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Summary

This work has the purpose of analysing the dependence of parton
distribution function on the scale at which they are parameterized. In
particular, we analyse the effects of passing through the threshold for
production of heavy quarks.

The first chapter presents a review of the basic concepts of Quan-
tum ChromoDynamics, in more detail the phenomena of confinement
and asymptotic freedom. Then, we give an overview of PDFs and
their role in describing scattering processes.

The second chapter presents the NNPDF methodology for fitting
PDFs. Namely, it introduces the elements of the fitting process and it
contains a brief explanation of the ideas behind a neural network.

The third chapter presents the results of the study. In particular the
results are divided into different regimes at which the PDFs are pa-
rameterized, specifically discussing the possible dependence on heavy
quark threshold.
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1 Theoret ical rev iew of
QCD and PDFs

1.1 QCD formulation
Our current understanding of strong interaction is based on Quan-

tum ChromoDynamics (QCD), a theory firstly proposed in 1973 by
Fritzsch, Leutwyler and Gell-Mann. According to this theory hadrons
are not fundamental particles themselves, but are constituted by quarks,
charged fermions with spin 1/2, which are fundamental particles.
The force that ties quarks together in a hadron is the strong force.
This type of force is among the four fundamental interactions and its
source is the colour charge. Each quark, in fact, in addition to elec-
tric charge, carries a colour charge, which conventionally can be red,
green, blue, anti-red, anti-blue, anti-green. This colour should be un-
derstood just as a name to this additional degree of freedom carried
by quarks, but there is no relationship with the common concept of
colours for objects. Even if each quark carries a colour charge, they
are confined in hadrons, which carry a neutral colour charge (they
are white). In order to better understand this feature of hadrons, it is
useful to study in greater detail the formulation of strong interaction.

QCD is a gauge theory, based on the SU(3) symmetry of colour. The
basic idea behind the formulation of this gauge theory is that if we
locally redefine the convention for colour charges and we accordingly
modify the gauge field, we find again the same physical laws. This
can be schematically represented, with the lagrangian L, as:

GSU(3)c(x)L(ψ,A) → L(ψ∗,A∗),

where ψ is the field, A is the gauge field and GSU(3)c(x) represents the
local symmetry operation applied. What the above expression means,
in other words, is that if we change everywhere the convention for
colour, in a different way for each point, it is still possible to have a
theory which describes the same physics, but we have to change con-
sequently the field, adding a local phase, and change the gauge field.
As in QED (Quantum ElectroDynamics), quanta of the gauge field are
massless spin-1 gauge particles and, within QCD, they are called glu-
ons. Despite the similarities, gluons carry colour charge themselves
and are not neutral (like the photon). The reason of this peculiar be-
havior has its roots in the fact that SU(3) is a non-abelian group (while
U(1), the group behind QED, is abelian). This different aspect gives
rise to a non-abelian field theory with a self-interacting field A. Ac-
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1.1 QCD formulation 8

cordingly, gluons, quanta of this field, carry a colour charge and are
self-interacting.

1.1.1 Confinement and asymptotic freedom

We present now confinement and asymptotic freedom. While the latter
one is explained with QCD, for the first one we only have an intu-
itive explanation, because no prediction in this sense can be calculated
from first principles in QCD.

Confinement, the phenomenon responsible for the fact that quarks
were never observed outside hadrons, can be understood thanks to
the self-interacting gauge field we introduced above. It is useful to
make a comparison with electrodynamics. As shown in the figure 1a,

(a) QED field lines (b) QCD field lines

Figure 1: The different behavior of field lines in the case of electrodynam-
ics and in the case of strong interaction: for electrodynamics field
lines, the density becomes lower as charges are drawn apart. For
strong-interaction field lines, thanks to a self-interacting gauge
field, the interaction does not become weaker as quarks are sep-
arated.

when two charges are drawn apart the field lines become less dense:
this means that the force experienced by the two charges is weaker.
As shown in the other figure, 1b, when we apply the same procedure
to a couple of quark and anti-quark, the effect is the opposite: the
field lines are always intense, due to self interaction. This means that
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(a) QED (b) QCD

Figure 2: In the picture is depicted the different behavior of the vacuum sea
polarization, in the cases of QED and QCD.

pulling away two quarks from one another, does not become easier if
they are far away. So, if we try to separate two quarks, we should put
a lot of work to increase their distance up to a point where the system
has enough energy to create a couple of quark & anti-quark from the
vacuum, giving rise to a new meson. This argument, not rigorous,
can easily give an idea of why quarks are always confined and they
have never been seen alone.

Another important effect theorized by QCD is the effect that goes
under the name of asymptotic freedom. It is, in a certain way, the op-
posite effect of confinement. When two quarks are moved close to
one another the force between them becomes increasingly small. To
explain this effect, we have to deal with renormalization. We are tack-
ling this topic from an intuitive, not rigorous, point of view, making
a comparison with QED. In particular, in QED, a charge in vacuum
polarizes the vacuum sea with couples of electrons and positrons. An
intuitive representation of this phenomenon is depicted in figure 2a.
When distances are large, the net effect of this polarization is a shield-
ing of the bare electric charge. As a result, the usual fundamental
charge, that we know in classical physics, is just the effect of the bare
electric charge, shielded by the polarization of the vacuum sea with
couples of electrons and positrons.

A similar effect, with some differences, appears also in QCD (fig-
ure 2b). In QCD, around a quark, we have a sea of quark-antiquarks
and gluons. The feature that the shielding is also constituted by glu-
ons provide a greater, opposite effect in comparison with QED: in
QCD we have an increase in the effective colour charge. We found
the sought effect of asymptotic freedom: as the distance decreases, the
colour charge of quarks decreases.
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1.2 Experimental evidence & PDFs
Even if their existence outside hadrons was never observed, we can

say that we “saw” quarks for the first time in 1968, with deep in-
elastic scattering experiments (DIS), at SLAC accelerator. In these
experiments an energetic lepton (in the specific case an electron) was
scattered off a proton. In particular, it is useful to analyse the cross
section:

d2σ

dq2dν
=
4πα2

q4
Ef
EiMp

[︃
Mp

ν
F2(q

2,ν) cos2
θ

2
+ 2F1(q

2,ν) sin2
θ

2

]︃
,

where ν = Ei − Ef is the difference between the initial energy and the
final energy of the electron, Mp is the proton mass, θ is the angle of
scattering for the electron, α is the fine-structure constant, q is the
momentum transfer. F1 and F2 are structure functions and correspond
to the scattering of the 2 possible polarization states of the virtual
photon exchanged. Analysing the experimental data from the experi-
ments, it became evident that F1 and F2 didn’t depend on q2, but only
on a dimensionless quantity (Bjorken variable):

x =
Q2

2p·q
=

q2

2Mnν
,

where Q2 = −q2, p is the momentum of the initial hadron.
This feature led to the so-called scaling hypothesis. The key obser-

vation here was that it was possible to interpret the results of deep
inelastic scattering (DIS) as the results of an elastic scattering process
between a free point-like electron and a point like constituent of the
hadron (parton). In this way, x becomes the fraction of the hadron lon-
gitudinal momentum carried by the parton. To sum up, in electron-
proton scattering, when the momentum transfer is really small (with
respect to hr−1p ) we can see the scattering experiment as an elastic scat-
tering between an electron and a point-like proton. On the opposite
way, when the momentum transfer is really high, we can interpret the
process as the scattering with point-like particles confined into the
nucleon.

This is coherent with asymptotic freedom: if we have a high mo-
mentum transfer, we are able to resolve shorter distances and see
the quarks as “free”. The subsequent formulation of QCD achieved
immediately a great success, because, as discussed above, the theory
was able to explain asymptotic freedom, i.e. the fact that at high Q2,
the quarks could be approximate as free. Of course, quarks are not
actually free and the dependence on Q2 cannot, in general, be ne-
glected. The Bjorken variable can still be interpreted as above, but
this approximation is valid only at leading order in QCD.
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Figure 3: Schematic representation of the scattering process between an
hadron (proton) and a lepton (muon). We assume that the interac-
tion is between the muon and an up quark.

1.3 Factorization
In QCD, for quark-lepton scatterings (figure 3), we can exploit an

useful property: factorization. Thanks to it, the total cross section (as-
suming a muon interacting with an up quark) can be written as:

σµp→µX(Q
2) = σ̃γ∗u→u ⊗ fu(x,Q2).

Here, the index i stands for the type of parton and can assume 6 differ-
ent values for the different flavours, 6 other values for the antiquarks
and an additional one for the gluon. The term σ̃γ∗u→u is the so-called
“hard” cross section for photon-quark scattering, computable in QCD,
and ⊗ indicates the convolution product.

As we see there is a quantity, fi(x,Q2), naturally raising in this
treatment. These functions (mathematically distributions) are called
parton distribution functions (PDFs) and are distinctive for each hadron.
At leading order in QCD can be interpreted as probability densities:
f(x,Q2)dx represent the probability of finding a parton i with a frac-
tion of the momentum of the hadron between x and x + dx. In an
analogous way, we can write the total cross section for a scattering
process between two quarks (one up and one down) confined in two
protons as:

σpp→W = σ̃ud→W ⊗ fu(x,Q2)⊗ fd(x,Q2).

The importance of PDFs stands in their universality: their expression is
the same for every type of collision and is, therefore, a property of the
hadron. Thanks to their universality, it is possible to determine PDFs
from one process and use them for another. As an example, PDFs
were among the input information used in 2012, when the Higgs bo-
son was discovered in ATLAS and CMS experiments.
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1.3.1 PDF properties

It is important to notice that PDFs are subjected to some constrains.
In particular, in each hadron the flavour number is a quantity well-
defined. For example, a proton has, in total, 2 quarks up, 1 quark
down, no other quarks. However, it is possible to encounter scatter-
ing experiments which comprehend also, for example, strange quarks.
This happens because the scattering processes that comprehend a
strange quark and those which comprehend an anti-strange quark
happen with the same probability. An analogous argument stands for
the other flavours. This can be written in formula as:∫︂1

0
dx

(︁
fu(x,Q2) − fū(x,Q2)

)︁
= 2

∫︂1
0
dx

(︁
fd(x,Q2) − fd̄(x,Q2)

)︁
= 1∫︂1

0
dx

(︁
fj(x,Q2) − fj̄(x,Q2)

)︁
= 0 for j ̸= u,d.

Another constrain is given by energy conservation, that imposes the
momentum sum rule:∫︂1

0
dx x

(︃ nf∑︂
i=1

(︁
fqi(x,Q2) + fq̄i(x,Q2)

)︁
+ fg(x,Q2)

)︃
= 1.

A further aspect emerging from this treatment is that it is possible
to write F1, F2 as: {︄

F1(x,Q2) =
∑︁
i fi(x,Q2)c2i

F2(x,Q2) = x
∑︁
i fi(x,Q2)c2i

(1)

Here, the coefficients ci indicate the charge of the quark. If quarks
were free, the structure function and the PDFs would depend only on
x. In the first experiments, a limited range of x and Q2 was experi-
mentally accessible and structure function seemed not to depend on q.
When more data became available, as it is shown in figure 4, it became
evident that structure functions depend on q2 in a well-defined way.
Accordingly, PDFs, linked to structure functions through 1, depend
on q2. The dependence on q2 is perturbatively computable in quan-
tum chromodynamics: it is governed by a set of integro-differential
equations, evolution equations, which take the form:

Q2
∂2

∂Q2
fi(x,Q2) =

nf∑︂
j=1

Pij(x,αs(Q2))⊗ fj(x,Q2).

Here the index i and j are referred to the flavour of the quark (anti-
quark, gluon . . . ), αs is the strong coupling constant and Pij are per-
turbative kernels (calculated perturbatively). Theoretically, also the
x-dependence is fixed by first principles in QCD, but the actual phys-
ical law cannot be computed, since we are in the non-perturbative
regime of QCD, i.e. it is not possible to derive physical results using
perturbation theory.
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(a) (b)

Figure 4: These two figures represent the experimental evidence for the vio-
lation of the so-called scaling hypothesis. On the left, it is possible
to see that the structure function does actually depend on q2, in a
well-defined way. The scaling hypothesis was due to the fact that
the first experiments were carried out only for a small range of q2

and x. On the right, two different structure functions for different
values of q2. The images come from [1].



2 PDF determinat ion
with NNs

2.1 The NNPDF approach
In this section we investigate in detail the NNPDF approach for

PDF determination. The distinctive characteristics of this approach
are the use of neural networks for PDF parameterization and the use
of Monte Carlo representation of uncertainties. The fitting process
can be schematically represented as in figure 7. At the end of this
section all the steps of the fitting methodology in that picture should
be clear. This section is mainly inspired by [3], [5].

2.1.1 PDF determination as an AI problem

The basic idea of using artificial intelligence to infer PDFs is to see
the problem of PDF fitting as a specific type of pattern recognition
problem: we want to know a set of unknown underlying functions
from data instances, with almost no knowledge on their functional
form.

Historically, the first type of parameterization used to fit PDFs (at a
certain scale Q0 =

√︁
Q2) was:

fi = x
αi(1− x)βi .

Clearly, in this way, we are assuming a specific form for the param-
eterization of PDFs, based on the assumption of having a power-like
behavior as x→ 0 and as x→ 1. However, this assumption cannot be
verified since only the region 10−4 ≲ x ≲ 0.5 is experimentally acces-
sible. Another problem is the fact that even if such a functional form
is true at a certain scale Q0, using evolution equations it is possible to
see that this functional form is not preserved at any scale.

More sophisticated forms of parameterization were developed over
the years, to overcome these problems. The underlying issue, com-
mon to this new ways of parameterizations, was the evaluation of un-
certainties: uncertainties on fit parameters, determined with standard
error propagation, resulted too small when new data were available.
Furthermore, the addition of new data often led to a more complex
parameterization, which led to an increase of uncertainties. These
evidences suggest that each type of parameterization proposed was
affected by bias. In this framework, the purpose of using artificial
intelligence is to provide a bias-free parameterization.
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2.1 The NNPDF approach 15

However, in contrast to normal pattern recognition problems, the
functions provide a continuous output and data depend only indi-
rectly on the functions to be determined (the dependence is through
the convolution integrals). This feature is common to more complex
pattern recognition problems, but there are two peculiarities typical
of this specific problem.

The first one is the intrinsic non-deterministic nature of quantum
mechanics: PDFs are probabilities densities of observables, meaning
that even if PDFs were known exactly, the cross section is just an ex-
pression of the probability of the observation of an event. In PDFs de-
termination, we are determining the probability distribution of PDFs,
hence a probability distribution of probabilities distributions, in other
words, we are determining a probability functional.

The second one is the problem of estimation of uncertainties: cur-
rently PDF uncertainties are a dominant source of uncertainties in
predictions for high-energy physics measurements. The additional
complexity in this case, which differenziate this problem with respect
to other similar AI problems, is that uncertainties among two differ-
ent PDFs are correlated. This type of correlation has to be taken into
account through a covariance matrix of uncertainties in the space of
probabilities distributions. In particular, this matrix includes both ex-
perimental and theoretical uncertainties. Including also theoretical
errors has the effect of connecting different measurements, which are
experimentally uncorrelated.

2.1.2 The method in detail

In order to break down the problem of determining a probability
in a space of functions to a set of problems in which a unique best-fit
set of functions is determined, we use a Monte Carlo representation.
In practice, this means that we start from the probability distribution
in the space of data, whose mean and covariance are coherent with
experimental values and correlated uncertainties. The Monte Carlo
representation is obtained extracting a set of replica instances from
the probability distribution, in such a way that, with a sufficiently
large number of replicas, mean and covariance of the set of replica
reproduce the ones of the underlying distribution.

The number of replicas is actually determined a posteriori and, for
the work here proposed, the number of replicas is fixed to 100. Af-
terwards, PDFs are fitted through neural networks, minimizing a suit-
able figure of merit, i.e. an appropriate metric of performance. Fi-
nally, we end up with a set of PDF replicas, one for each data replica:
we have now a representation of probability densities in the space of
PDFs. By usual tool of statistics, it is possible to determine central
values, uncertainties and correlations.
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Figure 5: Here a schematic representation of a NN is depicted. Each node
has as input a weighted sum of all the outputs of the nodes belong-
ing to the previous layer, minus the threshold. The input of a node
is the input of the activation function, the output of the function is
the output of the node, which will enter as an input for the next
layer.

As mentioned above, data are compared to theoretical predictions
through convolution integrals (using the property of factorization and
perturbatively solving evolution equations). In practice, the convo-
lutions are turned into multiplications of pre-computed tables (Fast-
Kernel tables).

2.2 Brief review of Neural Network prin-
ciples

This section briefly explains the basic ideas behind the mechanism
of Neural Networks (NNs), only scratching the surface of this field:
we present the simplest kind of NN possible. NNs are classic tools
used in machine learning, originally inspired by the structure of the
brain. Their basic purpose is to find the underlying function that,
given a certain input, provides a certain output.

Recalling the names of brain components, the structure consists in a
set of nodes, called artificial neurons, connected by edges. Neurons are
organized in layers, as shown in figure 5. When the NN receives an
input, it is processed from the input layer to the output one, crossing
the so-called hidden layers. For example, the NNPDF layer structure
is 2-25-20-8, as in figure 6.
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x ln x

xg(x, Q0) xΣ(x, Q0) xV(x, Q0) xV3(x, Q0) xT3(x, Q0) xT15(x, Q0)xT8(x, Q0)xV8(x, Q0)

xg(x, Q0) xu(x, Q0) xū(x, Q0) xd(x, Q0) xs(x, Q0) xc+(x, Q0)xs̄(x, Q0)xd̄(x, Q0)

n(4) = 8

n(3) = 20

n(2) = 25

n(1) = 2

Figure 6: Architecture of the neural network used in NNPDF code. This
image is taken from [2]

Starting from the left, each input value is taken as an argument of
a so-called activation function. A common choice for this type of func-
tions are, for example, sigmoids or hyperbolic tangents. When the
chosen function is a step function, the node is called perceptron. The
introduction of this function is fundamental, because it allows to take
into account nonlinear behaviors. For each node, the output of the
activation function is then multiplied by a weight (a free parameter
of the network ) and finally all these terms are summed over. Often
to the sum is subtracted another parameter, called bias (or activation
threshold), which is another free parameter of the network.

This final sum is stored in the corresponding node belonging to
the next layer and it is taken again as input of an activation function.
Repeating this process, we cross all the layers, up to the output.

With such a structure it is easy to see that by introducing just few
nodes, as in NNPDF case, we give rise to a huge number (hundreds
in our case) of free parameters.

Now, in order to find the optimal value for each of this parame-
ters, we have to make the NN undergo a process of training, which
has the purpose of determining the best values for the free param-
eters. This, in the context of machine learning problems, is usually
done with input-output pairs, but, as discussed above, this doesn’t
work for our specific case. However, the general strategy remains the
same: we want that the difference between the output computed by
the neural network and the expected output to be the minimum pos-
sible, varying all the parameters. Moreover, we want to minimize a
suitable chi-squared figure of merit, based on the difference between
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Figure 7: Global strategy for PDFs determination. This image is taken from
[3].

output and experimental results, varying the parameters. Specifically,
the figure of merit minimized is the following:

χ2 =

Ndat∑︂
i,j

(D− P)iσij(D− P)j, (2)

where Di is the i-th datapoint, Pi is the prediction of the correspond-
ing datapoint and σij is the covariance between datapoints i and j.
This minimization is carried out thanks to an algorithm of gradient
descent (GD), applied to the space of parameters on which the NN
depend.

For completeness, we also quote here a theorem that proves the
actual convergence for neural networks fits. The so-called universal
approximation theorem states that any continuous function f : [0, 1]n →
[0, 1] can be approximated arbitrarily well by a multi-layer perceptron
with at least 1 hidden layer and a finite number of hidden units.

2.3 NNPDF use of Neural Networks
In our case, PDFs are parametrized as:

xfi(x,Q0) = Aix−αi+1(1− x)βiNNi(x). (3)

Here, Ai is just an overall normalization constant, and x−αi(1− x)βi is
a prefactor mainly used in order to accelerate the convergence speed.
The parameters of αi and βi are uniformly randomly chosen across
a wide range (a posteriori determined). The structure of the neural
network can be seen in figure 6.

The input is provided both in the form x, log x in order to take into
account the two different regimes experimentally accessible: 10−4 ≲
x ≲ 0.03 (in logarithmic regime) and 0.03 ≲ x ≲ 0.5 (in linear regime).

At this point of the discussion, it should be clear that the choice
of NN as fitting methodology was determined by the necessity of an
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Figure 8: The picture shows the different behavior of the chi squared of the
2 different sets (validation and training), as the NN fits. At the be-
ginning we have a similar behavior for the two sets. After passing
the optimal stopping point, the two behaviors are opposite: the
χ2val starts rising, while the χ2tr is continuing to decrease. This
image is taken from the NNPDF website.

unbiased way of fitting. In other words, NNs provide the opportunity
of fitting without a specific fixed functional form as in the past. This
technique, however, carries some drawbacks with it. One of this is
overfitting. In fact, if we leave the NN training for an arbitrary long
time, the NN will fit not only the sought PDF, but also the underlying
statistical noise. In order to overcome this inconvenience, a specific
stopping criterion is adopted. For each replica, the data are split into
two sets: validation and training. On the training set we minimize
the chi-squared with all the procedure mentioned above. At the same
time, the chi-squared of the validation set is constantly monitored.

Assuming that the physical law we want to fit is predominant above
the noise, initially the two chi-squared decrease. At some point the
algorithm will start to fit more noise than the physical law. At this
point the chi-squared of the validation set attains its minimum. After
this point, the more noise is fitted, the more the chi-squared of the val-
idation set increases. Therefore, in order not to fit noise, the stopping
point is chosen looking at the minimum for the chi-squared validation
set. A schematic representation of the overall process is illustrated in
figure 8.

To sum up, in figure 7 the global strategy is depicted. We start
calculating a fit with the neural network at a certain reference value
Q0 (to do this, we calculate the different contributions xαi(1 − x)βi ,
NN(x) and we calculate by integration the normalization pre-factor
Ai). In order to evolve the fitted PDFs to different scales, it is useful
to evolve linear combinations of PDFs, which decouple many of the
evolution equations. Namely, through a rotation, we go from the
physical basis, to the evolution basis, to calculate the evolution.

In practice, the evolution and the theoretical calculations are stored
in precalculated Fast-Kernel tables. After the different evolutions at
different values of Q (corresponding to the different values at which
the experiments are carried out) are calculated, we compare the re-
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sults predicted with the calculations to the experimental data. In
particular, the chi-squared is calculated separately for the two sets
of data validation and training. The fitting procedure is then iterated
minimizing the training chi-squared. The best-fit is chosen looking at
the minimum for the validation chi-squared.

2.4 On the scale dependence of parton
parameterizations

The purpose of this work is to check the validity of this fitting
method, verifying the correctness of some underlying assumptions.
Namely, our results should not depend on the value of Q0 chosen to
fit the PDFs, since the Q dependence is fixed by the evolution equa-
tions. In particular, the current PDFs are calculated for a value of
Q0 = 1.65GeV.

In practice, we computed the different fits for different values of
Q0 and we compared the results with the reference fit at scale Q0 =

1.65GeV. The additional subtle point has to deal with the different
form of the perturbative solution of evolution equations within differ-
ent values of Q0. In fact, there are different regimes of Q2, where the
effects of heavy quarks on PDFs are different (different renormaliza-
tion and factorization schemes are adopted).

We will consider as representative the case of the charm quark. In
the cases where Q2 is much bigger than m2

c, the natural choice to

treat this quark is to consider it massless (all terms of order m2
c

Q2 are
neglected). On the other hand, below m2

c, a decoupling renormaliza-
tion scheme is usually used, which effectively removes heavy quarks’
contributions. This means that, below the mass of the charm, we con-
sider nf = 3, while above we consider nf = 4. In terms of evolution
equation, this means that the charm PDF will start evolving only af-
ter passing the value of the charm mass. Clearly, the two different
regimes, high and low Q2, should be in some way matched near the

value of m2
c, where terms of m

2
c

Q2 cannot be neglected anymore. With-
out going too deep in the discussion (for a deeper detail, see [6], [7]),
another scheme is used to consider this contributions, just above the
threshold of the charm mass. Finally, the matching is given by pertur-
bative computable matching conditions. Still, changing the value of
Q0 near the threshold remains a delicate aspect, and this will be an
important point in the next section.

The other important feature of evolution equation to keep in mind
is the stability if we raise or lower Q0. If we assume to consider
the limiting case where Q → ∞, then, as explained above, we reach
the limit of asymptotic freedom: quarks are not experiencing anymore
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strong interaction. This means, in other words, that different PDFs
at finite Q0 converge to the same limiting case, as Q0 goes to infinity.
What we are saying is that, if we start from a low Q0, the evolution to
a higher Q is, in general, stable, since we are converging to an unique
limit. On the other hand, if we start from a PDF calculated at high Q0,
we have the opposite problem: a small change in the function at Q0
causes a large change in the function at small Q.

In this sense, in principle, we expect, keeping Q0 low, results to be
more stable: the fitting procedure uses the evolution equation in the
stable sense (from low Q0 to high Q) and, after the fitting is complete,
it is possible to evolve the PDFs at higher scales without any problem.
In practice we will verify this in the next section.



3 Results

The purpose of this section is to present the results of the calcula-
tions carried out with different values ofQ0. Specifically, the values of
Q0 are varied firstly within the usual thresholds for heavy quark pro-
duction, and then verifying what happens when passing them. Cur-
rently, Q0 = 1.65GeV, while mc = 1.51GeV and mb = 4.92GeV. In
particular, many fits are iterated more than one time, as explained in
the specific section and results are mainly presented after iteration.

Since many different plots are available for each calculation, few
representative plots are chosen to be presented in the text: the up
quark (u) and the gluon (g). In addiction, we present the distances
plots: in these plots we present the absolute value of the difference
between the fits calculated at different scales, divided by the square
root of the sum of uncertainties squared. These plots should oscillate
around the value of one, since the difference between the two plots
should be due to statistical uncertainty. PDF plots are presented in
logarithmic scale, distances both in linear and logarithmic scale. Fur-
ther plots are present in the appendix. All the fits calculated within
this work are based on NNPDF4.0 code, available at the NNPDF web-
page.

3.1 Results before iteration

3.1.1 Q0 = 2.00GeV & Q0 = 1.52GeV

In this section we present the results for a small change with respect
to Q0 = 1.65GeV: for Q0 = 2.00GeV (figure 9) and Q0 = 1.52GeV
(figure 10). As a consequence, results are compatible within the given
uncertainties and the χ2, table 1, remains optimal.

3.2 Need of a second iteration
Calculating fits as in the above section, we noticed that the further

we move from the reference scale Q0 = 1.65GeV, the larger is the
change in the results. This trend can be appreciated looking at the
chi-squared in table 1. These differences are solved if we iterate fits, as

22



3.2 Need of a second iteration 23

(a) (b)

(c) (d)

Figure 9: Plots for Q0 = 2.00GeV

(a) (b)

(c) (d)

Figure 10: Plots for Q0 = 1.52GeV

provided for in NNPDF methodology, and thus they can be explained
thanks to two different aspects.
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Table 1: Different values of χ2 for different fits, not iterated.

Q0[GeV] χ2

1.65 1.171
2.00 1.170
1.52 1.171
3.00 1.192
4.00 1.211
4.90 1.240
1.50 1.168
4.93 1.240

The first is the value of the pre-processing factor present in equa-
tion 3. This factor has the purpose of increasing the speed of conver-
gence for the neural network. The coefficients αi and βi are randomly
and uniformly chosen in a wide interval, a-posteriori determined, in
order to be significantly wider with respect to the confidence interval
of the effective values of αi and βi fitted. When changing the value
of Q0, also the effective values of these factors are changing. In other
words, if we leave the exponents in the form they are at a different
scale, we are no more helping the NN with the fitting, but we are
externally imposing an incorrect functional form that the NN has to
correct. With iteration, the exponents’ interval for the new fit is calcu-
lated from the effective exponents of the previous one.

The second effect we are facing is due to the way used to estimate
the covariance matrix. In particular, we have to separately consider
the cases of multiplicative errors, such as normalization errors, and
addictive ones. When considering multiplicative errors, with differ-
ent correlation, there’s an effect, the so-called D’Agostini bias, affect-
ing our results. An uncertainty is multiplicative when its value σ
is proportional to the quantity d that is being measured: σ = σreld,
where σrel is fixed. The bias arises if the value used for d is also the
prediction which is being fitted: d = t. The solution consists of using
instead for d the value of t0 obtained from some previous existing
determined fit. The best fit value of t is used for a new fit, and the
procedure is iterated with convergence.

3.2.1 Q0 = 4.90GeV

To give an example of why fits need to be iterated, we present here
the case of Q0 = 4.90GeV, just below the bottom mass. For this value
of Q0, results are no longer satisfactory: the chi-squared has incresed
(table 1) and the shape of PDFs plot (figure 11) is different from the
reference one. A more detailed look at in these first results, analysing
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training lengths, reveals that the neural network is not learning well.
Training lengths represent the number of steps of our algorithm of
gradient descent, until it reaches the minimum.

(a) (b)

(c) (d)

Figure 11: Plots for Q0 = 4.90GeV, before iteration

(a) (b)

Figure 12: Distribution of training lengths (a) and χ2tr-χ2val plot for
Q0 = 4.90GeV (b), before iteration. In the appendix we present,
as a reference, the same graphs for Q0 = 1.65GeV.

The number has a maximum value possible, in order not to have
the algorithm work for an arbitrary long amount of time. The graph
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in figure 12a shows the distribution of training lengths among repli-
cas, i.e. on the y-axes we have the number of replicas which stopped
with a certain value of training length. This maximum value for train-
ing lengths is set to be 17000 by default, so a peak at the right part
of the graph indicates that many replicas are not reaching the mini-
mum sought by the GD algorithm. Furthermore, another indication
of this problem can be seen in the χ2tr-χ2val plot, figure 12b. We can
see that there is a certain correlation between the values of the two
chi-squared. This is an indicator that the algorithm is not fitting well:
if the algorithm is stopped before reaching the minimum, we expect
to have a correlation between the two chi-squares. Furthermore, this
is not a representation of all the chi-squares. In fact, within the replica
process, replicas with a chi-squared too large (bigger than 3.5) are cut
away. This procedure has the purpose of cutting away outliers of the
distribution and, in general, few replicas are excluded (less than 10%).
In this case it was necessary to exclude more than 25% of replicas
produced. In other words, we didn’t have anymore a faithful repre-
sentation of probability distribution of PDFs in the space of functions.

We therefore iterated the results and we got a significant improve-
ment both in the chi-squared and in the plots (figure 13). Also the

(a) (b)

(c) (d)

Figure 13: Plots for Q0 = 4.90GeV, after iteration

distribution of training lengths and the χ2val-χ2tr plot is consistent (fig-
ure 14). On the other hand, the behavior at small x remains slightly
different, expecially for the gluon.



3.3 Results after iteration 27

(a) (b)

Figure 14: Distribution of training lengths (a) and χ2tr-χ2val plot for
Q0 = 4.90GeV (b), after iteration. In the appendix we present,
as a reference, the same graphs for Q0 = 1.65GeV.

3.3 Results after iteration

3.3.1 Q0 = 3.00GeV & Q0 = 4.00GeV

As we can see in figure 15 (Q0 = 3.00GeV) and 16 (Q0 = 4.00GeV ),
the plots are compatible with the reference plot, especially for quarks.
Again the chi-squared is better. However, it is still present a different
behavior for the gluon at small x.

3.3.2 Q0 = 4.93GeV

As in the case ofQ0 = 4.90GeV, the results (figure 17) are consistent
both in term of chi-squared and plots. However, the gluon has always
a different behavior at small x. We notice that the fact of having
passed the threshold of mb = 4.91GeV does not affect the plots in any
way.

3.3.3 Q0 = 1.50GeV

The results (figure 18) are stable, expecially in terms of chi-squared
(table 2). We therefore notice that also passing the threshold of mc

does not affect our results, and even the charm PDF is consistent.
Also the distribution of training lengths and the χ2val-χ2tr plot (fig-
ure 19b) is consistent. However, we found that the distribution of
training lengths shows a peak at 17k (figure 19a). Therefore, we tried
to increase a little bit the number of epochs, up to 20k, in order to see
if the results were better. After this change plots are stable (figure 20),
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(a) (b)

(c) (d)

Figure 15: Plots for Q0 = 3.00GeV, after iteration

Table 2: Different values of χ2 for different fits, after iteration. The term
−20k indicates the fit done setting the number of epochs to 20k.

Q0[GeV] χ2

3.00 1.168
4.00 1.170
4.90 1.174
4.93 1.173
1.50 1.166

1.50− 20k 1.164

the chi-squared decreases and the distribution of training lengths (fig-
ure 21a) has a more natural shape.

3.4 On the gluon behavior at small x
In this section, we try to investigate why the gluon has an unex-

pected behavior at small x, as shown in the previous sections. The
small x behavior is not driven by the data, because data stop around
x ≈ 10−3 − 10−4. The value and uncertainty at small x are known to a
large extent based on guessing a reasonable extrapolation. Preprocess-
ing at last input drives its extrapolation. The singlet and gluon PDFs
at small x display a rise driven by perturbative evolution stronger than
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(a) (b)

(c) (d)

Figure 16: Plots for Q0 = 4.00GeV, after iteration

(a) (b)

(c) (d)

Figure 17: Plots for Q0 = 4.93GeV, after iteration

any power of ln x, but weacker than any power of x, and stronger as
Q2 increase. Therefore, if preprocessing exponents are computed at a
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(a) (b)

(c) (d)

Figure 18: Plots for Q0 = 1.50GeV, after iteration

different scale, the value of x at which they are determined must be
changed in order for the results to remain the same.

By default the preprocessing exponents are computed at x = 10−3

and x = 10−6. We have verified that if computed at 10−3 only and then
iterated (as in figure 22 ), the small x behavior becomes essentially the
same as that of the default for quarks and more similar to that of the
default for gluons. A dedicated study should be required in order to
quantify the choice of x values as the scale is changed in a way that
preserves the small x behavior.
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(a) (b)

Figure 19: Distribution of training lengths (a) and χ2tr-χ2val plot for
Q0 = 1.50GeV (b), after iteration. In the appendix we present,
as a reference, the same graphs for Q0 = 1.65GeV.
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(a) (b)

(c) (d)

Figure 20: Plots for Q0 = 1.50GeV, after iteration and with the number of
epochs set to 20k. We decided to include also the charm PDF in
order to show that it’s behavior doesnt change passing through
the threshold at 1.50GeV.
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(a) (b)

Figure 21: Distribution of training lengths (a) and χ2tr-χ2val plot for
Q0 = 1.50GeV (b), after iteration and with the number of epochs
set to 20k. In the appendix we present, as a reference, the same
graphs for Q0 = 1.65GeV.

(a) (b)

(c) (d)

Figure 22: Plots for Q0 = 4.90GeV, iterated and with the pre-processing
exponents calculated at x = 10−3.



Conclus ions

Here we sum up the results of this work. The purpose of the thesis
was to analyze the dependence of PDFs on the scale at which they are
parametrized. The results of this work confirm the fact that, in the
data region, results are stable as the parameterization scale is varied.
Results are unchanged when passing a heavy quark threshold. How-
ever, results are generally more stable, and the fit quality improves as
the scale is lowered.

This last point can be understood thanks to the different stability of
evolution equations, as explained in section 2.4. In particular, if PDFs
are parametrized at a small value of Q0, for the NN it is easier to infer
the PDFs, since a big change in the shape at low Q0 causes a small
change at big Q.

We also found that PDFs, especially the gluon, have a slightly dif-
ferent behavior at small x. It is important to emphasize that in that
region we don’t have experimental data, therefore the NN is extrap-
olating. In this sense, uncertainties are big, and therefore the result
found is still good. However, we tried to investigate this problem in
greater detail as discussed in section 3.4. We found a strong indication
that the value of x at which they are computed should be optimized
as a function of the scale in order to obtain stable results.
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Appendix

We present here some additional plots, useful for the interested
reader who wants to have a more complete view on PDFs plots. We
choose to show plots before iteration and, for iterated fits, additional
plots for down quark (d) and strange quark (s). In addition, on top
of the appendix, we present the training lengths distribution and the
χ2val-χ2tr plot for the 1.65GeV, that can be compared to the same
graphs at different scales.

(a) (b)

Figure 23: Distribution of training lengths (a) and χ2tr-χ2val plot for
Q0 = 1.65GeV (b).

(a) (b)

Figure 24: Additional plots for Q0 = 2.00GeV, before iteration
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(a) (b)

Figure 25: Additional plots for Q0 = 1.52GeV, before iteration

(a) (b)

(c) (d)

Figure 26: Plots for Q0 = 3.00GeV, before iteration



3.4 On the gluon behavior at small x 37

(a) (b)

(c) (d)

Figure 27: Plots for Q0 = 4.00GeV, before iteration

(a) (b)

(c) (d)

Figure 28: Plots for Q0 = 4.93GeV, before iteration
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(a) (b)

Figure 29: Additional plots for Q0 = 3.00GeV, after iteration

(a) (b)

Figure 30: Additional plots for Q0 = 4.00GeV, after iteration

(a) (b)

Figure 31: Additional plots for Q0 = 4.90GeV, after iteration

(a) (b)

Figure 32: Additional plots for Q0 = 4.93GeV, after iteration
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(a) (b)

Figure 33: Additional plots for Q0 = 1.50GeV, after iteration and after hav-
ing increased the number of epochs.
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