ell}$	10	50.1	00		ATLAS	di-jets $R = 0.6$	$rac{d^2\sigma}{dm_{jj}d y^* }$	13	3.2	
	CMS	W incl. prod.	$rac{d\sigma}{d \eta }$	13	35.9	36		U 1	inclust (low O^2)	$d^2\sigma$	0.210	0.90	
	LHCb	Z incl. forward prod.	$rac{d\sigma}{dy^Z}$	13	5.1	17		пі	Incl. jet (low Q^{-})	$\overline{dQ^2dp_T}$	0.319	0.29	
	ATLAS	Z incl. prod.	$rac{d\sigma}{d y }$	8	20.2	7		H1	incl. jet (high Q^2)	$rac{d^-\sigma}{dQ^2dp_T}$	0.319	0.351	
		all-hadronic	$(1) d\sigma$			l		ZEUS	incl. jet	$rac{d^2\sigma}{dQ^2dE_T}$	0.300	0.038	
			$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{dm_{t\bar{t}}}$	13	36.1	9	HERA jets	ZEUS	incl. jet	$rac{d^2\sigma}{dQ^2dE_T}$	0.319	0.082	
	ATLAS		$\left(rac{1}{\sigma} ight) rac{d\sigma}{d y_{tar{t}} }$	13	36.1	12		H1	di-jets (low Q^2)	$rac{d^2\sigma}{dQ^2d\langle p_T angle}$	0.319	0.29	
			$\left(rac{1}{\sigma} ight) rac{d^2\sigma}{d y_{tar{t}} dm_{tar{t}} }$	13	36.1	11		H1	di-jets (high Q^2)	$rac{d^2\sigma}{dQ^2d\langle p_T angle}$	0.319	0.351	
			$\left(rac{1}{\sigma} ight) rac{d\sigma}{dm_{tar{t}}}$	13	36.1	9		ZEUS	di-jets	$rac{d^2\sigma}{dQ^2d\langle E_T angle}$	0.319	0.374	
	ATLAS	$\ell + \mathrm{jets}$	$\left(rac{1}{\sigma} ight) rac{d\sigma}{dp_T^t}$	13	36.1	8							
top-pair			$\left(rac{1}{\sigma} ight) rac{d\sigma}{d y_t }$	13	36.1	5							
			$\left(rac{1}{\sigma} ight) rac{d\sigma}{d {y_t}_{ar{t}} }$	13	36.1	7	Dataset selection criteria:						
		$\ell + \mathrm{jets}$	$\left(rac{1}{\sigma} ight) rac{d\sigma}{dm_{tar{t}}}$	13	137	15	Not included in NNPDF4.0 except for ALTAS Z @ 8 TeV						
	CMS		$\left(rac{1}{\sigma} ight) rac{d\sigma}{dp_T^t}$	13	137	16	 Publicly available on HepData Provide info on PDFs of # partons & computable @ NN 						
			$\left(rac{1}{\sigma} ight) rac{d\sigma}{d y_{tar{t}} }$	13	137	10							
			$\left(rac{1}{\sigma} ight) rac{d\sigma}{d y_t }$	13	137	11	· · · · · · · · · · · · · · · · · · ·					× I ¶I ¶	
			$\left(rac{1}{\sigma} ight) rac{d^2\sigma}{d y_{tar{t}} dm_{tar{t}} }$	13	137	35	Interfaced to FineAFFL fast interpolation grids						
							and the second second and the second					and the second	

χ^2 comparisons for various PDFs

- ♦ All PDF sets have similar predictive power
- ✤ The inclusion of MHO uncertainties can have significant impact on the description of data
- ✤ By taking into account all possible sources of uncertainties (MHO, PDF, $\alpha_{\rm s}$), the differences at the cross section level dissipate
- ✤ LHC measurements do not strongly discriminate among PDF

 $\Delta \chi^2$ Results

• Relative change in the total χ^2 due to a change in the input PDF

$$\Delta \chi^{2(i)} = \frac{\chi^{2(i)}_{exp+th} - \left\langle \chi^2_{exp+th} \right\rangle_{pdfs}}{\left\langle \chi^2_{exp+th} \right\rangle_{pdfs}}$$

where

$$\left\langle \chi^2_{\text{exp+th}} \right\rangle_{\text{pdfs}} = \frac{1}{n_{\text{pdfs}}} \sum_{i=1}^{n_{\text{pdfs}}} \chi^{2(i)}_{\text{exp+th}}$$

- **No systematic outlier** seen in the data description despite noticeable differences at the level of PDF
- ✤ As anticipated, PDF4LHC21 represents the **average** (with $\Delta \chi^2 \sim 0$)

Conclusions & Outlook

- The precision era at the LHC requires precise & accurate PDFs and advancements are needed for the "three pillars": theory, methodology, and data
- Significant progress in the NNPDF global analysis for a stateof-the-art determination at aN3LO@QED@MHOUs
- Significant improvements in the Hyperparameter Optimisation using ensemble-based methodology \iff demonstrates the robustness of the NNPDF uncertainty estimate
- ✤ A quantitative appraisal of PDF fits using precision LHC measurements show that all PDF sets have similar **predictive power** despite significant differences at the PDF level
- ✤ NNPDF4.1 will be based on the best theory (at the very least) with pure NNLO hadronic predictions) and fitting methodology, as well as more precision LHC measurements

THANKS FOR YOUR ATTENTION

"Wanderer above the Sea of Fog" by Caspar David Friedrich