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Abstract
The primary focus of this Ph.D. thesis is the precise determination

and validation of the uncertainties associated with parton distribution func-
tions (PDFs). We introduce and implement the theory covariance method
within the NNPDF4.0 framework, enabling the incorporation of theoretical
uncertainties into the PDF determination process. Additionally, we revisit
and expand upon the closure tests framework, which serves as a tool for val-
idating the PDF extraction methodology in a controlled environment. This
framework is applied to a dataset that has been deliberately constructed to
be inconsistent, allowing for a rigorous assessment of the methodology’s ro-
bustness. Furthermore, we utilize this framework to validate the extraction
of the strong coupling constant using the correlated replica method. Finally,
we present a novel theoretical pipeline, which introduces several technical
advancements and underpins all the results discussed in this thesis.
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Introduction

With the Large Hadron Collider (LHC) currently on its Phase III, the experimental preci-
sion will significantly improve due to an expected luminosity of approximately 300 fb−1.
This LHC run is also projected to enhance its discovery potential, operating at a center-
of-mass energy around 14 TeV. The new kinematic regions explored during this phase
are likely to be pertinent to some of the most critical unresolved issues of the Standard
Model. It is essential to maximize the potential of the forthcoming data to address these
beyond-the-standard-model (BSM) questions. To achieve this is necessary for the theoreti-
cal prediction to match the experimental precision, which is now recognized to be at the
percent level.

On the theoretical front, one of the primary sources of uncertainty arises from the de-
piction of the internal structure of the colliding hadrons, most commonly protons. This
depiction is encapsulated in the Parton Distribution Functions (PDFs). These functions
are essential for interpreting any hadron collision event, as they describe the constituent
particles of the proton, known as partons. Since PDFs are connected to the low-energy
dynamics occurring inside the proton, they cannot be determined within the framework
of perturbative Quantum ChromoDynamics (QCD), complicating their accurate deter-
mination.

While alternative methods exist, the most prevalent approach to extracting PDFs in-
volves leveraging their universality, which means that they remain the same across dif-
ferent collision processes. This universality allows for the extraction of a set of PDFs
from a limited dataset, which, in theory, can predict any other proton collision event1. In
particular, thanks to the collinear factorization theorem, a longitudinal cross-section σ for a
certain process can be written as the convolution

σ = σ̂ ⊗ f ,

where f is the PDF and σ̂, called partonic cross-section, describes the high-energy dynam-
ics happening between the partons in the collision. Given that the partonic cross-sections
are related to high-energy dynamics, they can be calculated within the framework of per-
turbative QCD. Consequently, by utilizing a dataset that measures the value of σ for a set

1In practice, this is not straightforward, as various complications can undermine PDF universality. For in-
stance, the dataset used for determination might not be comprehensive enough, potentially failing to constrain
certain combinations and/or kinematic regions of the PDFs. These and other complications are discussed in
more detail in chapter 2.

vii



viii Thesis overview

of processes and the corresponding partonic cross-sections σ̂ computed through pertur-
bation theory, one can solve the inverse problem to extract the PDFs. The quality of the
PDF determination and the associated uncertainties will depend on three main factors:
the experimental data, the theoretical predictions (of the partonic cross-sections), and the
fitting methodology. While the experimental aspect will not be further discussed, the ad-
vancements in theoretical predictions and in the methodology form the central theme of
this thesis.

Regarding the theoretical predictions, this thesis addresses a critical issue: how to
estimate theoretical uncertainties, primarily arising from neglected higher-order terms
in the perturbative series, and incorporate them into the PDF fits (chapter 2). This prob-
lem, previously overlooked, has now become essential for obtaining reliable PDF uncer-
tainties and central values, given that theoretical errors are comparable to experimental
errors.

On the methodology side, one of the most significant challenges is assessing the relia-
bility of PDF uncertainties. This task is particularly complex for NNPDF, which employs
a Neural Network approach that currently lacks a comprehensive theoretical foundation.
Therefore, it becomes crucial to rigorously test and validate the resulting PDFs under
controlled conditions. This validation can be achieved through a closure test, which
evaluates the fit results using appropriate statistical metrics in an artificial environment
where the correct answer is known. Due to its versatility, the closure test framework al-
lows for testing the robustness of a fit in various scenarios, including cases where there
may be inconsistencies in the experimental data or challenges in precise parameter esti-
mation. These aspects are explored in detail in chapter 3.

All the results presented in this thesis necessitated technical improvements in the
production of theoretical predictions, culminating in the development of an entirely new
theory pipeline, detailed in chapter 4.

Outline of the thesis

Chapter 1: QCD and Parton Distribution Functions.

We review the fundamental properties of Quantum Chromodynamics (QCD), the
fundamental theory describing the strong interactions (sections 1.1 and 1.2). We
focus on the parton model (section 1.3) and, in particular, on the Parton Distribu-
tion Functions (PDFs), which are the common thread that connects all the topics
covered in this thesis. We also provide some details on the different ways in which
heavy quarks effects can be taken into account (section 1.4). This introduction is
mainly based on [1–3].

Chapter 2: Inclusion of theory errors in PDF fitting.

We present the first NNLO PDF extraction with inclusion of theory errors due to
missing higher orders (MHO), based on the methodology first introduced in [4].
We also adapt this methodology to produce an approximate N3LO PDF set where
different sources of theory errors, due to missing or incomplete theoretical calcula-
tions, are taken into account. This chapter is based on [5–7].

Chapter 3: Validation of the methodology: Closure Tests.

We provide a complete description of the Closure Test tool, a validation framework
already adopted in [8] (section 3.1). We then discuss the statistical estimators that
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can be used in the context of a multiclosure test to assess the quality of a fitting
methodology and we propose some improved variants (section 3.1.1). Making use
of the improved estimators, we test the NNPDF4.0 methodology on data that are
inconsistent by design, i.e. data whose nominal uncertainties are smaller than their
real uncertainties (section 3.2). We also make use of the closure tests framework
to validate our estimation of the strong coupling αs (section 3.3). Most of what is
discussed in this chapter is based on [8–10] [11]

Chapter 4: Technical Improvements: The Pineline.

We present the Pineline, a new set of tools, adopted by NNPDF as the theory pre-
dictions production pipeline, whose goal is to standardize and make more efficient
the process of producing high-energy theory predictions (sections 4.1 and 4.2). We
also present a specific example in which we show that adopting the Pineline is
both simple and advantageous from a performance point of view. This chapter is
mainly based on [12].

A substantial part of the research presented in this thesis was conducted in collabo-
ration with colleagues from the NNPDF collaboration. Throughout the presentation of
results, emphasis has been placed on areas where the author believes their contributions
have been particularly noteworthy. Unless explicitly stated otherwise in the captions, all
figures presented in this thesis have been generated by the author or have previously
appeared in publications co-authored by the author.

Also, note the colors of the citations in the text: the cyan is used for citation to paper
co-authored by the author, while green is used for all the others.

The following publications co-authored by the author are not discussed in this thesis:

• NNPDF4.0 aN3LO PDFs with QED corrections [7].

• Photons in the proton: implications for the LHC [13].





CHAPTER 1

QCD and Parton Distribution Functions

In this chapter, Quantum ChromoDynamics (QCD), the model that is currently used
to describe the strong interactions happening inside the hadrons, is described in some
details. QCD was first introduced in the 1960s and, since then, its predictive power
was confirmed by many experiments, making it the main tool for the computation of
theoretical predictions at the hadron colliders.

It is the theory of quarks, gluons and their interactions and it is a gauge theory,
like Quantum Electrodynamics (QED). Both theories share several similarities; for ex-
ample, just as electrons carry electric charge, quarks carry the QCD charge, referred to
as color. However, unlike the single type of electric charge, color comes in three types:
red, green, and blue. Additionally, while photons are electrically neutral, gluons are not
color-neutral. Instead, gluons can be thought of as carrying a combination of color and
anti-color charges, resulting in eight distinct combinations. These and other differences
stem from the fact that QCD is a non-abelian gauge theory, unlike QED. This fundamen-
tal distinction leads to many unique features in QCD that are absent in QED, as will be
illustrated in the following sections.

Another significant distinction between QCD and QED lies in their respective cou-
pling behaviors. The strong coupling constant, αs, approaches zero at high energy scales,
a phenomenon known as asymptotic freedom. In contrast, the electromagnetic coupling
constant, αEM, increases with rising energy scales. At the energy levels of the LHC, αs

varies from approximately 0.08 at a scale of 5 TeV, an energy range conducive to the
application of perturbation theory, to about 1 at 0.5 GeV. The high value of αs at lower
energy scales facilitates the aggregation of quarks into color-neutral states, known as
hadrons, a phenomenon referred to as confinement. However, this high value also makes
perturbation theory ineffective for making predictions at low energies. To address this
issue, modern high-energy scattering predictions are computed using the improved par-
ton model, an enhancement of Feynman’s original parton model that incorporates QCD
corrections.

In the following section (1.1), the QCD lagrangian and its group structure are de-
scribed. In section 1.2, the fundamentals aspects of perturbative QCD are recalled, as
well as UV and IR divergences treatment. In section 1.3, the improved parton model is
described is some details, focusing on the introduction of the Parton Distribution Func-
tions (PDFs) and on their evolution equations. Finally, in section 1.4, some details about
the treatment of the heavy quarks effects are provided. Most of the discussion of this
chapter is based on [1–3].

1



2 1.1 Lagrangian and group structure

1.1 Lagrangian and group structure

The fields entering the QCD Lagrangian are the quark fields, ψa, which are spinors (since
quarks are fermions) that carry the color index a ranging from 1 to 3, and the gluon fields,
AC

µ , which are vector fields that carry the color index C ranging from 1 to 8. The theory
is constructed to be gauge invariant under local SU(3) symmetry group, i.e. invariant
under the field transformations

ψa → eiθ
C(x)tCabψb (1.1)

AC
µ t

C → eiθ
D(x)tD

(
AC

µ t
C − 1

gs
∂µθ

C(x)tC
)
e−iθ

E(x)tE ,

where θC(x) are eight arbitrary real functions of the space-time position x, tC are the
eight SU(3) group generators, the index µ is a Lorentz index and, as in the rest of this
thesis, the repeated indices are summed over, following Einstein notation.

In eq. (1.1) the flavour index has been kept implicit, as it will be done in the rest of
this chapter. There are six quark flavours, which can be categorized into three families
based on their physical masses and electric charges. The first family includes the up (u)
and down (d) quarks. These are the lightest, with masses of approximately 2 MeV and
5 MeV, respectively, and electric charges of eu = 2/3 and ed = −1/3. The second family
consists of the charm (c) and strange (s) quarks, with masses around 1 GeV and 100 MeV,
respectively. The third family comprises the top (t) and bottom (b) quarks, with signif-
icantly larger masses of approximately 170 GeV and 5 GeV. Despite having the same
electric charge structure, the quark masses increase substantially across these families.
The underlying physical reason for the existence of multiple essentially equivalent quark
families, as well as the possibility of additional families, remains unknown.

While quark fields transform according to the fundamental representation of SU(3),
gluon fields transform according to the adjoint representation. However, the parameters
θC(x) are functions of the space-time coordinate x. Ensuring the invariance of the theory
under a local group transformation is the conventional method for constructing gauge
theories such as QCD and QED.

The SU(3) group generators tC are hermitian matrices which have to follow the so-
called Lie algebra of the group

[tA, tB ] = ifABCtC , (1.2)

where fABC is a completely antisymmetric tensor whose entries are called structure con-
stants of SU(3). It is important to note that the non-abelian nature of the SU(3) group is
indicated by the fact that fABC is non-zero. Adopting the Gell-man convention

Tr(tAtB) = TRδAB TR =
1

2
, (1.3)
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it is possible to write the generators of SU(3) esplicitly as

t1 =
1

2

0 1 0
1 0 0
0 0 0

 t2 =
1

2

0 −i 0
i 0 0
0 0 0

 t3 =
1

2

1 0 0
0 −1 0
0 0 0

 t4 =
1

2

0 0 1
0 0 0
1 0 0


t5 =

1

2

0 0 −i
0 0 0
i 0 0

 t6 =
1

2

0 0 0
0 0 1
0 1 0

 t7 =
1

2

0 0 0
0 0 −i
0 i 0

 t8 =
1

2
√
3

1 0 0
0 1 0
0 0 −2

 .

From this explicit representation of the generators, we can observe that there are two
diagonal matrices, t3 and t8. Since they are diagonal, they commute with each other,
indicating that the rank of SU(3) is 2 (generally, the rank of SU(N) is N − 1). This
is significant because the rank corresponds to the number of Casimir operators of the
group, which are associated with important properties of particles.

The generators in the adjoint representation are instead 8× 8 matrices defined as

(TA)BC = −ifABC . (1.4)

In QCD computations there are some color related quantities which usually appear in
the cross-sections. In particular, when quarks are involved one recurring combination is

∑
A

tAabt
A
bc = CF δac , CF =

N2 − 1

2N
=

4

3
, (1.5)

while, when gluons are involved, we often have

Tr(TATB) = CAδ
AB , CA = N = 3 . (1.6)

Having discussed the group structure of QCD in some detail, we will now focus the
remainder of this section on the Lagrangian formulation of the theory. The QCD La-
grangian can be written as

LQCD = Lq + LG + Lquantum , (1.7)

where Lq is the quark part, LG the purely gluonic part and Lquantum is needed for the
quantization of the theory. The quark part is

Lq = ψa(i /Dab −mδab)ψb , (1.8)

where
/Dab = γµ∂µδab + igsγ

µtCabAC
µ , (1.9)

is the covariant derivative used, in place of the standard derivative, to promote the global
SU(3) symmetry to the local version of eq. (1.1). The covariant derivative includes an
additional component compared to the standard derivative, which governs the interac-
tions between quarks and gluons. As evident from eq. (1.9), these interactions do not
preserve the diagonal nature of color states, implying that when a gluon interacts with a
quark, the quark typically changes its color.

The second part contains the dynamics and the interactions of the gluons with them-
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selves. Defining the field-strength tensor as

FA
µν = ∂µAA

ν − ∂νAA
µ − gsfABCAB

µAC
ν , (1.10)

the gluonic lagrangian can be written as

LG = −1

4
Tr(FµνF

µν) . (1.11)

It is crucial to observe that the term gsf
ABCAB

µAC
ν represents one of the primary distinc-

tions from Quantum Electrodynamics (QED). This term arises due to the non-abelian
nature of QCD and plays a pivotal role, as will be discussed in the subsequent section,
in the formation of three- and four-gluon vertices, phenomena absent for the photons in
QED.

The final component of the Lagrangian is not gauge-invariant and must be included
for proper quantization of the theory. Due to the gauge symmetry of the theory, there
exist redundant degrees of freedom that render canonical quantization inadequate for
QCD. To address this issue, the Faddeev-Popov method involves eliminating these redun-
dant degrees of freedom by introducing a gauge-fixing term into the Lagrangian. It reads

Lg.f. =
1

2ξ

∑
A

|∂µAµ
A|2 , (1.12)

from which one gets, for example, the Feynman gauge setting ξ = 1 or the Landau gauge
for ξ = 0. Additionally, to complete the quantization part of the lagrangian, we must add
the ghost term

Lghost = ηA∂µD
µ
ABηB , (1.13)

which introduces another kind of fields, called ghost fields, that are complex scalar fields
but that obey Fermi statistics. This property makes these degrees of freedom unphysical
and hence not directly associated with observable particles. However, for the computa-
tion of measurable quantities, these degrees of freedom generally need to be taken into
account.

1.2 Perturbative QCD

Perturbation theory involves expressing a given observable as a series expansion in a
small parameter. In Quantum Chromodynamics (QCD) the strong coupling constant αs

serves this role. Therefore, an observable quantity computed using perturbation theory
up to αn

s order in QCD can be expressed as:

F = f (0) + f (1)αs + f (2)α2
s + · · ·+ f (n)αn

s +O(αn+1
s ) . (1.14)

Notice the round parenthesis notation denoting the perturbative order that will be adopted
in the rest of the thesis.

For perturbation theory to provide reliable predictions, it is essential not only that the
expansion parameter itself is small, but also that the coefficients f (i) do not include terms
that grow excessively with i. In other words, the critical condition for the reliability of
perturbation theory is that f (i)αi

s constitutes a parametrically decreasing function in i.
This requirement imposes constraints on both the coupling constant and the coefficients
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themselves.
Regarding the coupling constant, as mentioned earlier in this chapter, in Quantum

Chromodynamics (QCD) it decreases with increasing energy scale of the process. This
behavior is a consequence of renormalizing ultraviolet (UV) divergences (further details
on running coupling and renormalization can be found in section 1.2.1). The value of
the QCD coupling constant varies by up to an order of magnitude within commonly
observed kinematic ranges, making perturbation theory not always reliable across all
energy scales. Thus, in QCD, there exist distinct kinematic regions: the perturbative re-
gion, typically above 1 GeV, and the non-perturbative region. This dichotomy implies
that standard techniques cannot reliably predict the low-energy internal dynamics of
objects such as hadrons, nor processes involving them. However, the Feynman parton
model provides a means to circumvent these limitations and make predictions for pro-
cesses initiated by hadrons, such as those observed at the LHC. The parton model will
be discussed in section 1.3.

Regarding the coefficients f (i), they are primarily computed using Feynman diagram
techniques. Starting from the QCD Lagrangian discussed in the preceding section, one
can derive the QCD Feynman rules (fig. 1.1), which govern the construction of Feynman
diagrams associated with these coefficients f (i). It is noteworthy that the second and
third rules in fig. 1.1 correspond precisely to the last term of eq. (1.10), highlighting
them as significant differences between QCD and QED, as mentioned earlier. Once the
coefficients f (i) are computed, it may occur that calculations involving multiple energy
scales introduce logarithms of the ratios of these scales. In certain kinematic regions,
these logarithmic terms can become significant and, depending on their exponents, can
cause the coefficients f (i) to become too large for perturbation theory to be applicable. In
such cases, it becomes necessary to resum these logarithmic contributions to all orders.

A, µ

ba

−igstAbaγ
µ

A, µ

B, νC, ρ

p

q

r

−gsfABC [(p− q)ρgµν +(q− r)µgνρ +(r− p)νgρµ ]

A, µ

B, ν

D, σ

C, ρ

−ig2sf
XACfXBD[gµνgρσ − gµσgνρ + (C, ρ) ↔

(D,σ) + (B, ν) ↔ (C, ρ) ]

Figure 1.1: Interactions vertices of the Feynman rules of QCD

A class of such logarithms is composed by the collinear logarithms. These logarithmic
terms arise from the phase-space integration of, for instance, the g → qq̄ splitting pro-
cess in the limit where the final quarks become collinear. If the final quarks are treated as
heavy, meaning their masses are non-zero, the logarithms take the form logk

(
Q2/m2

q

)
,

where mq is the mass of the quark, Q is the hard energy scale of the process, and the
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power k is less than or equal to the perturbative order i of the coefficient f (i) being com-
puted. If the quarks are treated as light, these collinear logarithms become infrared (IR)
collinear divergences that must be regularized, for example, using dimensional regu-
larization. In section 1.2.2 we discuss collinear divergences and, more in general, how
IR divergences are treated, while, in section 1.4, we discuss how the resummation of
collinear logarithms is performed, focusing on the Deep Inelastic Scattering (DIS) case.

1.2.1 UV divergences: running coupling

When computing a quantity in perturbation theory beyond leading order, phase-space
integrals can become divergent in both the ultraviolet (UV) region, i.e. high energy, and
the infrared (IR) region, i.e. low energy. The methods for addressing these divergences
vary depending on their nature. In this and the subsequent section, we will examine the
main aspects of their regularization. For a detailed description, the reader may refer to
[14, 15].

The standard procedure to regularize UV divergences is renormalization. It involves
redefining both the fields and the constant terms, such as the coupling, in the Lagrangian
in a manner that allows them to absorb the infinities. In the QCD case this means to
rescale quark and gluon fields, quark masses and the coupling as follows

ψb =
√
Zψ , Ab =

√
Z3A , mb =

Zm

Z2
m, gbs =

Z1

Z2

√
Z3

gs , (1.15)

where we use the apex b to denote a bare, i.e. not renormalized yet, quantity.
In dimensional regularization, which is the standard method used to regularize IR

divergences as well, the Lagrangian is constructed to have a dimension of d = 4 − 2ϵ.
Consequently, the energy dimensions of fields and constants are altered as

[ψ] =
d− 1

2
=

3

2
− ϵ (1.16)

[A] = d− 2

2
= 1− ϵ (1.17)

[gs] = d− 2[ψ]− [A] = 4− d
2

= ϵ . (1.18)

In order to keep working with a dimensionless coupling, one may define

αb
s =

(gbs)
2

4π
=

Z2
1

Z2
2Z3

αsµ̃
2ϵ , µ̃2ϵ ≡ µ2eγ

4π
, (1.19)

where γ is the Euler’s gamma and µ, called renormalization scale, is a fictitious scale in
which the energy scale is retained. The second part of the last equation defines a partic-
ular scheme of renormalization called modified minimal subtraction scheme (MS), which is
the scheme adopted in this chapter.

After this redefinition, Z terms can be fixed, order by order in perturbation theory
in such a way the observables are UV finite. However, by means of eq. (1.19), the bare
coupling acquires an energy dependence which we must impose to vanish, as

µ2 d

dµ2
logαb

s = 0 . (1.20)
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In turn, this equation leads to the renormalization group equation (RGE) of the renormal-
ized coupling, that reads

µ2 d

dµ2
αs(µ

2) = β(αs(µ
2)) (1.21)

and that fixes, order by order in perturbation theory, the dependence of the renormalized
coupling αs on the renormalization scale µ. The β function appearing on the right hand
side of the latest equation can be expressed as

β(αs(µ
2)) = −ϵαs − (β0α

2
s(µ

2) + β1α
3
s(µ

2) +O(α4
s)) , (1.22)

with the coefficients βi computed in perturbation theory (currently they are known up
to five loops [16]). In particular,

β0 =
11CA − 4nfTF

12π
=

33− 2nf
12π

, (1.23)

that is positive for nf < 17 (thus is positive in our case, given that, as far as we currently
know, nf = 6). The solution of eq. (1.21) at leading order, with d = 4, is

αs(µ
2) =

αs(µ
2
0)

1 + αs(µ2
0)β0 logµ

2/µ2
0

, (1.24)

where µ2
0 is an arbitrary scale. It is then clear that, with β0 > 0, the value of the run-

ning coupling decreases logarithmically to 0 as the energy scale of the process increases.
As already mentioned, this property is called asymptotic freedom, and makes QCD an
asymptotically free theory. Note that in eq. (1.24) we still need an initial condition in
order to compute the value fo the running coupling at all energy scales µ2. This initial
condition is usually obtained from experiments, which quote the value of the running
coupling at the mass of the Z boson, αs(M

2
Z) (fig. 1.2).

In eq. (1.24), the fixed coupling still depends on the arbitrary scale µ0. In certain
cases, it may be desirable to eliminate this dependence. This is commonly achieved
by replacing it with a dimensionful parameter ΛQCD, which roughly corresponds to the
energy scale at which the theory becomes strongly coupled. It allows to write eq. (1.24)
as

αs(µ
2) =

1

β0 log
µ2

ΛQCD2

, (1.25)

thanks to its definition

log
µ2

Λ2
QCD

= −
∫ ∞
αs(µ2)

dx

β(x)
. (1.26)

Its value is approximately 200 MeV, although its precise definition depends on the cho-
sen renormalization scheme. Together with the renormalization group equations (RGE)
describing the running of the coupling, ΛQCD enables us to replace the dependence on
the dimensionless parameter gs, which, as we have just seen, is not a constant.

1.2.2 IR divergences

The other type of divergence encountered when computing a QCD observable is the IR
divergence. It arises from the low-energy region of phase-space integrals and can be cat-
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Figure 1.2: Running coupling measurements at different scales and different perturbative order.
This figure is taken from [17].

egorized into two types: soft divergences, associated with the low energy of the particles,
and collinear divergences, related to the collinearity between emitted and emitting par-
ticles. Both types can originate from either initial or final state particles, and the methods
for their regularization differ significantly in these two cases, as a consequence of these
two theorems [18]:

• Bloch-Nordsieck theorem: IR singularities cancel between real and virtual diagrams
when summing up all resolution-indistinguishable final states at a certain pertur-
bative order.

• Kinoshita-Lee-Nauenberg (KLN) theorem: mass singularities (m → 0) of external
particles (i.e. both initial and final) are cancelled if all mass-degenerate states are
summed up.

The first theorem ensures the cancellation of both collinear and soft final-state diver-
gences when all virtual and real diagrams at a given perturbative order are combined.
However, it is essential to clarify the concept of resolution-indistinguishable final states.
The key point is that real diagrams, which must be added to the virtual ones, include
additional real emissions of QCD particles. Consequently, they do not share the same
final state and, in principle, should not be considered together. Nonetheless, the cru-
cial observation is that, in both the soft and collinear limits, the real-emission process



QCD and Parton Distribution Functions 9

becomes experimentally (and theoretically) indistinguishable from the no-emission pro-
cess, thereby justifying their combined consideration.

The second theorem indicates that, since summing over the initial degenerate states
is not typically performed, the cancellation of initial-state divergences is not assured.
However, it can be demonstrated that soft divergences do cancel in the initial state. Con-
sequently, only the collinear initial-state divergences persist. A different method of reg-
ularization is required for these divergences.

The regularization of collinear divergences is based on the fact that it can be demon-
strated that only the non-singular part of the cross-section is process-dependent, while
the singular part is entirely universal. Specifically, it has been found that a quark emit-
ting a gluon introduces a collinear divergence proportional, at O(αs), to the so-called
Altarelli-Parisi quark-quark splitting function

Pqq =
αs

2π
CF

(
1 + z2

1− z

)
+

+O(α2
s) , (1.27)

where the plus-distribution is defined as∫ 1

0

dzf(z)[g(z)]+ ≡
∫ 1

0

[f(z)− f(1)]g(z) . (1.28)

The other Altarelli-Parisi [19] splitting functions arise from the computation of the other
types of splittings: a gluon remaining a gluon (Pgg), a gluon becoming a quark (Pqg), and
a quark becoming a gluon (Pgq). It is important to emphasize that, while the splitting
functions are process-independent, they are not scheme-independent. In the MS scheme
they are

Pgg =
αs

4π

(
4CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]
+

11CA − 4TFnf
6

δ(1− z)
)
+O(α2

s) ,

Pqg =
αs

2π
nf [z

2 + (1− z)2] +O(α2
s) ,

Pgq =
αs

2π
CF

1 + (1− z)2
z

+O(α2
s) . (1.29)

The universality of the splitting functions is the fundamental concept underlying the
collinear factorization method, which is used to regularize collinear divergences. How-
ever, to understand its operation, it is first necessary to introduce the Feynman parton
model. Consequently, the detailed presentation of this topic is deferred to the next sec-
tion (1.3).

1.3 Parton Model

From section 1.2, it should be evident that computing a cross-section of a hadron-initiated
process solely from first principles is impossible within standard perturbation theory.
The reason is that, even if the center-of-mass energy is sufficiently high to fall within the
perturbative region of QCD, the hadrons themselves are intrinsically low-energy objects,
and thus their internal structure is governed by non-perturbative dynamics.

The initial solution to this problem was the parton model, developed by Richard
Feynman in the late 1960s. Its fundamental concept is to factorize the cross-section of
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a hadron-initiated process into two components: the cross-section of the high-energy
process occurring between the partons (i.e. quarks and gluons), known as the partonic
cross-section, and a process-independent part representing the probability distribution of
extracting a particular parton from the hadron. This approach allows the first part to be
computed using perturbation theory. However, a method to compute the second part,
called the parton distribution function (PDF), is still required.

The key point, which is the central topic of this thesis and that will be discussed
in detail in chapter 2, is that PDFs can be fitted from experimental data, and once de-
termined from a particular process, they can be used for other processes due to their
process-independent nature.

To clarify the discussion on the parton model, it is advantageous to specialize it on the
case of Deep Inelastic Scattering (DIS), which is introduced in the following section. The
discussion on the parton model applied to the DIS case is then resumed in section 1.3.2.

1.3.1 Deep Inelastic Scattering

Deep Inelastic Scattering (DIS) involves the collision of a lepton with a hadronic target,
resulting in the destruction of the target. This contrasts with elastic or slightly inelastic
scattering, where the target remains intact. DIS provides a precise method for testing
Quantum Chromodynamics (QCD), as it allows the hadron (typically a proton) to be
probed with a structureless particle, usually an electron. Historically, DIS experiments
have been crucial for advancing the understanding of perturbative QCD. Even today,
DIS measurements remain significant for the determination of parton distribution func-
tions (PDFs). Examples of such measurements, that are currently used in modern PDF
determinations, are those permormed at SLAC [20], BCDMS [21] and HERA (H1 [22]
and ZEUS [23]). Given its importance, this section is dedicated to defining the kinemat-
ics and the observables associated with the DIS process.

Figure 1.3: Schematic representation of the Deep Inleastic Scattering process of the charged lepton
l with the hadron target H[3].

In DIS, a charged lepton with initial momentum k and final momentum k′ scatters
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off a hadron target of momentum P producing a final state X(fig. 1.3):

l(k) +H(P )→ l(k′) +X . (1.30)

For the rest of this section we will only consider the case of an electron scattering off a
proton, through a virtual photon. This means we are only considering the electromagnetic
(EM) contribution. If we considered also the contribution given by a Z boson mediator,
we would fully describe the neutral current (NC) sector, as opposed to the charged current
(CC) contribution that is mediated by W± bosons. This approximation is valid as long
as the energy scale is well below the Z mass MZ .

The centre-of-mass energy is
s = (P + k)2 , (1.31)

and the invariant mass of the final state X is

W 2 = (P + q)2 . (1.32)

We can then define the standard DIS kinematic variables

Q2 = −q2 ,

x =
Q2

2P · q ,

y =
P · q
P · k =

Q2

xs
. (1.33)

The variable x, known as the Bjorken scaling variable, ranges between 0 and 1. At x = 1, it
corresponds to elastic scattering. The deep inelastic scaling region is then characterized
by Q2 ≫ Λ2

QCD for fixed and sufficiently small x.

It can be shown that the Feynman amplitude of DIS can be decomposed into a lep-
tonic and a hadronic part, as

1

4

∑
spin

|M|2 =
e4

Q4
LµνhXµν , (1.34)

with the leptonic tensor Lµν that reads

Lµν = kµk′ν + k′µkν − gµνk · k′ . (1.35)

The hadronic part can be also expressed in terms of an hadronic tensor, as

Wµν =
∑
X

∫
dΦhXµν , (1.36)

where dΦ is the phase-space factor. By requiring Lorentz symmetry and gauge invari-
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ance, we derive a general formulation of the hadronic tensor, expressed as

Wµν(P, q) =−
(
gµν +

qµqν
q2

)
F1(x,Q

2)

+
1

P · q

(
Pµ − qµ

P · q
q2

)(
Pν − qν

P · q
q2

)
F2(x,Q

2) . (1.37)

The functions F1 and F2 are called structure functions and they are the main observables
in the context of DIS 1.

We can also express the differential cross-section of the DIS process in terms of the
structure functions, as

dσ

dxdQ2
=

2πα2

Q4

[
(1 + (1− y)2)FT (x,Q

2) +
2(1− y)

x
FL(x,Q

2)

]
, (1.38)

with α = e2/(4π) and

FL = F2 − 2xF1 ,

FT = 2F1 . (1.39)

An example of the F2 structure function as measured by the SLAC, BCDMS, H1 and

Figure 1.4: The F2 structure function as measured by the SLAC, BCDMS, H1 and ZEUS collabora-
tions for different values of the scale Q2 [1].

ZEUS collaborations for different values of the scale Q2 is shown in fig. 1.4.

1If one allows for parity violating effects in the charged current sector, a third structure function F3 is
needed to fully parametrize the hadronic tensor.
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1.3.2 Parton Model in DIS case

For a process with a single hadron in the initial state, like deep-inelastic scattering (DIS),
the parton model takes the form

F (Q2) =
∑
q

∫ 1

0

fq(x)Cq(x)dx+O
(
Λ2
QCD

Q2

)
, (1.40)

where Cq is the partonic cross-section, called coefficients functions in DIS case, for parton
q, fq is the PDF for parton q, x is the fraction of inital hadron momentum carried by the
parton and Q is the energy scale of the process.

The parton model formula of eq. (1.40), as explicitly written, is valid up to corrections
of the order Λ2

QCD/Q
2, thus applying only to energy scales within the perturbative region

of QCD. Formally, this has been rigorously proved only for deep inelastic scattering
(DIS); nonetheless, the parton model is currently utilized for all QCD processes. The
graphical interpretation of eq. (1.40) is illustrated in fig. 1.5b (applied to the DIS case),
while fig. 1.5a depicts the version for two initial hadrons.

σ̂q1q2

fq2fq1

products

x2p2x1p1

p1 p2

(a)

productsCq

fq

fq

e±

e±

xp

p

q

k
k′

(b)

Figure 1.5: Graphical version of the LO parton model formulas applied in both the two initial
hadrons (a) and the single-initial hadron (b) cases. The bubbles σ̂ or Cq represent the partonic
cross-sections, the other bubbles are the initial hadrons and the fqi are the PDFs.

However, this model, as for eq. (1.40), is valid only at leading order (LO), i.e. at the
first order in perturbation theory, since it does not incorporate radiative QCD correc-
tions. The inclusion of these corrections leads to what is known as the improved parton
model, which enables the computation of observables beyond LO but alters the interpre-
tation of parton distribution functions (PDFs) as probability distributions. The form of
the improved parton model for deep inelastic scattering (DIS) is

F (Q2, x) =
∑
q

∫ 1

x

dy

y
fq

(
x

y
, µ2

F

)
Cq(y,Q

2/µ2
F , αs(µ

2
R)) +O

(
ΛQCD2

µ2
F

)
. (1.41)

As discussed in section 1.2.2, beyond LO the coefficients Cq contains unregularized IR
collinear divergences. However, the PDFs, devoid of their distribution function interpre-
tation, can also contain such divergences. Thus, to achieve a finite result from eq. (1.41),
the PDFs are presumed to incorporate infrared (IR) divergences in a manner that offsets
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those present in the coefficient functions. This forms the foundational concept of the
collinear factorization method, which is elaborated upon in detail in section 1.3.3. As a
consequence of the collinear factorization, PDFs acquire a dependence on a factorization
scale µF , which will be also discussed in section 1.3.3.

For completeness, the parton model form in the two initial hadrons case is

σX(s,MX) =
∑
q1q2

∫ 1

0

dx1dx2fq1(x1, µ
2
F )fq2(x2, µ

2
F )σ̂q1q2→X

(
x1, x2, αs(µ

2
R),

Q2

µ2
F

)
,

(1.42)
where σ̂q1q2→X is the partonic cross section for the partons q1 and q2 to produce a certain
final state X .

1.3.3 Collinear Factorization and DGLAP evolution

Collinear factorization is the method used to regularize initial-state collinear infrared
(IR) divergences in QCD, based on the factorization theorem [24–26]. Denoting the co-
efficients functions, which still include IR singular terms, as Ci, the theorem in dimen-
sional regularization can be expressed as

Ci(x, αs, ϵ) =

∫ 1

x

dz

z
Cj

(
x

z
, αs, ϵ

)
Γij(z, αs, ϵ) , (1.43)

where Cj are the IR regularized coefficients functions, i.e. they do not have poles in ϵ, and
Γij are called collinear counter-terms and are the objects containing the divergent terms.

Defining the Mellin transform of f(z) as

f(N) ≡
∫ 1

0

dzzN−1f(z) , (1.44)

the factorization theorem can be equivalently written in Mellin space as

Ci(N,αs, ϵ) = Cj(N,αs, ϵ)Γij(N,αs, ϵ) . (1.45)

Note the property of the Mellin space that converts a convolution, like the one in eq. (1.43),
in a product. We will make use of Mellin space for most of this section.

These expressions imply that it is feasible to separate out the universal collinear sin-
gularities, which are not process-dependent (see section 1.2.2), contained within Γij ,
from the raw coefficient functions such that the residual parts, Ci, are finite with respect
to infrared (IR) regularization. Since observable are computed through the convolution
of the coefficients functions with the PDFs, we can then absorb the collinear counter-
terms Γij in the PDF definition as

F (N,Q2) = C(N,αs(µ
2), ϵ)f i(N, ϵ)

= Cj(N,αs(µ
2), ϵ)Γij(N,αs(µ

2), ϵ)f i(N, ϵ)

= Cj(N,αs(µ
2), ϵ)fj(N, (µ

2)) +O(ϵ) , (1.46)

where we denoted with f i the bare PDFs. Of course, the last line makes sense only if the
divergences in Γij effectively cancel out with those in the bare parton distribution func-
tions (PDFs), as assumed. Although we will not show this explicitly, it can be proven that
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this condition holds true, thereby allowing for the regularization of initial-state infrared
(IR) divergences in this manner.

From the last line of eq. (1.46), it is clear that PDFs acquire an energy dependence
through the dependence on µ2 of the strong coupling αs. Since the all-order PDFs are
assumed to be scale independent, we can get the renormalization group equation for the
PDFs

µ2
F

d

dµ2
F

fi(N,µ
2
F ) = −γij(N,αs(µ

2
F ))fj(N,µ

2
F ) , (1.47)

where the functions γij are called anomalous dimensions and we have identified the scale
µ2 with the factorization scale µ2

F . Note the convention of the minus sign in front of the
anomalous dimensions on the right hand side of the equation. In x-space it reads

µ2
F

d

dµ2
F

fi(x, µ
2
F ) =

∫ 1

x

dz

z
Pij

(
x

z
, αs(µ

2
F )

)
fj(z, µ

2
F ) , (1.48)

that is expressed in terms of the Altarelli-Parisi splitting functions. Note that the anoma-
lous dimensions are the Mellin transforms of the corresponding Altarelli-Parisi splitting
functions.

These equations are known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations [19, 27] and they describe the evolution of parton distribution functions (PDFs)
with respect to the factorization scale. The DGLAP equations enable us to define PDFs
at an initial scale Q0 and evolve them up to a higher scale Q relevant to a hard pro-
cess. This capability allows PDFs parametrized at an initial scale to be constrained by
processes occurring at different energy scales.

Due to the SU(nf ) flavour symmetry present in QCD in the limit where quark masses
are neglected, it is feasible to establish a basis of flavor states that remain invariant under
evolution with the matrix Pij . One approach to constructing such a basis involves parti-
tioning the system of equations into two subsystems referred to as the singlet and non-
singlet sectors. Given a system consisting of six quarks u, d, s, c, t, b, their anti-quarks, as
well as the gluon, we define

f±i ≡ fi ± f i , (1.49)

where we denoted with f i the PDF of the anti-quark i. The f− PDFs are called valence
PDFs and they are usually denoted as

Vi ≡ f−i , (1.50)

or with the subscript V , e.g. the valence up quark is uV = u − ū. Some combination of
the f+ PDFs instead define the triplet states

T3 = u+ − d+

T8 = u+ + d+ − 2s+

T15 = u+ + d+ + s+ − 3c+

T24 = u+ + d+ + s+ + c+ − 4b+

T35 = u+ + d+ + s+ + c+ + b+ − 5t+ , (1.51)

where u, d, s, c, b, t are the PDFs of the corresponding quark flavour. The valence and
triplet states comprise the so-called non-singlet sector. It can be demonstrated straight-
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forwardly that the non-singlet sector decouple from the others, meaning it evolves ac-
cording to the equation

µ2
F

d

dµ2
F

fNS(x, µ2
F ) =

αs(µ
2
F )

2π

∫ 1

x

dz

z
P (z, αs)f

NS
(
x

z
, µ2

F

)
, (1.52)

where valence states evolve with P− and triplet states evolve with P+. The definition of
P− and P+ stem from the following definitions of singlet (S) and non-singlet (NS) compo-
nents of the splitting functions,

Pqiqk = δikP
V
qq + PS

qq

Pqiq̄k = δikP
V
qq̄ + PS

qq̄

P± = PV
qq ± PV

qq̄ . (1.53)

The singlet sector is instead composed by the gluon g and the singlet distribution

Σ =

nf∑
i=1

f+i , (1.54)

which evolve according to the coupled equation

µ2
F

d

dµ2
F

(
Σ(x, µ2

F )
g(x, µ2

F )

)
=
αs(µ

2
F )

2π

∫ 1

x

dz

z

(
Pqq Pqg

Pgq Pgg

)(
Σ(z, µ2

F )
g(z, µ2

F )

)
. (1.55)

We can also rewrite eqs. (1.52) and (1.55) in Mellin space as

d

dµ2
F

fNS
i (N,µ2

F ) =
αs(µ

2
F )

2π
γNS
qq (N,αs(µ

2
F ))f

NS
i (N,µ2

F )

d

dµ2
F

(
Σ(N,µ2

F )
g(N,µ2

F )

)
=
αs(µ

2
F )

2π

(
γqq 2nfγqg
γgq γgg

)(
Σ(N,µ2

F )
g(N,µ2

F )

)
. (1.56)

In practice, the DGLAP equations are solved using iterative numerical procedures. Var-
ious software packages have been developed for this purpose. Some, like HOPPET [28],
QCDNUM [29], and APFEL [30], solve the evolution equations directly in momentum
space. Others, such as PEGASUS [31] and EKO [32], employ the Mellin space approach.

It is important to note that the DGLAP equations are formulated in terms of splitting
functions, which are computed using perturbation theory. Therefore, while eq. (1.56)
hold true to all orders theoretically, in practice they are applied up to a certain finite
order of perturbation theory. We will then talk about evolution performed at LO, NLO,
NNLO and so on, according to the perturbative order accuracy of the splitting functions
employed in the evolution. Examples of PDFs evolved from Q0 = 1.65 GeV to Q =
3.2 GeV and Q = 100 GeV are shown respectively in fig. 1.6a and fig. 1.6b.

Before proceeding further, it is also beneficial to examine some general properties of
the PDFs. These properties arise from fundamental observations about their nature and
serve as important guidelines in the context of PDF determination.

Since the PDFs must reproduce the quantum numbers that characterize the proton,
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(a) (b)

Figure 1.6: The NNPDF4.0 PDFs [8] evolved from the initial scale Q0 = 1.65 GeV to Q = 3.2 GeV
(left) and Q = 100 GeV (right).

it follows that ∫ 1

0

dx(d(x,Q2)− d̄(x,Q2)) =

∫ 1

0

dV (x,Q
2) = 1 , (1.57)

for the valence down-quark, and∫ 1

0

dx(u(x,Q2)− ū(x,Q2)) =

∫ 1

0

uV (x,Q
2) = 2 , (1.58)

for the valence up-quark. These relations, referred to as the valence sum rules, also require
the PDFs to be integrable across the entire range of x.

The longitudinal momenta of all the constituent partons within a hadron must col-
lectively equal the total longitudinal momentum of the hadron itself. This requirement
is formalized by the momentum sum rule, which is expressed as

∑
i=q,q̄,g

∫ 1

0

dxxfi(x,Q
2) = 1 . (1.59)

1.4 Heavy Quarks

Quarks are conventionally categorized into light quarks, which have a mass significantly
below ΛQCD, and heavy quarks, whose mass exceeds ΛQCD. According to this classifica-
tion, the up, down, and strange quarks are considered light quarks. For these quarks, the
massless approximation yields accurate results. For the remaining quarks, the massless
approximation is no longer appropriate, in particular for processes in which the typical
hard scale Q is of the same order of magnitude of the quark mass. In fact, in the latter
case, mass power correction, i.e. terms like m2

q/Q
2, contribute significantly to the final

prediction. On the other hand, in the region Q ≫ mq the collinear logarithms, intro-
duced in section 1.2, become relevant and they can spoil the perturbative accuracy of the
series if not resummed at all orders.

It is then clear that the appropriate way, or scheme, to treat the heavy quark contri-
butions strongly depends on the kinematic region of interest. For this reason, variable
flavour number schemes (VFNS) are usually adopted to obtain accurate predictions for
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datasets with a large range in the hard scale Q. In particular, for each heavy quark with
mass mh, we have three relevant kinematic regions:

• Q ≪ mh: The mass of the heavy quark is significantly larger than the hard scale
of the process. In this scenario, the heavy quark can be decoupled [33] and treated
as a purely final state particle, which means that it does not contribute to DGLAP
evolution and to the running of the coupling. The scheme that is accurate in this
region is known as the fixed flavor number (FFN) scheme and the number of consid-
ered flavours does not include the heavy quark.

• Q ∼ mh: Since the mass power corrections are relevant in this region, the partonic
calculation contains the exact dependence on mh but the heavy quark is still con-
sidered a non-active flavour and does not contribute to the evolutions. Moreover,
mh acts as an IR regulator, and thus the collinear singularities, given by the gluon
splitting into a h-pair, produce logQ2/m2

h terms. In this regime, these terms are
considered small and are included in the fixed order expansion.

• Q≫ mh: The h quark is considered an active flavor, so its renormalization scheme
is switched from decoupling to MS and it also contributes to DGLAP evolution and
running coupling. The collinear logarithms are not small in this regime, thereby
spoiling the accuracy of the fixed order expansion. Consequently, these logarithms
are resummed to all orders in an effective heavy quark PDF. In this case, the calcu-
lation of the partonic cross sections is carried out in the mh → 0 limit, called zero
mass (ZM) scheme, because the mass power corrections can be safely neglected.

To ensure a smooth transition between the three regions for all the heavy quarks, the
so-called general mass variable flavour number (GM-VFN) schemes are usually adopted.
While different formulations of such schemes exist, which will be briefly described in the
next sections, their general approach is to interpolate between the Fixed Flavor Number
(FFN) and Zero Mass (ZM) schemes, ensuring that double-counting of terms is avoided.
In the following sections we will describe FFN (section 1.4.1), ZM (section 1.4.2) and
GM-VFN (section 1.4.3) schemes, focusing on the Deep Inelastic Scattering case for sim-
plicity’s sake2.

1.4.1 Fixed Flavour Number (FFN) scheme

Let us first consider the region where the mass of the heavy quark is approximately
equal to the hard scale (the threshold region) or larger than the hard scale of the process
Q ≲ mh. In this region, the heavy quark is considered a purely final state particle, i.e.
it does not contribute to DGLAP and running coupling. We can then write the structure
function in the FFN scheme as3

F [nl](Q2,m2
h) =

nl∑
i

C
[nl]
i

(
m2

h

Q2
,
Q2

µ2

)
⊗ f [nl]

i (µ2) , (1.60)

2The decision to focus on Deep Inelastic Scattering (DIS) is also motivated by the fact that, in practice, DIS
datasets are the primary instance where the use of a General-Mass Variable Flavor Number (GM-VFN) scheme
is truly necessary. In most non-DIS datasets, the typical hard energy scale is sufficiently high that the Zero
Mass (ZM) scheme is usually sufficiently accurate.

3Note that here we are setting the factorization scale to be equal to the renormalization scale, µR = µF = µ.
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where the index i runs over the nl light quarks and the x dependence is omitted. Note
the square bracket notation denoting the number of flavours in the scheme in which
each quantity has been computed. In particular, f [nl]

i denotes PDFs evolved with nl

active flavours in DGLAP. This means that f [nl]
i ≡ 0 for i > nl at all scales. In the same

way, C [nl]
i means that the running of the coupling is performed with nl active flavours.

We will denote it with α[nl]
s .

1.4.2 Zero Mass (ZM) scheme

Although the FFN scheme is accurate in the region where Q ≲ mh, this scheme does
not resum logs of Q2/m2

h that become large in the region Q≫ mh. This can be resolved
by using the ZM-VFN scheme in which the heavy quark is treated as a parton at scales
above the heavy quark mass, allowing for the resummation of the logs ofQ2/m2

h through
DGLAP evolution. On the other hand, in theQ≫ mh region, the power mass corrections
become irrelevant and we can safely carry out the calculation in the mh → 0 limit. This
scheme differs from the FFN scheme only through the additional parton, and thus the
equation for the structure function analogue to eq. (1.60) can be written as

F [nl+1](Q2) =

nl+1∑
i

C
[nl+1]
i

(
Q2

µ2

)
⊗ f [nl+1]

i (µ2) . (1.61)

It is important to note that in this case we get the contribution of the heavy quark PDF
f
[nl+1]
h . This PDF is generated by DGLAP evolution performed with nl+1 active flavours

and thus it is non-zero only for µ2 > m2
h

4. This condition holds as long as the intrinsic
component, which is non-zero also in the µ2 < m2

h region and not generated by DGLAP,
of the heavy quark PDF is neglected. The generalized equations that apply to the intrin-
sic heavy quark case can be found, for example, in [34].

1.4.3 General Mass Variable Flavour Number (GM-VFN) scheme

Previously, we have examined the Fixed Flavor Number (FFN) scheme, which is com-
promised by unresummed logarithms of Q2/m2

h, diminishing its accuracy beyond the
region Q ≲ mh. Conversely, the Zero Mass Variable Flavor Number (ZM-VFN) scheme
lacks corrections proportional to mh/Q, affecting its precision outside the domain Q ≫
mh.

We then turn our attention to the General Mass Variable Flavour Number (GM-VFN)
schemes. These schemes are designed to interpolate between the FFN and ZM-VFN
approaches, thereby offering a unified framework that mitigates the impact of missing
corrections when heavy quark masses are present. This interpolation ensures improved
accuracy over a wider range of energy scales.

We first need to note that PDFs evolved with a different number of active flavours

4To be more precise, the scale where the heavy quark PDF is generated is called the threshold scale, denoted
by µh, and it is another unphysical scale of the same kind of the renormalization and factorization scale.
Conventionally, it is often chosen to equal the heavy quark mass, mh, yet this selection is not obligatory and
the final results depend perturbatively on this choice.
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are related at the matching (or threshold) scale by

f
[nl+1]
i (µ2

h) =

nl∑
j=1

A
[nl+1]←[nl]
ij (µ2

h/m
2
h)⊗ f [nl]

j (µ2
h) , (1.62)

where Aij are known as matching conditions and are known up to NNLO [35, 36]. Since
the structure function in the nl scheme,

F [nl](Q2) =

nl∑
i=1

C
[nl]
i (Q2/µ2)⊗ f [nl]

i (µ2) , (1.63)

and in the nl + 1 scheme,

F [nl+1](Q2) =

nl+1∑
i=1

C
[nl+1]
i (Q2/µ2)⊗ f [nl+1]

i (µ2) , (1.64)

must match at the matching scale µh, i.e.

F [nl](µ2
h) = F [nl+1](µ2

h) , (1.65)

we can get, using eq. (1.62),

C
[nl]
j (µ2

h) =

nl+1∑
i=1

C
[nl+1]
i (µ2

h)⊗A[nl+1]←[nl]
ij (µ2

h/m
2
h) . (1.66)

It is important to note that the last equation contains a degree of arbitrariness. Specif-
ically, the transformation matrix Aij converts an nl + 1-dimensional vector into an nl-
dimensional vector. This introduces a degree of freedom, linked to the terms propor-
tional to powers of mh/Q, that one can exploit to simplify the construction of the GM-
VFN scheme. This degree of freedom allows for a scheme choice, which has led to the
introduction of several GM-VFN schemes, such as:

• The ACOT scheme [37] and the S-ACOT scheme [38, 39].

• The TR scheme [40] and the TR’ scheme [41].

• The FONLL scheme [42].

• The BPT scheme [43].

The FONLL scheme is particularly significant within the context of this thesis, as it is
adopted by the NNPDF collaboration. It serves as the framework employed for gener-
ating theoretical predictions that underpin most of the results presented in this thesis.
However, in the following we will adopt the BPT scheme choices and notation. This
scheme shares many similarities with FONLL but simplifies the expression of the final
result. In particular, the FONLL and BPT schemes are exactly equivalent at all orders,
even if the construction itself is obtained with different steps, and they start to differ only
in the organization of the perturbative expansion.

The fundamental concept behind constructing the GM-VFN scheme is to combine
observables computed in the nl and nl +1 scheme, while carefully subtracting the terms
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that would otherwise be counted twice. So we write the structure function as

FGM = F [nl+1] + F nons , (1.67)

where F [nl+1] is the resummed result of eq. (1.61) while F nons contains all and only the
mass power corrections and thus vanishes in the limit mh → 0. This last condition
ensures that correctly FGM → F [nl+1] in the high-energy limit. We then need to require
that

F nons = F [nl] − F sing , (1.68)

where F [nl] is the FFNS result of eq. (1.60) and F sing must contain all the double counting
terms. In particular, this implies that F sing is the fixed-order expansion of the resummed
result F [nl+1]. We can then obtain its expression just evaluating F [nl+1] in µh = Q as

F sing = F [nl+1]|µh=Q =

nl∑
i,j=1

[C
[nl+1]
j A

[nl+1]←[nl]
ji (mh, Q)+C

[nl+1]
h A

[nl+1]←[nl]
hi (mh, Q)]f

[nl]
i (Q) .

(1.69)
where we used the f [nl+1] expression of eq. (1.62). We can then plug eq. (1.69) in the
definition of F nons to get

F nons = F [nl] − F sing =

=

nl∑
i,j=1

[D
[nl]
i − C [nl+1]

j A
[nl+1]←[nl]
ji (mh, Q)− C [nl+1]

h A
[nl+1]←[nl]
hi (mh, Q)]f

[nl]
i (Q) .

(1.70)

Note that the coefficients functions D[nl]
i are obtained from the C [nl]

i , re-expanding their
perturbative series in terms of the nl + 1 running coupling α

[nl+1]
s

5. This is needed to
ensure that all the expressions in the last equation are expanded in terms of the same
coupling α[nl+1]

s .
While in principle we have everything now to compute FGM, we would like to ex-

press F [nl+1] and F nons in terms of the same PDFs set. In fact, the former is expressed in
terms of the nl +1 PDFs, while the latter (eq. (1.70)) is expressed in terms of the nl PDFs.
We then rewrite

F nons = δCnons
i (Q,mh)f

[5]
i (Q) , (1.71)

and we fix the coefficients Cnons
i comparing the last equation to eq. (1.70). We then get

δCnons
i =

nl∑
j=1

[
D

[nl]
j −

nl+1∑
k=1

[Cnl+1
k A

[nl+1]←[nl]
kj ]

]
A

[nl]←[nl+1]
ji . (1.72)

Here we note explicitly the ambiguity caused by the inverse A[nl]←[nl+1]
ji of the rectangu-

lar matrix A[nl+1]←[nl]
kj . In the BPT scheme, we exploit these two degrees of freedom to

impose
δCnons

h = δCnons
h̄ = 0 , (1.73)

5This is done using the expression α
[nl+1]
s (µ2) = α

[nl]
s (µ2) +

(α
[nl]
s )2

6π
log µ2

µ2
h

+O(α2
s).
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which simplifies the practical implementation of the GM-VFN scheme. The final result
can be written as

F =

nl∑
i=1

C̃i(Q,mh)f
nl+1
i + C

[nl+1]
h (Q)f

[nl+1]
h (Q) , (1.74)

where Ch does not contain mass power correction as consequence of the choice made in
eq. (1.73) and

C̃i(Q,mh) = C
[nl+1]
i (Q) + δCnons

i (Q,mh) . (1.75)



CHAPTER 2

Inclusion of theory errors in PDF fitting

The uncertainty associated with parton distribution functions (PDFs) represents a sig-
nificant bottleneck in achieving precision physics at the Large Hadron Collider (LHC).
Recent advancements in methodology, particularly the application of machine learning
techniques and the accumulation of experimental data, have culminated in the develop-
ment of NNPDF4.0 [8]. This version of PDFs claims a nominal precision at the percent
level. It is imperative to evaluate whether this purported precision is indeed reliable and
whether it corresponds to a comparable level of accuracy.

Significant efforts have been dedicated to evaluating the impact of the methodologies
employed in the determination of PDFs on their associated uncertainties. This includes,
in particular, the manner in which the information contained in the data is propagated
to the PDF uncertainties ([9, 44]). Nevertheless, the uncertainties provided in all stan-
dard PDF sets, such as NNPDF4.0 [8], CT18 [45], MSHT20 [46], or ABMP16 [47], do not
account for theoretical uncertainties. The sole exceptions are the parametric uncertainty
related to the value of the strong coupling constant, αs, which has been routinely in-
cluded since the early days of LHC physics [48], and nuclear uncertainties affecting data
such as deep-inelastic scattering on nuclear targets (e.g., neutrino DIS data), which are
incorporated in the NNPDF4.0 PDF determination [49, 50].

Theoretical uncertainties can, in principle, originate from a variety of sources, both
parametric (such as the values of heavy quark masses) and non-parametric (such as the
aforementioned nuclear corrections). Theoretical uncertainties associated with missing
higher orders in Quantum Chromodynamics (QCD) computations—hereafter referred
to as MHOUs—are particularly pertinent, as they influence any prediction. The current
standard perturbative accuracy of QCD computations is next-to-next-to-leading order
(NNLO), with next-to-next-to-next-to-leading order (N3LO) corrections only known in
a limited number of instances [51]. At NNLO, MHOUs are typically on the order of a few
percent or greater. For LHC precision observables utilized in PDF determination, such
as gauge boson or top-pair production, this uncertainty is comparable to experimental
systematic uncertainties and often exceeds experimental statistical uncertainties.

Given that the uncertainties in both the experimental measurements and theoretical
predictions symmetrically contribute to the figure of merit used for PDF determination,
it is unjustifiable to include the former without accounting for the latter if they are of
comparable magnitudes. In the subsequent sections, the NNPDF4.0 approach to incor-
porating MHOUs into the PDF determination is presented in detail.

This chapter is organized as follows. In section 2.1 we briefly review the NNPDF4.0
methodology, emphasizing the aspects that are most pertinent to the main topic of this
chapter (for further details the reader can refer to [3, 8, 52]). In section 2.2, we review the
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theory covariance matrix framework, as initially presented in [4, 53]. We also provide
some details about the estimation of the missing higher orders (2.2.1) and about the
application of the method to the N3LO determination (2.2.3). In sections 2.3 and 2.4,
we validate our estimation on the known NLO and present the results at the PDF and
observable levels [5, 6].

2.1 NNPDF4.0 methodology

The determination of PDFs from discrete data exemplifies a pattern recognition prob-
lem, wherein the objective of a PDF fitter is to deliver an accurate representation of an
unknown underlying function. However, the problem of PDF determination exhibits
specific characteristic features that must be considered when developing a fitting frame-
work. Firstly, unlike in most standard pattern recognition problems where the model
output is directly compared to data, in the case of PDF determination, one cannot asso-
ciate a single data point with a pair consisting of an input and an output of the model.
Instead, as indicated by eqs. (1.41) and (1.42), each observable depends non-linearly on
multiple output PDF functions across the entire range of x. Secondly, for PDFs to be
effective in predicting observables, it is essential to provide a description of the full cor-
relations among PDFs.

In the following, we will describe some of the most relevant aspects of the NNPDF4.0
determination, focusing on the propagation of data uncertainties to PDF uncertainties,
without pretense of completeness.

2.1.1 Error propagation: Monte Carlo method

The most commonly adopted method to propagate data uncertainties to PDFs is the
Hessian method [54, 55], which represents PDF uncertainties by symmetric eigenvectors.
On the other hand, NNPDF utilizes a Monte Carlo (MC) replica approach.

The MC replica method involves generating a set of fit outcomes to approximate the
posterior probability distribution of the PDF model based on a given set of experimental
input data. This technique relies on a known data generating distribution, typically a
multivariate normal distribution, which is used to generate Nreps pseudo-data samples.
Each sample is subsequently fitted to the forward model employed to describe the data.
For a more detailed mathematical treatment, refer to Ref. [56], where the authors present
an analytical expression for the posterior distribution of the model derived from this
method.

If we assume that the observational noise of the experimental data can be modeled
as a vector drawn from a multivariate normal distribution with a specified covariance
matrix C, which is measured in the experiment, the central experimental values y0 are
given by

y0 = f + η , (2.1)

where f ∈ RNdata is the vector of true, thus unknown, observable values, which we will
also refer to as Level-0 (L0) data1, and η ∼ N (0, C) represents the observational noise
drawn from a Gaussian distribution centered at zero with covariance matrix C. We will
also refer to the y0 vector as Level-1 (L1) data. Then, the pseudo-data replicas are gener-

1This notation is typical of closure tests which will be described in chapter 3.
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ated by augmenting y0 with some noise ϵ(k) ∼ N (0, C), as

µ(k) = y0 + ϵ(k) = f + η + ϵ(k) , (2.2)

where the index k runs over the number of replicas Nreps. Each realization of the noise
ϵ(k) is independently drawn from the same multivariate Gaussian distribution as the
observational noise. The vector µ(k) is known as Level-2 (L2) data. We can also write the
last equation explicitly as

µ(k) = y0 +

Ndata∑
j=1

(
√
C)i,jr

(k)
j , (2.3)

where r
(k)
j are random numbers generated from a standard normal distribution and

Ndata is the total number of data used in the fit.
Therefore, the outcome of a PDF determination using the NNPDF framework con-

sists of a set of Nreps Monte Carlo PDF replicas f (k) with k = 1, . . . , Nreps, which rep-
resent an importance sampling of the probability distribution of the PDFs. Each PDF
replica f (k) is obtained from its corresponding pseudo-data replica µ(k). Estimators for
functions of the PDFs, as well as their variances, are computed by simple averages over
the replicas:

⟨X[f ]⟩ = 1

Nreps

Nreps∑
k=1

X[f (k)] ,

Var[X[f ]] =
1

Nreps

Nreps∑
k=1

(X[f (k)]− ⟨X[f ]⟩)2 . (2.4)

Thus, uncertainty bands corresponding to any confidence level can be computed from
the posterior Monte Carlo distribution. For instance, it can be verified that the 68% con-
fidence interval aligns with the 1σ uncertainty band. This alignment is explicitly demon-
strated for the gluon PDF at Q = Q0 = 1.65 GeV in fig. 2.1. In particular, fig. 2.1a shows
the distribution of Nreps = 100 gluon PDF replicas and fig. 2.1b shows the resulting 1σ
interval and 68% confidence level.

(a) (b)

Figure 2.1: The distribution of Nreps = 100 gluon PDF replicas (left) and the resulting 1σ interval
and 68% confidence level (right) [3].
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Thus far, we have outlined how the MC replica method propagates experimental un-
certainties to the PDFs. In section 2.2, we will demonstrate its generalization to accom-
modate additional sources of uncertainties, with particular focus on those arising from
theoretical errors. Before proceeding, we will briefly introduce the PDF parametrization
(section 2.1.2) and the fitting procedure (section 2.1.3).

2.1.2 PDF parametrization

The fundamental challenge in PDF determination is extracting a continuous function
from a discrete dataset. This inherently poses an ill-defined problem, but it can be made
tractable by constructing a suitable prior. It is the goal of this section to describe such
prior in some details.

First, remind that the PDFs as functions of x need to be parameterized at a single scale
Q0, where the PDFs at any other scaleQ can be derived by solving the DGLAP evolution
equations discussed in section 1.3.3. It is crucial to select a parametrization that is com-
plex enough to accurately describe the underlying data. A parametrization that is too
simplistic may introduce biases in the resulting PDFs. For this reason, the NNPDF col-
laboration parametrizes the PDFs using a Neural Network, replacing the more common
fixed functional form adopted, for instance, by CT18 [45], MSHT20 [46] and ABMP16
[47]. In the latter approach, the PDFs are parametrized using various functional forms
constructed from polynomials in x and

√
x, followed by Hessian propagation methods.

However, uncertainties obtained in this straightforward manner often underestimate the
uncertainties of the corresponding predictions. To address this, a posteriori adjustment
is made by inflating the chi-squared distribution corresponding to 1σ using a tolerance
factor. The Neural Network (NN) approach adopted by NNPDF then mitigates this po-
tential source of bias as it is known that, in the limit of infinite number of parameters,
neural networks can reproduce any differentiable functions (universal approximation the-
orem [57]).

The NNPDF4.0 parametrization can be expressed as

xfi(x,Q0) = Aix
(1−αi)(1− x)βiNNi(x) , (2.5)

where the prefactors Ai and x(1−αi)(1 − x)βi ensure that the known PDF constraints
(section 1.3.3) are satisfied.

The Neural Network model NNi, provides a non-linear mapping from an input space
(in this case x) to an output space (in this case the space of PDFs). This is achieved
through a directed graph structure consisting of multiple layers, where nodes in consec-
utive layers are fully connected. A schematic representation of this graph used in the
NNPDF4.0 determination is depicted in fig. 2.2. Note that the we have two inputs, x and
lnx, because PDFs are expected to scale logarithmically at small x and linearly at large x
[58].

In the figure, the blue circles represent the nodes of the graph, each associated with
an activation function. Here, the input to each activation function corresponds to the set
of all outputs of the previous layer, represented by the edges. Therefore, if we know
the activation functions of each node, we can explicitly evaluate the neural network and
obtain the function encoded by it. In particular, the output of the i−th node of the l−th
layer is

ξ
(l)
i = g

(∑
j

w
(l)
ij ξ

(l−1)
j + b

(l)
i

)
, (2.6)
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Figure 2.2: The graphical representation of the neural network parametrizaion adopted in
NNPDF4.0 [8].

where g() is the activation function of the node and the weights w(l)
ij and the biases b(l)i are

the free parameters of the NN. These are the parameters that are optimized during the
fitting procedure, as described in section 2.1.3. The other parameters of the Neural Net-
work, such as the number of layers, the number of units, the activation functions and so
on, are called hyperparameters and, while they are kept fixed during each fit, their choice
must be optimized. In [59] an automated algorithm that is able to optimize the hyper-
parameters, finding the best possible NN architecture among a finite space of possible
architectures, has been proposed.

Various choices exist for the activation function, but it must be nonlinear and mono-
tonic. A neural network constructed solely with linear activation functions would reduce
to a basic linear regression model. A common choice for the activation function is the
sigmoid function given by g(x) = 1

1+e−x . This function exhibits two asymptotes: g(x) = 1
as x → ∞ and g(x) = 0 as x → −∞, making it a differentiable function that approxi-
mates a step function. The concept of the activation function as a step function provides
an intuitive analogy to neurons in a biological brain, where neurons either fire a signal
or do not based on their inputs.

To mitigate the potential restriction imposed by the polynomial prefactor in eq. (2.5)
and to avoid underestimating uncertainties, the exponents α and β are randomly sam-
pled from a range determined in a self-consistent manner [60, 61]. Specifically, when
changes are made to the methodology or dataset, an initial fit is conducted to calculate
the effective exponents for each distribution using

αi(x) =
log fi(x)

log 1/x
, βi(x) =

log fi(x)

log 1− x . (2.7)

Then, for each subsequent fits, the α and β exponents are sampled from an uniform



28 2.1.3 Fitting procedure

distribution on a interval corresponding to twice the confidence interval of the respective
effective exponent.

Finally, it is noteworthy from fig. 2.2 that the output nodes are parameterized in the
evolution basis {g,Σ, V, V3, V8, T3, T8, T15} (see section 1.3.3). This choice is motivated
by the observation that, as explained in section 1.3.3, the DGLAP evolution solutions
are more straightforward in the evolution basis compared to the flavour basis. In [8], it
has been demonstrated that the PDFs remain stable, i.e. agree within the 1σ level, when
changing the parametrization basis.

2.1.3 Fitting procedure

The NNPDF fitting procedure is depicted in fig. 2.3. The optimization of the free param-
eters of the NN is carried out by the so-called stopping algorithm (described in more detail
later on), that is contained in the blue box in the figure. The inputs of the stopping algo-
rithm are the theoretical predictions in FK table format (see chapter 4), the experimental
data along with their covariance matrices and the hyperparameters of the Neural Net-
works optimized as described above. The output of the stopping algorithm are the PDFs
parametrized a the fitting scale Q0 = 1.65 GeV. They are then evolved to a predefined
Q grid by a software implementing DGLAP equations2, and selected by some post-fit
criteria. Finally they are exported in LHAPDF6 standard format [62].

Figure 2.3: Diagrammatic representation of the NNPDF fitting procedure. The orange boxes de-
scribe the stopping algorithm with which the χ2 is minimized. The inputs of the stopping algorithm
(on the left) are the experimental data, the theoretical predictions (in FK Table format, see chapter 4)
and the hyperparameters of the Neural Network. The outputs are the PDFs at the fitting scale Q0

which are first evolved to a predefined grid of Q values and then filtered by some post-fit selection
criteria. The final grids are then provided in the standard LHAPDF format [3].

Stopping algorithm. Given the assumption that the experimental uncertainties are
Gaussian, a natural choice for the target function is the chi-squared statistic, defined
as

χ2 =

Ndata∑
i,j=1

(Di − Pi)C
−1
ij (Dj − Pj) , (2.8)

where D is the vector of experimental datapoints, P is the corresponding vector of theo-
retical prediction at a certain fitting step and, as introduced above, C is the experimental

2It used to be APFEL[30], but now we use EKO[32] which is part of the new theory pipeline described in
chapter 4.
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covariance matrix3. The latter can be expressed in terms of experimental uncertainties
as

Cij = δijσ
(uncorr)
i σ(uncorr)

j

+

(Nmult∑
m=1

σ(norm)
i,m σ(norm)

j,m +

Ncorr∑
l=1

σ(corr)
i,l σ(corr)

j,l

)
DiDj , (2.9)

where σ(uncorr)
i are the uncorrelated systematic uncertainties, σ(norm)

i,m are the multiplicative
normalization uncertainties and σ(corr)

i,l are the remaining correlated uncertainties.
A sufficiently large neural network is capable of optimizing the experimental data

to such an extent that it also learns the noise present in the data, rather than restricting
the extraction of information to only the genuine features of the data. This phenomenon
is known as overfitting, and the stopping algorithm (fig. 2.4), together with the cross-
validation, are specifically designed to prevent it.

Adopting a cross-validation method means that the full global NNPDF4.0 dataset is
divided into a training dataset and a validation dataset. For each experimental dataset, a
random fraction of 75% of the data points is placed in the training set, while the remain-
ing 25% is placed in the validation set. Fig. 2.5 illustrates the use of the split into training
and validation sets to identify the optimal instance of the neural network. During the
fitting process, the training set is utilized to define a training error function χ2

tr, which
serves as the target for the optimizer. This function can, in principle, be reduced indef-
initely, asymptotically approaching zero. This behavior is depicted by the blue curve in
the figure.

Conversely, the validation set is not directly used by the optimizer, but the corre-
sponding error function χ2

val for this subset of data is evaluated at each training epoch,
represented by the orange line. As shown in the figure, χ2

val reaches its minimum value
just before 6000 epochs, after which it begins to increase. This increase indicates overfit-
ting, where the optimizer starts fitting the noise present in the training data and loses its
ability to generalize well to unseen data.

The optimal result of the fitting procedure corresponds to the epoch at which χ2
val is

minimized. In fig. 2.5, the epoch representing the best instance of the neural network is
highlighted by a vertical dashed line.

This criteria is implemented in the stopping algorithm, depicted in fig. 2.4. To deter-
mine when a neural network has completed its training, a counter is initiated once the
validation loss χ2

val falls below a specified threshold. From this point, the counter tracks
the number of epochs that have passed, and the training terminates if the validation loss
does not improve for a predetermined number of epochs. This number of epochs is a
hyperparameter. Should this occur, the training is halted and the model is reset to the in-
stance with the lowest validation loss. If at no stage during the training process does the
validation loss reach this threshold value, the fit is considered insufficiently consistent
with the data and is consequently discarded.

Additionally, for an instance to be deemed acceptable, it must satisfy certain positiv-
ity criteria, ensuring that the up, down, and strange quark and antiquark PDFs, as well

3In practice, in order to avoid the so-called D’Agostini bias [63], due to the presence of multiplicative un-
certainties, during the optimization the t0 covariance matrix is used instead [64]. This implies using the theo-
retical prediction P , obtained with a certain t0 PDF set, in place of the datapoints D for the normalization part
in eq. (2.9).
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as the gluon PDF, are positive. These constraints are derived from [65], which demon-
strated that the PDFs for individual quark flavors and the gluon, as defined in the MS
factorization scheme, are non-negative.

Lastly, there is an upper limit on the number of epochs for which the model is allowed
to be trained. If the model is still improving when this limit is reached, the training will
nevertheless be terminated.

Once the training of the full set of replicas is complete, specific post-fit criteria are
evaluated. Replicas that do not satisfy all of these criteria are discarded. As a result, any
replica with an arc-length or a χ2 value, calculated relative to the experimental data, that
exceeds 4σ from the central value of its distribution is discarded. The post-fit check also
verifies the integrability of the solutions by ensuring that the inequality∑

k

|x(k)int fi(x
k
int, Q

2)| < 1

2
(2.10)

is satisfied for fi = V, V3, V8, T3, T8 evaluated atQ2 = 5 GeV2 and x(k)int ∈ 10−9, 10−8, 10−7.
Roughly 1% of the replicas are discarded by the post-fit criteria.

Figure 2.4: Diagram showing the stopping algorithm used to choose the optimal minimization
step (or epoch) to stop the fit, based on the look-back algorithm [3].

2.2 The theoretical covariance matrix framework

The NNPDF methodology can be extended, under certain assumptions, to incorporate
theoretical errors expressed by a theoretical covariance matrix. In this section, we first
outline the theoretical foundation of this approach, which can accommodate any source
of theoretical uncertainty. Subsequently, in section 2.2.1, we delve into the problem of
estimating Missing Higher Order Uncertainties (MHOUs), addressed through the scale
variation method. Detailed insights into the construction of the theory covariance matrix
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Figure 2.5: Typical profile of the training and validation χ2 as a function of the fitting step. The
optimal stopping point, in which the validation chi2 reaches its minimum, is highlighted by a red
dashed line [3].

are provided in section 2.2.2. Finally, the application of this framework to the broader
challenge of extracting PDFs at N3LO is briefly discussed in section 2.2.3.

We begin by noting that each experimental data point Di is associated with a ”true”
value Ti, which represents the value given by Nature. Due to imperfections in experi-
mental measurements, Ti cannot be determined exactly, but Bayesian probability can be
used to estimate the likelihood of a hypothesis for Ti. Assuming Gaussian distribution
of experimental results around this hypothetical true value, the conditional probability
for the true values T given the measured cross-sections D is

P (T |D) = P (D|T ) ∝ exp

(
−1

2
(Ti −Di)C

−1
ij (Tj −Dj)

)
. (2.11)

Although the true values Ti are unknown, theoretical predictions Pi can be computed
for each data point Di. These predictions are derived from a theoretical framework that
is typically incomplete, such as being based on a fixed-order truncation of a perturbative
expansion or omitting higher-twist effects, nuclear effects, or other difficult-to-calculate
factors. Additionally, these theory predictions Pi rely on PDFs evolved to a suitable
scale, also using an incomplete theory. While the theory predictions may correspond
to various observables and processes, they all hinge on the same underlying (universal)
PDFs.

Now, following a similar approach used in estimating experimental systematics, we
assume that the true values Ti are centered on the theory predictions Pi, and are dis-
tributed Gaussianly around these predictions. Ideally, these distributions would coin-
cide if the theory were exact and the PDFs were known with certainty. The conditional
probability for the true values T given theoretical predictions P is

P (T |P ) = P (P |T ) ∝ exp

(
−1

2
(Ti − Pi)S

−1
ij (Tj − Pj)

)
, (2.12)

where the theory covariance matrix Sij has to be estimated (section 2.2.1).
PDFs are determined by maximizing the marginalized probability of the theory given

the data P (P |D), where the true values T remain unknown. Using Bayes’ theorem we
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have
P (T |DP )P (D|P ) = P (D|T P )P (T |P ) , (2.13)

where
P (D|T P ) = P (D|T ) , (2.14)

given that experimental data do not depend on the theoretical predictions P but only on
the true values T . Thus, we can obtain

P (D|P ) =
∫
DNT P (T |D)P (T |P ) , (2.15)

where theN−dimensional integral is over all possible values of T and which stems from∫
DNT P (T |PD) = 1 . (2.16)

Having marginalized over the true values T , now the probability of the experimental
data is conditional to the theoretical predictions P .

We can rewrite this probability in terms of the difference between the true values and
the theoretical predictions, i.e.

∆i ≡ T − Pi , (2.17)

as

P (D|P ) ∝
∫
DN∆exp

(
−1

2
(Di − Pi −∆i)C

−1
ij (Dj − Pj −∆j)−

1

2
∆iS

−1
ij ∆j

)
, (2.18)

which is obtained exploiting the Gaussianity assumption. We can now perform this
integral explicitly [4], exploiting the fact that both C and S are symmetric matrices, to
get

P (P |D) = P (D|P ) ∝ exp

(
−1

2
(D − P )T (C−1 − C−1(C−1 + S−1)C−1)(D − P )

)
.

(2.19)
Now, noting that

(C−1 + S−1) = (C−1(C + S)S−1)−1 = S(C + S)−1C , (2.20)

we can write

C−1 − C−1(C−1 + S−1)−1C−1 = C−1 − C−1S(C + S)−1 = (C + S)−1 , (2.21)

which allows us to write the final result

P (P |D) ∝ exp

(
−1

2
(Di − Pi)(C + S)−1ij (Dj − Pj)

)
. (2.22)

Comparison of eq. (2.22) with eq. (2.11) indicates that when replacing the true Ti by the
theoretical predictions Pi in the expression for the χ2 of the data, the theoretical covari-
ance matrix Sij should simply be added to the experimental covariance matrix Cij [66].
This implies that, at least within this Gaussian approximation, when determining PDFs,
theoretical uncertainties can be treated akin to additional experimental systematics: they



Inclusion of theory errors in PDF fitting 33

represent additional uncertainties considered when seeking to derive the truth from the
data based on a specific theoretical prediction. The experimental and theoretical uncer-
tainties are added in quadrature because they are assumed to be uncorrelated.

The question remains of how to estimate the theory covariance matrix Sij . We need
a method to estimate the shifts ∆i, often referred to as nuisance parameters in the con-
text of systematic error determination, that accounts for theoretical correlations among
different kinematic points within the same dataset, across different datasets measuring
the same physical process, and between datasets corresponding to different processes
(involving different initial state hadrons). It should be noted that theory correlations
persist even among different processes due to universal parton distributions; processes
involving only leptons in the initial state are the only ones with truly independent theo-
retical uncertainties, though they are irrelevant for PDF determination.

The most commonly used method for estimating the theoretical corrections due to
Missing Higher-Order Uncertainties (MHOUs), which naturally incorporates all theo-
retical correlations, is scale variation. This method is discussed in section 2.2.1 and then
applied in section 2.2.2 to formulate specific procedures for constructing the theory co-
variance matrix Sij . Other approaches discussed in the literature involve estimating
MHOUs based on the behavior of known perturbative orders [67–70]; however, these
approaches do not currently offer a sufficiently well-established formalism of broad ap-
plicability and it is currently not clear how they can provide theoretical correlations be-
tween observables. It should be noted that the formalism presented in this section is
independent of the specific method used to estimate the correlated theoretical shifts ∆i.

2.2.1 MHOUs from scale variations

Theoretical predictions at hadron colliders rely on two quantities computed perturba-
tively: the partonic cross sections or coefficient functions, eq. (1.41), and the anomalous
dimensions, eq. (1.47), which determine the scale dependence, eq. (1.48), of the PDF.
Both quantities can be expressed as a series in the strong coupling αs(Q

2), which itself is
given perturbatively through the solution to eq. (1.24) in terms of the value of the strong
coupling at a reference scale, typically αs(MZ). The Missing Higher-Order Uncertainty
(MHOU) on the predictions arises from the truncation of these perturbative expansions
at a given order.

In principle, if a variable-flavour-number scheme is used (section 1.4), a further MHOU
is introduced by the truncation of the perturbative expansion of the matching condi-
tions that relate PDFs in schemes with different numbers of active flavors (see eq. (1.62)).
These uncertainties, especially those related to the matching at the charm threshold, are
very significant if one is interested in PDFs below the charm threshold, such as when de-
termining the intrinsic charm PDF [71, 72]. However, for precision LHC phenomenology,
physics predictions are produced in an nf = 5 scheme, and PDFs are also determined by
comparing to data predictions, the vast majority of which are computed in the nf = 5
scheme. Therefore, the matching uncertainties only affect the small amount of data be-
low the bottom threshold µb (no data below the charm threshold are used), and then
only through the MHOU at the bottom threshold, which is very small. Consequently,
the MHOU related to the matching conditions are subdominant, and we will neglect
them here.

We thus focus on MHOUs on the hard cross-sections and anomalous dimensions.
The estimation of these MHOUs from scale variations is obtained by producing various
expressions for a perturbative result to a given accuracy, which differ by the subleading
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terms generated when varying the scale at which the strong coupling is evaluated. Start-
ing with the coefficient function, we construct a scale varied NkLO coefficient function

C(αs(µ
2), ρr) = αm

s (µ2)

k∑
j=0

(αs(µ
2))jCj(ρr) (2.23)

requiring that
C(αs(ρrQ

2), ρr) = C(αs(Q
2))[1 +O(αs)] , (2.24)

which determines the scale varied coefficients Cj(ρr) in terms of the starting Cj . Note
that ρr is defined as the square of the ratio between the renormalization scale and the
typical scale of the process, i.e. ρr = µ2

r/Q
2. We provide explicit expressions up to N3LO

in appendix A.

At any given order, C and C differ by subleading terms: their difference is taken as
an estimate of the missing higher orders, and it is used for the construction of a theory
covariance matrix, as described in section 2.2.2. We refer to this method of estimating
MHOUs on partonic cross-sections as renormalization scale variation, as it has to do with
the scale dependence of αs in the coefficient functions expansion.

Through the same procedure, we may obtain an estimate of the MHOU on the anoma-
lous dimension. Namely, we construct a scale-varied NkLO anomalous dimension

γ(αs(µ
2), ρf ) = αs(µ

2)

k∑
j=0

(αs(µ
2))jγj(ρf ) , (2.25)

requiring
γ(αs(ρfQ

2), ρf ) = γ(αs(Q
2))[1 +O(αs)] , (2.26)

which fixes γ(ρf ) in terms of γj . Note that this is just a specific instance of eq. (2.23),
obtained choosing m = 1. The definition of ρf is analogous to the definition of ρr,
i.e. ρf = µ2

f/Q
2. The subleading difference between γ and γ can be taken as an esti-

mate of the MHOU on anomalous dimensions. This uncertainty then translates into a
MHOU on the PDF f(Q2) when expressed through eq. (1.47) in terms of the PDFs at the
parametrization scale. We refer to this estimate of the MHOU on the scale dependence
of the PDF as factorization scale variation.

By substituting the scale-varied anomalous dimension γ(α(Q2), ρf ) into the expres-
sion of the PDF in eq. (1.47), it can be shown [4] that factorization scale variation can
equivalently be performed directly at the level of the PDF. To do so, we start by espress-
ing the solution of the DGLAP evolution equations fromQ2

0 toQ2 in terms of an evolution
kernel operator (EKO)[32], as

f(Q2) = E(Q2 ← Q2
0) = P exp

(
−
∫ Q2

Q2
0

dµ2

µ2
γ(αs(µ

2))

)
f(Q2

0) , (2.27)

where P denotes the path ordering. Then, we define a scale-varied PDF f(Q2, ρf ), as a
PDF whose scale dependence is governed by a scale varied EKO E(Q2 ← Q2

0, ρf ), as

f(Q2, ρf ) = E(Q2 ← Q2
0, ρf )f(Q

2
0) . (2.28)
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The scale varied NkLL4 EKO, as usual, differs by subleading terms from the original
EKO:

E(Q2 ← Q2
0, ρf ) = E(Q2 ← Q2

0)[1 +O(αs)] . (2.29)

We can construct the scale varied EKO as

E(Q2 ← Q2
0, ρf ) = K(αs(ρfQ

2), ρf )E(ρfQ
2 ← Q2

0) , (2.30)

where the additional NkLL evolution kernel K(αs(ρfQ
2), ρf ) is given by the expansion

K(αs(ρfQ
2), ρf ) =

k∑
j=0

(αs(ρfQ
2))jKj(ρf ) . (2.31)

By substituting this expansion into eq. (2.29), all coefficients Kj(ρf ) are determined in
terms of γj . Their expressions are provided up to N3LO in appendix A. Collectively,
eqs. (2.29) and (2.30) imply that the scale-varied evolution kernel evolves from Q2

0 to
ρfQ

2, and then from ρfQ
2 back toQ2, with the latter evolution expanded to fixed NkLO.

The two methods for performing factorization scale variation, whether on anomalous
dimensions (as in eq. (2.26)) or directly on PDFs (as in eq. (2.29)), are equivalent. When
executed at NkLO, both methods generate the same subleading Nk+1LO terms, although
higher-order terms may differ. Specifically, this equivalence ensures that the theoretical
predictions are consistent within the limits of the calculated perturbative order. These
two approaches to factorization scale variation, involving variations in the scale of the
anomalous dimension and the scale of the PDF, were distinguished as Scheme A and
Scheme B in [53].

A third way, referred to as Scheme C in [53], consists of using the scale-varied PDF,
eq. (2.28), namely

f(Q2, ρf ) = K(αs(ρfQ
2), ρf )E(ρfQ

2 ← Q2
0)f(Q

2
0) , (2.32)

but including K(αs(ρfQ
2), ρf ) in the coefficient functions instead of the PDF, exploit-

ing the factorization theorem. For completeness, also the explicit expressions needed to
adopt this scheme are given in appendix A.

In standard practice, factorization scale variation is typically implemented using
Scheme C, as it avoids the need to alter the PDFs, which are commonly obtained from an
external source. However, in the context of PDF determination, factorization scale varia-
tion via Scheme B (eq. (2.28)) is preferred for its simplicity. This approach involves mod-
ifying only the EKO used in computing PDF evolution. Hence, we will adopt Scheme B
for factorization scale variation.

2.2.2 Prescriptions for the theory covariance matrix

The missing higher-order uncertainty (MHOU) arising from the perturbative trunca-
tion of the partonic cross-sections and the scale dependence of the parton distribution
functions (PDFs) are respectively estimated through renormalization scale variation, as
described in eq. (2.24), and factorization scale variation according to scheme B of [4],

4The NkLL solutions to the DGLAP evolution equations resum the NkLL collinear logarithms (see sec-
tion 1.4). In practice, it means that the anomalous dimensions are computed up to NkLO.



36 2.2.2 Prescriptions for the theory covariance matrix

detailed in eq. (2.30). These uncertainties are incorporated into the fit through the con-
struction of a MHOU covariance matrix. We review here the details of the construction of
such theory covariance matrix, together with a description of the possible prescriptions
that can be adopted in its definition[4, 5, 53].

The estimation of the shifts ∆i (as defined in section 2.2) given by the scale variation
procedure is

∆i(ρf , ρr) ≡ Pi(ρf , ρr)− Pi(0, 0) , (2.33)

where Pi(ρf , ρr) is the prediction for the i-th datapoint obtained by varying the renor-
malization and factorization scale by a factor ρr, ρf respectively.

Next, we need to choose a correlation pattern for scale variation, as follows:

• Factorization scale variation is correlated for all datapoints because the scale de-
pendence of PDFs is universal.

• Renormalization scale variation is correlated for all datapoints belonging to the
same category. This category could either be the same observable, such as fully in-
clusive DIS cross-sections, or different observables pertaining to the same process,
for example, the transverse momentum and rapidity distributions of the Z boson.

Note that this approach necessitates a categorization of processes. For instance, charged-
current (CC) and neutral-current (NC) deep inelastic scattering are treated as distinct
processes. The specific categorization adopted for the results presented in sections 2.3
and 2.4, is detailed in section 2.3.1.

These choices correspond to the assumption that factorization and renormalization
scale variations fully capture the MHOU on anomalous dimensions and partonic cross-
sections, respectively, and that missing higher-order terms are of a similar nature and
thus of a similar magnitude across all processes within a given process category. Al-
ternative assumptions are possible. For instance, one could decorrelate the renormal-
ization scale variation from contributions to the same process originating from different
partonic sub-channels, or introduce an additional variation of the process scale on top of
the renormalization and factorization scale variations discussed above (see Section 4.3
of [4] for a more detailed discussion).

The MHOU covariance matrix is then defined as

Sij = nm
∑
Vm

∆i(ρf , ρri)∆j(ρf , ρrj ) , (2.34)

where the sum runs over the space Vm of the m scale variations that are included. The
factorization scale is always varied in a correlated manner, while the renormalization
scales, corresponding to ρri and ρrj , are varied in a correlated manner (ρri = ρrj ) if
datapoints i and j belong to the same category. However, they are varied independently
if i and j belong to different categories.

The normalization factor nm is nontrivial to compute because it must account for the
mismatch between the dimension of the space of scale variations when two datapoints
are in the same category (hence, there is only one correlated set of renormalization scale
variations) and when they are not (thus, there are two independent sets of variations).
These normalization factors were computed for various choices of the space Vm and for
various values of m in [4]. A detailed description of the possible prescriptions, as well
as the computation of such normalization factors is provided in appendix B.
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As in [4], and as is commonly done, we consider scale variations by a factor 2, so that

ρf , ρr = {1/4, 1, 4} . (2.35)

In [4], various choices for the space of allowed variations were examined. Among these
were the 9-point prescription, where ρr and ρf are allowed to take all values {1/4, 1, 4},
resulting in m = 8 (eight variations around the central value). Another commonly used
prescription is the 7-point prescription, with m = 6, derived from the 9-point prescrip-
tion by discarding the two outermost variations, specifically where ρr = 4, ρf = 1/4
and ρr = 1/4 and ρf = 4. We will demonstrate in section 2.3 that, upon validating the
MHOU covariance matrix [5], the 7-point and 9-point prescriptions exhibit similar be-
havior, consistent with the findings of [4]. Other prescriptions, which involve a more
limited set of independent scale variations, were shown in [4] to be less effective, and
therefore, will not be considered further. The explicit expressions for the MHOU covari-
ance matrix using the 7-point and 9-point prescriptions are provided in Eqs. (4.18-4.19)
and Eq. (4.15) of [4], respectively.

The assumptions concerning the correlation patterns of renormalization and factor-
ization scale variations, the categorization of processes, the range of scale variations,
and the specific selection of variation points inherently involve some degree of arbitrari-
ness (part of which is discussed in appendix B). This arises because the MHOU repre-
sents an estimate of the probability distribution for an unknown quantity with a unique
true value, making it intrinsically Bayesian. The validation of such estimates relies on
comparing their performance against cases where the true value is known, as we will
demonstrate in section 2.3.

2.2.3 Application to N3LO

Calculations of hard-scattering cross-sections at the fourth perturbative order in the
strong coupling (N3LO), have been available for a considerable period for massless
deep-inelastic scattering (DIS) [73–76]. More recently, these calculations have been ex-
tended to encompass a rapidly expanding range of processes at hadron colliders. These
processes include inclusive Higgs production through gluon-fusion [77, 78] and bottom-
fusion [79], as well as in association with vector bosons [80] and through vector-boson
fusion [81]. Additionally, N3LO calculations have been conducted for Higgs pair pro-
duction [82], inclusive Drell-Yan production [83, 84], differential Higgs production [85–
89], and differential Drell-Yan distributions [90, 91]. For a comprehensive overview, see
[92].

In order to exploit this theoretical accuracy, one must combine these partonic cross-
sections with PDFs at the same perturbative order. The primary challenge hindering
progress in this endeavor is the absence of complete expressions for the N3LO splitting
functions that dictate the scale dependence of the PDFs. Currently, only partial infor-
mation is accessible [93–103], which includes a collection of integer N-Mellin moments,
terms proportional to nfk with k ≥ 1, and insights into the behavior at large and small
values of x. Despite these partial findings, it is possible to approximate the N3LO split-
ting functions by combining available data [102, 104], mirroring successful strategies
previously employed at NNLO [105]. Although we will not discuss the construction of
this approximation in the context of this thesis, it is fully described in [6].

Therefore, achieving a global PDF determination at N3LO involves working with in-
complete information: we have approximate knowledge of splitting functions and com-
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plete knowledge of partonic cross-sections only for certain processes. A preliminary
effort in this direction was undertaken in [104], where the unknown theoretical aspects
of N3LO calculations were modeled using a set of nuisance parameters. These parame-
ters were then simultaneously determined with the PDFs through a fit to experimental
data.

Here, we employ a distinct approach. Specifically, we utilize the theory covariance
matrix framework described in section 2.2 to address the gaps in perturbative informa-
tion. In particular, we build, in the same way we built the MHOU covariance matrix in
section 2.2.2, an incomplete higher-order uncertainties (IHOUs) covariance matrix that in-
corporates the uncertainties due to incomplete knowledge of N3LO theory, specifically
for the splitting functions approximation and for the massive DIS coefficient functions.
Armed with these theory covariance matrices, we are poised to conduct a determina-
tion of PDFs at approximate N3LO (referred to as aN3LO hereafter). In this approach, the
theory covariance matrix plays a crucial role by accommodating both the incomplete un-
derstanding of N3LO splitting functions and the massive coefficient functions (IHOUs),
as well as the absence of N3LO corrections in partonic cross-sections for hadronic pro-
cesses (MHOUs).

Certainly, the purpose of this thesis does not delve into the detailed construction of
the IHOUs covariance matrix, as comprehensively outlined in [6]. Instead, this section
has underscored how the framework of theory covariance matrices can be extended to
encompass challenges beyond its initial domain. Moreover, it serves as an introduction
to the findings that will be presented in section 2.4, which include results that have been
derived using aN3LO PDFs.

2.3 Validation on known perturbative order

In this section, we compute and validate the MHOU covariance matrix following the
methodology outlined in the previous section. Initially, we describe the construction
of the matrix based on an appropriate categorization of the dataset. Subsequently, we
validate the matrix at the Next-to-Leading Order (NLO) level, where the next-order cor-
rections are known, allowing for the exact determination of the true MHOUs.

2.3.1 Dataset and categorization of processes

To determine the covariance matrix, we must first select an appropriate dataset and pro-
cess categorization. The dataset utilized for the determination of the NNPDF4.0MHOU
PDFs is identical to that used for the determination of the NNLO NNPDF4.0 PDFs,
as detailed in Ref. [8]. This same dataset is employed for both the NLO and NNLO
NNPDF4.0MHOU PDFs discussed herein. In Ref. [8], a slightly different dataset was
used for the NLO PDF determination, specifically excluding data points for which NNLO
corrections are substantial and including some data at NLO for which NNLO corrections
were not available at the time. Here, we aim to use the same dataset at both NLO and
NNLO to analyze the impact of including MHOUs on perturbative convergence, with-
out any changes in the dataset acting as a confounding factor.

As explained in the previous section, process categories correspond to classes of pro-
cesses for which the missing higher-order terms are likely to originate similarly. Con-
sequently, the correlation between the MHOU on any pair of predictions for processes
within the same category can be approximated as if they were two data points from the
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same physical process. We thus classify processes into nine categories: neutral-current
deep-inelastic scattering (DIS NC); charged-current deep-inelastic scattering (DIS CC);
and the following seven hadronic production processes: top-pair; Z, i.e., neutral-current
Drell-Yan (DY NC); W±, i.e., charged-current Drell-Yan (DY CC); single top; single-
inclusive jets; prompt photon; and dijet. For more details about the process categoriza-
tion see tables 2.2 to 2.5.

With these classifications, the covariance matrices at NLO and NNLO can be com-
puted using eq. (2.34). The results at NLO and NNLO, computed using the 7-point
prescription, are shown in fig. 2.6. As anticipated, the absolute value of the matrix el-
ements is smaller at NNLO compared to NLO, with a reduction of nearly an order of
magnitude. However, the pattern of correlations remains relatively stable across differ-
ent perturbative orders. It is important to note that all data points, including those from
different experiments, are correlated through MHOUs on perturbative evolution. This
represents a significant difference compared to a typical experimental covariance matrix.
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Figure 2.6: The theory covariance matrices computed at NLO (left) and at NNLO (right) [5].

The relative uncertainties on individual points (i.e. the square root of the diagonal
covariance matrix elements) before and after the inclusion of the MHOU, as well as the
MHOU itself, are compared in fig. 2.7 at both NLO and NNLO. It is evident that, at the
NLO level, the MHOU uncertainty is comparable to the other components of the uncer-
tainty, whereas, at NNLO, it is clearly subdominant. Consequently, we might expect the
effect of MHOUs at NNLO to manifest primarily through correlations, thus impacting
the PDF central values more significantly than the PDF uncertainties.

2.3.2 Validation procedure

The MHOU covariance matrix at NLO can be validated by comparing it to the known
difference between NLO and NNLO predictions. This comparison can be performed
using various estimators, originally proposed in [4]. We present here the results of this
validation, both for our default 7-point prescription and for the 9-point prescription dis-
cussed in section 2.2.2 and in appendix B.

We define a normalized shift vector, whose i-th component δi is the normalized shift
of the i-th datapoint due to the change in theory prediction from NLO to NNLO for a
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Figure 2.7: The diagonal elements of the theory covariance matrix at NLO (left) and at NNLO
(right) compared with the experimental uncertainty and the total uncertainty, i.e. obtained as the
sum in quadrature of the two [5].

fixed PDF, namely

δi =
PNNLO
i − PNLO

i

PNLO
i

, (2.36)

where PNNLO
i and PNLO

i are respectively the NNLO and NLO theory predictions both
computed using the NLO PDF set. The simplest validation consists of comparing the
shift δi to the uncertainty on individual points (also normalized), i.e. to the square root
of the diagonal entries of the normalized NLO MHOU covariance matrix

ŜNLO
ij =

SNLO
ij

PNLO
i PNLO

j

. (2.37)

Results are presented in fig. 2.8 for both the 7-point (2.8a) and the 9-point (2.8b) prescrip-

tions, where we compare δi to ±
√
ŜNLO
ii . It is evident that for deep-inelastic scattering,

both 7-point and 9-point scale variations at NLO provide a very conservative uncer-
tainty estimate that significantly overestimates the NLO-NNLO shift. Conversely, for
hadronic processes, the shift and scale variation estimates are generally comparable in
size. However, for Drell-Yan (DY) processes, scale variations occasionally underestimate
the shift.
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Figure 2.8: Comparison of the shifts of eq. (2.36) to ±
√

ŜNLO
ii (eq. (2.37)) as obtained with the 7-

points prescription (left) and with the 9-points prescription (right) [5].
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However, this validation method is rather crude as it does not test correlations. Cor-
relations can be examined by comparing the eigenvalues of the covariance matrix to
the projection of the shift along its eigenvectors. It is crucial to note that the shift δi is
a vector in the Ndata-dimensional space of data, whereas the independent eigenvectors
of the covariance matrix span a smaller subspace S with dimension Nsub ≪ Ndata. In
our case, Ndata = 4616 while Nsub = 22 for the 7-point scale variation, and Nsub = 48
for the 9-point scale variation (see formulas in Appendix A of [4] with p = 9 process
classes). Therefore, an additional nontrivial condition is that the shift vector δi should
predominantly lie within the subspace S.

We can perform both tests quantitatively as follows. First, we compute the eigenvec-
tors eαi and eigenvalues λα = (sα)2 of the MHOU covariance matrix. Subsequently, we
determine the projections δα of the shift vector δi onto these eigenvectors eαi , namely

δα =

Ndata∑
i=1

δie
α
i , α = 1, . . . , Nsub . (2.38)

Finally, we determine the component of the shift vector in theNsub dimensional subspace
S:

δSi =

Nsub∑
α=1

δαeαi . (2.39)

The orthogonal component
δmiss
i = δi − δSi , (2.40)

is the part of the shift vector that is missed by the MHOU covariance matrix.
We can now evaluate whether correlated uncertainties are accurately represented by

comparing the magnitudes of sα and δα. Under the assumption of Gaussian distribution
of MHO terms, approximately 68% of δα should be less than or equal to sα. Additionally,
we can assess how much of the shift vector lies outside the subspace S by determining
the magnitude |δmiss| of the missed vector, and examining the angle between the full shift
vector and its component contained within the S subspace, namely

θ = arccos
|δS |
|δ| . (2.41)

Clearly, if the shift vector δ were entirely accounted for by the MHOU covariance matrix,
then |δmiss| = 0, |δS | = |δ|, and θ = 0.

The shift projections |δα| and covariance matrix eigenvalues |sα| are compared for
both the 7-point and the 9-point prescriptions in fig. 2.9, where we also illustrate the
length of the missed component |δmiss|. There is generally good agreement between shift
projections and predicted MHOUs for the largest eigenvalues using both prescriptions.
For smaller eigenvalues, there is also good agreement, although the 9-point prescription
tends to slightly underestimate the size of individual components of the shift.

The size of the missed component of the shift vector can be observed in fig. 2.9 to
be comparable to its largest eigenvector component for both prescriptions, indicating it
is relatively small compared to the full shift. This observation holds true especially for
the first ten components, which are of similar magnitude. This relationship is further
supported by examining the angle given by eq. (2.41) between the shift vector and its
projection in the subspace S, as detailed in table 2.1 for both individual datasets and the
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Figure 2.9: Comparison of the shift |δα| with the MHOU covariance matrix eigenvalues |sα| for
the 7-point prescription (left) and the 9-point prescription (right). We also show the lenght of the
missed component |δmiss| [5].

entire dataset.

Remarkably, both the 7-point and 9-point prescriptions perform well despite the
small size of the S subspace, showing minimal differences between them despite the
9-point prescription having a subspace size more than twice that of the 7-point prescrip-
tion. Across almost all datasets, the direction of the shift and its projection in the S sub-
space are closely aligned, with some instances being nearly identical, except for cases
like NC DIS and to a lesser extent DY, particularly CC.
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Prescription N sub θ [◦]

7-point 22 39 18 24 23 38 14 15 12 12 32

9-point 48 37 15 20 23 34 12 13 7 12 28

Table 2.1: The angle θ, eq. (2.41), for the 7-point and the 9-point prescriptions for individual pro-
cess categories and for the total dataset. The dimension Nsub of the S subspace is also shown.

In summary, we conclude that the NLO MHOU covariance matrix effectively cap-
tures the uncertainty arising from missing NNLO corrections. The scale variation slightly
underestimates the uncertainty in DY predictions, and both the 7-point and 9-point pre-
scriptions perform comparably well. Specifically, the 9-point prescription excels in accu-
rately delineating the subspace containing the shift, while the 7-point prescription better
estimates the magnitude of uncertainty within that subspace. Consequently, we adopt
the 7-point prescription as our default choice going forward.
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2.4 PDFs with theoretical errors

We now focus on the primary outcomes of this study, namely the NNPDF4.0 NLO and
NNLO PDF sets incorporating MHOUs. These sets are derived by re-executing the
NNPDF4.0 PDF determinations, but with the inclusion of a MHOU covariance matrix
determined using a 7-point prescription as described in section 2.2.2. The dataset used is
identical to that employed for the determination of the NNPDF4.0 NNLO PDFs [8]. As
discussed in section 2.3.1, we use the exact same dataset for both NLO and NNLO eval-
uations, contrasting with [8] where a somewhat different dataset was utilized at NLO.
Consequently, we compare four distinct PDF sets in this study: NLO and NNLO, each
with and without MHOUs, all derived from the same underlying dataset.

It is important to note that the NLO PDFs without MHOUs presented in this study
are not suitable for phenomenological applications. They include data points for which
NNLO corrections are substantial, leading to their exclusion from the NNPDF4.0NLO
dataset as detailed in Ref. [8]. However, for the purpose of this study, we choose to com-
pare PDFs generated using identical code and datasets, differing only in perturbative
order and the inclusion of MHOUs. This approach allows us to assess the impact of
MHOUs without any additional confounding effects, however minimal they may be.

Given that we are also interested in illustrating the perturbative convergence from
NLO to N3LO and evaluating the impact of including MHOU in the PDF determination
on phenomenology, we have produced a NNPDF4.0 NLO PDF with MHOU which uti-
lizes the exact same dataset as described in [8]. Such results are presented in section 2.4.3.

Furthermore, the NNPDF4.0 NNLO PDFs presented here without MHOUs are equiv-
alent but not identical to the published NNPDF4.0 PDFs [8]. They differ due to the
correction of minor bugs in data implementation and the use of a new theory pipeline
[12] (see chapter 4) for predictions computation, which includes a revised treatment of
heavy quark mass effects involving subleading terms. The negligible impact of these
changes was evaluated in Appendix A of [13]. Therefore, for practical applications, the
NNPDF4.0 NNLO MHOU PDFs presented in this study can be considered as counter-
parts to the published NNPDF4.0 NNLO PDFs (without MHOU).

2.4.1 Fit quality

The tables 2.2 to 2.5 present the number of data points and the χ2 per data point in
the NLO and NNLO NNPDF4.0 PDF determinations before and after the inclusion of
MHOUs. When MHOUs are not included, the covariance matrix is defined as in eq. (2.9),
which consists of the sum of the experimental covariance matrix C and a theory covari-
ance matrix only accounting for missing nuclear corrections S(nucl), as determined in
Refs. [49, 50]. The impact of S(nucl) is discussed in Section 8.6 of [8]. When MHOUs are
included, the covariance matrix also includes the contribution from eq. (2.34) discussed
in section 2.2.2, denoted as S(7pt).

It is important to note that the MHOU contribution is either excluded or included in
the definition of the χ2 used by the NNPDF algorithm, which includes pseudodata gen-
eration, training, and validation loss functions. Similarly, it affects the covariance matrix
used to compute the values reported in tables 2.2 to 2.5. Additionally, the experimental
covariance matrix used to compute these values differs from that used in the NNPDF al-
gorithm. The NNPDF algorithm employs the t0 method [106] for treating multiplicative
uncertainties to mitigate the d’Agostini bias, while the published experimental covari-
ance matrix is used as-is.
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In table 2.2, datasets are aggregated according to the process categorization outlined
in section 2.3.1. Individual datasets are detailed in table 2.3 (NC and CC DIS), table 2.4
(NC and CC DY), and table 2.5 (top pairs, single-inclusive jets, dijets, isolated photons,
and single top).

Dataset Ndat
NLO NNLO

C + S(nucl) C + S(nucl) + S(7pt) C + S(nucl) C + S(nucl) + S(7pt)

DIS NC 2100 1.30 1.22 1.23 1.20

DIS CC 989 0.92 0.87 0.90 0.90

DY NC 736 2.01 1.71 1.20 1.15

DY CC 157 1.48 1.42 1.48 1.37

Top pairs 64 2.08 1.24 1.21 1.43

Single-inclusive jets 356 0.84 0.82 0.96 0.81

Dijets 144 1.52 1.84 2.04 1.71

Prompt photons 53 0.59 0.49 0.75 0.67

Single top 17 0.36 0.35 0.36 0.38

Total 4616 1.34 1.23 1.17 1.13

Table 2.2: The number of data points and the χ2 per data point for the NLO and NNLO NNPDF4.0
PDF sets without and with MHOUs. Datasets are grouped according to the process categorization
of section 2.3.1 [5].

Dataset Ndat
NLO NNLO

C + S(nucl) C + S(nucl) + S(7pt) C + S(nucl) C + S(nucl) + S(7pt)

NMC Fd
2 /Fp

2 121 0.87 0.87 0.87 0.88

NMC σNC,p 204 1.96 1.29 1.62 1.33

SLAC Fp
2 33 1.72 0.84 0.97 0.68

SLAC Fd
2 34 1.08 0.75 0.63 0.54

BCDMS Fp
2 333 1.60 1.26 1.41 1.29

BCDMS Fd
2 248 1.06 1.01 1.01 0.99

HERA I+II σNC e−p 159 1.39 1.39 1.39 1.39

HERA I+II σNC e+p
(Ep = 460 GeV)

204 1.11 1.04 1.08 1.04

HERA I+II σNC e+p
(Ep = 575 GeV)

254 0.89 0.87 0.92 0.88

HERA I+II σNC e+p
(Ep = 820 GeV)

70 1.08 0.96 1.12 0.95

HERA I+II σNC e+p
(Ep = 920 GeV)

377 1.19 1.17 1.30 1.25

HERA I+II σc
NC 37 1.83 1.66 2.03 1.75

HERA I+II σb
NC 26 1.46 1.03 1.45 1.11

CHORUS σν
CC 416 0.96 0.95 0.97 0.97

CHORUS σν̄
CC 416 0.90 0.87 0.88 0.87

NuTeV σν
CC (dimuon) 39 0.22 0.22 0.31 0.33

NuTeV σν̄
CC (dimuon) 37 0.58 0.39 0.56 0.64

HERA I+II σCC e−p 42 1.39 1.18 1.25 1.29

HERA I+II σCC e+p 39 1.33 1.25 1.22 1.25

Table 2.3: Same as table 2.2, for the DIS NC (top) and DIS CC (bottom) datasets [5].
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Dataset Ndat
NLO NNLO

C + S(nucl) C + S(nucl) + S(7pt) C + S(nucl) C + S(nucl) + S(7pt)

E866 σd/2σp (NuSea) 15 0.66 0.52 0.53 0.51

E866 σp (NuSea) 89 1.35 0.85 1.63 1.00

E605 σd/2σp (NuSea) 85 0.44 0.42 0.46 0.45

E906 σd/2σp

(SeaQuest)
6 1.23 3.20 0.90 0.90

CDF Z differential 28 1.36 1.26 1.23 1.18

D0 Z differential 28 0.75 0.73 0.64 0.64

ATLAS low-mass DY 7
TeV

6 13.3 8.97 0.87 0.78

ATLAS high-mass DY 7
TeV

5 1.60 1.64 1.60 1.67

ATLAS Z 7 TeV (L =
35 pb−1)

8 0.77 0.49 0.60 0.57

ATLAS Z 7 TeV (L =
4.6 fb−1) CC

24 5.00 3.29 1.73 1.68

ATLAS W,Z 7 TeV
(L = 4.6 fb−1) CF

15 1.82 1.21 1.07 1.02

ATLAS low-mass DY 2D
8 TeV

60 1.73 1.04 1.21 1.08

ATLAS high-mass DY
2D 8 TeV

48 1.48 1.34 1.12 1.08

ATLAS σtot
Z 13 TeV 1 0.48 0.43 0.30 0.60

ATLAS Z pT 8 TeV
(pT ,mℓℓ)

44 1.05 0.93 0.90 0.91

ATLAS Z pT 8 TeV
(pT , yZ )

48 0.74 0.69 0.88 0.70

CMS DY 2D 7 TeV 110 3.66 1.10 1.35 1.32

CMS Z pT 8 TeV 28 1.66 1.58 1.40 1.41

LHCb Z → ee 7 TeV 9 1.51 1.36 1.64 1.53

LHCb Z → µ 7 TeV 15 1.01 0.85 0.78 0.73

LHCb Z → ee 8 TeV 17 1.67 1.21 1.25 1.26

LHCb Z → µ 8 TeV 16 1.40 1.05 1.46 1.59

LHCb Z → ee 13 TeV 16 1.34 1.61 0.96 1.80

LHCb Z → µµ 13 TeV 15 1.88 1.13 1.75 0.99

D0 W muon asymmetry 9 2.48 1.92 1.99 1.95

ATLAS W 7 TeV (L =
35 pb−1)

22 1.23 1.15 1.13 1.12

ATLAS W 7 TeV (L =
4.6 fb−1)

22 2.74 2.26 2.15 2.16

ATLAS σtot
W 13 TeV 2 0.10 0.40 1.21 1.60

ATLAS W++jet 8 TeV 15 1.68 1.15 0.79 0.79

ATLAS W−+jet 8 TeV 15 1.82 1.31 1.49 1.45

CMS W electron asym-
metry 7 TeV

11 0.85 0.96 0.83 0.85

CMS W muon asymme-
try 7 TeV

11 2.05 1.75 1.74 1.73

CMS W rapidity 8 TeV 22 0.92 0.71 1.39 1.03

LHCb W → µ 7 TeV 14 1.76 1.44 2.76 1.99

LHCb W → µ 8 TeV 14 0.76 0.51 0.96 0.92

Table 2.4: Same as table 2.2, for the DY NC (top) and DY CC (bottom) datasets [5].
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Dataset Ndat
NLO NNLO

C + S(nucl) C + S(nucl) + S(7pt) C + S(nucl) C + S(nucl) + S(7pt)

ATLAS σtot
tt 7 TeV 1 11.7 3.66 4.66 2.40

ATLAS σtot
tt 8 TeV 1 2.28 0.87 0.03 0.03

ATLAS σtot
tt 13 TeV

(L=139 fb−1)
1 4.58 1.18 0.56 0.41

ATLAS tt̄ ℓ+jets 8 TeV
(1/σdσ/dyt)

4 3.39 1.89 3.01 3.70

ATLAS tt̄ ℓ+jets 8 TeV
(1/σdσ/dytt̄)

4 7.19 3.85 3.65 5.80

ATLAS tt̄ 2ℓ 8 TeV
(1/σdσ/dytt̄)

4 1.80 1.76 1.57 1.86

CMS σtot
tt 5 TeV 1 0.72 0.95 0.01 0.01

CMS σtot
tt 7 TeV 1 6.37 1.82 1.10 0.50

CMS σtot
tt 8 TeV 1 4.39 1.21 0.31 0.17

CMS σtot
tt 13 TeV 1 1.06 0.36 0.04 0.01

CMS tt̄ ℓ+jets 8 TeV
(1/σdσ/dytt̄)

9 1.67 1.61 1.20 1.59

CMS tt̄ 2D 2ℓ 8 TeV
(1/σdσ/dytdmtt̄)

15 2.03 1.84 1.32 1.25

CMS tt̄ 2ℓ 13 TeV
(dσ/dyt)

10 0.77 0.71 0.51 0.59

CMS tt̄ ℓ+jet 13 TeV
(dσ/dyt)

11 0.54 0.26 0.56 0.66

ATLAS incl. jets 8 TeV,
R = 0.6

171 0.70 0.73 0.71 0.64

CMS incl. jets 8 TeV 185 0.97 0.81 1.19 0.95

ATLAS dijets 7 TeV, R =
0.6

90 1.48 1.82 2.16 1.69

CMS dijets 7 TeV 54 1.59 2.07 1.84 1.74

ATLAS isolated γ prod.
13 TeV

53 0.59 0.50 0.75 0.67

ATLAS single t Rt 7 TeV 1 0.38 0.30 0.48 0.57

ATLAS single t Rt 13
TeV

1 0.05 0.03 0.06 0.07

ATLAS single t 7 TeV
(1/σdσ/dyt)

3 0.84 0.82 0.97 0.94

ATLAS single t 7 TeV
(1/σdσ/dyt̄)

3 0.06 0.06 0.06 0.06

ATLAS single t 8 TeV
(1/σdσ/dyt)

3 0.35 0.33 0.24 0.26

ATLAS single t 8 TeV
(1/σdσ/dyt̄)

3 0.19 0.21 0.19 0.19

CMS single t σt + σt̄ 7
TeV

1 0.91 0.96 0.76 0.84

CMS single t Rt 8 TeV 1 0.13 0.09 0.17 0.20

CMS single t Rt 13 TeV 1 0.32 0.28 0.35 0.38

Table 2.5: Same as table 2.2, for (from top to bottom) top pair, single-inclusive jet, isolated photon
and single top production [5].

The tables 2.2 to 2.5 demonstrate that upon inclusion of the MHOU covariance ma-
trix, the total χ2 decreases for both the NLO and NNLO fits, with a more pronounced
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decrease observed at NLO. However, even after including the MHOU, the NLO χ2 re-
mains somewhat higher than the NNLO χ2. Examination of tables 2.3 to 2.5 reveals that
this discrepancy is primarily attributed to a few datasets, specifically the ATLAS low-
mass Drell-Yan dataset. Further investigation confirms that this is due to a small num-
ber of highly precise data points (excluded by the NLO cuts in [8]), for which NNLO
corrections are significantly underestimated by scale variation.

Nevertheless, for the majority of data points and process categories, the MHOU co-
variance matrix effectively addresses the discrepancy between data and theoretical pre-
dictions at NLO arising from missing NNLO terms. This finding is consistent with the
validation results discussed in section 2.3.
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2.4.2 PDFs and PDF uncertainties

Individual PDFs at NLO and NNLO, with and without MHOUs, are compared in fig. 2.10
at Q = 100 GeV. We present the gluon, singlet, valence (V , V 3, V 8), and triplet (T3, T8,
T15) distributions (defined in section 1.2.2), each shown as a ratio to the NNLO PDFs
with MHOUs. Corresponding one sigma uncertainties are depicted in fig. 2.11.

The inclusion of MHOUs results in generally moderate changes in central values at
NNLO. However, at NLO, significant changes are observed for the gluon and singlet
distributions, while changes are more moderate for the other PDF combinations.

The PDF uncertainty at NNLO generally shows a slight reduction or remains un-
changed upon inclusion of MHOUs. This somewhat counterintuitive observation, where
the inclusion of an additional source of uncertainty leads to a reduction in PDF uncer-
tainty in χ2, has been previously noted in Refs. [49, 50]. It demonstrates the improved
compatibility of the data due to the MHOU.

At NLO, a similar effect is observed in the nonsinglet sector, where the PDF uncer-
tainty is reduced by the inclusion of MHOU. However, in the singlet sector, the PDF
uncertainty increases upon inclusion of MHOU. This is consistent with the findings in
section 2.3, where it was observed that at NLO, the MHOU from scale variation does not
fully account for the substantial shift observed from NLO to NNLO for some datasets.

A quantitative assessment of PDF uncertainties on physics predictions can be ob-
tained through the ϕ estimator, introduced in [61] (see Eq. (4.6) there) and also discussed
in [4] (see sec. 6 there). The ϕ estimator calculates the ratio of the average correlated PDF
uncertainty to the data uncertainty, and thus provides an estimate of the consistency of
the data. In particular, a value ϕ < 1 means that on average the uncertainties in the
predictions are smaller than those of the original data, indicating that consistent data are
being collectively described successfully by the underlying theory.

The value of ϕ, before and after inclusion of the MHOUs, is presented at NLO and
NNLO in table 2.6. It is evident that ϕ decreases upon inclusion of MHOUs for most
data categories, with a more pronounced decrease observed at NNLO and a smaller de-
crease at NLO. This observation further confirms that at NNLO, the inclusion of MHOU
improves data compatibility, although this is not uniformly observed at NLO.

Dataset
NLO NNLO

C + S(nucl) C + S(nucl) + S(7pt) C + S(nucl) C + S(nucl) + S(7pt)

DIS NC 0.14 0.13 0.15 0.13

DIS CC 0.12 0.12 0.12 0.12

DY NC 0.19 0.17 0.18 0.17

DY CC 0.37 0.30 0.35 0.32

Top pairs 0.19 0.16 0.17 0.17

Single-inclusive jets 0.13 0.12 0.13 0.13

Dijets 0.10 0.09 0.11 0.10

Prompt photon 0.06 0.06 0.06 0.06

Single top 0.04 0.04 0.04 0.04

Total 0.16 0.15 0.17 0.15

Table 2.6: The ϕ estimator for PDFs at NLO and NNLO with and without MHOUs for the process
categories of section 2.3.1[5].

A priori, PDF sets with and without MHOUs should not necessarily be compatible
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within uncertainties, as the latter do not account for an additional source of uncertainty.
However, they do agree in the nonsinglet sector, where MHOU are generally comparable
in magnitude to the PDF uncertainty before their inclusion. In contrast, agreement is not
typically observed in the singlet sector, where NNLO corrections can be quite substan-
tial. The inclusion of MHOUs typically shifts the NLO PDFs towards NNLO, thereby
improving perturbative convergence, except for the gluon distribution. Even for the
singlet sector, where the NLO PDFs move towards NNLO upon inclusion of MHOUs,
the NNLO results often lie well outside the NLO uncertainty band, especially at small
x. This discrepancy indicates that in the singlet sector, there exist large NNLO correc-
tions to the NLO result that are underestimated by MHOUs determined through scale
variation. At small x, this discrepancy can be attributed to unresummed small-x loga-
rithms [107], whose increase with perturbative order is not adequately captured by scale
variation. A more detailed discussion about perturbative convergence is provided in
section 2.4.3, where the aN3LO fit is also shown.

In summary, the inclusion of MHOUs estimated through scale variation at NNLO
enhances data compatibility, resulting in a reduction of uncertainties and a moderate
shift in central values. At NLO, it partially addresses the effect of MHOUs on fit quality,
with a moderate impact on both PDF uncertainties and central values in the nonsinglet
sector. However, in the singlet sector, it leads to a more significant impact on central
values along with an increase in uncertainties, while still not fully accounting for the
largest missing NNLO corrections.
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Figure 2.10: The NLO and NNLO PDFs with and without MHOUs at Q = 100 GeV. The gluon,
singlet, valence (V , V3, V8), and triplet (T3, T8, T15) PDFs are shown. All curves are normalized to
the NNLO with MHOUs. The bands correspond to one sigma uncertainty [5].
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Figure 2.11: Relative one sigma uncertainties for the PDFs shown in fig. 2.10. All uncertainties are
normalized to the corresponding central NNLO PDFs with MHOUs [5].
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2.4.3 Perturbative convergence and phenomenology

In this section, we examine the perturbative convergence of PDFs and observables across
NLO, NNLO, and aN3LO (see section 2.2.3) fits, both with and without the inclusion of
MHOUs. It should be noted that, while the NNLO fit discussed here is identical to that
presented in the previous section, the NLO fit utilizes a different dataset. Specifically,
this dataset excludes datapoints with significant NNLO corrections, as described in [8].

The value of the total χ2 per data point is shown as a function of the perturbative
order in fig. 2.12. It is observed that, in the absence of MHOUs, fit quality improves as
the perturbative order increases. Conversely, when MHOUs are included, the fit qual-
ity becomes almost independent of the perturbative order within uncertainties (noting
that, with Ndata = 4616, σχ2 = 0.03). This indicates that the MHOU covariance matrix
estimated through scale variation accurately reproduces the true MHOUs. Furthermore,
at aN3LO, the fit quality remains consistent within uncertainties, regardless of whether
MHOUs are included. This observation strongly suggests that, given the current experi-
mental uncertainties, the present methodology, and the existing dataset, the perturbative
expansion has converged. Thus, the inclusion of higher-order QCD corrections beyond
N3LO is unlikely to further enhance the fit quality to the current data.
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Figure 2.12: The values of the total χ2 per data point in the NNPDF4.0 NLO, NNLO, and aN3LO
fits without and with MHOUs [6].

We compare the NLO, NNLO, and aN3LO NNPDF4.0 PDFs, obtained without and
with the inclusion of MHOUs, in figs. 2.13 and 2.14 and figs. 2.15 and 2.16, respectively.
Specifically, we present the up, antiup, down, antidown, strange, antistrange, charm,
and gluon PDFs at Q = 100 GeV, normalized to the aN3LO result, as a function of x
in both logarithmic and linear scales. Error bands correspond to one sigma PDF uncer-
tainties, which either include (MHOU sets) or exclude (no MHOU sets) MHOUs on all
theory predictions used in the fit.

The excellent perturbative convergence observed in the fit quality is also evident at
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the level of PDFs. In particular, the NNLO PDFs are either very close to or indistin-
guishable from their aN3LO counterparts. The inclusion of MHOUs further enhances
the consistency between NNLO and aN3LO PDFs, with the two lying almost on top of
each other. This indicates that the NNLO PDFs are made more accurate by the inclusion
of MHOUs, and that the aN3LO PDFs have converged, as discussed above. Exceptions
to this stability are observed for the charm and gluon PDFs, where aN3LO corrections
have a significant impact. For the charm PDF, these corrections lead to an enhancement
of the central value by approximately 4% for x ∼ 0.05, and for the gluon PDF, to a sup-
pression of about 2− 3% for x ∼ 0.005. In both cases, the inclusion of MHOUs increases
PDF uncertainties by about 1−2%, making the NNLO and aN3LO charm PDFs compat-
ible within uncertainties, and the NNLO and aN3LO gluon PDFs with MHOUs almost
compatible.

Figure 2.17 presents a comparison similar to that of figs. 2.13 to 2.16 for the gluon-
gluon, gluon-quark, quark-quark, and quark-antiquark parton luminosities. These are
shown integrated in rapidity as a function of the invariant mass of the final state mX for
a center-of-mass energy

√
s = 14 TeV. Their definition follows Eqs. (1)-(4) of [108].

As already observed for PDFs, perturbative convergence is excellent and improves
upon the inclusion of MHOUs. The NNLO and aN3LO results are compatible within un-
certainties for the gluon-quark, quark-quark, and quark-antiquark luminosities. Some
differences are observed for the gluon-gluon luminosity, consistent with the differences
seen in the gluon PDF. Specifically, the aN3LO corrections lead to a suppression of the
gluon-gluon luminosity by 2− 3% for mX ∼ 100 GeV. This effect is somewhat compen-
sated by an increase in uncertainty of about 1% upon inclusion of MHOUs. Indeed, the
NNLO and aN3LO gluon-gluon luminosities for mX ∼ 100 GeV differ by about 2.5σ
without MHOU, but become almost compatible within uncertainties when MHOUs are
included.

Overall, these results indicate that aN3LO corrections are generally small, except for
the gluon PDF, and that at aN3LO the perturbative expansion has nearly converged, with
NNLO and aN3LO PDFs very close to each other, especially upon inclusion of MHOUs.
They also show that MHOUs generally improve the accuracy of PDFs, though at aN3LO
they have a very small impact.

LHC phenomenology at aN3LO accuracy. We present a preliminary assessment of
the implications of aN3LO PDFs for LHC phenomenology by examining processes for
which N3LO results are publicly available, namely the Drell-Yan and Higgs total inclu-
sive cross-sections.

At each perturbative order, the uncertainty on the cross-section is determined by
combining the PDF uncertainty with the MHOU on the hard matrix element, obtained
by performing 7-point renormalization and factorization scale variation and taking the
envelope of the results. This procedure, commonly used for estimating the total uncer-
tainty in hadron collider processes, is followed here for ease of comparison with existing
results. In a more refined approach, MHOUs on the hard cross-section could be in-
cluded through a theory covariance matrix for the hard cross-section itself, similar to the
MHOUs and IHOUs on the PDF. This would allow tracking the correlation between dif-
ferent sources of uncertainty [109–111]. However, to disentangle the contribution of the
MHOU in the processes used for PDF determination from that in the matrix element, we
present results with the PDF uncertainty evaluated using both MHOU and no-MHOU
PDF sets.
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We present results for inclusive charged-current and neutral-current gauge boson
production cross-sections, followed by their decays into dilepton final states. Cross-
sections are evaluated using the n3loxs code [80] for various ranges in the final-state
dilepton invariant mass, Q = mℓℓ for neutral-current, and Q = mℓν for charged-current
scattering. Figure 2.18 displays the inclusive neutral-current Drell-Yan cross-section
pp → γ∗/Z → ℓ+ℓ−, and figs. 2.19 and 2.20 show the charged-current cross-sections
pp → W± → ℓ±νℓ. We consider one low-mass bin (30 GeV ≤ Q ≤ 60 GeV), the mass
peak bin (60 GeV ≤ Q ≤ 120 GeV), and two high-mass bins (120 GeV ≤ Q ≤ 300 GeV
and 2 TeV ≤ Q ≤ 3 TeV), which are relevant for high-mass new physics searches [112].

In all cases, we compare the NLO, NNLO, and aN3LO predictions, with the same
perturbative order in matrix element and PDFs, with and without MHOUs. In general,
we observe good perturbative convergence, with predictions at successive orders agree-
ing within uncertainties, and generally improved convergence upon including MHOUs
in the PDF. The difference between PDFs with and without MHOUs, while moderate,
remains non-negligible even at N3LO, where it starts being comparable to the overall
uncertainty. Thus, it must be included in precision calculations.

We now consider Higgs production through gluon fusion, associated production
with vector bosons, and vector-boson fusion (VBF). Predictions are obtained using the
ggHiggs code [113] for gluon fusion, n3loxs for associated production, and proVBFH
code [114] for VBF. Results are depicted in Figure 2.21 for gluon fusion and VBF, and in
Figure 2.22 for associated production with W+ and Z bosons.

In these cases, we observe generally good perturbative convergence, even for gluon
fusion, which is known for its notoriously slow converging expansion. The impact of
MHOUs on the PDFs is generally minor compared to the PDF uncertainty at all pertur-
bative orders and is almost negligible for gluon fusion. For associated production, the
inclusion of MHOUs marginally improves perturbative convergence.
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Figure 2.13: The NLO, NNLO and aN3LO NNPDF4.0 PDFs at Q = 100 GeV. We display the up,
antiup, down, antidown, strange, antistrange, charm and gluon PDFs normalized to the aN3LO
result. Error bands correspond to one sigma PDF uncertainties, not including MHOUs on the
theory predictions used in the fit [6].
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Figure 2.14: Same as fig. 2.13 in linear scale [6].
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Figure 2.15: Same as fig. 2.13 for NNPDF4.0MHOU PDF sets. Error bands correspond to one
sigma PDF uncertainties also including MHOUs on the theory predictions used in the fit [6].
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Figure 2.16: Same as fig. 2.15 in linear scale [6].
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Figure 2.17: The gluon-gluon, gluon-quark, quark-quark, and quark-antiquark parton luminosi-
ties as a function of mX at

√
s = 14 TeV, computed with NLO, NNLO and aN3LO NNPDF4.0 PDFs

without MHOUs (left) and with MHOUs (right), all shown as a ratio to the respective aN3LO re-
sults [6].
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Figure 2.18: The inclusive neutral-current Drell-Yan production cross-section, pp → γ∗/Z → ℓ+ℓ−,
for different ranges of the dilepton invariant mass Q = mℓℓ, from low to high invariant masses.
Results are shown comparing NLO, NNLO and aN3LO with matched perturbative order in the
matrix element and PDF, with PDFs without and with MHOUs [6].



Inclusion of theory errors in PDF fitting 61

NLO NNLO N3LO

Perturbative Order (ME)

1.4

1.5

1.6

1.7

1.8

1.9

σ
(p
p
→

W
+
→

`+
ν

)
[p

b
]

×102

√
s = 13.6 TeV

30 GeV ≤ m`ν ≤ 60 GeV

Charged Current Drell Yan (PDF + MHOUs)

NNPDF4.0

NNPDF4.0 MHOU

NLO NNLO N3LO

Perturbative Order (ME)

1.10

1.15

1.20

1.25

1.30

1.35

σ
(p
p
→

W
+
→

`+
ν

)
[p

b
]

×104

√
s = 13.6 TeV

60 GeV ≤ m`ν ≤ 120 GeV

Charged Current Drell Yan (PDF + MHOUs)

NNPDF4.0

NNPDF4.0 MHOU

NLO NNLO N3LO

Perturbative Order (ME)

4.0

4.2

4.4

4.6

σ
(p
p
→

W
+
→

`+
ν

)
[p

b
]

×101

√
s = 13.6 TeV

120 GeV ≤ m`ν ≤ 300 GeV

Charged Current Drell Yan (PDF + MHOUs)

NNPDF4.0

NNPDF4.0 MHOU

NLO NNLO N3LO

Perturbative Order (ME)

4.25

4.50

4.75

5.00

5.25

5.50

σ
(p
p
→

W
+
→

`+
ν

)
[p

b
]

×10−4

√
s = 13.6 TeV

2 TeV ≤ m`ν ≤ 3 TeV

Charged Current Drell Yan (PDF + MHOUs)

NNPDF4.0

NNPDF4.0 MHOU

Figure 2.19: Same as fig. 2.18 for the inclusive charged-current Drell-Yan production cross-section,
pp → W+ → ℓ+νℓ [6].
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Figure 2.20: Same as fig. 2.18 for the inclusive charged-current Drell-Yan production cross-section,
pp → W− → ℓ−ν̄ℓ [6].
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Figure 2.21: Same as fig. 2.18 for Higgs production in gluon-fusion and via vector-boson fusion.
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Figure 2.22: Same as fig. 2.18 for Higgs production in association with W+ and Z gauge bosons:
from top to bottom, Zh, W+h, and W−h.





CHAPTER 3

Validation of the methodology: Closure Tests

Parton Distribution Functions (PDFs) are a fundamental component of theoretical pre-
dictions at hadron colliders (see chapter 1); for recent reviews, see [115, 116].

The determination of PDFs from a finite set of experimental data is a classic example
of an inverse problem, inferring a model from noisy and sometimes incompatible obser-
vations. Inverse problems are inherently challenging, and Machine Learning (ML) has
become an increasingly prominent tool for addressing them; comprehensive reviews can
be found in [117, 118]. Within the context of PDF fitting, the NNPDF collaboration has
been leveraging ML techniques for over a decade (see section 2.1), in particular adopt-
ing a deep neural network to parametrize PDFs combined with a bootstrap procedure to
propagate data fluctuations into the fitted PDFs.

The closure testing methodology, introduced in [119] and following suggestions from
[120] and studies in [121], assesses the robustness and effectiveness of global PDF fits. A
detailed theoretical discussion of the statistical basis for this methodology is presented
in [9]. Closure tests involve fitting artificial data generated from a known set of input
PDFs. Since the underlying law is known, this allows for a direct comparison of fit re-
sults to the true values, thus evaluating whether the fitting methodology can accurately
reproduce the central values of the underlying law and correctly propagate experimental
uncertainties.

So far [8], closure tests have been conducted on a set of artificially generated data that
is inherently consistent, as it is produced using the known underlying law with the exper-
imental uncertainties and correlations provided by experimentalists. In this chapter, we
discuss the impact of inconsistencies of experimental origin within the training dataset.
Closure tests with inconsistent training data aim to simulate scenarios where specific
systematic uncertainties may have been either underestimated or entirely overlooked
by experimentalists, leading to tension between different experimental observations. By
employing closure tests in a context where inconsistency is deliberately introduced into
the data, the conditions of the test are made more representative of real-world situations.

As a by-product of our investigation, we develop a more robust estimate of the reli-
ability of uncertainties in a closure test. We achieve this by refining the evaluation of a
key indicator, the bias-to-variance ratio, compared to the definition previously provided
in [9].

We also extend the application of the closure test methodology to another significant
objective: the precise determination of the strong coupling constant, αs. Specifically, we
demonstrate how closure tests can be utilized to validate various methodologies em-
ployed to extract the strong coupling from experimental data. This validation is crucial,
considering the unprecedented accuracy reached in such determination.

65
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This chapter is organized as follows. In section 3.1 we introduce the notation and the
definitions that are relevant in the context of a closure test. We also review the statistical
estimators first introduced in [9] and we propose some improvements. Then we discuss
the problem of assessing the impact of inconsistent data on a NNPDF fit, by means of a
closure test, in section 3.2 [11]. Finally, in section 3.3, we review some of the methodolo-
gies that can be employed to extract αs from experimental data and we describe how the
closure tests framework can be utilized to validate such methodologies.

3.1 Notation and Definitions

In this section, we introduce the concept of a closure test, as well as the required def-
initions, and we introduce the notation. Some of these definitions have already been
outlined in section 2.1, to which we will refer. In section 3.1.1, we revisit some of the
statistical estimators utilized in [8] and explain how they can be refined to yield more
reliable results.

We start by expressing the χ2 of eq. (2.8) in a different notation, which will be useful
in the following. For the k-th replica, we have

χ2(k) =
1

Ndata

(
G(uk)− µ(k)

)T
C−1

(
G(uk)− µ(k)

)
, (3.1)

where µ(k) are the Level-2 data for replica k (see eq. (2.3)), C is the experimental covari-
ance matrix (see eq. (2.9)) and G(uk) represents the forward map from the PDF model to
the observable space. The uk are in fact the model parameters defining the k-th replica
PDF. In chapter 2 we denoted G(uk) with P , but here we need to switch to a more de-
tailed notation. Note that the map itself is often referred to as FK-table. We will discuss
in detail the FK-table interface in chapter 4.

The fundamental concept of closure tests is based on the assumption that the true
model of nature, denoted as w, is known. This true model is used to compute the true
values of each measurable observable i ∈ (1, . . . , Ndata), by means of the forward map G,
as

L0,i = G(w)i . (3.2)

As mentioned in section 2.1, we refer to L0,i as Level-0 data.
In an L0 closure test executed with the NNPDF methodology, no stochastic noise is

introduced to the L0 data. Consequently, the Nreps fits are performed on an identical set
of data, but with varying seeds for the initialization of the random numbers employed in
the minimization process. Therefore, the fit quality can be arbitrarily high, implying that
the χ2 for each replica should tend towards zero. This renders the L0 test a significant
evaluation of the minimization algorithm’s efficiency.

At Level 1 (L1) the experimental central values are artificially generated according to
eq. (2.1), with

y0 = G(w) + η , (3.3)

where the observational noise η is pseudo-randomly generated from the assumed distri-
bution. Specifically, each L1 data is given by

L1,i = L0,i +
∑
j

(
√
C)i,jrj , (3.4)
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where i indicates the datapoint and
√
C represents the Cholesky decomposition of the

experimental covariance matrix including the statistic, additive and multiplicative sys-
tematic experimental uncertainties and model uncertainties for each dataset, while ri are
random numbers generated from a standard normal distribution1.

At L1, the same underlying data is used for each replica fit. However, similar to
the L0 level, a different random seed is employed for the initialization of the random
numbers used in the minimization process. Since the L1 data are, on average, fluctuated
by one standard deviation away from the L0 values, it is expected that in L1 closure tests,
the χ2 of the best fit will be approximately 1.

Finally, at Level 2 (L2), starting from the shifted pseudo-data in eq. (3.4), we generate
Nreps pseudo-data L(k)

2 given by

L
(k)
2,i = L1,i +

∑
j

(
√
C)i,jr

(k)
j , (3.5)

where r(k)i , as in eq. (3.4), are random numbers sampled from a standard normal distri-
bution. In a L2 fit, we expect the final error function to be close to 2, since the data are
generated by adding an additional layer of fluctuations compared to L1. In the following
we will only discuss L2 closure tests.

3.1.1 Statistical estimators

In [8, 9], various statistical estimators were introduced to evaluate the faithful propa-
gation of experimental uncertainties into the PDF space within the context of a closure
test 2. Such estimators are defined within the framework of a multi-closure test, where
they are computed across multiple closure test fits, with each fit performed on a different
instance of L1 data. In this work, we use the index l to indicate one of the Nfits that we
perform across instances of the L1 data, and the index k to indicate theNreps pseudo-data
replicas fitted for each of the Nfits. In total, we have ensembles of Nreps ×Nfits replicas.

A key estimator in our analysis is the bias computed on each of the individual l fits,
which measures the distance between the central value of the model replica predictions
and the vector of the true observable values, f ≡ L0,i, in units of the covariance matrix.
It reads

B(l)(C) = (EϵG(u∗,k)− f)T C−1 (EϵG(u∗,k)− f) , (3.6)

where Eϵ denotes the expectation value over replicas.
Another estimator is the variance, which characterizes the fluctuations of model pre-

dictions around their mean value in units of the covariance matrix. It is defined as

V (l)(C) = Eϵ

[
(EϵG(u∗,k)− G(u∗,k))T C−1 (EϵG(u∗,k)− G(u∗,k))

]
. (3.7)

Note that the variance can be computed also for fits to real experimental data, not only
in the context of a closure test. In contrast, the bias can only be evaluated within the

1It is important to note that in a closure test, the L0 data are used instead of experimental data for the gen-
eration of the multiplicative uncertainties contribution to the covariance matrix. Specifically, this modification
involves replacing the experimental covariance matrix with the t0 covariance matrix [122].

2In this section, we will refrain from discussing statistical estimators that are not pertinent to the results
presented in this thesis. For an exhaustive review, readers are encouraged to consult [8, 9].
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framework of a closure test, as the true underlying law f is typically unknown.
To assess the fidelity of the PDF uncertainties, one approach involves computing

the expectation Eη of both bias and variance across the Nfits fits, each obtained with a
randomly selected value of y0, i.e. for different instances of L1 data. The evaluation then
proceeds by taking the square root of the bias-to-variance ratio (since both are squared
quantities), defined as

Rbv =

√
EηB(l)(C)

EηV (l)(C)
. (3.8)

If the uncertainties associated with the PDF replicas are accurate, the bias-to-variance
ratio should ideally equal one. This implies that the average discrepancy between the
central prediction from the replicas and the true value matches the mean-square differ-
ence between replica predictions and their central values [8, 9].

The quantity Rbv serves as an indicator of how much the uncertainty might have
been over- or under-estimated. Specifically, if Rbv deviates from unity, it suggests that
the uncertainty for a given fit is, on average, over- or under-estimated by a factor of
1/Rbv .

Improved estimators

In the course of our investigation, we have identified that the previously defined bias-
to-variance ratio may lead to biased outcomes. To illustrate this issue, let us consider a
scenario involving two experimentally uncorrelated datasets. For such cases, the ratio is
expressed as

Rbv =

√
EηB(l)(Cd1

) + EηB(l)(Cd2
)

EηV (l)(Cd1
) + EηV (l)(Cd2

)
, (3.9)

where B(l)(Cdi
) and V (l)(Cdi

) denote the bias and variance computed using the portion
of the total covariance matrix associated with dataset i for fit l. This formulation reveals
that Rbv tends to favor datasets with larger absolute values in both bias and variance.

Specifically, in situations where B(l)(Cd1
) ≫ B(l)(Cd2

) and V (l)(Cd1
) ≫ V (l)(Cd2

),
the ratio approximately simplifies to

Rbv ≈
√

EηB(l)(Cd1
)

EηV (l)(Cd1
)
. (3.10)

It is noteworthy that under the previously employed definition, both bias and variance
are independent of the number of data points in each dataset. Consequently, this can
result in the unpleasant scenario where a single data point carries significantly more
weight than a larger dataset.

The crux of the issue lies in the covariance matrix used in the fit, which incorporates
correlations among observables induced by both experimental and model factors. This
matrix is not the appropriate metric for assessing the proximity between central replicas
and the underlying law. Instead, the relevant covariance matrix should reflect the PDF-
induced correlations among observables included in the fit.

To clarify this concept, consider a population of random multivariate observables
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computed from each replica in a specific fit l, based on a given instance of the L1 dataset:

P(l)
1 :

{
G(u(l)∗,1), . . . ,G(u

(l)
∗,Nreps

)
}
. (3.11)

Assuming Gaussianity, we can estimate the covariance matrix of this population P(l)
1 as(

C
rep,(l)
obs

)
ij
=

Nreps

Nreps − 1

(
Eϵ

[
G(u(l)∗,k)iG(u

(l)
∗,k)j

]
− EϵG(u(l)∗,k)iEϵG(u(l)∗,k)j

)
, (3.12)

where the expectation value is computed over the replicas k for a given fit l. It is worth
noticing that in the large Nreps limit only the mean of P(l)

1 depends on the fit index l,
while the variance should be approximatively independent of it.

To ensure stable results, we estimate Crep
obs as the average of the covariance matrices

estimated from each fit l:

Crep
obs =

1

Nfits

Nfits∑
l=1

C
rep,(l)
obs . (3.13)

Using the covariance matrix defined in eq. (3.12), we redefine the variance estimator as

V (l)(Crep
obs) = Eϵ

[(
EϵG(u(l)∗,k)− G(u

(l)
∗,k)
)T

(Crep
obs)

−1
(
EϵG(u(l)∗,k)− G(u

(l)
∗,k)
)]

. (3.14)

This quantity is a random variable dependent on the shift η and follows a χ2 distribution
with Ndata degrees of freedom. Therefore, taking the expectation value over the fits
yields

EηV
(l)(Crep

obs) = Ndata , (3.15)

which has been explicitly verified in section 3.2.
Now, to test the faithfulness of the uncertainties in a PDF closure test fit, we aim to

verify that the central value of a fit l is “close enough” to the underlying law f . Here,
“close enough” is defined in terms of the variance of the fit. Specifically, we consider a
fit faithful if its central value lies within 1σ of the underlying law.

To this end, we define the bias as

B(l)(Crep
obs) =

(
EϵG(u(l)∗,k)− f

)T
(Crep

obs)
−1
(
EϵG(u(l)∗,k)− f

)
. (3.16)

The new bias-variance ratio, in terms of these estimators, is given by

Rbv = Eη

√
B(l)(Crep

obs)

V (l)(Crep
obs)

= Eη

√
B(l)(Crep

obs)

Ndata
(3.17)

and can be interpreted as an average distance between the central values of the fits and
the underlying law. In appendix C, we discuss in further detail the impact of the new
definition in eq. (3.17) within a real-case scenario. Note however that the application of
eq. (3.17) requires some care, as we will describe in the following section.

Another equivalent estimator, as considered in [9, 52], is a quantile estimator that
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measures the fraction of fits for which the input PDF lies within the 1σ interval of the
central PDF, averaged over PDF flavors and values of x. In our current analysis, we com-
pute an analogous estimator in the space of experimental data rather than PDF space,
given by

ξ1σ =
1

Ndata

Ndata∑
i=1

1

Nfits

Nfits∑
l=1

I[−σ′
i,σ

′
i]

(
δimWmn(EϵG(u(l)∗,k)− f)n

)
, (3.18)

whereW is theNdata×Ndata dimensional matrix that diagonalizes the matrix Crep
obs, such

that

Λ =WTCrep
obsW, with Λii = (σ′i)

2, Λij = 0 for i ̸= j, (3.19)

and σi denotes the PDF uncertainty associated with the experimental observation i. The
function IA(x) represents the indicator function of the interval A, which equals one if its
argument lies within the interval A, and zero otherwise. Note that in eq. (3.18), the sum
over the repeated indices m and n is implicit.

For a successful closure test, one should find that ξ1σ ∼ 0.68 if the PDF uncertainties
are correctly estimated. It is important to note that this relies on the assumption that both
the PDF replicas and the expectation values of the observables across fits are Gaussianly
distributed. This assumption holds by construction for the closure test data, and it is
likely valid for the observables computed with the fitted closure test PDFs for those ob-
servables that are sensitive to PDF combinations and kinematic regions well-constrained
by the fitting data.

The uncertainties of ξ1σ and Rbv are determined as the standard deviation over a
bootstrap sample performed on both fits and replicas, as detailed in appendix D.

A useful graphical representation of the quantile estimator defined in eq. (3.18) is
achieved by binning the difference between the mean value (over replicas) of the the-
ory predictions and the corresponding true observable values, normalized by the PDF
uncertainties. This difference is defined as

δ
(l)
i =

Wij(EϵG(u(l)∗,k)− f)j
σ′i

, (3.20)

and we will present several such plots in section 3.2.

PCA and single data point analysis definition

The definition of the bias in eq. (3.16) presupposes the invertibility of the covariance
matrix Crep

obs. However, a practical challenge may arise when computing B(l)(Crep
obs) on a

given dataset. Depending on the dataset’s size, which can range from a handful of points
to the entire set of data points included in the fit, strong PDF-induced correlations may
render the covariance matrix estimated from the samples ill-defined and non-invertible.
To address this issue, we have identified two alternative approaches, each providing
complementary information:

• Restrict the computation of Rbv to single data points.

• Regularize the covariance matrix using a Principal Component Analysis (PCA) ap-
proach and utilize the regularized matrix to compute Rbv for arbitrary groups of
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datasets.

When Rbv is computed on a dataset or on a group of datasets, we can assess whether
PDF-induced correlations on the observables are faithfully estimated. However, in this
case we are forced to rely on PCA, thus we lose the ability to interpret the impact of
specific experimental points on Rbv .

ComputingRbv for each individual data point ignores correlations but retains specific
information and simplifies the computation. Maintaining both sets of information allows
us to investigate the bias-variance ratio problem from multiple perspectives.

While the latter approach is straightforward, the PCA method involves a certain de-
gree of arbitrariness and some complications, especially when Rbv is computed for a
heterogeneous group of datasets. Thus, we provide practical details on performing PCA.

The main idea of PCA is to project the matrix onto a lower-dimensional space defined
by a basis that maximizes variance among theoretical predictions. The following steps
outline the regularization of the covariance matrix Crep

obs as defined in eq. (3.12).

1. Choose the number of components to retain based on the explained variance ratio
(EVR), i.e. retain Npc components such that∑Npc

i=1 λi∑Ndata

i=1 λi
(3.21)

meets a specified threshold, e.g., 0.99, where λi are the eigenvalues of the covari-
ance matrix.

2. Diagonalize the covariance matrix: Crep
obs = WΛWT and construct the matrix of

reduced components (eigenvectors) W̃ ∈ RNdata×Neig by retaining only the Npc

components with the largest eigenvalues.

3. Construct the regularized Npc ×Npc covariance matrix: C̃rep
obs = W̃TCrep

obsW̃ .

4. Compute the variance (and bias with corresponding regularization) in the reduced
space:

V (l) = Eϵ

(
EϵG(u(k)∗ )− G(u(k)∗ )

)T
W̃ Λ̃−1W̃T

(
EϵG(u(k)∗ )− G(u(k)∗ )

)
, (3.22)

where Λ̃ is the Npc ×Npc matrix of eigenvalues.

When this methodology is applied to a heterogeneous group of datasets, where the
entries of the covariance matrix Crep

obs are expressed in different units, we apply steps 1
and 2 to the correlation matrix instead,

(ρrepobs)ij =
(Crep

obs)ij
(Crep

obs)ii(C
rep
obs)jj

, (3.23)

which, being normalized, avoids the units of measure problem. Once the reduced com-
ponents W̃ for the correlation matrix are obtained, the reduced covariance matrix can
be constructed as in step 3, and bias and variance can be computed as in step 4. In sec-
tion 3.2, this solution will be employed whenever Rbv is computed for more than one
dataset.
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It is crucial to note that the first step in this methodology introduces an element of
arbitrariness. Selecting an EVR that is too low might result in the loss of valuable infor-
mation from the samples, whereas choosing an EVR too close to one could lead to an
unstable covariance matrix.

To balance the number of components and the EVR, we evaluate the L2 condition
number of the covariance matrix in Eq. (3.12), which provides insight into its stability as
the number of components varies. The L2 condition number of the covariance matrix is
computed as the ratio of the largest to the smallest eigenvalues:

κ(Crep
obs) =

|λmax(C
rep
obs)|

|λmin(C
rep
obs)|

. (3.24)
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Figure 3.1: L2 condition number for the HERA I+II inclusive CC dataset as a function of the
explained variance ratio.

Fig. 3.1 illustrates the condition number as a function of the EVR for a charged current
DIS dataset. The plot demonstrates that the explained variance ratio, and consequently
the number of components to retain, can be chosen based on a threshold value for the
covariance matrix condition number. Specifically, the threshold value is indicated by
the green dashed line in fig. 3.1, which intersects the condition number curve (the green
solid line) at about 0.99. In this case a threshold value of 100 has been chosen.

3.2 Tests on inconsistent Data

The fundamental premise of closure testing involves utilizing a specified PDF set that
serves as a proxy for the true proton structure, alongside a theoretical model calculated
at a particular perturbative accuracy, to compute the partonic cross sections and generate
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a set of artificial data points. These data points are ideal in the sense that they exhibit
known statistical properties, lack internal inconsistencies, and are fully compatible with
the theoretical model used in their creation. Consequently, in a standard closure test, the
objective is to accurately reproduce the underlying PDF within the appropriate margins
of uncertainty.

In this section, we introduce the next stage in the evolution of closure tests: inconsis-
tent closure tests. We begin in section 3.2.1 by clearly defining what we mean by incon-
sistent and detailing the practical methods for introducing experimental inconsistencies
into the artificial data set. In section 3.2.2, we outline the practical settings for the imple-
mentation. In section 3.2.3 we analyze the results of this study in some cases in terms of
the statistical estimators introduced in section 3.1.1.

3.2.1 Methodology

As discussed at the beginning of this chapter, inconsistencies of an experimental nature
arise when some experimental uncertainties are either underestimated or entirely over-
looked. Consequently, the nominal standard deviation is smaller than the true one, and
due to the correlated multi-dimensional nature of measurements, correlations might be
miscalculated, leading to tension between different experimental observations.

Although experimentalists strive to precisely estimate the uncertainties associated
with measurements, accurately determining systematic uncertainties and their correla-
tions is a complex task, especially in the presence of highly correlated data with small
statistical uncertainties. Therefore, exploring the outcomes of closure tests in the pres-
ence of experimental inconsistencies makes the closure test setup more representative of
real-world scenarios.

To formalize the definition of inconsistency within the context of a NNPDF-like clo-
sure test, we first explicitly express the covariance matrix as

(C)ij = δijσ
(uncorr)
i σ

(uncorr)
j +

Nmult∑
m=1

σ
(mult)
i,m σ

(mult)
j,m DiDj +

Nadd∑
k=1

σ
(add)
i,k σ

(add)
j,k + (Cth)ij ,

where σ(uncorr)
i denotes the uncorrelated systematics, σ(mult)

i represents the correlated
multiplicative systematics, and σ

(add)
i denotes the correlated additive systematics. In

principle, (Cth)ij incorporates all contributions of theoretical nature, not just the model
uncertainties of the nuclear datasets (discussed in section 2.1). However, in the context
of a closure test, the theoretical model is by definition correct, meaning that there are no
Missing Higher-Order Uncertainties (MHOU) associated with the employed theoretical
predictions. A possible exception to this would be generating L1 data with a NNLO
theory and then performing the fit with a NLO theory. In this case, we could utilize the
closure test framework to assess the impact of adopting the methodology described in
chapter 2. This would be an interesting study, but it is outside the scope of this work.

To simulate the scenario in which the experimental portion of the total covariance
matrix has been inaccurately estimated, we introduce C1 and C2, representing the co-
variance matrices used to generate Level-1 and Level-2 data respectively, i.e.

• Level-1 data: L1 = L0 + η, where η ∼ N (0, C1).

• Level-2 data: L(k)
2 = L1 + ϵ(k), where ϵ(k) ∼ N (0, C2), for k = 1, . . . , Nreps.
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In a consistent closure test, the covariance matrices for generating L1 and L2 data are
identical:

C1 = C2 = C . (3.25)

In a closure test where we introduce experimental inconsistencies, we have:

C1 = C and C2 = C(λ) , (3.26)

with

[C(λ)]ij = δijσ
(uncorr)
i σ

(uncorr)
j +

Nmult∑
m=1

λ(mult)
m σ

(mult)
i,m λ(mult)

m σ
(mult)
j,m DiDj

+

Nadd∑
k=1

λ
(add)
k σ

(add)
i,k λ

(add)
k σ

(add)
j,k + (Cth)ij , (3.27)

where the rescaling factors λ(mult)
m and λ(add)k ∈ [0, 1] can vary for each systematic uncer-

tainty.
These modifications clearly simulate a miscalculation in the published experimental

covariance matrix: we generate the L2 data replicas as if C had underestimated corre-
lations, adjusted by the λm factor, relative to the true covariance matrix C1, potentially
causing shifts in the central values from the underlying truth.

To visualize the effect of rescaling multiplicative systematics by a factor λ < 1, fig. 3.2
presents a simple 2D case to illustrate the impact of tuning the λ parameter. In this
illustrative example, X and Y represent two observables, with underlying true values
X = 0 and Y = 0. The covariance matrix is given by

C(λ) =

(
1.1 λ
λ 1.1

)
. (3.28)

In this example, λ = Var(X,Y ) and it represents the tuned correlated uncertainties. By
scanning λ from 1, corresponding to the usual closure test with consistent data, to λ = 0,
representing the maximum level of inconsistency in our setup, we observe that as λ
decreases, the information on correlations between observables is lost. Consequently,
the ellipses change shape until they become circles.

This simple example illustrates how changes inRbv , as the inconsistency injected into
the artificial data becomes more severe, indicate the extent to which a given experimental
inconsistency can compromise the accuracy of the PDF uncertainties. Essentially, we can
directly examine this statistic to determine whether the fitting methodology absorbs or
flags the experimental inconsistency that we artificially introduce.

3.2.2 Details on the setup

In all results presented in section 3.2.3, theL1 data are generated using one of the replicas
of the NNPDF4.0 set as the underlying law f , consistent with the approach described in
Sect. 5 of [9]. This replica is randomly drawn from a previous NNPDF fit to experimental
data and typically exhibits more structure than the final central PDF, making it a more
comprehensive choice than any single central fit. We refer to this as the underlying law,
and the corresponding predictions are considered the true observable values. Note that,
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Figure 3.2: Left panel: the red dots are the L1 generated instances, while the confidence ellipses
show the distribution of the L2 data, conditional on the respective L1 data instances. The L1

instances are generated according to a multi Gaussian centred in the underlying true value (the
origin in this plot) with the same confidence ellipses as the L2 ones. Right panel: The L1 data are
generated according to a multi Gaussian with same ellipse as the consistent case, but λ is varied
to show how the generation of L2 replicas changes as λ decreases.

while theoretically any function could serve as the underlying law, using a realistic input
is practical and justified.

We conductNfits = 25 closure tests, each utilizing a different randomly sampled type
of L1 noise, consisting of Nreps = 100 replicas each. This choice is motivated by previous
studies [8].

In each subsequent subsection, we specify the dataset(s) to which an inconsistency is
introduced, the value(s) of λ associated with each correlated systematic uncertainty, and
the strength of the inconsistency, which ranges from maximal (λ = 0) to minimal (λ = 1).
Across the analyses presented in the following sections, we set λ(add)k = 1 for all additive
systematic uncertainties k, while for multiplicative systematic uncertaintiesm in selected
datasets, we set λ(mult)

m = λ ≤ 1. It is noteworthy that multiplicative systematics consti-
tute the majority of the uncertainties in the HERA and LHC data considered here. Many
of these uncertainties are correlated not only across different kinematic bins within the
same measurement but also across different datasets within the same experiment. For
instance, various ATLAS datasets are correlated through the luminosity uncertainty.

When presenting results for the ratio of bias to variance obtained using PCA regular-
ization of the covariance matrix in the PDF space, we adopt an Explained Variance Ratio
(EVR) of 0.99 across all datasets. This choice, as explained in section 3.1.1, aims to retain
maximum information from the samples while regularizing the covariance matrix.

3.2.3 Results

In this section, we present some of the results obtained in several scenarios. We begin by
illustrating the results obtained for DIS data only. Subsequently, we move to results ob-
tained on global datasets. In particular, we discuss the cases in which the inconsistency
is injected in Drell-Yan and in inclusive jets data.
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Deep Inelastic Scattering

We begin by performing a multi-closure fit on DIS data, encompassing all DIS datasets
included in the NNPDF4.0 analysis [8] for lepton-nucleon and neutrino-nucleus scatter-
ing processes. This includes fixed-target neutral current (NC) structure function data
from NMC [123, 124], SLAC [125], and BCDMS [126], fixed-target inclusive and dimuon
charged current (CC) cross-section data from CHORUS [127] and NuTeV [128, 129], as
well as collider NC and CC cross-section data from the HERA legacy combination [130]
and combined measurements from H1 and ZEUS for reduced electron-proton NC DIS
cross-sections involving open charm and bottom quarks [131].

As is customary in all NNPDF fits, we exclude the region where higher twist cor-
rections might affect the reliability of the perturbative expansion (Q2 < 3.5GeV2 and
W 2 < 12.5GeV2). Additionally, for fits involving the charm PDF, a stricter Q2 cut is
applied to the HERA I+II σc

NC dataset at NNLO (Q2 < 8GeV2) to minimize potential
impacts from missing NNLO terms related to initial-state charm (see Sect. 2.2 in [132]).

The DIS dataset is partitioned into an in-sample subset, which is included in the fit,
and an out-of-sample subset, which is excluded from the fit. The partition shown in fig. 3.3
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Figure 3.3: Kinematic coverage in (x,Q2) of the data included in the closure tests on DIS-only fits.
The orange dot marker indicate data that are included in the training set with an inconsistency
built in according to the procedure described in section 3.2.1. The green inverted triangle indicates
the data that are included in the training set that are consistent. Finally, the blue stars indicate the
out-of-sample DIS data that are not included in the fit and that we use as test set.

is selected such that the kinematic coverage of the two samples is similar, facilitating the
investigation of whether the fitted model generalizes effectively across comparable data
samples.

Table table 3.1 provides a list of all DIS datasets included in this analysis. The table
details the number of data points passing kinematic cuts and specifies whether each
dataset is included in the fit (in-sample sets) or excluded from the fit (out-of-sample sets).
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The last column indicates datasets into which experimental inconsistencies are injected
according to the methodology described in section 3.2.1 and the specific configurations
outlined in section 3.2.2. Various levels of inconsistency, parameterized by λ ∈ [0, 1], are

Datasets Ndata in/out sample Inconsistency
NMC F d

2 /F
p
2 [123] 121 in

SLAC F p
2 [125] 33 in

SLAC F d
2 [125] 34 in

BCDMS F p
2 [126] 333 in

BCDMS F d
2 [126] 248 in

CHORUS σν
CC [127] 416 in

CHORUS σν̄
CC [127] 416 in

NuTeV σν
CC (dimuon) [128, 129] 39 in

HERA I+II σe−p
NC Ep = 920 GeV [130] 159 in ✓

HERA I+II σe+p
NC Ep = 575 GeV [130] 254 in ✓

HERA I+II σe+p
NC Ep = 820 GeV [130] 70 in ✓

HERA I+II σe+p
NC Ep = 920 GeV [130] 377 in ✓

HERA I+II σe+p
CC [130] 39 in

HERA I+II σcharm
NC [131] 37 in

NMC σNC,p [124] 204 out
NuTeV σν̄

CC (dimuon) [128, 129] 37 out
HERA I+II σe+p

NC Ep = 460 GeV [130] 204 out
HERA I+II σe−p

CC [130] 42 out
HERA I+II σbottom

NC [131] 26 out

Table 3.1: List of the DIS dataset included in our analysis. For each dataset we indicate the number
of datapoints included in the fit (after the standard kinematic cuts have been applied), whether the
dataset belongs to the “in-sample” or “out-of-sample” set, and whether an experimental inconsis-
tency is introduced.

introduced into the inclusive DIS HERA NC data, specifically in NC e−p collisions at
proton energy Ep = 920 GeV and in NC e+p collisions at proton energies Ep = 575 GeV,
Ep = 820 GeV, and Ep = 920 GeV.

The scan in λ covers:

• λ = 1.0: No inconsistency injected (baseline case).

• λ = 0.7: Mild inconsistency corresponding to a 30% underestimate of systematic
multiplicative experimental uncertainties.

• λ = 0.4: Strong inconsistency corresponding to a 60% underestimate of systematic
multiplicative experimental uncertainties.

• λ = 0.0: Maximal inconsistency where multiplicative uncertainties are completely
disregarded by the experimentalists.

In total,Ninc = 860 out of theNtr = 2576 datapoints included in the fit are affected by
these experimental inconsistencies. The inconsistencies pertain to all systematic multi-
plicative uncertainties, which constitute the majority of the systematics in the DIS HERA
data and are correlated among these four datasets where inconsistencies are injected.
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In fig. 3.4, we present the ratio bias-variance computed according to eq. (3.17) for
all DIS data included in our analysis, encompassing both the in-sample and out-of-sample
datasets.
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Figure 3.4: Ratio bias-variance, eq. (3.17), and its bootstrap uncertainty (see appendix D) as a
function of λ computed on the entire DIS dataset.

The figure illustrates how the ratio bias-variance increases as we incrementally intro-
duce experimental inconsistencies into the datasets marked by ticks in table 3.1, ranging
from the fully consistent case (λ = 1.0) to the maximally inconsistent case (λ = 0.0).

Notably, as observed in [8], the PDF uncertainty in DIS-only fits tends to be slightly
overestimated, as indicated by Rbv ≲ 1. Interestingly, in intermediate scenarios (λ =
0.7, 0.6, 0.4), the Neural Network effectively assimilates the injected inconsistency, re-
sulting in closure test outcomes that demonstrate PDF uncertainties are faithfully repre-
sented.

This trend is also evident in the ξ1σ quantile estimator, which we present in table 3.2
for various degrees of inconsistency. The table shows that even when λ is reduced to

λ ξ1σ
1.0 0.73 ± 0.01
0.7 0.71 ± 0.02
0.6 0.69 ± 0.01
0.4 0.68 ± 0.01
0.2 0.62 ± 0.01
0.0 0.52 ± 0.02

Table 3.2: Values of the ξ1σ quantile estimator in the observable space, eq. (3.18), and their boot-
strap uncertainties.

0.4, the observables computed with the fitted PDFs include those calculated with the
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underlying law 68% of the time. This indicates that the model effectively accommodates
moderate inconsistencies without overestimating PDF uncertainties.

The normalized distribution of relative differences δ(l)i is depicted in fig. 3.5 for two
scenarios: λ = 1.0 (left panel) and λ = 0.0 (right panel). Note that although the PCA
algorithm starts from the same number of DIS data points in both cases, the number
of degrees of freedom—specifically, the number of principal components retained when
regularizing the covariance matrix—varies. This variation occurs because changes in
the experimental covariance matrix lead to adjustments in the PDF-induced covariance
matrix and hence its eigenvalues.
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Figure 3.5: Normalized distribution of relative differences δ
(l)
i in the observable space, eq. (3.20),

for λ = 1.0 (left panel) and λ = 0.0 (right panel). A univariate zero-mean Gaussian distribution is
shown for reference in both cases.

From the plots in fig. 3.5, it is observed that the spread of the distribution increases
moderately as the degree of inconsistency (measured by λ) increases, although it remains
close to a normal distribution, as shown by the reference Gaussian plot.

After analyzing the estimators on the full DIS dataset included in the analysis, we
now examine their values on each individual dataset.

Table 3.3 presents the ratio bias-variance for each dataset, categorized into in-sample
and out-of-sample sets. Table 3.3 shows that across different DIS datasets, both in-sample
and out-of-sample, the ratio bias-variance Rbv remains close to 1, indicating that the fitted
PDF uncertainties are consistent with the underlying law without significant overesti-
mation or underestimation. However, as the level of inconsistency increases, Rbv shows
a slight increase for datasets directly affected by the inconsistency and for some out-of-
sample datasets that probe similar kinematics, such as HERA I+II σe+p

NC with Ep = 460
GeV. This effect remains mild, and Rbv values remain compatible with 1 within the un-
certainties, even when systematic uncertainties are underestimated by 60%.

To visually illustrate the impact of experimental inconsistency on the ratio bias-variance
(Rbv) across different datasets, we present fig. 3.6, which shows selected results from ta-
ble 3.3. Each plot includes the bootstrap uncertainty alongsideRbv computed for various
values of λ, representing different levels of injected inconsistency.

Overall observations from fig. 3.6 reveal that under a consistent closure test scenario
(λ = 1.0), uncertainties tend to be slightly overestimated (Rbv ≲ 1), consistent with
previous findings [8]. Both in-sample and out-of-sample datasets exhibit similar behav-
ior, suggesting effective generalization of the PDF model across different datasets with
similar kinematic properties.
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Datasets Ndata
Rbv

λ = 1.0 λ = 0.7 λ = 0.4 λ = 0.0

NMC F d
2 /F

p
2 [123] 121 0.8 0.7 0.8 1.0

SLAC F p
2 [125] 33 0.7 0.7 0.8 1.1

SLAC F d
2 [125] 34 0.8 0.8 0.8 0.9

BCDMS F p
2 [126] 333 0.8 0.8 0.8 1.1

BCDMS F d
2 [126] 248 0.9 0.9 0.9 1.1

CHORUS σν
CC [127] 416 0.8 0.9 0.8 0.9

CHORUS σν̄
CC [127] 416 0.9 1.0 1.0 1.2

NuTeV σν
CC (dimuon) [128, 129] 39 0.8 0.9 0.9 1.2

HERA I+II σe+p
CC [130] 39 0.8 0.9 1.0 1.2

HERA I+II σcharm
NC [131] 37 1.0 1.1 1.1 1.2

(∗) HERA I+II σe−p
NC Ep = 920 GeV [130] 159 0.9 1.0 1.2 2.2

(∗) HERA I+II σe+p
NC Ep = 575 GeV [130] 254 0.8 0.9 1.3 2.4

(∗) HERA I+II σe+p
NC Ep = 820 GeV [130] 70 0.8 0.9 1.2 2.3

(∗) HERA I+II σe+p
NC Ep = 920 GeV [130] 377 0.8 0.9 1.1 2.1

NMC σNC,p [124] 204 0.9 0.9 1.1 1.6
NuTeV σν̄

CC (dimuon) [128, 129] 37 0.8 0.9 0.9 1.1
HERA I+II σe+p

NC Ep = 460 GeV [130] 204 0.9 1.0 1.2 2.4
HERA I+II σe−p

CC [130] 42 0.9 1.0 1.1 1.4
HERA I+II σbottom

NC [131] 26 0.9 1.0 1.2 1.9

Table 3.3: Ratio bias variance, as defined in eq. (3.17), for all DIS dataset included in the DIS
analysis (both the in-sample at the top of the table, with the ones unaffected by the inconsistency
in the top section and the ones affected by the inconsistency in the middle section, and out-of-
sample ones at the bottom of the table) as we increase the experimental inconsistency injected in
the datasets in the middle section (marked by an asterisk) from λ = 1.0 (fully consistent datasets)
to λ = 0.0 (maximally inconsistent datasets) and intermediate steps in between. We highlight in
bold all instances in which Rbv > 1.

In contrast, when the level of inconsistency is increased (λ < 1.0), particularly notice-
able in datasets directly affected by systematic underestimation (e.g., HERA I+II σe+p

NC

with Ep = 920 GeV in the top left plot of fig. 3.6), Rbv increases above 1. This indicates
a significant underestimation of uncertainties in the fit, highlighting the impact of ex-
perimental inconsistency. Furthermore, out-of-sample datasets that overlap kinematically
with the inconsistent datasets, such as HERA I+II σe+p

NC with Ep = 460 GeV (bottom left
plot in fig. 3.6), also exhibit increased Rbv values, albeit to a lesser extent compared to
directly affected datasets.

Interestingly, even in-sample datasets like HERA I+II σe+p
CC (top right plot in fig. 3.6),

which are not directly affected by inconsistency, can still show higher Rbv values un-
der extreme inconsistency scenarios (λ → 0), due to their correlation with the affected
datasets.

These observations underscore the sensitivity of the PDF uncertainties to experimen-
tal inconsistencies, demonstrating the importance of robustness tests like the ones con-
ducted here to evaluate the impact of such inconsistencies on global PDF fits.
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Figure 3.6: Ratio bias-variance Rbv computed as a function of λ, eq. (3.17), with bootstrap uncer-
tainties, for different DIS datasets: (Top left) HERA I+II σe+p

NC with Ep = 920 GeV, directly affected
by systematic underestimation. (Top right) HERA I+II σe+p

CC , an in-sample dataset not directly af-
fected by inconsistency. (Bottom left) HERA I+II σe+p

NC with Ep = 460 GeV, an out-of-sample dataset
overlapping kinematically with inconsistent datasets. (Bottom right) HERA I+II σe−p

CC , an out-of-
sample dataset.

To analyze the impact of experimental inconsistency on individual data points within
the HERA I+II dataset measuring σe+p

NC with Ep = 920 GeV (directly affected) and σe+p
NC

with Ep = 460 GeV (indirectly affected), we present fig. 3.7. This figure displays Rbv

computed for each data point under the maximally inconsistent scenario (λ = 0.0).
Observations of fig. 3.7 indicate that the largest contributions to Rbv are from data

points with smaller statistical uncertainties, primarily constraining the x region between
10−3 and 10−2. These data points exhibit Rbv values that tend to deviate more signifi-
cantly from 1 under the influence of experimental inconsistency. Conversely, data points
at larger x and lowQ2, where uncertainties are larger, showRbv values that remain closer
to 1 even in the presence of inconsistency.

Further insight into the correlation patterns between the inconsistent datasets and
PDFs is provided in appendix E. Specifically, it is shown that the gluon distribution in
the small-intermediate x region (x ∼ 10−3 − 10−2) and the up quark distribution in the
medium x region (x ∼ 10−2−10−1) are most affected by the inconsistency. This is consis-
tent with the findings in fig. 3.8, where the gluon distribution shows a more pronounced
shift compared to the underlying law under maximally inconsistent conditions, while
the up quark distribution is less affected due to constraints from other datasets in the
medium x region.
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Figure 3.7: Rbv per data point in the maximally inconsistent scenario (λ = 0.0) computed on
the datasets: (Left panel) HERA I+II σe+p

NC with Ep = 920 GeV, directly affected by experimental
inconsistency. (Right panel) HERA I+II σe+p

NC with Ep = 460 GeV, an out-of-sample dataset indirectly
affected.
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Figure 3.8: Comparison between underlying law (blue line) and the result of a L2 consistent DIS-
only closure test λ = 1 (orange band) and maximally inconsistent DIS-only closure test λ = 0
(green band). The gluon distribution (left panel) and the up quark distribution (right panel) are
plotted at the initial scale Q = 1.65 GeV and normalised to the central values of the underlying
law.

Overall, these results highlight the localized impact of experimental inconsistency on
specific PDFs within the global fit, particularly affecting regions where data constraints
are strongest and inconsistencies are pronounced.

Drell-Yan

In this section, we extend our analysis to include the entire NNPDF4.0 dataset [8], in-
corporating both DIS data and hadronic observables. Also in this case, we partition the
dataset into in-sample and out-of-sample subsets, as depicted in fig. 3.9. This partition is
carefully designed to ensure that both subsets have similar kinematic coverage, facil-
itating an investigation into the generalization performance of the fitted model across
comparable data samples. This approach allows us to assess whether the fitted PDF
model can effectively generalize to new, similar data that were not part of the training
set. Such a study is crucial for evaluating the robustness of the PDF fit and its predictive
power beyond the specific dataset used for training.
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Figure 3.9: Kinematic coverage of the in-sample and out-of-sample subsets used in the closure tests
on the PDF global fit with an experimental inconsistency injected into the ATLAS 8 TeV high-mass
Drell-Yan dataset [133]

The rationale behind the dataset split draws inspiration primarily from the estab-
lished practice of k-folds separation [134], ensuring a balanced partitioning that consid-
ers the full kinematic coverage of the dataset. To tailor the split for our study, slight
adjustments were made to the conventional k-fold approach. These modifications were
implemented specifically to enhance the similarity between out-of-sample datapoints and
the inconsistent data subset in terms of their kinematic characteristics. All details re-
garding the split are listed in tables 3.4 and 3.5.

The first case study involves the inconsistent Drell-Yan scenario, where an inconsis-
tency is introduced into the double differential high-mass Drell-Yan cross section mea-
sured by ATLAS at

√
s = 8TeV [133]. Similar to the DIS case, various degrees of incon-

sistency are parameterized by the factor λ ∈ [0, 1]. The dataset affected by inconsistency
comprises only Ninc = 48 datapoints, whereas the total number of training datapoints is
Ntr = 3772.

It is crucial to note a distinction in this scenario: certain multiplicative uncertain-
ties, inherently underestimated, impact all observables measured by the ATLAS detec-
tor, particularly the luminosity uncertainty. Consequently, more datapoints beyond just
the ATLAS double differential Drell-Yan measurement are affected, resulting in a total
of Ntot, inc = 607 inconsistent datapoints.

Similar to the DIS case, we investigate extreme and intermediate levels of inconsis-
tency: λ = 0.0 corresponds to complete disregard of correlated multiplicative uncertain-
ties at the experimental level for the ATLAS 8 TeV high-mass Drell-Yan dataset, along
with intermediate cases λ = 0.4, 0.8.

The trend of Rbv as a function of λ, obtained through the PCA procedure applied to
the entire NNPDF 4.0 dataset, is depicted in fig. 3.10.
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Datasets Ndata in/out sample Inconsistency
DY E866 σp

DY 29 in
DY E605 σp

DY 85 in
DY E906 σd

DY/σ
p
DY (SeaQuest) 6 in

D0 Z rapidity 28 in
D0 W → µν asymmetry (L = 7.3 fb−1) 9 in
ATLAS W,Z 7 TeV (L = 35 pb−1) 30 in
ATLAS low mass DY 7 TeV 6 in
ATLAS W,Z 7 TeV (L = 4.6 pb−1) CF 15 in
ATLAS low-mass DY 2D 8 TeV 60 in
ATLAS σW,Z 13 TeV 3 in
ATLAS W−+jet 8 TeV 15 in
ATLAS Z pT 8 TeV (pT ,mll) 44 in
ATLAS Z pT 8 TeV (pT , yZ) 48 in
CMS W electron asymmetry 7 TeV 11 in
CMS DY 2D 7 TeV 110 in
CMS W rapidity 8 TeV 22 in
LHCb Z → ee 7 TeV 9 in
LHCb Z → ee 8 TeV (L = 2 fb−1) 17 in
LHCb W,Z → µ 8 TeV 30 in
ATLAS high-mass DY 2D 8 TeV 48 in ✓DY

ATLAS W,Z 7 TeV (L = 4.6 pb−1) CC 46 outJETS inDY

DY E866 σd
DY/2σ

p
DY (NuSea) [131] 15 outJETS inDY

CDF Z rapidity 28 outJETS inDY

CMS Z pT 8 TeV 28 inJETS outDY

LHCb Z → ee 13 TeV 16 out

Table 3.4: Same as Table 3.1 for the analyses presented in Sect. 3.2.3. We specify the settings that
differ in the two analyses with a superscript. The DIS datasets are omitted and details are given in
the text.
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Datasets Ndata in/out sample Inconsistency
ATLAS dijets 7 TeV, R=0.6 90 in
ATLAS direct photon production 13 TeV 53 in
ATLAS single t Rt 7 TeV 1 in
ATLAS single t Rt 13 TeV 1 in
ATLAS single t 7 TeV (1/σdσ/dyt) 3 in
ATLAS single t 7 TeV (1/σdσ/dyt̄) 3 in
ATLAS single t 8 TeV (1/σdσ/dyt̄) 3 in
ATLAS σtot

tt 13 TeV (L = 139 fb−1) 1 in
ATLAS tt̄ l + jets 8 TeV (1/σdσ/dyt) 4 in
ATLAS tt̄ l + jets 8 TeV (1/σdσ/dytt̄) 4 in
ATLAS tt̄ 2l 8 TeV (1/σdσ/dytt̄) 4 in
CMS dijets 7 TeV 54 in
CMS σtot

tt 7, 8, 13 TeV 3 in
CMS tt̄ l + jets 8 TeV (1/σdσ/dytt̄) 9 in
CMS tt̄ 2l 13 TeV (dσ/dyt) 10 in
CMS tt̄ l+ jets 13 TeV (dσ/dyt) 11 in
CMS single t 7 TeV (σt + σt̄) 1 in
CMS single t 8 TeV Rt 1 in
CMS single t 13 TeV Rt 1 in
ATLAS single-inclusive jets 8 TeV, R=0.6 171 in ✓JETS

LHCb W,Z → µ 7 TeV 29 out
LHCb Z → µµ 13 TeV 15 out
ATLAS W++jet 8 TeV 15 out
CMS W muon asymmetry 7 TeV 11 out
ATLAS σtot

tt 7 TeV 1 out
ATLAS σtot

tt 8 TeV 1 out
ATLAS single t 8 TeV (1/σdσ/dyt) 3 out
CMS σtot

tt 5 TeV 1 out
CMS tt̄ 2D 2l 8 TeV (1/σdσ/dytdmtt̄) 15 out
CMS single-inclusive jets 8 TeV 185 out∗

Table 3.5: Same as Table 3.4 for the top and jets datasets. The ∗ category refers to the exercise
described in Sect. ?? in which the CMS single-inclusive jets at

√
s = 8 TeV are kept in the in-sample

set.
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Figure 3.10: Rbv as a function of λ for the inconsistent multi-closure test in the Drell-Yan sector.
The estimator is computed over the entire NNPDF 4.0 dataset.

It is observed that the impact of inconsistency in the ATLAS 8 TeV high-mass Drell-
Yan dataset is minimal. Similar to the DIS-only fit scenario, standard consistent closure
tests show a slight overestimation of PDF uncertainties, with Rbv ≲ 1. Even in the
presence of mild to moderate inconsistencies, the ratio remains below one, indicating
an overall underestimation of PDF uncertainties only in the extreme λ = 0 case.

The mild impact of inconsistency in the Drell-Yan sector is further corroborated by ex-
amining the values of the quantile estimator in the observable space ξ1σ computed across
the entire dataset, including both the in-sample and out-of-sample subsets. As shown in
table 3.6, we observe that ξ1σ decreases as the level of inconsistency, parameterized by
λ, increases, which aligns with our expectations. However, it is noteworthy that while
we expect ξ1σ ∼ 0.68 for accurately estimated uncertainties, the computed values re-
main above this threshold until λ = 0.4, dipping slightly below it only in the maximally
inconsistent case.

λ ξ1σ
1.00 0.75± 0.02
0.80 0.73± 0.02
0.40 0.71± 0.02
0.00 0.66± 0.03

Table 3.6: Quantile estimator ξ1σ computed in the case of inconsistency in the Drell-Yan sector.

Additionally, in fig. 3.11, we depict the normalized distribution of relative differences
δ
(l)
i for the extreme cases λ = 1.0 and λ = 0.0. Similar to the DIS case, the histogram rep-

resents the global dataset without distinguishing between in-sample and out-of-sample
subsets. It is evident that the histogram broadens slightly for λ = 0.0, indicating a
marginally increased variance in the relative differences. However, the overall shape
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of the histogram remains consistent with a normal distribution, as indicated by the ref-
erence curve plotted for comparison.
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Figure 3.11: Normalized distribution of relative differences δ
(l)
i in the case of inconsistency in the

Drell-Yan sector. Left: λ = 1.0. Right: λ = 0.0.

After examining the estimators on the global datasets, we proceed to analyze their
values on each individual dataset. Table 3.7 presents the Rbv values for the most signifi-
cant datasets, specifically the out-of-sample datasets and the in-sample inconsistent one.

Datasets Ndata
Rbv

λ = 1.0 λ = 0.8 λ = 0.4 λ = 0.0
(*) ATLAS DY 2D 8 TeV low mass [135] 48 0.8 0.8 1.1 3.2
HERA I+II σe+p

CC [130] 39 0.9 1.0 1.0 1.1
HERA I+II σe±p

NC Ep = 575 GeV [130] 254 0.7 0.7 0.8 0.8
NMC F d

2 /F
p
2 [123] 121 0.9 0.9 0.9 0.8

NuTeV σν
CC (dimuon) [128, 129] 39 1.0 1.1 1.1 1.1

LHCb W,Z → µ 7 TeV [136] 29 0.9 0.9 1.0 1.4
LHCb Z → µµ 13 TeV [137] 15 0.9 0.9 1.0 1.1
ATLAS W++jet 8 TeV [138] 15 0.7 0.7 1.0 1.5
CMS W muon asymmetry 7 TeV [139] 11 0.7 0.7 0.7 0.8
ATLAS σtot

tt 8 TeV [140] 1 0.92 0.8 0.9 0.9
ATLAS high mass DY 7 TeV [141] 5 1.0 1.0 1.5 3.4
ATLAS single t 8 TeV (1/σdσ/dyt) [142] 3 0.9 0.9 0.8 0.9
CMS σtot

tt 5 TeV [143] 1 0.8 0.8 0.9 0.7
CMS tt̄ 2D 2l 8 TeV (1/σdσ/dytdmtt̄) [144] 15 0.7 0.7 0.8 0.8
CMS single-inclusive jets 8 TeV [145] 185 0.7 0.7 0.7 0.9

Table 3.7: Ratio bias-variance Rbv as a function of λ, for all the out-of-sample datasets and for the in-
sample inconsistent one, marked with an asterisk. The in-sample consistent datasets are not shown
for presentation reasons but are discussed in the text.

The results are also illustrated in fig. 3.12 for the two datasets that exhibit the most
significant effects. As depicted in the plot, uncertainties are underestimated only in the
most extreme case where all correlated systematics are completely ignored (λ = 0). Even
for λ = 0.4, the ratio bias-variance remains consistent with 1 within the 1σ uncertainty.

Aside from the inconsistent 8 TeV dataset itself, which exhibits Rbv ≳ 3 for λ = 0.0,
the most affected out-of-sample dataset is the high-mass Drell-Yan dataset measured by



88 3.2.3 Results

0.0 0.2 0.4 0.6 0.8 1.0
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
R b

v
ATLAS DY 2D 8 TeV high mass

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R b
v

ATLAS HM DY 7 TeV

Figure 3.12: Ratio bias-variance Rbv computed with PCA with explained variance ratio = 0.99,
for the double differential high-mass ATLAS DY distribution at

√
s = 8 TeV, which is the dataset

directly made inconsistent during training (left panel), and for the ATLAS DY high-mass
√
s = 7

TeV, which is the most affected dataset in the out-of-sample subset (right panel).

ATLAS at
√
s = 7 TeV, for which Rbv also exceeds 3 for λ = 0.0. Other datasets remain

largely unaffected. This observation is understandable, as the ATLAS high-mass Drell-
Yan measurement at

√
s = 7 TeV is the only out-of-sample dataset that explores the

same large-x kinematic region for quark and antiquarks, which is not solely dominated
by statistical uncertainties. Similarly, the on-shell LHCb distributions at large rapidities
are mildly affected, as they overlap with the large-x kinematic region but not entirely,
and they also feature larger statistical uncertainties.

Looking at Rbv computed on each single data point in fig. 3.13 for both the ATLAS 8
TeV in-sample inconsistent high-mass Drell-Yan dataset and for the ATLAS 7 TEV out-of-
sample dataset we observe that, while all points of the ATLAS 7 TeV dataset contribute
to the large value of Rbv featured by the dataset and these points probe the region in
x ≈ (10−2, 10−1), the points in ATLAS 8 TeV that contribute the most to Rbv are the two
lowest bins in the invariant mass, and that the kinematic region in x that is maximally
contributing is still the one around x ≈ (10−2, 10−1).
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Figure 3.13: Rbv per data point in the maximally inconsistent scenario (λ = 0.0) computed on the
double differential high mass ATLAS DY distribution at

√
s = 8 TeV, which is the dataset directly

made inconsistent during the training (left panel) and on the ATLAS DY high-mass distributiom
at

√
s = 7 TeV, which is out of sample (right panel).

Considering the correlations between the ATLAS high-mass data in the invariant
mass bins that most contribute to a large Rbv value and the individual PDFs, which we
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display in fig. E.2, we see that the correlation is maximal with the gluon around x ∼ 10−3

and with light quark and antiquark around x ∼ 10−2. In fig. 3.14 we plot these PDF
combinations and compare the agreement with the underlying law and the uncertainties
of the PDFs obtained from a consistent closure test on the global dataset (λ = 1) and those
obtained from a maximally inconsistent closure test (λ = 0) in the Drell-Yan sector. We
see that there is almost no change in the PDFs agreement with the underlying law. The
only visible effect is a mild reduction in the uncertainty bands, which is to be expected
in an inconsistent closure test, and also confirmed at the observables level given the
increase in the ratio bias variance.
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Figure 3.14: Comparison between underlying law (blue line) and the result of a L2 consistent
global closure test λ = 1 (orange band) and closure test in which a maximal inconsistency is
injected in the Drell-Yan sector, λ = 0 (green band). The gluon distribution (left panel) and the
total valence distribution (right panel) are plotted at the initial scale Q = 1.65 GeV and normalised
to the central values of the underlying law.

The most plausible explanation is that the high-mass Drell-Yan data are not the dom-
inant constraint of the PDFs in the intermediate-to-large x region and that the raw num-
ber of inconsistent points is too small to have a visible effect on the PDF themselves. This
confirms what has been observed throughout this section, namely that an inconsistency
of experimental origin in the high-mass Drell-Yan data would not distort the results of a
fit, nor would undermine in any dramatic way the faithfulness of PDF uncertainties.

Inclusive Jets

In this section, we present the results of closure tests where an experimental inconsis-
tency has been introduced into one of the inclusive jet measurements included in the
NNPDF4.0 global analysis. The inconsistency specifically affects the measurement of
the inclusive jet cross-sections in pp collisions at

√
s = 8 TeV performed by ATLAS [146].

Similar to the Drell-Yan case, this inconsistency acts on all correlated systematic uncer-
tainties, thereby impacting all other ATLAS datasets.

The split of the dataset into in-sample and out-of-sample subsets is displayed in
fig. 3.15. This split is designed to ensure similar kinematic coverage between the two
subsets, facilitating the study of how well the fitted PDF model generalizes to similar
data samples. As in the Drell-Yan case, we consider the whole NNPDF 4.0 dataset. There
are minor differences with respect to the Drell-Yan case, listed in detail in Tables table 3.4
and table 3.5.

Note that the single-inclusive jets measurement at
√
s = 8 TeV conducted by CMS

[147] is included in the global NNPDF4.0 dataset. Therefore, we have two datasets, the
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Figure 3.15: Same as fig. 3.3 for the kinematic coverage of the samples included in the closure tests
on global PDF fit with inconsistent inclusive jets data.

ATLAS and CMS inclusive jet measurements, which observe the same physical observ-
able but were obtained independently by two different experimental collaborations. This
setup allows us to investigate the behavior of neural networks when trained with a sin-
gle inconsistent instance of data compared to encountering two sets of almost equivalent
data, where one set is consistent and the other is inconsistent.

We will begin by discussing the results of the closure test in the scenario where the
CMS dataset is considered out of sample, meaning the inconsistent ATLAS inclusive jet
dataset predominantly constrains the large-x gluon. Conversely, we will observe that
maintaining the CMS consistent dataset in sample notably mitigates the impact of the
inconsistency.

Starting with the scenario where the CMS inclusive jets 8 TeV data are out-of-sample,
the neural network (NN) model is trained using a total ofNtr = 3793 data points. The AT-
LAS inconsistent dataset consists of Ninc = 171 data points, but considering all ATLAS
inconsistent data brings the total to Ntot, inc = 607 data points affected by inconsistency.

The trend of Rbv as a function of λ, obtained when applying the PCA procedure to
the entire NNPDF4.0 dataset, is illustrated in fig. 3.16. It is evident from the figure that
the impact of inconsistency within the ATLAS 8 TeV inclusive jet dataset is most pro-
nounced at λ = 0. In this case, the Rbv value deviates significantly, approaching nearly
6σ from 1.0. However, a discernible trend in the Rbv value for increasing λ values sug-
gests that at the default setting (λ = 1.0) and even in scenarios with mild inconsistencies,
PDF uncertainties tend to be slightly overestimated. This trend is supported by the ξ1σ
quantile estimator shown in table 3.8 for various degrees of inconsistency, where the
effect of inconsistency is primarily noticeable in the λ = 0 bin, but marginal for other
values.

In fig. 3.17, we present the normalized distribution of relative differences δ(l)i for the



Validation of the methodology: Closure Tests 91

0.0 0.2 0.4 0.6 0.8 1.0
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
R b

v

Full data

Figure 3.16: Rbv as a function of λ for the JETS inconsistent multi-closure test. The estimator is
computed over the whole NNPDF 4.0 dataset.

λ ξ1−σ
1.00 0.75± 0.01
0.82 0.75± 0.01
0.60 0.74± 0.01
0.33 0.73± 0.02
0.00 0.49± 0.03

Table 3.8: Values of the quantile estimator ξ1σ (eq. (3.18)) with bootstrap uncertainty, for different
λ values.

extreme cases of λ = 0 and λ = 1, similar to the Drell-Yan case discussed before. The
λ = 1 case aligns with the Drell-Yan scenario, as expected given their consistency and
nearly identical setups except for minor variations in training data (see table 3.4). As
observed in the Drell-Yan case, significant deformation of the histogram shape is not
evident even in the most inconsistent scenario λ = 0.

We now focus on presenting our estimators within more local scenarios, narrowing
our analysis to individual datasets. The trend of Rbv as a function of λ is shown in
table 3.9 for a subset of datasets. We focus our attention on the inconsistent dataset and
the out-of-sample datasets, as the inconsistency in the ATLAS inclusive jet data at 8 TeV
does not significantly impact the in-sample datasets.

As anticipated, the CMS inclusive jets cross section measured at
√
s = 8 TeV is no-

tably influenced by the inconsistency introduced in the corresponding ATLAS dataset.
However, this effect is only observable in the most extreme case of λ = 0, which aligns
with observations in the DIS and DY cases. Specifically, the Neural Network demon-
strates capability in handling moderate inconsistencies of experimental origin.

Furthermore, it is noteworthy that datasets measuring the cross section values of tt̄
production also show significant susceptibility to inconsistency. This is evidenced by the
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Figure 3.17: δ plots for all data for λ = 1.0 (right) and λ = 0 (left) cases.

bias variance ratio deviating markedly from unity in the λ = 0 case.
In fig. 3.18, we illustrate the trend of Rbv for the two most affected out-of-sample

datasets discussed above: the CMS double differential tt̄ distribution measured in the
lepton channel at

√
s = 8 TeV, and the CMS inclusive jets cross section measured at√

s = 8 TeV. We observe that the bias-variance ratio increases above 1 as λ decreases
below 0.3; otherwise, the effect of the inconsistency is almost negligible.

0.0 0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R b
v

CMS TTB 8 TeV: 1 d2

d|yt|dmtt

0.0 0.2 0.4 0.6 0.8 1.0

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

R b
v

CMS jets 8 TeV

Figure 3.18: Bias-variance ratio Rbv computed with PCA with an explained variance ratio of 0.99,
for the CMS double differential tt̄ distribution measured in the lepton channel at

√
s = 8 TeV (left

panel) and for the CMS inclusive jets cross section measured at
√
s = 8 TeV (right panel).

In fig. 3.19, we present the single data point analysis obtained with λ = 0, for the
ATLAS inconsistent dataset and the double differential tt̄ distribution measured in the
lepton channel at

√
s = 8 TeV by CMS.

In both cases, the region in x that contributes most strongly toRbv is between x ≈ 0.03
and x ≈ 0.4. For the CMS inclusive jets, the bins at larger pT contribute the most.

Now we move to the scenario where the CMS jets dataset is in-sample, briefly pre-
senting the main differences compared to the out-of-sample case.

In fig. 3.20, we compare the single data point values ofRbv for the CMS jets dataset in
both cases. We select λ = 0.33 to illustrate the impact of inconsistency within a moder-
ately severe scenario. Notably, on average, the Rbv values are larger in the out-of-sample
case (indicated by the prominent yellow area in the center of the left plot), as expected.
Interestingly, in the in-sample case, several data points exhibit the highest Rbv values,
predominantly located at the edges of the kinematic plot.
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Datasets Ndata
Rbv

λ = 1.0 λ = 0.6 λ = 0.33 λ = 0.00

(*) ATLAS jets 8 TeV, R = 0.6 171 0.8 0.8 1.0 2.3
HERA I+II σe+p

CC [130] 39 1.0 0.8 1.0 1.2
HERA I+II σe±p

NC Ep = 575 GeV [130] 254 0.8 0.8 0.7 1.6
NMC F d

2 /F
p
2 [123] 121 0.7 0.7 0.8 0.9

NuTeV σν
CC (dimuon) [128, 129] 39 0.9 1.0 1.0 1.1

LHCb W,Z → µ 7 TeV [136] 29 0.8 0.9 0.9 1.1
LHCb Z → µµ 13 TeV [137] 15 0.8 0.8 0.8 1.4
ATLAS W,Z 7 TeV (L = 4.6 pb−1) CC [148] 46 0.7 0.6 0.6 0.9
ATLAS W++jet 8 TeV [138] 15 0.8 0.8 1.0 3.2
ATLAS high mass DY 7 TeV [141] 5 1.0 0.9 1.0 1.2
CMS W muon asymmetry 7 TeV [139] 11 0.7 0.7 0.7 0.7
DY E866 σd

DY/2σ
p
DY (NuSea) [131] 15 0.8 0.8 0.8 0.9

CDF Z rapidity [149] 15 0.7 0.8 0.7 0.9
ATLAS σtot

tt 7 TeV [148] 1 0.7 0.8 1.0 5.9
ATLAS σtot

tt 8 TeV [138] 1 0.7 0.7 1.0 5.3
ATLAS single t 8 TeV (1/σdσ/dyt) [142] 3 1.0 1.0 1.0 1.5
CMS σtot

tt 5 TeV [143] 1 0.7 0.9 1.2 5.4
CMS tt̄ 2D 2l 8 TeV (1/σdσ/dytdmtt̄) [144] 15 0.7 0.7 1.0 3.8
CMS single-inclusive jets 8 TeV [145] 185 0.8 0.8 1.0 2.2

Table 3.9: Ratio bias variance, as defined in eq. (3.17) as a function of λ, for all the out-of-sample
datasets and for the in-sample inconsistent one, marked with an asterisk. The estimator evaluated
on the in-sample consistent datasets is not shown for presentation reasons but is discussed in the
text.

Next, we examine the PDFs themselves, comparing the cases where the CMS jets
dataset is in-sample and out-of-sample. Given that the inconsistency was injected into a
dataset that measures jets, which strongly constrain the gluon (see appendix E), this
comparison is crucial. In fig. 3.21, we show the ratio to the underlying law of the gluon
PDF as obtained in the consistent case and in the λ = 0 case, comparing the in-sample
and out-of-sample scenarios. Notably, as expected, in the out-of-sample case, the effect of
the inconsistency is significant. In the fully inconsistent case, the gluon PDF is com-
patible neither with the underlying law nor with the consistent case, particularly in the
x = 10−2 − 10−1 region, with lesser impact in the small- and large-x regions. However,
this effect almost completely fades when the CMS jets dataset is included in the fitted
datasets. In fact, the gluons in the two most extreme cases are fully compatible in the
in-sample scenario.

These results strongly indicate that the Neural Network employed by NNPDF is gen-
erally capable of mitigating the effect of data inconsistency and can almost completely
eliminate such an effect when provided with a consistent dataset constraining the same
PDF features.

3.3 Validation of strong coupling determination

The determination of the strong coupling constant, αs(MZ), represents a significant
source of uncertainty in the computation of various processes at the Large Hadron Col-
lider (LHC). This uncertainty is frequently combined with that of parton distribution
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Figure 3.19: Bias-variance ratio Rbv per data point for λ = 0.0, computed for the CMS tt̄ double
differential cross section at 8 TeV (left panel) and the ATLAS inconsistent dataset (right panel).
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Figure 3.20: Bias-variance ratio Rbv per data point at λ = 0.33 computed for the CMS single jet
dataset at 8 TeV. On the left, we show the result for the global fit with the same dataset out-of-
sample, and on the right for the fit which includes it in the in-sample subset.

functions (PDFs), with which it exhibits a strong correlation. Among the methods for
determining αs(MZ), those that do not require knowledge of PDFs, such as the global
electroweak fit [150], are considered some of the most reliable. These methods are ad-
vantageous as they are not subject to the potential biases that could influence PDF deter-
minations and, consequently, the derived value of αs(MZ).

Conversely, determining αs(MZ) in conjunction with PDFs has the benefit of being
informed by a vast array of experimental measurements across multiple processes. This
approach is beneficial because the uncertainties associated with specific measurements,
whether of theoretical or experimental origin, are generally uncorrelated and thus tend
to average out in the final determination of αs(MZ). Furthermore, a simultaneous global
fit of αs(MZ) and PDFs is likely to yield a more precise, and potentially more accurate,
determination than those based on pre-existing PDF sets. This enhanced precision is
attributed to the comprehensive utilization of the global dataset, which appropriately
accounts for the correlation between αs(MZ) and the underlying PDFs.

A determination of this nature has been conducted in [151], where the novel correlated
replica method was introduced for the first time. In this work, we aim to validate this
methodology, employed in NNPDF4.0, utilizing the closure test framework.

We begin by providing a brief review of the methodology in section 3.3.1. Then we
present results of the validation in section 3.3.2.
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Figure 3.21: Ratio to the underlying law of the gluon PDF at 1.651 GeV, as obtained in the consis-
tent case and in the λ = 0 case for the out-of-sample scenario (left) and the in-sample scenario (right).
All central values and replicas come from fits with the same instance of L1 data, out-of-sample (left)
and in-sample (right).

3.3.1 The correlated replica method

In standard NNPDF determinations (see chapter 2), αs(MZ) is treated as a fixed parame-
ter, alongside other theoretical parameters such as quark masses, CKM matrix elements,
the fine structure constant, and similar quantities. However, it is well established (see,
for example, [152] for an early reference) that PDFs are strongly correlated with the value
of αs(MZ). Consequently, determining the combined PDF+αs uncertainty for a process
that depends on both requires knowledge of the PDFs as αs(MZ) varies. In light of this,
NNPDF sets are routinely released for different fixed values of αs(MZ). The procedure
involves generating data replicas µ(k) and determining PDF replicas based on the best-fit
parameters θ(k), which is repeated multiple times for various values of αs(MZ).

Ideally, we seek a method for determining αs(MZ) in which the uncertainty associ-
ated with αs(MZ) is evaluated on the same basis as the uncertainty in the PDFs, thereby
yielding the full probability distribution for αs(MZ), marginalized with respect to the
PDF parameters. The objective is to treat αs(MZ) on equal footing with the vector of
parameters θ that define the PDFs, such that the figure of merit is minimized simultane-
ously with respect to both αs(MZ) and θ. This approach is challenging in practice due to
the dependence of theoretical predictions on αs(MZ), which are, for reasons of compu-
tational efficiency, provided as pre-computed FK tables that are determined prior to the
fit using the pineline framework (see chapter 4).

This challenge can be addressed through the correlated replica method, as we now de-
scribe. The method is based on the concept of a correlated replica, or c-replica for short.
A c-replica is a correlated set of PDF replicas, all obtained by determining the best-fit
parameters θ(k), but with different fixed values of αs(MZ). Given the data replica µ(k),
the minimization described in section 2.1 is performed multiple times across a range
of fixed values of αs(MZ). Consequently, a c-replica corresponds to as many standard
NNPDF replicas as the number of αs values for which minimization has been executed,
all derived from the same underlying data replica µ(k).

To determine the best-fit value α(k)
s (MZ) for the k-th c-replica, we minimize the figure

of merit χ2, as a function of αs(MZ), computed with θ(k)(αs) while varying αs(MZ) for
a fixed k. Specifically, we first define the figure of merit for the k-th c-replica as

χ2(k)(αs) = χ2
(
αs, θ

(k)(αs), µ
(k)
)
,
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which can be interpreted as a function of αs(MZ). It is important to note that the
dependence of the theoretical prediction P , and thus of the figure of merit, on αs(MZ) is
both explicit and implicit through the best-fit parameters θ(k)(αs). The best-fit value of
αs(MZ) for the k-th c-replica is then determined as

α(k)
s = argmin

[
χ2(k)(αs)

]
.

Therefore, in practice, αk
s (MZ) can be determined by fitting a parabola to the discrete set

of values of χ2(k)(αs) for each replica, and finding the minimum of the parabola.
For each data replica µ(k), this procedure yields a best-fit value (α

(k)
s , θ(k)) for both

αs(MZ) and the PDF parameters. In other words, from each c-replica, a single best-fit
value α(k)

s —an αs replica—is extracted, treated equivalently to all other fit parameters.
The ensemble of α(k)

s (MZ) values obtained from all c-replicas then provides a represen-
tation of the probability density of αs(MZ), from which standard statistical analysis can
be performed. This implies that not only can the best-fit value of αs(MZ) and its uncer-
tainty be computed as the mean and standard deviation (or as a 68% confidence interval)
using the αs(MZ) replicas, but also the correlation between αs(MZ) and the PDFs, or any
other PDF-dependent quantity.

In summary, the correlated replica method is analogous to the standard NNPDF
methodology in that it begins by generating a set of replicas of the original data. How-
ever, it further utilizes these to construct a set of correlated αs-dependent PDF replicas,
the c-replicas, which correspond to parameters θ(k)(αs) as k runs over the replica sample
and αs(MZ) takes on a number of discrete values. From each c-replica, a best-fit α(k)

s can
then be determined, resulting in an αs(MZ) replica.

The correlated replica method thus leverages the fact that, within the NNPDF frame-
work, it is sufficient to determine the best-fit set of parameters for each replica, with all
other relevant information encapsulated within the replica sample. However, the trade-
off for this approach is that the statistical demands of fitting αs(MZ) are inherently quite
intensive, as it requires fitting a distinct parabola for each c-replica.

3.3.2 Validation of the methodology

In this section, we outline how the closure tests framework can be utilized as a validation
tool for the correlated replica method.

The approach involves extending the closure tests framework, described in section 3.1,
by selecting a true value for αs(MZ), alongside the usual true PDF w. Regarding this
choice, as long as the chosen value lies within a reasonable range suitable for the appli-
cation of perturbation theory, the specific value of this true αs is not critical. However,
to maintain consistency with the world average reported by the PDG [153], we select

αtrue
s ≡ ᾱs = 0.118 . (3.29)

With this choice, we can then construct the Level-0 data, as defined in eq. (3.2), as

L0,i = G(w, ᾱs)i , (3.30)

where it is specified that the forward map, i.e. the FK table, is computed for αs(MZ) =
ᾱs. Remind that the index i runs over the datapoints in the dataset employed in the
determination.
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Subsequently, the Level-1 (eq. (2.1)) and Level-2 (eq. (2.3)) data can be constructed in
the usual manner. The application of the correlated replica method is then straightfor-
ward: one simply employs an instance of the Level-2 data in place of each data replica
µk and proceeds as described in the previous section. Specifically, each Level-2 instance
is fitted using various fixed values of αs(MZ), thereby generating the complete set of
c-replicas. It is important to note that while the value of αs(MZ) used in each fit varies,
the value employed to generate the data remains fixed at ᾱs, as specified in eq. (3.30).

In order to apply the statistical analysis described in section 3.1, a multi-closure test
must be conducted. This involves generating Nfits instances of Level-1 data and repeat-
ing the aforementioned procedure for each instance. Upon completion, we obtain a pop-
ulation of Nfits αs(MZ) distributions, each comprising the Nreps αs(MZ) values derived
from the c-replicas. We can then analyze the statistical properties of these populations in
relation to the true underlying αs(MZ) value, ᾱs.

Having outlined the procedure used to validate the NNPDF4.0 determination of
αs(MZ) through the correlated replica method, we are now prepared to provide details
regarding the specific implementation of this validation (section 3.3.3) and to present the
results (section 3.3.4).

3.3.3 Details of the implementation

In this section we provide some details about the specific implementation of the multi-
closure test described in the previous section.

Multi-Closure test settings. The number of fits, Nfits, and the number of replicas in
each fit, Nreps, has been chosen to be the same employed in the tests on inconsistent data
of section 3.2. Therefore we have

Nfits = 25

Nreps = 100 . (3.31)

The perturbative order of the predictions is NLO, although in a closure test this is irrele-
vant, and the dataset employed in the validation is the full NNPDF4.0 dataset.

Range of αs(MZ) values. It is crucial to carefully select the list of αs(MZ) values used
to fit each Level-2 data instance. Since we need to fit a parabola to the χ2 values corre-
sponding to each of these αs(MZ) values, it is essential to have a sufficiently broad range.
Additionally, the range should be approximately symmetric around the true value ᾱs to
ensure adequate coverage of both smaller and larger values. For this purpose, we em-
ployed the following discrete set of values:

αs(MZ)i ∈ {0.106, [0.114, 0.125], 0.130} , (3.32)

where the range [0.114, 0.125] denotes the inclusive range from 0.114 to 0.125 with incre-
ments of 0.001.

Batches of fits. In [151], it was suggested to increase the number of fits by perform-
ing Nbatch fits for each Level-1 data instance. By retaining only the minimum value of
χ2(k)(αs) across the batches for each αs(MZ) value, this method aims to mitigate the
influence of potential outliers. For performance reasons, Nbatch was set to a relatively
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small value, Nbatch = 3, which was nonetheless found to be sufficient. In this study, we
sought to validate this choice and to investigate the effects of alternative approaches for
utilizing the additional batch fits, such as averaging instead of selecting the minimum.
These validations are further discussed in section 3.3.4.

Covariance matrices. A crucial aspect of this validation’s settings is the selection of the
covariance matrices used in the χ2 definition for each αs(MZ) value. Recall that, to avoid
the D’Agostini bias (see section 2.1), we employ the t0 prescription for the multiplicative
component of the covariance matrices. This involves computing the multiplicative con-
tribution using theoretical predictions derived from a selected t0 PDF set, rather than
the PDF being fitted, and utilizing the same forward map as the fit itself. However, in
the context of the fits discussed in this section, we discovered that this approach could
introduce a bias of the same nature of the D’Agostini bias. Specifically, if the theoretical
predictions used in the t0 prescription are calculated with the same αs(MZ) value as that
used in the fit, the final αs(MZ) value obtained via the correlated replica method tends
to be significantly overestimated3.

This issue can be addressed by fixing the αs(MZ) value used to compute the theoret-
ical predictions in the t0 prescription. For this validation, a natural choice for this fixed
value is the true value ᾱs, which we adopted. However, when applying the correlated
replica method to real data, the true value of αs is, of course, unknown. In such cases, a
feasible approach is to start with a reasonable initial value and proceed iteratively until
the result stabilizes. Testing this iterative procedure through closure tests, we found that
after just one iteration, the result was already sufficiently stable.

3.3.4 Results of the validation

The results of the determination of αs(MZ) for a single instance of Level-1 data, utilizing
the settings described in the previous section, are presented in fig. 3.22. Specifically, we
compare the determinations obtained using the correlated replica method with various
approaches to exploit the additional batches:

• CRM min (3.22a): Retains only the minimum value of χ2 for each αs(MZ). This is
the original method proposed in [151].

• CRM mean (3.22b): Computes the average of the χ2s values for each αs(MZ).

• CRM min (cubic) (3.22c): Similar to the CRM min method but fits a cubic polyno-
mial instead of a parabola, to evaluate the impact of potential non-quadratic terms
in the χ2 profile.

• CRM mean (full sample) (3.22d): Combines all the replicas from the batches into
a single sample.

• CRM single batch (3.22e): Ignores the additional fits. Included to assess the impact
of using batches.

3The value of αs(MZ) obtained without fixing the theory employed in the t0 prescription is in fact
αs(MZ) = 0.11994 (33), which is evidently incompatible with the true value ᾱs = 0.118. The specifics of
this investigation will be detailed in an upcoming publication.
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Additionally, in fig. 3.22f, we present the results obtained using a simpler methodol-
ogy, here referred to as the experimental method. In this approach, each point in fig. 3.22f
represents the χ2 value obtained from the central replica of the fit for the correspond-
ing αs(MZ) value. The αs(MZ) value is then extracted by fitting a parabola to these
points. As argued in [154], this methodology may lead to underestimated uncertainties,
a problem that the correlated replica method is designed to address. We include the
experimental method in our validation to evaluate whether this issue arises.

The αs(MZ) values obtained in fig. 3.22 are all consistent with each other, as they
fall within their respective 68% confidence intervals. These intervals either narrowly
include or just fail to include the true value ᾱs = 0.118, which is entirely expected for a
68% confidence interval, as will be further discussed in the multi-closure test results.

All the distributions produced by the correlated replica method are approximately
Gaussian, with the CRM mean distribution exhibiting the highest degree of symmetry.
In contrast, the CRM single batch distribution is, as expected, the most asymmetric.

Before examining the results of the multi-closure tests, we first describe three ad-
ditional variants of the correlated replica method that are included in our validation.
These variants are distinguished by the fact that the fit performed on the χ2 values for
each replica is conducted in the (log(αs), χ

2) plane rather than the (αs, χ
2) plane. This

modification is motivated by the natural logarithmic scaling of the strong coupling in
QCD (see section 1.2.1). The three variants are as follows:

• CRM LOG min: Similar to CRM min, but the fit is performed on log(αs).

• CRM LOG min (cubic): Similar to CRM LOG min, but a cubic polynomial is used
for the fit.

• CRM LOG min (quartic): Similar to CRM LOG min, but a quartic polynomial is
used for the fit.

The results of the multi-closure test analysis are shown in fig. 3.23 for both the LOG
case (fig. 3.23b) and the non-LOG case (fig. 3.23a). The extracted αs(MZ) values for each
variant are also presented in the first column of table 3.10.

All the distributions shown in fig. 3.23a are compatible with each other and with
the true value ᾱs = 0.118, although they are all shifted towards higher values. This
shift appears to be a statistical fluctuation due to the relatively small number of Level-1
instances tested.

In fig. 3.23b, it can be observed that the distribution obtained with the CRM LOG
min variant is not compatible with the other distributions shown in fig. 3.23a. This issue
seems to stem from the presence of non-quadratic contributions in the LOG fit, as the
CRM LOG (cubic) and CRM LOG (quartic) distributions are, by contrast, compatible
with the others. This implies that, in a real-case scenario, it is necessary to include at
least cubic terms in the fit when fitting log(αs).

In summary, the differences between the distributions obtained with each methodol-
ogy are relatively minor and do not allow for a precise comparison. Therefore, in order
to assess the performance of each methodology, we apply a variant of the Rbv estimator
defined in section 3.1.1 to this analysis. Specifically, in this case, it is defined as:

Rbv =
1

Nfits

Nfits∑
i=1

|α(i)
s − ᾱs|
σ(i)

, (3.33)
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(a) CRM min . (b) CRM mean

. (c) CRM min (cubic) . (d) CRM mean (fullsample)

. (e) CRM single batch . (f) EXP

Figure 3.22: Results of the determination of αs(MZ) for a single instance of Level-1 data using
both the correlated replica method and the experimental method. The correlated replica method
is applied in various forms, differing in the manner in which batches are utilized, as described in
section 3.3.4.
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where α(i)
s is the value of αs(MZ) extracted for the i-th instance of Level-1 data, and

σ(i) is its uncertainty. Remind that Rbv = 1 indicates that the uncertainties have been
estimated correctly.

Additionally, to assess the uncertainty associated with theRbv computed as in eq. (3.33),
we apply the same bootstrap procedure used in section 3.2, as described in appendix D.

The values and uncertainties of theRbv estimator for each methodology are presented
in the second column of table 3.10 and illustrated in a bar plot in fig. 3.24. Although the
differences among the methodologies are relatively small, it is observed that the CRM
mean method performs notably better than both the EXP and CRM single batch variants,
as anticipated. Interestingly, despite having the central value closest to the true value,
the CRM min (cubic) method appears to perform poorly. The same observation applies
to the CRM mean (fullsample) method. The performance of all the LOG variants is quite
worse than the CRM min and CRM mean performances.

This validation demonstrates that the correlated replica method is effective in accu-
rately extracting the true value of αs(MZ) and in providing well-estimated uncertainties.
Among the various tested variants, the CRM mean method has been found to deliver the
best performance. Therefore, it is advisable to employ this method for the extraction of
αs(MZ) from real data.

(a) (b)

Figure 3.23: Results of the multi-closure tests for all the methodologies described in section 3.3.4
are presented. The outcomes for the LOG case are displayed separately on the right.
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Method αs(MZ) Rbv

CRM min 0.11819± 0.00026 0.95± 0.11

CRM min (cubic) 0.11811± 0.00026 0.84± 0.12

CRM single batch 0.11820± 0.00025 0.95± 0.10

CRM mean 0.11818± 0.00025 0.97± 0.10

CRM mean (fullsample) 0.11818± 0.00025 0.90± 0.11

EXP 0.11817± 0.00024 0.92± 0.11

CRM LOG min 0.11773± 0.00026 1.15± 0.18

CRM LOG min (cubic) 0.11811± 0.00026 0.86± 0.12

CRM LOG min (quartic) 0.11811± 0.00027 0.85± 0.11

Table 3.10: Results of the multi-closure tests validation described in section 3.3.4. We show the
final value of αs(MZ) and the Rbv estimator (3.33) obtained for each methodology.

Figure 3.24: Visualization of the Rbv estimator and its uncertainty obtained in the multi-closure
test for each methodology tested. The black dashed line highlights the Rbv = 1 value, which
indicates a methodology that correctly estimates the uncertainties.



CHAPTER 4

Technical Improvements: The Pineline

Modern particle physics phenomenology increasingly depends on complex theoretical
calculations which precision must align with highly accurate measurements, particularly
those from experiments conducted at the Large Hadron Collider (LHC) [115]. Enhanc-
ing the accuracy of these predictions is associated with computing higher orders in the
strong and/or electroweak couplings for partonic cross sections, typically executed by
numerical programs, which we shall refer to as generators throughout this chapter. Given
that these computations are demanding in terms of runtime, memory, and storage, these
generators are often optimized for and limited to calculating a small set of observables.
Moreover, they frequently employ different conventions and strategies. Thus, the abil-
ity to generate, store, and exchange predictions in suitable formats for a wide range of
processes, allowing their use in various analyses, is highly advantageous.

We propose a framework, named pineline, designed to generate theoretical pre-
dictions by (1) developing a translation layer from a common input format to each of
the different generators and (2) implementing a common output format for all of them.
This concept, which we term industrialization, addresses the limitation that while specific
generators suffice for the calculation of individual processes, no single generator can cal-
culate all processes, including those beyond the LHC, such as deep-inelastic scattering
processes. By interfacing with multiple generators and thus connecting them in an as-
sembly line or pipeline, we can efficiently run the generator best suited for a particular
process. Additionally, having a common input format facilitates parameter variations,
such as those required for parameter scans.

The motivation for this project is the fitting of parton distribution functions (PDFs)
[8, 155–157] (see chapters 2 and 3), although the output generated by pineline could
be utilized in any fit or analysis requiring theoretical predictions. A notable aspect of
a PDF fit in this context is the necessity of a vast number of predictions, complicating
the tracking of the theoretical parameters used. While this issue is manageable for a
limited number of predictions, it becomes critical for a comprehensive PDF fit to ensure
that different processes utilize compatible parameter sets. Centralized parameter track-
ing thus facilitates the rerunning of predictions if parameter adjustments are needed. It
is crucial to emphasize that PDFs are a fundamental component in any observable in-
volving hadrons in the initial state and, therefore, must be meticulously controlled in all
applications.

This chapter is based on [12, 158, 159] and it is organized as follows: in section 4.1
we outline the abstract concepts that guided the design of the pineline framework.
In section 4.2 we provide a technical overview of the actual implementation, briefly de-
scribing the individual softwares as well. In section 4.3 we show an explicit example of
application of the pineline.
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4.1 Industrialization of high-energy theory predictions

Our goal is to align theory predictions in high-energy physics with the FAIR princi-
ples [160] (findability, accessibility, interoperability, and reusability) to promote sustain-
able and reproducible research.

4.1.1 Input and output formats

Our framework is designed to generate and store theory predictions in a unified format
from a common set of inputs. By standardizing the input across different generators, we
can enforce consistency in theoretical settings. Furthermore, by storing the predictions in
a single format, we ensure they can be utilized and analyzed regardless of their original
computation method.

To illustrate the diversity of generators, consider the NNPDF4.0 [8] study, which em-
ployed predictions from more than ten different programs: APFEL [161], DYNNLO [162,
163], FEWZ [164–166], Madgraph5 aMC@NLO [167, 168], MCFM [169–172], Njetti [173,
174], NNLOjet [175], NLOjet++ [176], Top++ [177], Vrap [178], and SHERPA [179]. Each
of these programs requires a distinct set of inputs and parameters, and even similar
inputs are provided in different formats. To address this issue, we propose a layout
featuring a global theory runcard, which, through an appropriate generator-dependent
translation layer, is fed into the target program.

The output of these programs is a hadronic observable, which has already been
folded with non-perturbative objects, such as the PDF. By standardizing the output of
all generators to an interpolation grid, we can reanalyze the same prediction in different
scenarios without the need for costly recomputation. The evaluation of results for dif-
ferent sets of PDFs becomes almost instantaneous, facilitating parameter fits for objects
that depend on these quantities.

In the context of PDF fitting, two common scenarios are:

• The inclusion of new data points into the fit, from existing or new experiments
[180–182].

• Investigating the impact of theory settings, such as the reference value of the strong
coupling αs(MZ) (see section 3.3) [154].

Both scenarios necessitate the (re-)computation of theory predictions for a large number
of data points. To exemplify the scale of this task, consider NNPDF4.0, which fits more
than 4500 data points across almost 100 different datasets (see section 2.1). Meeting the
increasing demands from the theoretical side requires more automation to avoid time-
consuming and error-prone manual processes.

The objects we work with in practice are interpolation grids [183–185], which store
theory predictions independently of PDFs and the strong coupling. Interfaces for these
grids to some generators are available [186–188]. Since they are independent of PDFs,
they are ideally suited for PDF fits, where they have been widely adopted, but their use
is not limited to this area. Note that by re-fitting the PDFs, any observable depending on
them will change. However, the partonic cross sections do not depend on the PDFs. By
storing them as interpolation grids, one can update all predictions without recomputing
the most computationally intensive part of the observables.

In summary, our objective is to provide a reliable and user-friendly workflow that
integrates the necessary intermediate steps and can scale to accommodate any amount
of data.
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4.1.2 Reproducibility

A crucial aspect of integrating various generators into a pipeline is ensuring the repro-
ducibility of results. It is imperative that every prediction can be traced back to its in-
puts, enabling any result to be independently verified by a third party and allowing the
impact of changes from a base set of parameters to be assessed. To achieve this, each
interpolation grid and all intermediate objects must contain all the necessary (meta)data
required for their recalculation and verification of compatibility.

Specifically, this metadata includes: the programs used, their version numbers and
random seeds, the values of relevant Standard Model parameters, renormalization scheme
choices, phase space cuts, and Monte Carlo uncertainties. It is noteworthy that many
interpolation grids publicly available on hepdata [189] and ploughshare [190] do not
include this information, though it can sometimes be inferred from associated publica-
tions. However, this data is often unavailable, complicating and prolonging the process
of making comparisons.

In our framework, this metadata is explicitly embedded in the grids and all other
outputs, ensuring it can be reliably and easily extracted. This practice not only facilitates
reproducibility but also enhances transparency and efficiency in high-energy physics
research.

4.1.3 Open-source Software

All software utilized within this framework is open source, which facilitates its distri-
bution, use, and maintenance. In addition to the code, the data are also available online
in formats that can be analyzed using open-source tools. Specifically, we store all meta-
data in the widely used YAML1 format, while interpolation grids are stored as PineAPPL
grids, which can be interfaced with many programming languages.

Furthermore, this work can be seen as a continuation of the effort initiated with the
publication of the NNPDF fitting code [52], providing the community with all necessary
tools to reproduce and perform theoretical variations of NNPDF fits.

4.2 The Pineline flowchart

In the following, we describe the technical implementation of the ideas highlighted
above into the pineline. To do so, it is most straightforward to follow the deliver-
ables, i.e. the objects that the pineline produces. These are illustrated in fig. 4.1 and are
the oval objects, namely: (1) PineAPPL grids, (2) EKOs, and (3) fast-kernel (FK) tables.

PineAPPL grids, like APPLgrids and fastNLO tables, store theoretical predictions
independently of their PDFs and the strong coupling. EKOs and FK tables are tailored
towards PDF fits and translate interpolation grids to use a single factorization scale.

An extended discussion of the technical details of the various programs is beyond the
scope of this thesis. Instead, we refer the interested reader to the relevant documentation
and development repositories of each tool.

4.2.1 Mathematical overview

Let us consider the calculation of a single observable σ, which, for the sake of readability,
we assume to contain only a single convolution, as in the case of a DIS structure func-

1https://yaml.org

https://yaml.org
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tion. The extension to multiple convolutions is straightforward (see chapter 1). Eq. 4.1
shows the defining property of interpolation grids, namely how convolutions with PDFs
fa(x, µ

2
F ) are performed:

σ =
∑
i,j,k

∑
a

fa(xi, µ
2
Fj)α

n+k
s (µ2

Rj)σ
(k)
a (xi, µ

2
Fj , µ

2
Rj) . (4.1)

The grid itself is the set of values
{
σ
(k)
a (xi, µ

2
Fj , µ

2
Rj)
}

for all partons a and perturba-
tive orders k. Note that the PDFs are interpolated and therefore evaluated at specific
momentum fractions {xi} and (squared) factorization scales {µ2

Fj}, just as the partonic
cross sections σa. For simplicity, we assume the renormalization scale equals the factor-
ization scale µ = µ2

R = µ2
F, but the choice of scale is completely free.

The interpolation transforms the convolution integral into a sum, resulting in the
grid being a PDF-independent quantity. In particular, the PDF is expanded over an in-
terpolation basis, with the expansion coefficients being the values of the PDF on specific
nodes. This means the specific interpolation basis is only used in the construction of the
grid but is not relevant for the construction of the PDF table (and thus not of concern for
any PDF user).

To represent interpolation grids, we use the PineAPPL library[188]. The source code
can be inspected from its repository:

https://github.com/NNPDF/pineappl

and the associated documentation can be consulted at:

https://nnpdf.github.io/pineappl/ .

For the specific case of PDF fits, interpolation grids are not the most efficient repre-
sentation, given that the factorization dependence of the PDFs is known perturbatively
and consequently not fitted. We can therefore rewrite eq. (4.1) to refer only to a single
factorization scale µ0, which in PDF fits is known as the initial scale or the fitting scale:

σ =
∑
i

∑
a

fa(xi;µ
2
0) FKa(xi;µ

2
0) . (4.2)

The object {FKa(xi;µ
2
0)} is known as a fast-kernel (FK) table[191] and is a special case of

an interpolation grid that:

• Uses a single factorization scale, and

• Contains the resummed evolution, thus combining various perturbative orders
and consuming the dependence on the strong coupling.

An FK table can be computed using EKOs (see section 2.2),

FKa(xi;µ
2
0) =

∑
b,j,k,l

αn+k
s (µ2

j ) EKO
b,l,j
a,i σ

(k)
b (xl, µ

2
j ) , (4.3)

where EKOb,l,j
a,i are the (linear) operators resulting from the evolution equations. FK ta-

bles are ideally suited for PDF fits because the time- and memory-consuming evolutions
are done only once and not during the fit.

https://github.com/NNPDF/pineappl
https://nnpdf.github.io/pineappl/
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Figure 4.1: Flow diagram showing the overall pipeline architecture and deliverables in the case of
parameter fits. Arrows indicate the flow of information (together with the execution order), and
the orange insets on other elements indicate an interface to PineAPPL. The programs pinefarm
and pineko act as interfaces between other programs and the deliverable objects, represented by
ovals. These objects can be PineAPPL grids (orange) or Evolution Kernel Operators (blue) [158].

What we gain are theoretical predictions {σ}, represented as FK tables, which allow
us to perform convolutions with a set of one-dimensional PDFs fa(x;µ2

0) very efficiently.
However, the price we pay is that we need a set of tools that calculate all the required
objects:

1. A numerical calculation must generate interpolation grids for each observable σ
that we want to incorporate in a fit.

2. Next, we need to calculate the EKOs, for the corresponding choices in each observ-
able calculated previously and the choices made in the fit.

3. Finally, we need to evolve the interpolation grids using the EKOs to generate FK
tables.

In the subsequent sections, we briefly review the various programs dedicated to each
step.

Note that the assumption of a single scale is chosen here only to simplify the notation,
but this is not present in the actual implementation. In fact, having chosen a modularized
composition of the pineline allows for a simplified implementation of scale variations:
scale variation, as described in detail in chapter 2, can be divided into renormalization
scale variation, related to the ultraviolet structure of the partonic matrix elements and
which can thus only act on the level of grids, and factorization scale variation related
to the collinear factorization theorem, which can either affect the split between PDFs
and grids or directly EKOs. We can use such scale variations to estimate the uncertainty
associated with the limited perturbative knowledge of perturbative QCD [4][5].

4.2.2 Generating grids: pinefarm

PineAPPL itself is agnostic to physics applications, necessitating the integration with
a parton-level generator to effectively create and populate grids. This involves inter-
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facing with PineAPPL, where relevant phase-space information such as x, µF, a, . . . is
provided. PineAPPL efficiently stores this data in a compact data structure representing{
σ
(k)
a (xi, µ

2
j )
}

(see eq. (4.1)). Practical implementation is facilitated through interfaces
available in C, C++, Fortran, Python, and Rust.

Currently, PineAPPL interfaces with several generators:

• Madgraph5 aMC@NLO[167, 168] for LHC processes including NLO EW and QCD–
EW corrections,

• yadism[192, 193] for NC and CC DIS processes,

• a modified version2 of Vrap[178] for fixed-target Drell–Yan processes, and

• an interface to MATRIX[194] under development.

Moreover, PineAPPL can convert existing APPLgrids and fastNLO tables into its format
using a command-line interface (CLI). Refer to Appendix A of [12] for an illustrative
example.

The program pinefarm, presented here for the first time, abstracts away differences
among various generators. For the listed generators, it manages diverse input file for-
mats specifying the desired physical observables. Additionally, it incorporates substi-
tutions from a theory parameters database and directly executes generators to produce
predictions and aggregate necessary interpolation grids. The extensibility to more gen-
erators is facilitated by the open-source nature of PineAPPL and pinefarm.

The source code can be accessed from its repository:

https://github.com/NNPDF/pinefarm

and comprehensive documentation is available at:

https://pinefarm.readthedocs.io

4.2.3 Generating evolution kernel operators: eko

While grids
{
σ
(k)
a (xi, µ

2
j )
}

are convoluted with PDFs evaluated at higher scales µ2
j , FK

tables
{
FKa(xi;µ

2
0)
}

are convoluted with PDFs evaluated at the fitting scale µ2
0, re-

ducing the dimensionality to two dimensions for DIS observables (parton flavor index
and momentum fraction), and four for hadronic observables. This reduction leverages
the DGLAP equation[195–197] which dictates the scale dependence of PDFs (see sec-
tion 1.3.3).

EKO[198, 199] has been developed specifically to solve these equations in terms of
EKOs:

fb(xl, µ
2
j ) =

∑
i

∑
a

EKOb,l,j
a,i fa(xi;µ

2
0) (4.4)

In contrast to other programs[161, 200–202], EKO focuses on computing these operators
directly, enabling their integration within the described pipeline to generate FK tables.
The PDF-independence of the operator allows for reuse across different PDF sets, en-
hancing the efficiency of theoretical computations.

The source code is accessible from its repository:

2https://github.com/NNPDF/hawaiian_vrap

https://github.com/NNPDF/pinefarm
https://pinefarm.readthedocs.io
https://github.com/NNPDF/hawaiian_vrap
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https://github.com/NNPDF/eko

and comprehensive documentation can be found at:

https://eko.readthedocs.io

4.2.4 Generating FK tables: pineko

The pineko program, introduced here for the first time, integrates interpolation grids
and EKOs to produce FK tables as described by eq. (4.3). Specifically, pineko retrieves
essential data from a grid and a theory runcard (containing all pertinent theory parame-
ters), and either selects or computes the required EKO as outlined in section 4.2.3. Once
the EKO is calculated, pineko loads the grid and applies the EKO to evolve it, ultimately
generating the final FK table.

Since eq. (4.2) is a specific case of eq. (4.1), PineAPPL can represent FK tables in the
same format as interpolation grids. This uniform representation is crucial as it allows
any theory prediction, whether derived from a Monte Carlo generator, converted from
other interpolation grids, or directly computed FK tables, to be treated consistently as a
PineAPPL grid at any stage of the pipeline. Consequently, the same set of tools can be
utilized for analysis and manipulation across all these formats.

The division between EKO computation and grid convolution offers computational
advantages. To illustrate, consider two scenarios:

• Studies involving variations in αs(MZ) [154], where only EKOs need recalculating,
without affecting the grids (notably, eq. (4.1) factors out the strong coupling).

• Studies focusing on variations inMW, where only grids require recalculating, leav-
ing EKOs unchanged.

For transparency and accessibility, the source code for pineko can be accessed from
its repository:

https://github.com/NNPDF/pineko

Detailed documentation is also available at:

https://pineko.readthedocs.io

Utilities

Pineko serves as the central user interface for the entire pineline, providing not only
its core functionality of computing FK tables but also offering several useful utilities.
One such utility, developed within the context of the study presented in chapter 2, in-
volves integrating renormalization scale variation contributions into interpolation grids
initially generated without them. The terms required for implementing scale varia-
tions at a specific perturbative order depend solely on preceding perturbative orders
and known constants (see appendix A). Consequently, these terms can be calculated
post-production of the interpolation grid and seamlessly integrated into it, enabling the
utilization of scale-varied predictions. It is important to note that while the incorpo-
ration of renormalization scale variation contributions in pineko is fully implemented
up to N3LO, the same functionality for factorization scale variations (see eq. (A.20)) is
currently in development.

https://github.com/NNPDF/eko
https://eko.readthedocs.io
https://github.com/NNPDF/pineko
https://pineko.readthedocs.io
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When performing scale variations at NNLO using the contributions obtained as de-
scribed, relying on k-factors for NNLO predictions becomes inadequate. To address this
issue, one approach is to extract the NNLO contributions directly from the k-factor and
include them in the interpolation grid as if they were originally computed there. We
elaborate on this issue here.

The NNLO k-factor is defined by

KNNLO
C =

∑N
i α2

s(µR,i)(m+ 2, 0)i + αs(µR,i)(m+ 1, 0)i + (m, 0)i∑M
i αs(µR,i)(m+ 1, 0)i + (m, 0)i

, (4.5)

where (n,m) denotes the contribution of QCD order n proportional to ρmr (see sec-
tion 2.2). The summation over renormalization scales µR,i is necessary because each bin
typically comprises contributions computed at different renormalization scales. Note
that the number of such scales may vary even across different perturbative orders, as
illustrated in eq. (4.5).

We use the k-factor approximation precisely because we lack the (m + 2, 0)i terms
required for (renormalization) scale-varied predictions, for instance,

PNNLO
REN =

N∑
i

αm+2
s (ρrµR,i)(m+ 2, 1)i + αm+1

s (ρrµR,i)(m+ 1, 0)i

+ αm+1
s (ρrµR,i)(m+ 1, 1)i + αm

s (m, 0)i . (4.6)

Consequently, we are forced to use the k-factor. However, two issues arise:

• The NLO part in eq. (4.6) is computed using αs evaluated at the shifted scale ρrµR,i,
whereas the k-factor definition (eq. (4.5)) assumes the central scale.

• Using the k-factor we are forced to multiply all the contributions, including (m +
2, 1)i and (m+ 1, 1)i which is incorrect.

Two potential solutions present themselves. The first involves extracting the orders (m+
2, 0)i from the k-factor and directly incorporating them into the grid. The second solution
involves estimating the varied k-factor KNNLO

V , which maintains the same definition as
the central k-factor but evaluates αs at the varied scale. Adopting the latter solution
would also necessitate rescaling the scale variation orders by 1/KNNLO

V . We refrain from
further discussing the latter approach.

To address the absence of the term (m+ 2, 0)i in eq. (4.5), our goal is to extract it and
include it in the grid. Specifically, we start with the relationship:

N∑
i

α2
s(µR,i)(m+ 2, 0)i = (KNNLO

C − 1)

(
N∑
i

αs(µR,i)(m+ 1, 0)i + (m, 0)i

)
. (4.7)

Initially, isolating individual terms (m + 2, 0)i might seem infeasible, due to the sum
over the N renormalization scales. However, leveraging the differential application of
the k-factor, for a specific index i = j, we derive:

α2
s(µR,j)(m+ 2, 0)j = (KNNLO

C − 1) (αs(µR,j)(m+ 1, 0)j + (m, 0)j) , (4.8)
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enabling the expression of (m+ 2, 0)j as:

(m+ 2, 0)j =
(KNNLO

C − 1) (αs(µR,j)(m+ 1, 0)j + (m, 0)j)

α2
s(µR,j)

. (4.9)

The latter equation allows the extraction of individual contributions (m+ 2, 0)i for each
bin i, which can be then incorporated in the interpolation grid. This is the approach that
is available within pineko.

4.2.5 DIS predictions: yadism

The provider that is responsible for the production of DIS grids is yadism [193, 198].
Yadism includes most of the currently available results in literature, specifically al-
lowing for the computation of polarized [203] and unpolarized structure functions up
to next-to-next-to-next-to-leading order (N3LO) [6] in QCD. Thanks to its modular de-
sign, the library can be easily extended as new computational results become available.
The coefficients, whenever possible, have been benchmarked against APFEL++ [202] and
QCDNUM [29].

Yadism provides consistent implementations of both renormalization and factoriza-
tion scale variations [5] up to any desired order. The currently implemented coefficients
support renormalization scale variations up to N3LO and factorization scale variations
up to NNLO.

Yadism, in conjunction with EKO, facilitates the construction of general-mass vari-
able flavor number schemes (GM-VFNS) using coexisting PDFs with different numbers
of active flavors. This approach avoids [204] the perturbative expansion of the evolution
kernel, as typically done in the construction of the FONLL scheme [42]. We discuss this
implementation in the following.

Yadism adopts a uniform treatment for all heavy quarks, ensuring that features
available for charm quarks are also applicable to bottom and top quarks. This strategy
enables computations involving an intrinsic bottom quark.Yadism offers calculations
for both the fixed-flavor number scheme (FFNS) and zero-mass variable-flavor number
scheme (ZM-VFNS), as well as the asymptotic limit whereQ2 ≫ m2 of the FFNS (FFN0),
which is essential for constructing the FONLL scheme.

The source code for yadism can be accessed from its repository:

https://github.com/NNPDF/yadism

Detailed documentation is also available at:

https://yadism.readthedocs.io

We do not discuss the details of the implementation of yadism, which can be found in
[193, 198].

FONLL implementation

As introduced in section 1.4, several approaches have been suggested [205–210] to in-
clude heavy quark mass effect into theoretical predictions. Here, we focus on the FONLL
approach (also discussed in section 1.4), initially proposed for heavy flavor hadropro-
duction [211], and subsequently extended to DIS [34, 42]. The fundamental idea behind

https://github.com/NNPDF/yadism
https://yadism.readthedocs.io
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the FONLL scheme is to combine fixed-order calculations that retain all heavy quark
mass effects with collinear resummed calculations.

We present a new construction of the FONLL scheme, that is perturbatively equiv-
alent to the original formulation up to higher-order corrections. Importantly, our ap-
proach directly addresses several shortcomings of the previous prescriptions.

A complication with the original prescription [42] arises from how the final coeffi-
cient functions are constructed: the method reformulates all expressions using a single
PDF (a common practice in existing heavy quark mass schemes), which can be challeng-
ing to implement in practical applications. This limitation becomes more pronounced
at high perturbative orders (e.g. N3LO) or in hadronic collisions such as those at the
LHC, where multiple PDFs are involved. Our new approach diverges by not requiring
the assumption of using a single PDF. Instead, we leverage the capabilities of the EKO
package [199] for solving the DGLAP evolution equations, enabling the computation of
coexisting flavor number PDFs for a given factorization scale. This innovation allows for
a fresh implementation of the FONLL scheme.

By utilizing coexisting flavor number PDFs, our approach achieves a distinct sepa-
ration between evolution and partonic matrix elements. This separation facilitates pre-
cise control over the accuracy of both fixed-order and collinear resummed calculations,
thereby enabling straightforward application across scenarios involving any number of
parton distributions.

Furthermore, the earlier FONLL framework solely addressed single-mass scenarios
without providing clear guidance on handling multi-mass situations. In practice, this
poses a relevant issue given that the masses of charm and bottom quarks are of compa-
rable magnitude. Our new approach specifically tackles this challenge and demonstrates
how it can seamlessly handle multi-mass scenarios in a natural manner.

A comprehensive discussion of the specifics of this alternative FONLL implementa-
tion exceeds the purview of the present thesis. For a detailed exposition, the reader is
referred to [212].

4.3 An example of application: K-factors vs. exact predictions

As an application of the tools described earlier, we have integrated Vrap[178] into pinefarm
and interfaced it with PineAPPL to generate FK tables for fixed-target Drell–Yan ob-
servables (FTDY) up to next-to-next-to-leading order (NNLO) precision in the strong
coupling constant. A step-by-step guide for implementing these results using the latest
version of the pineline framework is documented at:

https://nnpdf.github.io/pineline/examples/vrap

with the final step specific to the NNPDF framework.
In this study, we apply the framework presented in this paper along with the pro-

cedures outlined in the tutorial above to perform fits similar to NNPDF4.0 [8], but with
variations in the treatment of predictions for the FTDY datasets: E605 [213], E866 [214,
215], and SeaQuest [216].

Specifically, we explore these predictions in three scenarios:

1. Inclusion of FTDY datasets only at NLO QCD,

2. Inclusion of NNLO predictions approximated as K-factors (as in NNPDF4.0), and

https://nnpdf.github.io/pineline/examples/vrap
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Figure 4.2: Comparison of PDF fits with and without NNLO contributions for FTDY datasets. In
both cases, all other datasets are included at NNLO, differing only in the exact treatment of NNLO
contributions for FTDY.

3. Inclusion of exact NNLO predictions using interpolation grids.

It’s noteworthy that the majority of hadron-hadron collider data (especially all Drell–
Yan Z and W production at the LHC) in all PDF fits are limited to NNLO K-factors.
However, K-factors are susceptible to accidental cancellations between different partonic
channels[217], suggesting that using interpolation grids for a truly NNLO-accurate PDF
fit is preferable despite their computational challenges and potential lack of availability.

Figure 4.2 illustrates the impact of fitting FTDY datasets at NLO QCD (green), nor-
malized against fits incorporating exact NNLO QCD predictions (orange). In fig. 4.3, we
further investigate the influence of NNLO contributions on predictions: exact NNLO
(orange) versus NLO results multiplied by bin-dependent K-factors (green).
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Figure 4.3: Comparison of PDF fits incorporating FTDY datasets up to NNLO: exact NNLO pre-
dictions in FK tables (orange) versus NLO results multiplied by K-factors (green). The orange fit
corresponds to that in Figure 4.2.

In the case of FTDY datasets, as seen in fig. 4.2, the effect of NNLO corrections is
localized within a specific region of the PDF space. Figure 4.3 further demonstrates that
while fitting with K-factors shifts results towards the expected direction (as shown in
fig. 4.2), K-factors do not fully capture the subtleties of NNLO contributions. A similar
observation applies to the s̄ PDF. Nonetheless, these discrepancies fall within acceptable
uncertainties, and the impact of using K-factor approximations in this context appears
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negligible. Quantitative differences between PDFs derived from exact NNLO calcula-
tions and those from K-factors are detailed in fig. 4.4, where differences remain insignif-
icant, consistently well below half a standard deviation.
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Figure 4.4: Distance plots between PDFs derived from exact NNLO calculations and those from
K-factors, as computed according to Eq. (48) of [119]. A distance of 10 units corresponds to a
difference of one standard deviation between the two sets of PDFs.

This example demonstrates the versatility of the framework presented in this paper.
Through a single run of Vrap, we extracted predictions at NLO, NLO multiplied by K-
factors, and exact NNLO (QCD) predictions, each transformed into FK tables using the
same NNLO EKOs. Consequently, three different FK tables were produced for three
distinct fits. For further details and to reproduce these results, refer to the pineline
website (https://nnpdf.github.io/pineline), where a tutorial is available.

https://nnpdf.github.io/pineline


Summary

In this thesis, we have conducted a series of studies concerning the NNPDF methodol-
ogy for the extraction of parton distribution functions (PDFs), with a particular emphasis
on the estimation and validation of their associated uncertainties.

In chapter 2, we introduced the theory covariance method, which facilitates the in-
corporation of theoretical uncertainties arising from missing higher orders (MHO) in the
determination of PDFs. Initially, we validated the approach of using scale variations
to estimate these MHO uncertainties. Subsequently, the theory covariance method was
applied to the NNPDF4.0 framework at NLO, NNLO, and aN3LO, where we analyzed
the resulting improvements in both fit quality and perturbative convergence. Addition-
ally, we evaluated the impact of including theoretical uncertainties in the computation
of certain theoretical predictions pertinent to phenomenology.

In chapter 3, we revisited and enhanced the closure test framework, a tool that en-
ables the validation of fitting methodologies within a controlled environment. Notably,
we refined the bias-to-variance ratio estimator from its original formulation and pro-
posed more robust alternatives. This improved closure test framework, along with the
new estimators, was then employed to evaluate a scenario deliberately designed to be
inconsistent, thereby testing the response of the NNPDF4.0 methodology to varying de-
grees of data inconsistency. We presented results for different cases, where inconsistency
was injected into DIS data, DY data, and inclusive jet data. Our findings indicate that
the NNPDF4.0 methodology is generally capable of providing reliable PDF uncertainties
and central values, provided that the inconsistency is not excessively severe or that the
affected kinematic region is not otherwise poorly constrained.

We also utilized the closure test framework to validate the extraction of the strong
coupling constant, αs(MZ), via the correlated replica method. This validation process
involved applying the previously discussed closure test estimators to the distribution of
αs(MZ) values obtained through the correlated replica method. We validated the choices
made in the original formulation of this method and assessed the impact of adopting
slightly different approaches. The results of our analysis will serve as guideline for fu-
ture studies on real data.

In chapter 4, we introduced a novel theoretical predictions pipeline, termed the pine-
line, designed to industrialize, i.e. , standardize and automate, the production of theoreti-
cal predictions necessary for QCD studies. We began by outlining the guiding principles
that underpin the design of the pineline. Following this, we provided a brief overview
of each software component within the pineline, with particular attention to the features
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that were not described in the original publication. Finally, we demonstrated a specific
example where employing the pineline offers advantages both in terms of performance
and in the accuracy of the final predictions.
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APPENDIX A

Explicit scale-varied expressions

We collect here explicit expressions for the perturbative expansion coefficients up to
N3LO that are needed in order to perform scale variation according to the prescriptions
discussed in Section 2.2.1.

Running of αs. The perturbative solution of eq. (1.24) is

αs(λµ
2) = αs(µ

2)−
(
αs(µ

2)
)2
β0 log λ+

(
αs(µ

2)
)3 (

(β0)
2
log2 λ− β1 log λ

)
−
(
αs(µ

2)
)4(

(β0)
3
log3 λ− 5

2
β0β1 log

2 λ+ β2 log λ

)
+O

((
αs(µ

2)
)5)

. (A.1)

PDF evolution. The perturbative solution of eq. (1.48) is

E(λµ2 ← µ2) = 1− αs(µ
2)γ0 log λ+

(
αs(µ

2)
)2 [1

2
γ0 (β0 + γ0) log

2 λ− γ1 log λ
]

−
(
αs(µ

2)
)3 [1

6
γ0

(
2 (β0)

2
+ 3β0γ0 + (γ0)

2
)
log3 λ

− 1

6
(β1γ0 + 2β0γ1 + γ0γ1 + γ1γ0) log

2 λ+ γ2 log λ

]
+O

((
αs(µ

2)
)4)

. (A.2)
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Scale variation of cross-sections and anomalous dimensions. The expression of the
scale-varied coefficients Cj(ρ) eq. (2.23) in terms of the expansion coefficients Cj is

C0(ρ) = C0 , (A.3)

C1(ρ) = C1 +mC0β0 log ρ , (A.4)

C2(ρ) = C2 +
m(m+ 1)

2
C0 (β0)

2
log2 ρ+ ((m+ 1)C1β0 +mC0β1) log ρ , (A.5)

C3(ρ) = C3 +
m(m+ 1)(m+ 2)

6
C0 (β0)

3
log3 ρ

+

(
(m+ 1)(m+ 2)

2
C1 (β0)

2
+
m(2m+ 3)

2
C0β0β1

)
log2 ρ

+ ((m+ 2)C2β0 + (m+ 1)C1β1 +mC0β2) log ρ . (A.6)

The expression of the scale-varied coefficients γj(ρ) eq. (2.26) in terms of the expansion
coefficients γj of course is the same, with m = 1 and C → γ.

Scale variation of PDFs. The expression of the coefficients Kj(ρ) in terms of the ex-
pansion coefficients γj can be obtained by setting λ = 1/ρ in eq. (A.2). They are given
by

K0(ρ) = 1 , (A.7)
K1(ρ) = γ0 log ρ , (A.8)

K2(ρ) =
1

2
γ0 (β0 + γ0) log

2 ρ+ γ1 log ρ , (A.9)

K3(ρ) =
1

6
γ0

(
2 (β0)

2
+ 3β0γ0 + (γ0)

2
)
log3 ρ

+
1

2
(β1γ0 + 2β0γ1 + γ0γ1 + γ1γ0) log

2 ρ+ γ2 log ρ . (A.10)

Factorization scale variation in coefficient functions. Substituting eq. (2.32) in eq. (1.41)
and switching to Mellin space, the factorized expression for the physical observable after
factorization scale variation is

F (Q2) = C(Q2)f(Q2, ρf )

= C(Q2)K(αs(ρfQ
2), ρf )E(ρfQ

2 ← µ2
0)f(µ

2
0) (A.11)

= C(Q2, ρf )f(ρfQ
2) [1 +O(αs)] , (A.12)

where we defined

C(Q2, ρf ) = C(Q2)K ′(αs(Q
2), ρf ) = αm

s (Q2)

k∑
j=0

(
αs(Q

2)
)j
Cj(ρf ), (A.13)

andK ′ is in turn found by re-expressingK(ρfQ
2, ρf ) as a series inαs(Q

2), namely letting

K ′(αs(Q
2), ρf ) =

k∑
j=0

(
αs(Q

2)
)j
K ′j(ρf ) (A.14)
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with the requirement

K(αs(ρfQ
2), ρf ) = K ′(αs(Q

2), ρf ) [1 +O(αs)] . (A.15)

We get

K ′0(ρ) = 1 , (A.16)
K ′1(ρ) = γ0 log ρ, (A.17)

K ′2(ρ) =
1

2
γ0 (−β0 + γ0) log

2 ρ+ γ1 log ρ , (A.18)

K ′3(ρ) =
1

6
γ0

(
2 (β0)

2 − 3β0γ0 + (γ0)
2
)
log3 ρ

+
1

2
(−β1γ0 − 2β0γ1 + γ0γ1 + γ1γ0) log

2 ρ+ γ2 log ρ , (A.19)

which, substituted in eq. (A.13), leads to

C0(ρ) = C0 ,

C1(ρ) = C1 + γ0C0 log ρ ,

C2(ρ) = C2 +
1

2
γ0(−β0 + γ0)C0 log

2 ρ+ (γ0C1 + γ1C0) log ρ ,

C3(ρ) = C3 +
1

6
γ0

(
2 (β0)

2 − 3β0γ0 + (γ0)
2
)
C0 log

3 ρ

+
1

2
(−β1γ0 − 2β0γ1 + γ0γ1 + γ1γ0)C0 log

2 ρ

+
1

2
γ0 (−β0 + γ0)C1 log

2 ρ

+ (γ0C2 + γ1C1 + γ2C0) log ρ . (A.20)





APPENDIX B

MHOU covariance matrix prescriptions

There are two conditions that we want to satisfy in constructing the theory covariance
matrix, in order to support the interpretation as the covariance matrix of our theory prior
distribution:

1. We want the theory covariance to be generated by some shift vectors ∆i(ρ⃗)
1; the

vectors should be proportional to the difference of predictions obtained by a theory
variation Pi(ρ⃗) and the default theory in which ρ⃗ = ρ⃗0:

∆i(ρ⃗) = ci(ρ⃗) (Pi(ρ⃗)− Pi(ρ⃗0)) (B.1)

Sij =
∑
ρ⃗∈Vij

∆i(ρ⃗)∆j(ρ⃗) (B.2)

2. We want it to be positive semi-definite, as required for any covariance matrix

viSijvj > 0 ∀v ∈ Rndata (B.3)

Derivation

Once all the elements in eqs. (B.1) and (B.2) are spelled out, we have a clear recipe on
how to compute the covariance matrix Sij .

For this reason, we are going to exploit all the properties that are required or desirable
(advantageous), in order to limit the available degrees of freedom: anything left, it has
to be regarded as being part of the prescription.

The current degrees of freedom are:

1. the choice of the p + 1 dimensional space Vij of all the accounted variations (p
renormalization scales, 1 factorization scale)

2. the choice of normalization coefficients ci(ρ⃗) ∈ R 2

3. the choice of the default value ρ⃗0

The last element is trivial: it’s going to be part of the prescription, but in the following
we will always write ρ⃗0 = 0⃗ for definiteness (it’s simple to replace this in the final result
with ρ⃗0 in any case).

1We denote ρ⃗ = (ρf , ρr).
2Not all values of R make sense, but there is quite a wide range of interesting variations: N for repeated

points, or Q+ for normalizations (possibly coming from repeated points), or 0 for masking. At this level, we
are just not excluding anything that has no special reason to be excluded.
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Extra scales We know that the predictions for each data point only depend on two
scales: the common factorization scale, and the related renormalization scale, but not the
others. For this reason, it makes no sense to pick the normalization for point i dependent
on the other scales, since it would introduce a dependency of the shifts on those scales
that was not present in the unnormalized shifts. Thus:

ci(ρ⃗) ≡ ci(ρf , ρri) (B.4)

Per-pair space Next, we claim that the space Vij can not actually depend on the element
ij of the covariance matrix been constructed. Indeed this stems directly for the necessity
to prove eq. (B.3) that is done in the following way:

∑
i,j

viSijvj =
∑
i,j

∑
ρ⃗∈Vij

vi∆i(ρ⃗)∆j(ρ⃗)vj = (B.5)

=
∑
ρ⃗∈V

∑
i,j

vi∆i(ρ⃗)∆j(ρ⃗)vj = (B.6)

=
∑
ρ⃗∈V

(∑
i

vi∆i(ρ⃗)

)2

> 0 (B.7)

If the space V were actually dependent on ij, it would have not been possible to swap
the two sums in the second step.

Space choice On the other hand, it is desirable to define the prescription only on the
space of relevant scales for the given point ij. This means the factorization scale ρf and

off-diagonal two renormalization scales ρri and ρrj , or

diagonal even a single one, if the two points are related to the same process, i.e.

ρri = ρrj

We would like our expressions not to depend on the number of scales present, and
only account for the scale relevant for the pair ij being considered. The easiest choice is
to pick the space V to be fully factorized in the various dimensions of ρ⃗. This means that
it can be written as

V =

p+1∏
i=1

vi, (B.8)

with vi the one-dimensional space representing the variation of the single scale labeled
with i.

Alternative This is not the only choice available, it is just the simplest. There is
only one more option that guarantees the independence of the projection on the pair ij,
i.e. factorize the space for each possible value of ρf . This option will be explored in ap-
pendix B.0.2.
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In the case of a fully factorized space, the complex choice of the space is reduced on
p+1 choices for one dimensional spaces. But if there is no reason to distinguish processes
at this level, it is reasonable to pick the same space for each renormalization scale.

In practice, the basic one dimensional space will be always the same3:

v = {1/4, 1, 4} ≡ {−, 0,+} (B.9)

and the overall space will be just the product:

V = vp+1 (B.10)

Normalization At this point, all the arbitrariness left for the prescription is encoded in
the normalization coefficients. With our simple choice of the space there is no reason to
choose complex coefficients, thus we will define the following prescriptions:

ci(ρ⃗) =

{
1/
√
Nm ρ ∈ V i

m

0 else
(B.11)

The spaces V i
m now defines our point prescription, together with the overall normal-

ization Nm, since the ci(ρ⃗) are acting as masks on the points ρ⃗ not belonging to the space.
For the former we’ll choose:

V i
m = vim × {−, 0,+}p−1 (B.12)

where the two dimensional spaces vim are always the same space vm, but for the scales
(ρf , ρri), while the other scales are free to assume any possible value.

For the normalizations instead, there is no strict nor reasonable way to fix it com-
pletely, but it is possible to fix the scaling in the case of a space vm and v with an hy-
pothetically large number of point: since we don’t want the normalization of the theory
covariance matrix to depend on the number of points being in the prescription, we’ll
choose

Nm ∝ |vm| · |v| = m · 3p−1 (B.13)

B.0.1 Examples of prescriptions

Since the presence of many processes have been reconciled at a theoretical (even though
abstract) level, here we will concentrate on fully spelled out examples, in the simplest
case of only two data points (1 and 2) belonging to two distinct processes.

Again, the following is in no way a proof, which has been spelled out in details in the
previous section, for which considering more than two processes is extremely relevant.

We will show the actual results of the obtained prescriptions for the on-diagonal, S11,
and off-diagonal, S12 cases.

Notice that, with respect to [4], here we have not yet introduced the factor s, but it
would still be allowed by eq. (B.13). In order to make the comparison with [4] easier, in
this section we’ll define the actual normalization including this factor, so:

Nm =
m · 3p−1
sm

(B.14)

3The one spelled out is only an option, any other space would work equally well.
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For convenience, the unnormalized shifts will be called δ, i.e.:

δi(ρ⃗) ≡ ∆i(ρ⃗) ·
√
Nm (B.15)

In general, the expressions for the diagonal and off-diagonal cases with only two process,
p = 2, are the following:

diagonal effectively two-dimensional, since both the shifts depend only on two scales

S11 =
∑
ρ⃗∈V

∆1(ρ⃗)∆1(ρ⃗) = (B.16)

=
sm
3 ·m

∑
ρ⃗∈V 1

m

δ1(ρ⃗)
2 = (B.17)

=
sm
m

∑
(ρf ,ρr1

)∈v1
m

δ1(ρf , ρr1 , 0)
2 (B.18)

where in the last step a single value has been chosen for ρr2 , since δ1 does not
depend on this scale.

off-diagonal effectively three-dimensional, that only for this specific problem coincide
with the whole space (for a greater number of processes, would be itself a projec-
tion)

S12 =
∑
ρ⃗∈V

∆1(ρ⃗)∆2(ρ⃗) = (B.19)

=
sm
3 ·m

∑
ρ⃗∈V 1

m∩V 2
m

δ1(ρ⃗)δ2(ρ⃗) (B.20)

=
sm
3 ·m

∑
ρ⃗∈V 1

m∩V 2
m

δ12(ρ⃗) (B.21)

where in the last step we defined δ12(ρ⃗) ≡ δ1(ρ⃗)δ2(ρ⃗).

9 points

The easiest prescription is the so-called 9 points prescription, because it corresponds to
consider the whole two dimensional space as V i

9 , thus the two elements to be fixed are:

v9 = {−, 0,+}2 (B.22)

N9 =
8 · 3
2

= 12 (B.23)

with s9 = 2 (naı̈vely because two scales are involved).
In the following, the expressions for the diagonal and off-diagonal cases are format-

ted in order to stress the connection with the various pictures in this section. Concern-
ing the diagonal expressions they are formatted on three lines, with three terms each,
such that each term correspond to one point in the two-dimensional diagram. Since off-
diagonal would correspond to a three-dimensional picture, this picture is ideally sliced in
two-dimensional planes, and each plane is displayed in the equation as a block of terms
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in square brackets, and slightly indented with respect to previous blocks. In order to
preserve the shape, and to stress the effect of zero values in the ci(ρ⃗), missing terms are
explicitly marked with zeros.

diagonal for this prescription, we effectively have only 8 shifts, since out of the 9 theory
predictions, one shift vanishes, just because it is used as the reference

S11 =
1

4

[
δ1(−,−, 0)2 + δ1(−, 0, 0)2 + δ1(−,+, 0)2 +

δ1(0,−, 0)2 + 0 + δ1(0,+, 0)
2 + (B.24)

δ1(+,−, 0)2 + δ1(+, 0, 0)
2 + δ1(+,+, 0)

2

]

off-diagonal the two ∆i combine in three dimensions: each one contains 3 zero elements
(relative to the two dimensional central value), but the two are overlapping over
the central point (ρf , ρr1 , ρr2) = (0, 0, 0), leading to only 5 zero elements out of
33 = 27 total elements, see appendix B.0.1; thus the 22 non-vanishing elements are
the following:

S12 =
1

12

{[
δ12(−,−,−) + δ12(−,−, 0) + δ12(−,−,+) +

δ12(−, 0,−) + δ12(−, 0, 0) + δ12(−, 0,+) +

δ12(−,+,−) + δ12(−,+, 0) + δ12(−,+,+)

]
+

[
δ12(0,−,−) + 0 + δ12(0,−,+) +

0 + 0 + 0 +

δ12(0,+,−) + 0 + δ12(0,+,+)

]
+

(B.25)

[
δ12(+,−,−) + δ12(+,−, 0) + δ12(+,−,+) +

δ12(+, 0,−) + δ12(+, 0, 0) + δ12(+, 0,+) +

δ12(+,+,−) + δ12(+,+, 0) + δ12(+,+,+)

]}
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ρr

ρf

Figure B.1: Visualization of the 9 points prescription for the diagonal (2 dimensional) and off-
diagonal (3 dimensional) elements.

5 points

Another interesting prescription is the 5 points one, since it is a rather minimal prescrip-
tion involving both renormalization and factorization scale.

v5 = {(−, 0), (0,−), (+, 0), (0,+)} (B.26)

N5 =
4 · 3
2

= 6 (B.27)

with s5 = 2 (same reason of eq. (B.22)).

diagonal for this prescription, we effectively have only 4 shifts, since only 5 theory pre-
dictions are taken into account4, and, as for the 9 points, one is used as reference

S11 =
1

2

[
0 + δ1(−, 0, 0)2 + 0 +

δ1(0,−, 0)2 + 0 + δ1(0,+, 0)
2+ (B.28)

0 + δ1(+, 0, 0)
2 + 0

]

off-diagonal in this case the two two-dimensional normalizations combine into one
three-dimensional pattern, where non-zero elements are arranged in the shape of
a double square pyramid: only central value is allowed for ρf ̸= 0, while the four

4with the shape of a Greek cross, as the + symbol
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ρr

ρf

Figure B.2: Visualization of the 5 points prescription for the diagonal (2 dimensional) and off-
diagonal (3 dimensional) elements.

corners are left for ρf = 0 (same as the 9 points in this case), see appendix B.0.1

S12 =
1

6

{[
0 + 0 + 0 +

0 + δ12(−, 0, 0) + 0 +

0 + 0 + 0

]
+

[
δ12(0,−,−) + 0 + δ12(0,−,+) +

0 + 0 + 0 +

δ12(0,+,−) + 0 + δ12(0,+,+)

]
+

(B.29)

[
0 + 0 + 0 +

0 + δ12(+, 0, 0) + 0 +

0 + 0 + 0

]}

5̄ points

Just another option with renormalization and factorization scale, with same two dimen-
sional volume, but a different geometry.

v5 = {(−,−), (−,+), (+,−), (+,+)} (B.30)

N5 =
4 · 3
2

= 6 (B.31)

with s5̄ = 2 (same reason of eq. (B.22)).
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diagonal for this prescription, we effectively have only 4 shifts, since only 5 theory pre-
dictions are taken into account5, and, as for the 9 points, one is used as reference

S11 =
1

2

[
δ1(−,−, 0)2 + 0 + δ1(−,+, 0)2 +

0 + 0 + 0 + (B.32)

δ1(+,−, 0)2 + 0 + δ1(+,+, 0)
2

]
off-diagonal also in this case the two two-dimensional normalizations ci(ρ⃗) have the

combined effect of setting to zero a lot of elements in the three dimensional space,
this leaving the shape of an empty cube: the four corners are now left for ρf ̸= 0,
and no point is left for ρf = 0

S12 =
1

6

{[
δ12(−,−,−) + 0 + δ12(−,−,+) +

0 + 0 + 0 +

δ12(−,+,−) + 0 + δ12(−,+,+)

]
+

[
0 + 0 + 0 +

0 + 0 + 0 +

0 + 0 + 0

]
+

(B.33)

[
δ12(+,−,−) + 0 + δ12(+,−,+) +

0 + 0 + 0 +

δ12(+,+,−) + 0 + δ12(+,+,+)

]}

B.0.2 Alternative space: ρf slices

Previously, we made a set choices for the degrees of arbitrariness exposed at the begin-
ning. All of them were yield by a strict requirement (needed to obtain a property, like
Sij ≥ 0) or by a reasonable request (e.g. not adding further dependencies with normal-
izations, which led to eq. (B.4)). Only in one single case we made an assumption based
on an unneeded simplicity: the choice of the space as fully factorized.

This choice is sensible for the renormalization scales: why should the space look dif-
ferent seen from the perspective of different processes? Why different processes should
be correlated by the space? On the other hand, it is completely arbitrary for the factoriza-

5with the shape of St. Andrew’s cross, as the × symbol
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ρr

ρf

Figure B.3: Visualization of the 5̄ points prescription for the diagonal (2 dimensional) and off-
diagonal (3 dimensional) elements.

tion scale. Since factorization scale ρf is treated separately from renormalization scales
ρri , no surprise if even the space symmetry somehow is broken on ρf 6.

Thus, we can have a different factorized space for each different value of ρf :

V =
⊔

ρf∈vf
V (ρf ) (B.34)

V (ρf ) ≡ v(ρf )p (B.35)

where vf is the space of possible values of ρf (usually it will be just v of eq. (B.9)), and
v(ρf ) is instead the space of renormalization scales related to that single value of the
factorization scale.

In this case also the definition of the normalizations ci(ρ⃗) should change with respect
to those defined in eq. (B.11) in order to account for this, since the different spaces contain
different numbers of points. We decide to normalize the elements such that once the full
space is projected over each of the two dimensional spaces (ρf , ρri), the coefficients of
the various shifts are equal to one, thus:

ci(ρ⃗)
2 ∝ 1∑

ρ′
f
v(ρ′f )

|v(ρf )|
|V (ρf )|

=
1

m · |v(ρf )|p−1
(B.36)

since the scales projected are all renormalization scales but a single one, that is the rele-
vant one for the given i, and together with ρf make the two dimensional space, whose
volume is

∑
ρ′
f
v(ρ′f ) = m.

B.0.3 Examples of prescriptions

In this case as well, for better comparison with [4], we introduce the factor of s in the
normalization of eq. (B.36), thus

ci(ρ⃗)
2 =

sm
m · |v(ρf )|p−1

(B.37)

6For the ρri , choosing them factorized and uniform as argued, a permutation invariance is present, and
makes sense. No reason to extend it to ρf .
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Furthermore, same as in appendix B.0.1 (on purpose, to stress comparison) we con-
sider the case of only two data points (1 and 2) belonging to two distinct processes. With
this limited case it is harder to appreciate the difference of the constructions, since it
actually lies in the way the different three dimensional shapes for pair of processes are
reconciled in the full p+1-dimensional space. However, this difference has already been
stressed in the abstract construction of the two classes of prescriptions, thus the pur-
pose of this examples is different: to showcase the different expressions obtained fully
explicitly. For this aim the choice of considering just two points is fully satisfactory.

For this second set of examples there is no need to rewrite the full set of terms: they
are the exact same of appendix B.0.1, the only difference will be in the coefficients, that
now might depend on the value of ρf because of the space structure (and they will al-
ways depend on it).

Thus, the expressions for the diagonal and off-diagonal cases with only two process,
p = 2, in this second class of prescriptions are the following:

diagonal effectively two-dimensional, since both the shifts depend only on two scales

S11 =
∑
ρ⃗∈V

∆1(ρ⃗)∆1(ρ⃗) = (B.38)

=
∑

ρf∈vf

sm
|v(ρf )| ·m

∑
ρ⃗R∈V (ρf )

δ1(ρ⃗)
2 = (B.39)

=
sm
m

∑
ρf∈vf

∑
ρr1
∈v(ρf )

δ1(ρf , ρr1 , 0)
2. (B.40)

where in the last step a single value has been chosen for ρr2 , since δ1 does not
depend on this scale (this trivial sum cancels with the factor of |v(ρf )| in the de-
nominator).

Notice that the last sum
∑

ρf∈vf
∑

ρr1
=
∑

(ρf ,ρr1
)∈v1

m
, thus the finally formula for

the diagonal case is the same of eq. (B.18). While this is not a proof of the general
case, it is simple to show (in essentially the same way of above) that this is the
formula obtained for any number of processes p.

off-diagonal effectively three-dimensional, that only for this specific problem coincide
with the whole space

S12 =
∑
ρ⃗∈V

∆1(ρ⃗)∆2(ρ⃗) = (B.41)

=
∑

ρf∈vf

sm
|v(ρf )| ·m

∑
ρ⃗r∈V (ρf )

δ1(ρ⃗)δ2(ρ⃗) (B.42)

=
sm
m

∑
ρf∈vf

1

|v(ρf )|
∑

ρ⃗r∈V (ρf )

δ12(ρf , ρr1 , ρr2). (B.43)

Since the space of this second class is engineered to give the same terms of the first
one (both diagonal and off-diagonal), and the normalizations are chosen such to obtain
uniform coefficients for the diagonal case (and then they are the exact same of the first
class, as noted above), the only difference will be in the coefficients of the off-diagonal
case, and they can only depend on the factorization scale ρf . For this reason, we will not
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repeat the full construction of the previous section, but just adopt a concise notation to
make the different coefficients explicit in the off-diagonal expressions:

S12 =
sm

m · km
(cm(−)δ12(−, · · · ) + cm(0)δ12(0, · · · ) + cm(+)δ12(+, · · · )) (B.44)

where:

• km is the least common multiple of the |v(ρf )|, in order to leave integer coefficients
in the sum

• cm(ρf ) is the leftover the 1/|v(ρf )| once 1/km has been factored out

• δ12(ρf , · · · ) is a placeholder for all the terms with that value of ρf , as they have
been spelled out in the corresponding prescription in appendix B.0.1

9 points

The specification of this prescription is almost the same of the corresponding one for the
first class:

v9(−) = v9(+) = {−, 0,+} (B.45)
v9(0) = {−,+} (B.46)

(B.47)

Therefore, the resulting off-diagonal expression is:

S12 =
2

8 · 6 (2 δ12(+, · · · ) + 2 δ12(−, · · · ) + 3 δ12(0, · · · )) (B.48)

=
1

24
(2 δ12(+, · · · ) + 2 δ12(−, · · · ) + 3 δ12(0, · · · )) (B.49)

5 points

For this prescription, the difference is a bit more relevant, mainly in terms of the overall
factor, since no one of the v5(ρf ) spaces has the maximal allowed cardinality, i.e. 37

v5(−) = v9(+) = {0} (B.50)
v5(0) = {−,+} (B.51)

(B.52)

Therefore, the resulting off-diagonal expression is:

S12 =
2

4 · 2 (2 δ12(+, · · · ) + 2 δ12(−, · · · ) + δ12(0, · · · )) (B.53)

=
1

4
(2 δ12(+, · · · ) + 2 δ12(−, · · · ) + δ12(0, · · · )) (B.54)

7Of course even 3 is completely arbitrary, as explained in eq. (B.9), and the related note, but both classes of
prescriptions are perfectly adaptive w.r.t. this value, i.e. their definitions work perfectly fine in the general case.
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5̄ points

It is worth to analyze separately also this prescription: the former two are enough to
exemplify the regular cases, but this one is slightly degenerate. Indeed, one of the spaces
is actually empty.

v5(−) = v9(+) = {−,+} (B.55)
v5(0) = {} (B.56)

(B.57)

We need to generalize a bit the definition given above: km is chosen to be the least com-
mon multiple of all non-zero coefficients. Finally, the off-diagonal expression for this
prescription is:

S12 =
2

4 · 2 (δ12(+, · · · ) + δ12(−, · · · )) (B.58)

=
1

4
(δ12(+, · · · ) + δ12(−, · · · )) (B.59)

Note that the expressions obtained in this section, with the assumption of having a
space sliced in ρf , are the same proposed in [4].



APPENDIX C

Impact of the improved estimators

In this appendix, we compare the results obtained using the new definition of the bias-
to-variance ratio given in eq. (3.17) with the one previously used in [9]. The primary
focus is to highlight the necessity of introducing a different definition for the consistency
estimator in a multiclosure fit.

Consider a typical global multiclosure fit with Nfits = 25 and Nrep = 100. The bias-
to-variance ratio is chosen as the summary statistic to evaluate the consistency of the
NNPDF fitting procedure. To perform this evaluation, a specific testing set defined by
certain datasets is selected, and the bias-to-variance ratio of the fit’s output is computed
on the observables included in these datasets. We aim to compare the behavior of the
PCA-basedRbv with the previously adopted definition, demonstrating why the previous
estimator lacked interpretability and faithfulness.

Define the testing data to consist solely of two experimentally uncorrelated datasets.
Given the old definition, it is straightforward to see that the global bias-to-variance ratio
would be given by:

Rbv =

√√√√Eη[B
(l)
ds1] + Eη[B

(l)
ds2]

Eη[V
(l)

ds1] + Eη[V
(l)

ds2]
. (C.1)

The problem with this definition is that we desire a global test statistic to reflect on
how many data points the fitting procedure can be defined as consistent. This requirement
boils down to the quantities Bds1 and Bds2 being distributed according to a χ2 distri-
bution with Ndof = Ndata. This differs from the PCA procedure, where only a certain
number of degrees of freedom survive after the regularization of the (PDF-induced) co-
variance matrix.

It can be shown that the previously adopted definition fails to meet this requirement.
Consider, for instance, two datasets: one from Drell-Yan and another from HERA NC.
The first consists of 15 data points, while the second comprises 254 data points. Given
this proportionality between the sizes of the datasets, the HERA dataset should weigh
much more than the Drell-Yan dataset. However, examining the distribution of the bias
and variance previously computed in a multiclosure fit, we observe that this is not the
case (fig. C.1).

As can be clearly seen from the figures, the distributions for the two different datasets
do not follow a correctly normalized χ2 distribution. In fact, when computing the global
Rbv by merging the two datasets, the Drell-Yan dataset will have a much higher weight
than the DIS dataset, despite having fewer data points. Specifically, following the pre-
vious notation, the means for the bias and variance of the two datasets are listed in
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Figure C.1: Distribution of mean variance and bias across fits for the inclusive DIS neutral current
HERA dataset (top) and for the differential Drell-Yan cross section (bottom).

table C.1. Note that the value of the bias-to-variance ratio is

Rbv ≈ 0.76 , (C.2)

which is confirmed to be mostly driven by the DY dataset.

Dataset Ndata Eη[B] Eη[V ] Rbv

HERA I+II inclusive NC e+p 575 GeV 254 0.6 0.8 0.87
DYE 886 σd

DY /σ
p
DY 15 3.3 6.0 0.74

Table C.1: Central values for bias and variance computed following the “old” definition.

When computing the global Rbv with the new definition, we cannot make the same
point: in particular, we do not know beforehand which degrees of freedom will be re-
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moved by the PCA. Therefore, it is incorrect to state that the global Rbv is given by:

Rbv =

√√√√Eη[B
(l)
ds1, PCA] + Eη[B

(l)
ds2, PCA]

Eη[V
(l)

ds1, PCA] + Eη[V
(l)

ds2, PCA]
. (C.3)

Nevertheless, by plotting the global histogram for the two merged datasets (fig. C.2),
we can clearly see that the bias and variance quantities more closely follow a correctly
normalized χ2 distribution. This indicates that each individual data point has the correct
weight, and merging datasets in a final analysis with PCA provides the correct propor-
tionality concerning the total number of degrees of freedom.
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0.15
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Bias and variance distribution for merged datasets, DoF=16
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Figure C.2: Distribution of bias and variance across fits for the two merged datasets, computed
with PCA.





APPENDIX D

Bootstrap algorithm definition

To quantify the uncertainty associated with the multi-closure test estimators utilized in
this study, such as the bias-variance ratio Rbv , we implemented a bootstrapping pro-
cedure on the closure test fits. This approach enables us to achieve more reliable un-
certainty quantification than merely computing the variance of the estimator on the 25
closure test fits. Given n closure test fits

F1, . . . , Fn
i.i.d.∼ P̂n, (D.1)

the algorithm involves the following steps:

1. Bootstrap Sample Generation: Randomly select, with replacement, n closure tests
from the n available closure tests (typically 25). Within each selected closure test,
randomly select, again with replacement, m replicas (we use m = 60, as shown
in Table D.1, which demonstrates the stability of the estimator as a function of m)
from the total of 100 replicas. This process creates a bootstrap sample comprising
n closure tests, each containing m replicas.

F ∗1 , . . . , F
∗
n

i.i.d.∼ P̂n (D.2)

2. Bootstrapped Estimator Calculation: Compute the value of the estimator, e.g. Rbv ,

R∗bv = Rbv(F
∗
1 , . . . , F

∗
n), (D.3)

using the n closure tests within the bootstrap sample.

3. Repetition: Repeat steps 1 and 2 for a total of B (we choose B = 100) iterations,
generating B instances of Rbv :

R∗,1bv , . . . , R
∗,B
bv . (D.4)

4. Inference: Compute the mean and the variance of the B calculated Rbv values to
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estimate the estimator’s bootstrap expectation value and uncertainty,

E∗[R∗bv] ≈
1

B

B∑
i=1

R∗,ibv , (D.5)

Var∗(R∗bv) ≈
1

B − 1

B∑
i=1

(
R∗,ibv −

1

B

B∑
j=1

R∗,jbv

)2

. (D.6)

m Rbv ∆Rbv

100 0.89 2.3e-2
80 0.89 1.9e-2
60 0.90 2.1e-2

Table D.1: Bootstrapped values of the bias-variance ratio computed on the full DIS dataset. The
estimator is computed for different numbers of replicas of each fit. The table shows that the boot-
strap result dependence on m is mild and that the result obtained with m = 60 is consistent with
the others.

The bootstrapping procedure outlined here is used to produce all the uncertainties
quoted in the results shown in section 3.2.



APPENDIX E

Correlation between PDFs and observables

To assess the correlation between the inconsistent HERA I+II dataset measuring σe+p
NC with

Ep = 920 GeV and the various PDF flavours, in fig. E.1 we plot the correlation defined
in [218]. The correlation function is defined as:

ρ(j, x,O) ≡ Nrep

Nrep − 1

( ⟨fj(x,Q)O⟩reps − ⟨fj(x,Q)⟩reps⟨O⟩reps
∆PDFf(x,Q)∆PDFO

)
, (E.1)

where the PDFs are evaluated at a given scaleQ = Q0 and the observableO is computed
with the set of PDFs f , j is the PDF flavour, Nrep is the number of replicas in the base-
line PDF set and ∆PDF are the PDF uncertainties. In the figures we show two Q2 bins
that feature the largest Rbv in fig. 3.7, namely Q2 = 60 GeV2 (left panel) and Q2 = 75
GeV2 (right panel). We observe that the dataset is mostly correlated with the gluon in
the kinematical region in which uncertainties are overestimated as an experimental in-
consistency is introduced.

We can look at this same quantity for the other two inconsistent closure test setups,
namely the Drell-Yan and JET ones. For the Drell-Yan we show in fig. E.2 the corre-
lation between observables and flavours for two datasets: the one in which which the
inconsistency is directly injected during training and the most affected one, which are
respectively the ATLAS high-mass Drell-Yan measurements at 8 and 7 TeV. These are the
same datasets shown in fig. 3.13 for the single data point analysis.

Finally also for the case of the inconsistent JET multiclosure test we follow the same
logic and show the PDF-observable correlation for the datasets shown in fig. 3.19. These
are respectively the ATLAS single jet and the CMS tt̄ double differential cross section at
8 TeV measurements. As one can see the gluon is the most correlated PDF, and we show
the highlighted region in fig. E.3
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