

NNPDFpol2.0: a first global determination of polarised PDFs at NNLO with theory uncertainties

J.M. Cruz-Martinez, T. Hasenack, F. Hekhorn, G. Magni, E.R. Nocera, <u>Tanjona</u> R. Rabemananjara, J. Rojo, T. Sharma, G. Van Seeventer. DIS 2025, March 25th 2025 Cape Town, South Africa

	Introduction & Motivation
Part I	GM-VFNS in Polarised DIS processes
Part II	Data & Methodology
Part III	NNPDFpol2.0 Helicity Dependent PDFs
Part IV	Phenomenology
2 S	Conclusions & Outlook

[arXiv:2401.10127]

[arXiv:2410.16248]

[arXiv:2503.11814]

Introduction & Motivations

- Helicity-/Spin-dependent PDFs are essentials to understand different physical processes (DIS, SIDIS, EDIS) \iff crucial inputs to parton-to **Fragmentation Function (FF)**
- Test QCD & Factorisation: provide more insights into QCD dynamics and test the validity of the **factorisation theorem**
- Precise knowledge of Polarised PDFs are crucial to decompose the spin content of the proton.

The proton spin is defined in terms of the Proton Sum Rules as R.L. Jaffe, A. Manohar [Nucl. Phys.B 337 (1990) 509-546], X.D. Ji [arXiv:9603249], W. Wakamatsu [arXiv:1004.0268], X. Ji, X. Xiong, F. Yuan, [arXiv:1202.2843]:

$$S_P \equiv \frac{1}{2} = \frac{1}{2} S_{\Sigma}(Q^2) + S_G(Q^2) + (\mathscr{L}_q + \mathscr{L}_g)$$

where the gluon and quark components are defined as:

$$S_{\Sigma} \left(Q^2 \right) = \int_0^1 \left(\Delta u^+ + \Delta d^+ + \Delta s^+ \right) \left(x, Q^2 \right) dx$$
$$S_G \left(Q^2 \right) = \int_0^1 \Delta g \left(x, Q^2 \right) dx$$

 $\Delta\Sigma$ and Δg can be probed in **longitudinally polarised (SI)DIS** and **pp collisions** for $x \ge 10^{-3}$

 $)(Q^{2})$

Introduction & Motivations

- Helicity-/Spin-dependent PDFs are essentials to understand different physical processes (DIS, SIDIS, EDIS) \iff crucial inputs to parton-to Fragmentation Function (FF)
- Test QCD & Factorisation: provide more insights into QCD dynamics and test the validity of the factorisation theorem
- Precise knowledge of Polarised PDFs are crucial to decompose the spin content of the proton.

The p

These studies will be at the core of the Electron-Ion Collider (EIC) program

where the gluon and quark components are defined as:

$$S_{\Sigma} \left(Q^2 \right) = \int_0^1 \left(\Delta u^+ + \Delta d^+ + \Delta s^+ \right) \left(x, Q^2 \right) dx$$
$$S_G \left(Q^2 \right) = \int_0^1 \Delta g \left(x, Q^2 \right) dx$$

 $\Delta\Sigma$ and Δg can be probed in **longitudinally polarised** (SI)DIS and pp collisions for $x \ge 10^{-3}$

202

Oct

det

843]:

EIC Yellow Report

Introduction & Motivation

Part I	GM-VFNS in Polarised DIS processes
Part II	Data & Methodology
Part III	NNPDFpol2.0 Helicity Dependent PDFs
Part IV	Phenomenology
ะส่ว้างที่ได้หมือเชื่อง ¹ างก็สารเห็นใจสารสารสีที่ได้ได้	Conclusions & Outlook

[arXiv:2401.10127]

[arXiv:2410.16248]

[arXiv:2503.11814]

Polarised DIS Observables

Polarised Differential Cross-Sections in *ep*-scatterings are expressed in terms of the polarised structure functions:

$$\frac{d^2 \Delta \sigma^j}{dx dy} = \frac{4\pi \alpha^2}{x y Q^2} \xi^j \left[-\left[1 + (1-y)^2\right] g_4^j + y^2 g_L^j + (-1)^p 2x \left[1 - (1-y)^2\right] g_1^j \right] \qquad g_1 = \left(\frac{1}{n_f} \sum_{k=1}^{n_f} e_{q_k}^2\right) \left(\sum_k C_k \otimes \Delta q_k\right)$$

where the polarised (proton) parton densities are defined with respect to the spin of the parent nucleon as follows:

$$\Delta q_k(x) = \frac{1}{4\pi} \int dy^- e^{-ixP^+y^-} \left\langle h(P,S) \left| \bar{\psi} \left(0, y^-, \mathbf{0}_\perp \right) \gamma^+ \gamma^5 \psi(0, y^-, \mathbf{0}_\perp) \right\rangle \right\rangle$$

$$\Delta g(x) = \frac{1}{4\pi x P^+} \int dy^- e^{-ixP^+y^-} \left\langle h(P,S) \, \Big| \, G^{+\alpha} \left(0, y^-, \mathbf{0}_\perp \right) \, \hat{G}^{-\alpha} \right\rangle$$

Following from the Operator definition, the Proton Spin receives contributions from the Orbital Angular Momentum:

$$S_{P}\left(Q^{2}\right) = \sum_{f} \left\langle P; S \left| \hat{J}_{f}^{z}\left(Q^{2}\right) \right| P; S \right\rangle \equiv \frac{1}{2} = \frac{1}{2} S_{\Sigma}\left(Q^{2}\right) + S_{G}\left(Q^{2}\right) + \mathscr{L}_{q}\left(Q^{2}\right) + \mathscr{L}_{g}\left(Q^{2}\right)$$
$$\left\langle P; S \left| \hat{J}_{\Sigma}^{z}\left(Q^{2}\right) \right| P; S \right\rangle \xrightarrow{\text{naive p.m.}} 2 \left\langle S_{\Sigma}^{q+\bar{q}} \right\rangle, \qquad \left\langle P; S \left| \hat{J}_{\Sigma}^{z}\left(Q^{2}\right) \right| P; S \right\rangle \xrightarrow{\overline{\text{MS}}} S_{\Sigma}\left(Q^{2}\right) - n_{f} \frac{\alpha_{s}\left(Q^{2}\right)}{2\pi} S_{G}\left(Q^{2}\right)$$

GM-VFNS for massive (charm) quarks

Definitions

Features

$$\sum_{k=g,u,d,s,c} \Delta C_k^{(n_f+1)}(x,Q^2) \otimes \Delta q_k^{(n_f+1)}(x,Q^2)$$

Appropriate at High Energies

Unreliable in the Threshold Region due to Mass Corrections

Charm treated in the same footing as LIGHT quarks

$$\sum_{k=g,u,d,s} \Delta C_k^{(n_f)}(x,Q^2/m_c^2) \otimes \Delta q_k^{(n_f)}(x,Q^2)$$

Charm mass effects accounted for exactly No Charm in the PDF **Exact** in the Threshold Region

Unreliable at mc2<<Q2 due to Large unresummed logarithms

$$\sum_{u,d,s,c} \left(\Delta C_j^{(n_f)} + \Delta C_j^{(n_f,0)} \right) \left(x, \frac{Q^2}{m_c^2} \right) \otimes \mathbf{A}_{jk}^{-1}(Q^2)$$

$$\Delta q_k^{(n_f+1)}(x, Q^2) + \sum_{k=g,u,d,s,c} \Delta C_k^{(n_f+1)} \Delta q_k^{(n_f+1)}(x, Q^2)$$

Combines Best of Both Formalisms

Combines in a Consistent way Massless & Massive Calculations

Ingredients for constructing FONLL GM-VFNS

Anomalous Dimensions

Both Singlet and Non-Singlet Anomalous Dimensions are **analytically known** up to $\mathcal{O}(\alpha_s^3)$

Moch, Vermaseren, Vogt [arXiv:<u>1409.5131</u>] - [arXiv:<u>1506.04517</u>], Blümlein, Schneider, Schönwald [arXiv:<u>2111.12401</u>], Gluck, Reya, Stratmann, Vogelsgand [arXiv:<u>9508347</u>]

At **lowest-trivial order**, polarised *qq* Anomalous Dimensions is identical to its Unpolarised counterpart:

 $\Delta \gamma_{qq}^{(0)}(N, \alpha_s(Q^2)) = \gamma_{qq}^{(0)}(N, \alpha_s(Q^2))$

Symmetry considerations imply that Non-Singlet polarised Anomalous Dimensions are directly related to the spin-averaged counterparts at ALL order via the following relation:

 $\Delta \gamma_{\mathrm{NS},\pm}^{(n)}(N, \alpha_s(Q^2)) = \gamma_{\mathrm{NS},\mp}^{(n)}(N, \alpha_s(Q^2))$

Helicity conservation implies that the first Moment of the gluon-to-quark Splitting Function vanishes:

 $\int_{1}^{0} dx \ x \Delta P_{qg}(x, \alpha_{s}(Q^{2})) = 0$

Matching Conditions

The components of the Matching Condition matrices $\Delta A_{\alpha\beta}$ for all values of α and β are **known analytically** up to $\mathcal{O}(\alpha_s^2)$

Bierenbaum, Blümlein, Freitas, Goedicke, Klein, Schönwald [arXiv:2211.15337]

The expressions of the **Zeroth order** Matching Coefficients are trivial:

 $\mathbf{A}_{\alpha\beta}^{(0)}(x,Q^2/m_h^2) = \delta_{\alpha\beta}$

At NLO, only $\Delta A_{\alpha\beta}^{(1)}$ components with $\alpha = g, c, \bar{c}$ and j=g are non-zero while all other components with Quark lines contribute at NNLO

Coefficient Functions

The pure massless coefficient functions entering the expression of g_1 are **known analytically up to NNLO** Ziljstra, Van Neerven [iNSPIRE:353973]

The massive coefficients are <u>available up to NNLO with their asymptotic limits</u> Herkhorn, Stratmann [arXiv:<u>1805.09026</u>], Behring, Blümlein, Freitas, Von Matnteuffel [arXiv:<u>1504.08217</u>], Ablinger, Behring, Blümlein, Freitas, Von Matnteuffel, Schneider, Schönwald [arXiv:<u>1912.02536</u>] - [arXiv:<u>2101.05733</u>]

Heavy quark (charm) mass effects on polarised observables g_1

- Mass effects are moderate for inclusive observables and NNLO effects are non-negligible with current DIS kinematics \Leftrightarrow NLO QCD calculations might not be sufficiently accurate for EIC physics.
 - For tagged Charm final-state, NNLO effects are still non-negligible and Charm Mass effects are sizeable \iff EIC physics require both higher-order corrections and mass effects

	Introduction & Motivation
Part I	GM-VFNS in Polarised DIS processes
Part II	Data & Methodology
Part III	NNPDFpol2.0 Helicity Dependent PDFs
Part IV	Phenomenology
	Conclusions & Outlook

[arXiv:2401.10127]

[arXiv:2410.16248]

[arXiv:2503.11814]

Kinematic coverage

Experimental Data

NNPDFpol2.0 includes measurements from various experiments and probes different processes:

- \clubsuit g_1 structure functions from COMPASS, SLAC, HERMES, JLAB, and SMC
- $alpha g_1/F_1$ from SLAC and JLAB
- Longitudinal spin asymmetry at small-x from SMC
- W-boson longitudinal single spin asymmetry $A_I^{W^{\pm}}$ from STAR
- Single-inclusive jet and di-jet longitudinal double spin asymmetry $A_{II}^{1/2-\text{jet}}$ from STAR

the **small**-*x* **region**

Estimate of Missing Higher Order Uncertainties (MHOUs)

For a given observable *O*, **MHOUs** are commonly estimated by **varying the unphysical scales** in the **parton evolutions** and in the **partonic cross-sections**:

$$\mathcal{O}\left(\alpha_{s}\left(\mu^{2}\right),\frac{Q^{2}}{\mu_{F}^{2}},\frac{Q^{2}}{\mu_{R}^{2}}\right) = \mathscr{L}\left(\alpha_{s}\left(\mu_{F}^{2}\right),\frac{Q^{2}}{\mu_{F}^{2}}\right) \mathcal{O}\left(\alpha_{s}\left(\mu_{R}^{2}\right),\frac{Q^{2}}{\mu_{R}^{2}}\right)$$

Variation of Factorisation Scale $\kappa_F = Q^2/\mu_R^2$ estimates MHOUs from Anomalous Dimensions in the evolution while variation of **Renormalisation Scale** $\kappa_R = Q^2 / \mu_R^2$ estimates MHOUs from partonic cross-sections.

MHOUs can be added as a nuisance parameter to the Covariance Matrix [arxiv:1906.10698; arxiv:2105.05114]

$$\operatorname{cov}_{i,j} = \operatorname{cov}_{i,j}^{\exp} + \operatorname{cov}_{i,j}^{\operatorname{MHOU}},$$
$$\operatorname{cov}_{i,j}^{\operatorname{MHOU}} = \frac{1}{N_{\operatorname{Var}} - 1} \sum_{k=1}^{N_{\operatorname{Var}}} \left(S_{i,k} - \bar{S}_i \right) \left(S_{j,k} - \bar{S}_j \right)$$

7-point scale variation prescription is used. Points belonging to the same process are **CORRELATED** by κ_R -variation while κ_F correlates all the points.

NNPDFpol2.0 methodology in a nutshell

	Introduction & Motivation
Part I	GM-VFNS in Polarised DIS processes
Part II	Data & Methodology
Part III	NNPDFpol2.0 Helicity Dependent PDFs
Part IV	Phenomenology
	Conclusions & Outlook

[arXiv:2401.10127]

[arXiv:2410.16248]

[arXiv:2503.11814]

NNPDFpol2.0 PDFs: Perturbative Convergence

NNLO corrections, heavy quark contributions, and MHOUs have very limited effects With current data, theoretical framework, and methodology, perturbative expansion has converged

NNPDFpol2.0 PDFs: Comparison to other sets

Very good agreement (in the central value) between NNPDFpol2.0 and BDSSV24 in the **data region** ($x \ge 10^{-2}$)

NNPDFpol2.0 PDFs: Effect of Positivity

<u>CLAIM</u>: W/o being enforced, <u>Gluon Positivity only satisfied</u> by inclusions of RHIC SI jet and JLab DIS [arXiv:2201.0207] NOT QUITE TRUE: Positivity is immaterial to the sign of the Gluon \iff reduce large-*x* uncertainties

1	

	Introduction & Motivation
Part I	GM-VFNS in Polarised DIS processes
Part II	Data & Methodology
Part III	NNPDFpol2.0 Helicity Dependent PDFs
Part IV	Phenomenology
ให้ข้างที่มีกลับสินให้มีการที่มาก็สารให้บริการสมสัตวารที่ที่	Conclusions & Outlook

[arXiv:2401.10127]

[arXiv:2410.16248]

[arXiv:2503.11814]

Phenomenological Implications

	Introduction & Motivation
Part I	GM-VFNS in Polarised DIS processes
Part II	Data & Methodology
Part III	NNPDFpol2.0 Helicity Dependent PDFs
Part IV	Phenomenology
	Conclusions & Outlook

[arXiv:2401.10127]

[arXiv:2410.16248]

[arXiv:2503.11814]

PineAPPL: A Modern Fast Interpolation Grid

What is **PineAPPL**?

C Rust passing

Rust 1.80+

This repository contains programs, libraries and interfaces to read and write PineAPPL interpolation grids, which store theoretical predictions for high-energy collisions independently from their PDFs and the strong coupling.

codecov 97% docs passing crates.io v1.0.0-alpha2

PineAPPL grids are generated by Monte Carlo generators, and the grids in turn can be convolved with PDFs to produce tables and plots, such as the following one:

https://github.com/NNPDF/pineappl

Conclusions & Outlook

- Precise knowledge of Polarised PDFs is crucial to probe the spin content of the proton and will play an essential role in the EIC physics program
- NNPDFpol2.0 is based on state-of-the-art theoretical (mass) effects, MHOUs, etc.) and fitting frameworks (new hyperparameter optimisation using ensemble method)
- RHIC data are relevant in constraining key aspects of the polarised PDFs (especially the Gluon)
- **\Rightarrow Positivity constraints** $(|\Delta f_k| \le f_k)$ are **not crucial** in pinning down the **sign of the Gluon PDF**
- Formalism could be extend to extract the parton-to **Fragmentation Functions (FFs)**

THANKS FOR YOUR ATTENTION

"Wanderer above the Sea of Fog" by Caspar David Friedrich