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Introduction

Decades of research aimed at understanding fundamental physics have led to the development
of the so-called Standard Model, which is the theory of fundamental interactions. This frame-
work successfully describes three out of the four fundamental forces: electromagnetic, weak, and
strong interactions. The theory has been extensively validated through experiments conducted
at particle accelerators. In these experiments, different types of particles (leptons or hadrons)
are accelerated and collided, and one or more of the resulting final states are measured. This
measurement is carried out by evaluating an observable; in particle physics, the primary observ-
ables are the total and differential cross sections of scattering processes. In the framework of
Quantum Field Theory, cross sections are determined through a perturbative expansion, where
the calculation of each successive order improves the precision of the predictions.

The study of processes involving identified final hadrons states plays a crucial role in Quan-
tum Chromodynamics (QCD). Such processes enable the exploration of hadronic structure and
its underlying dynamics. In this thesis, I focus on Semi-Inclusive Deep Inelastic Scattering
(SIDIS)namely the process where a hadron interacts with a lepton producing a lepton, an iden-
tified hadron, and a generic hadronic state, namely h1, l → h2, l, X, where X denotes the generic
final state. SIDIS process compared to the inclusive case: the Deep Inelastic Scattering (DIS),
also provides, in addition to the detection of the final lepton state, the detection of one of the
final hadron state. In the framework of perturbative QCD and since the factorization theorem,
the SIDIS cross section is expressed as a convolution of non-perturbative and universal Par-
ton Distribution Functions (PDFs) and Fragmentation Functions (FFs) with the perturbative,
process-dependent partonic cross section, also referred to as the coefficient function. Therefore,
one of the main applications of SIDIS processes is the extraction of PDFs and FFs, which provide
crucial insights into the internal structure of the nucleon. However, unlike PDFs, for FFs there
is limited data available for their determination [1]. This scarcity makes the SIDIS reaction an
important area of study to expand the existing dataset.

Furthermore, SIDIS will be one of the main processes studied at the Electron-Ion Collider
(EIC), which will exploit high-energy electrons and ion beams to simultaneously extract FFs
and PDFs. In particular at EIC, SIDIS measurements with polarized beams and/or targets will
provide valuable insights into the spin distribution of nucleons, hence on their spin-dependent
PDFs across a wide range of energy scales.

In light of the above considerations, a high-precision evaluation of the perturbative correc-
tions to the SIDIS coefficient function is crucial for extracting theoretical predictions for future
experiments. Now, at the parton level the SIDIS process is viewed as p + γ∗ → p′ + X, where
γ∗ is the virtual photon which mediates the interaction with the incoming lepton, while p is the
incoming parton and p′ is the outgoing parton which fragments in the final measured hadronic
state. In this context, coefficient functions (or equivalently the partonic cross sections) are typ-
ically expressed in terms of the hard scale Q2 = −q2 and the scaling variables x̂ = Q2/2(p1 · q)
and ẑ = p1 · p2/p1 · q, with p1, p2 and q are the momenta of the incoming parton, outgoing
parton and the virtual gauge boson respectively. In particular, the coefficient function is differ-
ential in both x̂ and ẑ variables. For the quark-to-quark channel, the cancellations between the
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real gluon emissions and virtual corrections produce terms of the type αk
sδ(1 − x̂)

(
lnm(1−ẑ)

1−ẑ

)
+
,

αk
sδ(1 − ẑ)

(
lnm(1−x̂)

1−x̂

)
+

with m ≤ 2k − 1 and “mixed” terms αk
s

(
lnm(1−x̂)

1−x̂

)
+

(
lnn(1−x̂)

1−x̂

)
+

with

m + n ≤ 2k − 2, where the symbol + denote the plus-distribution. The aim of this thesis is to
study the so-called threshold limit, i.e. the regime where the real gluon emission is suppressed,
becoming soft. This corresponds to two kinematical configurations:

• The double-soft limit corresponds to the elastic configuration, i.e. there is no momentum
exchange between the incoming and outgoing partons. In this limit, the radiation emitted
by both partons becomes soft, i.e. x̂, ẑ → 1. In Mellin space, this behaviour translates to
the conjugate variables approaching infinity, N,M → ∞.

• The single-soft limit, also referred to as the asymmetric case, occurs when either the
incoming or outgoing parton carries a fixed longitudinal momentum and the transferred
momentum approaches its minimum value to allow this configuration. In these limits the
radiation emitted with respect to either the incoming or outgoing parton becomes soft,
implying either x̂→ 1 or ẑ → 1. In terms of the conjugate Mellin variables, this corresponds
to either N → ∞ or M → ∞.

Then in these configuration the aforementioned logarithms become enhanced to all orders spoiling
the perturbative approach. This problem is addressed using the threshold resummation approach.
As has been known for a long time [2], threshold resummation leads to an exponentiation of soft
logarithms in Mellin space to all orders in the strong coupling constant. Therefore, the main
goal is to determine the coefficients of the exponentiation by comparing the expansion of the
resummation formula up to a fixed order in αs with the corresponding fixed-order result.

To clarify, note that the expansion of the resummation formula organizes the soft logarithms
into towers of logarithms. For instance, in the double-soft limit in Mellin space, the logarithmic
terms in x, z-space correspond to terms of the form αk

s(ln(N) + ln(M))n. At first order in αs,
a comparison with the fixed-order result at NLO allows us to determine the coefficients for the
leading logarithms (LL) and next-to-leading logarithms (NLL). These coefficients generate, to all
orders, terms of the following types: at LL, only n = 2k; at NLL, n = 2k, 2k − 1, 2k − 2; at
NNLL, n = 2k, 2k − 1, 2k − 2, 2k − 3, 2k − 4; and so on. Whereas in the single-soft limits are
also included all those logarithmic terms that are power suppressed by some powers of either the
variable N or M .

In particular, from the study of the phase space limit, one can observe that the behaviour of
the SIDIS coefficient function in the soft limits is completely equivalent to that obtained for the
Drell-Yan (DY) process at fixed rapidity [3]. Specifically, the Drell-Yan process can be viewed as
the crossed version of the SIDIS case, namely the process where two hadrons collide producing
a lepton pair, or equivalently, at the parton level, the interaction of two partons producing a
gauge boson, that at fixed rapidity conditions has its longitudinal momentum fixed. In this case,
the double-soft limit corresponds to the situation where the gauge boson is produced at rest,
while the single-soft limits correspond to the case where the gauge boson has a fixed longitudinal
momentum and the energy approaches its minimum value to allow this configuration. Then, using
the correspondence between the DY and SIDIS process it is possible to obtain the resummation
formula for SIDIS case directly from the one obtained for the DY case in [3]. In particular this
approach provides theoretical predictions on the behaviour of the resummation coefficients for
SIDIS case.

In this thesis, I study both the single- and double-soft limits for SIDIS process, obtaining
resummation coefficients up to NNLL accuracy. Whereas the double-soft limit has already known
up to N3LL [4] the single-soft limit is a completely novel result provided by this thesis.

This thesis is structured as follows. In Chapter 1, we provide an overview of the perturbative
QCD approach to the study of strong interactions. In particular, we introduce the factorization
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theorem and the PDFs. We then analyze the DIS process, focusing on the appearance of collinear
and soft singularities and how they can be handled in order to obtain finite results. Finally, we
discuss the emergence of soft logarithms and the DGLAP equation. In particular, in this chpater
we provide the notation that is used for the rest of the thesis. In Chapter 2, we study the SIDIS
kinematics and its phase space in the threshold limit, highlighting its correspondence with the DY
process. In Chapter 3 we obtain the resummation formula for a process with a single soft scale
dependence through a renormalization group argument, then providing the resummation formula
for SIDIS case. In Chapter 4, we provide the theoretical predictions for the SIDIS case using the
results obtained for the DY process in [3]. We then present the calculations performed to derive
the resummation coefficients. Finally, we present the results for both double- and single-soft
limits
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Chapter 1

Perturbative QCD

In this chapter, we provide an overview of some of the most important basic concepts of the
theory of Quantum Chromodynamics (QCD) in the context of the perturbative regime (pQCD).
In particular, we address the key concepts required to understand the results presented in chapters
3 and 4, which constitute the main results of this thesis. We start with a short introduction
about the Lagrangian that governs QCD dynamics, and we introduce the renormalization group
equation with a focus on the strong interaction coupling constant (αs).

We introduce the factorization, which allows us to study QCD in the perturbative regime, and
we review one of the most important processes in QCD: Deep Inelastic Scattering (DIS). In this
way, we can introduce the soft and collinear singularities which arise in perturbative calculations
in the context of the parton model. Therefore, we introduce the Altarelli–Parisi equations (GLAP
equations), highlighting their properties.

Thanks to this introduction, we can introduce the notation that we use for the rest of this
thesis. The interested reader can find more details on these basic arguments in many textbooks;
in this chapter, we follow [5], [6], [7] and [8]. For a detailed overview with a modern approach to
the DIS process one can see [9].

1.1 Basics of QCD

Quantum Chromodynamics (QCD) is the fundamental theory that governs the strong interac-
tion, describing how quarks and gluons interact, and consequently explaining the forces between
nucleons. As a key component of the Standard Model, QCD is formulated as a quantum field
theory, specifically a Yang-Mills theory with an SU(3) gauge symmetry. Specifically, the colour
charge represents the internal degree of freedom responsible for the strong interaction, and it is
characterized by three independent components. The fermion field ψq (the so-called quark field)
is described by a triplet in this colour space, then its transformations can be represented through
the generators of SU(3). These generators in matrices space are 3 × 3 unitary matrix denoted
by the symbol T a. These matrices generate the rotation in the 3-dimensional complex colour
space. Then, the transformation of the quark field (under which the Lagrangian of the strong
interaction must be invariant) can be written as the following local transformation

ψi → ψ′
i = exp [iθa(x)T a]ψi(x) , (1.1.1)

where θa(x) is an arbitrary function. Hence, the Lagrangian that is invariant under these rotations
takes the standard form characteristic of gauge theories, and is given by:

LQCD = ψ̄i (iγ
µ(Dµ)ij −mδij)ψj −

1

4
Ga

µνG
µν
a , (1.1.2)

where

11



12 CHAPTER 1. PERTURBATIVE QCD

• (Dµ)ij = ∂µδij − ig (Ta)ij Aa
µ : this is the gauge covariant derivative, which couples the

quark fields to the gluon fields via the strong coupling constant g. Here, Aa
µ denotes the

gluon fields, with a being the colour index running from 1 to 8, and µ the space-time index.

• Ga
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν , is the generalized Faraday tensor, where fabc are the

structure constants of the gauge group, defined through the commutation relation [Ta, Tb] =
ifabcTc. This tensor reduces to the electromagnetic field strength tensor in the Abelian
case, where the group is commutative, there is only a single charge, the gluon colour indices
disappear, and the term involving the structure constants vanishes.

Due to the gauge symmetry of QCD, the expression for the gluon two-point function (i.e.,
the propagator) derived from the gauge-fixed Yang-Mills Lagrangian is not unique, similarly to
what happens in QED. This non-uniqueness introduces an ambiguity parametrized by a gauge
parameter, which can be freely chosen. In non-Abelian gauge theories, the Lagrangian addition-
ally includes two extra terms: a gauge-fixing term and a term involving ghost fields, typically
denoted by c. The role of the ghost fields is to cancel the contributions from the unphysical gluon
states, specifically those corresponding to time-like and longitudinal polarizations. When these
additional terms are incorporated into the Lagrangian in 1.1.2, it attains its complete form.

LQCD = −1

4
Ga

µνG
aµν +

∑
f=q,q̄

ψ̄f (iγ
µDµ −mf )ψf − 1

2ξ
(∂µAa

µ)
2 − c̄a∂µDab

µ c
b (1.1.3)

In particular, the ghost fields arise from the quantization of gauge theories via the path-integral
formalism (specifically, through the Faddeev-Popov procedure). This approach also leads to the
derivation of the Feynman rules for the theory.

The Lagrangian depends on seven parameters: the masses mq of the quarks and the coupling
constant gs. It is customary to express the dependence on gs through the so-called QCD coupling
constant αs, defined as

αs =
g2s
4π

. (1.1.4)

Whereas, for the quark masses and their electric charges one can see the Tab. 1.1.

flavour Up (u) Down (d) Charm (c) Strange (s) Top (t) Bottom (b)

Electric Charge +2/3 −1/3 +2/3 −1/3 +2/3 −1/3

Mass ∼ 2.2 Mev ∼ 4.7 Mev ∼ 1.3 Gev ∼ 0.1 Gev ∼ 173 Gev ∼ 4.18 Gev

Table 1.1: Properties of the six quarks: electric charge and mass.

1.1.1 Renormalization Group Equation

To introduce the concept of the running coupling, let us consider a dimensionless physical ob-
servable Ô that depends on a single energy scale Q. We assume that Q is much larger than
any other dimensionful parameter in the theory, such as quark masses, allowing us to neglect all
masses and effectively treat them as zero. Under naive scaling arguments, one might expect that,
since Ô depends only on a single large scale, its value should remain constant and independent
of Q. However, this expectation does not hold in a renormalizable quantum field theory. When
Ô is computed as a perturbative expansion in the coupling constant αs = g2s/(4π), ultraviolet
divergences arise from loop diagrams. The removal of these divergences through renormalization
introduces an additional mass scale µR. Consequently, the observable Ô generally depends on
the ratio Q2/µ2R. Moreover, the coupling constant αs(µR) itself acquires a dependence on the
renormalization scale µR.
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However, µ is an arbitrary parameter and does not explicitly appear in the QCD Lagrangian,
although its choice is necessary to properly define the theory at the quantum level. Therefore, if
we hold the bare coupling fixed, physical quantities such as Ô cannot depend on the choice made
for µR. Additionally, since Ô is dimensionless, while both Q and µR carry dimensions of energy,
it follows that Ô can only depend on the dimensionless ratio Q2/µ2R and on the coupling constant
αs. These considerations lead to the conclusion that the observable Ô satisfies the following
differential equation:

µ2R
d

dµ2R
Ô

(
Q2

µ2R
, αs(µ

2
R)

)
=

[
µ2R

d

dµ2R
+ µ2R

∂αs(µ
2
R)

∂µ2R

∂

∂αs

]
Ô = 0 . (1.1.5)

Thus we define the so-called β function as follows

β(αs(µ
2
R)) ≡ µ2R

∂αs(µ
2
R)

∂µ2R
, (1.1.6)

and t as

t ≡ ln
Q2

µ2R
, (1.1.7)

so we rewrite the above equation as follows[
− ∂

∂t
+ β(αs)

∂

∂αs

]
Ô
(
et, αs(µ

2
R)
)
= 0 . (1.1.8)

What we have just derived represents a specific case of a more general and fundamental equation
in quantum field theory, known as the Callan-Symanzik equation.

In order to solve the last equation, we need to introduce the running coupling αs(Q)2, which
is defined implicitly as follows

t =

∫ αs(Q2)

αs

dx

β(x)
αs = αs(µ

2
R) . (1.1.9)

By differentiating this last equation we note that

β(αs(Q
2)) =

∂αs(Q
2)

∂t
, (1.1.10)

Thanks to these ingredients, it becomes straightforward to construct a general solution of Eq.1.1.8,
namely Ô(1, αs(Q

2)). The analysis developed so far highlights that all the scale dependence of
Ô is encoded in the running of the coupling constant αs(Q

2). Therefore, in order to predict
Ô(1, αs(Q

2)), it is essential to solve Eq.1.1.9.
In QCD, the β function has the perturbative expansion

β(αs) = −β0α2
s(1 + β1αs + β2α

2
s + . . . ) (1.1.11)

where the βi coefficients are known up to 4 loops (i = 3) (see Appendix B). The leading coefficient
is

β0 =
11CA − 2Nf

12π
(1.1.12)

where CA = 3 and Nf is the number of active flavours, then the numbers of fermion of the theory.
We note that β0 > 0 as long as Nf < 17. If we solve the equation 1.1.9 up to order α2

s, we obtain

αs(Q
2) =

αs(µ
2
R)

1 + β0αs(µ2R) ln
Q2

µ2
R

(1.1.13)
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which give the relation between αs(Q
2) and αs(µ

2
R) if both are in the perturbative region. There-

fore, if Q2/µ2R → ∞, then αs(Q
2) → 0, this property takes the name of asymptotic freedom. The

latter is a peculiar property of the QCD, which causes interactions between particles to become
asymptotically weaker as the energy scale increases (or equivalently the corresponding length
scale decreases). We remark that the sign of β0 is crucial, because if this were the opposite we
should have observed an increase in the coupling constant αs as the scale Q grows (same as in
QED).

Lastly, we define ΛQCD as the energy scale which satisfies the identity:

1 + β0αs(µ
2
R) ln

Λ2
QCD

µ2R
= 0 , (1.1.14)

then the running coupling becomes

αs(Q
2) =

1

β0 ln
Q2

Λ2
QCD

. (1.1.15)

therefore, αs(Q
2) acquire singularities as long as Q2 ≤ ΛQCD. The scale ΛQCD is called landau

pole. We remark that QCD can be treated as a perturbation theory only if the coupling constant
αs ≪ 1. This it possible, when the energy scale Q is much larger than ΛQCD. Therefore, the
existence of the Landau pole shows that QCD is strongly coupled at low energies, and this is the
reason why in Nature isolated quarks or gluons cannot be observed.

1.1.2 Colour confinement

Colour confinement is a key feature of QCD, which states that colour-charged particles cannot
be directly observed at energies below approximately 150 MeV. As we have shown in the pre-
vious section, the Landau pole, ΛQCD can be taken as an indication of the energy threshold for
confinement. Below this scale, only colourless states can be directly detected. These states as
known as hadrons and they are bound states of the fundamental particles of the theory, namely
quarks and gluons. Hadrons are classified into two categories: baryons, which consist of three
quarks (such as the proton), and mesons, which are composed of a quark-antiquark pair. The
phenomenon of confinement has been directly observed, but a rigorous proof of QCD confinement
is still missing, because at this energy scale, the value of the coupling constant αs becomes ≳ 1,
spoiling the perturbative techniques.

1.2 Leading Order Factorization

As mentioned in Sec. 1.1.2, quarks and gluons—collectively referred to as partons—cannot be
observed as free particles. Therefore, the initial and final states of QCD processes involve hadrons,
which are bound states of partons that cannot be described analytically. Consequently, we are
only able to measure hadronic cross sections but we can only compute partonic cross sections. To
overcome this problem, one can exploit the factorization property of QCD. The goal of this section
is to describe this fundamental feature, which allows us to compute hadronic cross sections in
terms of partonic cross sections and the experimentally measured Parton Distribution Functions
(PDFs). This is just a general overview; several important aspects in the context of Deep Inelastic
Scattering (DIS) will be discussed in the following sections, while the factorization of the more
complex case of Semi-Inclusive Deep Inelastic Scattering (SIDIS) will be addressed in Sec. 2.1.4.

Factorization is the property of the perturbative QCD that enable us to link experiments
with theory. Specifically, it states that at the parton level process can be viewed as a scattering
involving a single parton, which carries a longitudinal momentum fraction ξ of the parent hadron.
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For instance, we can consider the scattering between a single parton, that carries a momentum
p = ξP and belongs to a hadron with momentum P , and another particle with momentum k,
where the parton can be either a quark, an antiquark, or a gluon. In particular, the longitudinal

fraction ξ is not fixed, so,through f
(h)
i (ξ)dξ, we can define the parton distribution function (PDF)

as the probability to find a parton with a momentum fraction between ξ and ξ + dξ inside the
hadron h. Therefore, PDFs describe the parton content of the nucleon including all the non-
perturbative effects of the process. It can be rigorously proven that the hadronic cross section
can be expressed as the sum over all parton species i of the convolution of the partonic cross

section for a given initial parton i and the corresponding PDF f
(h)
i . The property that we have

just stated is the so-called factorization, that in formula is expressed as

dσ(h)(x,Q2) =
∑

i=q,q̄,g

∫ 1

x

dξ

ξ
f
(h)
i (ξ)dσ̂i

(
x

ξ
,Q2

)
, (1.2.1)

where x is the scaling variable of the process (its definition will be provided in the next section),
while Q2 is the energy scale of the process. It is worth mentioning that, throughout the text,
partonic quantities are denoted by a hat symbol. Furthermore, we mention that through operator
product expansion (OPE) can be rigorously proved the above factorization formula for the DIS
process. Thus, we note that PDFs serve as the experimental input in the factorization framework
due to their non-perturbative nature. In particular, PDFs describe the internal structure of the
incoming hadron, then they are process independent and they can be extracted through fitting
procedures potentially from any scattering process.

The factorization result is trivially extended to processes that involve more than one incoming
parton, such as hadron collision, than

dσ(h1,h2)(x1, x2, Q
2) =

∑
i,j=q,q̄,g

∫ 1

x1

dξ1
ξ1
f
(h1)
i (ξ1)

∫ 1

x2

dξ2
ξ2
f
(h2)
j (ξ2)dσ̂ij

(
x1
ξ1
,
x2
ξ2
, Q2

)
, (1.2.2)

where h1 and h2 denote the two incoming hadrons and x̂1 and x̂2 are the scaling variables.
As a final remark, we observe that the above factorization procedure is true only at the

leading order (LO) in perturbation theory, as well as the PDFs interpretation as probabilities.
At next-to-leading order (NLO), radiative corrections introduce an energy scale dependence into
the PDFs, that scale is known as the factorization scale µF . The core of the next sections,
through the study of DIS process, is to obtain the factorization formula beyond the LO and to
investigate the behaviour of the PDFs with respect to the factorization scale µF .

1.3 Deep Inelastic Scattering

In this section, we focus on the study of DIS process at the leading order, as it is one of the
simplest QCD process, and because it is nothing but the simplest version of the process studied
in this thesis: the semi-inclusive deep inelastic scattering. We introduce its kinematics, showing
that it depends only on two variables: a hard scale and a dimensionless scaling variable and its
hadronic cross section in terms of structure functions. So, we compute the hadronic cross-section
at the LO.

1.3.1 DIS kinematic

We now introduce the Deep Inelastic Scattering kinematic, with the meaning of the terms “deep”
and “inelastic” clarified in what follows. DIS process is obtained by the scattering of a hadron
H and a lepton l, namely

l(k) +H(P ) → l(k′) +X , (1.3.1)



16 CHAPTER 1. PERTURBATIVE QCD

where k and k′ are the transferred momenta of the incoming and outgoing leptons respectively,
the symbol X denotes a generic final state, that we work with an inclusive cross section, namely,
a cross section differential in lepton momentum l′ with a sum and integral over all possible states
for the X part of the final state. Effectively only the lepton is treated as being detected, we will
see that for SIDIS case is slightly different. Furthermore, q = k−k′ is the transferred momentum
by the virtual gauge boson, which mediates the interactions, then it could be a either a photon
or a weak boson. The boson can either be a photon (e.g., if the scattered lepton is an electron)
or a weak boson (e.g., if the scattered lepton is a neutrino). A way to visualize the process is
shown in Fig. 1.1. In particular, it is showed the case where the interaction is mediated by the
electromagnetic force. Specifically, the upper part of the diagram represents the QED interaction
at LO between the incoming and outgoing leptons (l and l′) and the virtual photon γ∗, while the
bubble at the bottom illustrates the contribution from strong interactions. For brevity, for the
rest of the chapter, we only investigate the DIS process through the electromagnetic interaction.

k yq
k′

H

l

}X

l

γ∗

Figure 1.1: DIS Feynman diagram

We now introduce the kinematic variables of the process. Firstly, we define the hard-scale
through

Q2 ≡ −q2 , (1.3.2)

that is a space-like variable. Then we define the centre of mass energy of the lepton-hadron
system

s̃ ≡ (P + k)2 . (1.3.3)

Hence, from 4-momentum conservation we obtain

P + k = PX + k′ → PX = P + q → P 2
x = m2

X = (P + q)2 ≡ s , (1.3.4)

where Px is the 4-momentum of the generic outgoing final state, then mx its mass, and s is the
invariant mass of the hadronic system. At this point, noting that P 2

H = M2
H ,we can clarify the

notation “deep” and “inelastic” by specifying the energy regime in which we are working

• Deep means Q2 ≫M2
H , which places us in the ultrarelativistic limit. Hence, we can treat

the hadron as massless, as well as its partonic constituents, namely the so-called partons.
This frame it is called Parton model picture.

• Inelastic means M2
X ≫M2

H ,implying that the energy is not converted into momentum.

Therefore we can define the further kinematic variable x, the so-called Bjorken-variable, namely

x ≡ Q2

2P · q
. (1.3.5)
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As we will see in what follows, the x variable plays a central role in the description of the DIS
process.

We now observe that the DIS process has 8 degrees of freedom, given by k′ and PX . However,
due to 4-momentum conservation, the fact that k′ is massless, and by the rotation symmetry
under rotation around the lepton direction we have 6 constraints. Hence, the DIS process is
described by 8−5 = 2 independent kinematic variables. In conclusion, we can choose to describe
the DIS process through the kinematic variables Q2, x, or equivalently one can define

y ≡ P · q
P · k

(1.3.6)

and describe the process through the variables x, y. Moreover, we note that Q2 = xys̃.
As last consideration we observe that

M2
X = P 2

X = (P + q)2 = −Q2 + 2P · q = Q2 1− x

x
= s (1.3.7)

Therefore, x ∈ (0, 1). In particular, we can remark that if x = 1, then M2
X = 0, and the process

becomes elastic.
In the case of interest in this section, the interaction is mediated by a virtual photon. As a

result, the process receives both QED and QCD corrections, and the perturbative expansion is
defined with respect to both coupling constants. However, QCD corrections dominate over QED
ones, since the strong coupling constant is larger than the QED fine-structure constant. Therefore,
we will focus exclusively on QCD corrections, considering only the sub-process γ∗+H → X, where
γ∗ is the virtual photon.

As shown in Fig. 1.1, assuming that the initial lepton is an electron the matrix element DIS
process is provided by

iM(eP → eX) = −(ie)ū(k′)γµu(k)
i

q2
(ie)

∫
d4z eiq·z⟨X|jµ(z)|P ⟩ , (1.3.8)

where jµ(z) is the quark electromagnetic current, |P ⟩ is the the initial state of the proton and ⟨X|
is some high-energy hadronic state. The core of the DIS amplitude is the hadronic matrix element
of the current between the proton and a generic high-energy hadronic final state. In particular,
we can note that this matrix element contains all the information about the interaction of the
electromagnetic current jµ with the target proton P . In the context of the DIS process, however,
we adopt an inclusive approach, meaning that we do not directly measure any specific property
of the final state X. Therefore, the hadronic matrix element must be squared and summed over
all possible final states. We can thus start from its expression, which is written as

iM(γ∗P → X) = (−ie)ϵµ(q)
∫

d4z eiq·z⟨X|jµ(z)|P ⟩ . (1.3.9)

Firstly, in virtue of the Optical theorem we have

2ImM(a→ b) = −i[M(a→ b)−M∗(b→ a)]

=
∑
X

∫
dΠXM∗(X → b)M(a→ X) , (1.3.10)

where |a⟩ and ⟨b| are the initial and final states respectively. Therefore, since the Fourier transform
of the current is

⟨X|jµ(q)|P ⟩ =
∫

d4z eiq·z⟨X|jµ(z)|P ⟩ , (1.3.11)
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we obtain

2ImM(γ∗P → γ∗P ) =
∑
X

∫
dΠX |M(γ∗P → X)|2

=
∑
X

∫
dΠXM∗(X → γ∗P )M(γ∗P → X)

= (ie)2ϵ∗µ(q)ϵν(q)

[
−
∑
X

∫
dΠX⟨P |jν(−q)|X⟩⟨X|jµ(q)|P ⟩

]
. (1.3.12)

Hence, we define the tensor

Tµν =
i

4π

∫
d4zeiq·z⟨P |T{jµ(z)jν(0)}|P ⟩ (1.3.13)

which is called forward Compton amplitude, since if it is evaluated at q2 = 0 and contracted with
the physical polarizations vectors, it gives the forward amplitude for photon-proton scattering

iM(γ∗P → γ∗P ) = 4π(ie)2ϵ∗µ(q)ϵν(q)(−iTµν(P, q)) , (1.3.14)

however, in the present discussion we have to analyze Eq. 1.3.13 for general spacelike q and for
general polarization states. Finally, by a direct comparison of Eq. 1.3.12 and Eq. 1.3.14, we
obtain

2ImTµν(P, q) =
1

4π

∑
X

∫
dΠX⟨P |jν(−q)|X⟩⟨X|jµ(q)|P ⟩ . (1.3.15)

xqq

y
H

l

H

l

Figure 1.2: DIS squared amplitude

We can now compute the DIS cross section σ(eP → eX) (see Fig. 1.2) in terms of Tµν , by
averaging over the initial and summing over the final electron spin states, we obtain

σ(eP → eX) =
4π

2s̃

∫
d3k′

(2π)32k′0
e4
1

2

∑
spins

[ū(k)γµu(k
′)ū(k′)γνu(k)]

(
1

Q2

)2

×

2ImTµν(P, q) . (1.3.16)

In general, it is customary to rewrite the squared amplitude as the product of a leptonic tensor
Lµν and a hadronic tensor Wµν , hence

σ(eP → eX) =
8π

4s̃

∫
d3k′

(2π)32k′0
e4

(Q2)2
Lµν(k, k

′)Wµν(P, q) , (1.3.17)

Lµν(k, k′) ≡ Tr( /k′γµ/kγν) = 4(kµk
′
ν + kνk

′
µ − gµνk · k′) , (1.3.18)

Wµν(P, q) ≡ ImTµν(P, q) . (1.3.19)
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At this stage, it is useful to convert the integral in Eq. 1.3.16 which depends on the integration
variable k′0 and the scattering angle θ as an integration over the dimensionless variables x and y
introduced in the Eqs. 1.3.5 and 1.3.6 respectively. So, it is easy to find that∫

d3k′

(2π)32k′0
=

∫
dxdy

ys̃

(4π)2
. (1.3.20)

therefore, from Eq. 1.3.16 we find

d2σ

dxdy
(ep→ eX) =

2πα2y

(Q2)2
Lµν(k, k

′)Wµν(P, q) (1.3.21)

where α = e2/(4π) is the electromagnetic fine structure constant. To go further, we have to
understand the strcture of the hadronic tensor Wµν (or equivalently of Tµν). Therefore, we
observe that the cross section must be Lorentz-invariant, implying that the tensor Wµν must
also be Lorentz-covariant. Moreover, since the electromagnetic current is conserved, Wµν must
satisfy qµWµν = qνWµν = 0. Finally, as parity is conserved under electromagnetic interactions,
the hadronic tensor must be symmetric. Therefore,

Wµν(P, q) =

(
−gµν +

qµqν
q2

)
W1(x,Q

2) +

(
Pµ − P · q

q2
qµ

)(
Pν −

P · q
q2

qν

)
W2(x,Q

2) ,

(1.3.22)

where the two scalar functions W1 and W2 depend on the two invariants of the problem, x and
Q2. This leads to the equivalent relation for Tµν

Tµν(P, q) =

(
−gµν +

qµqν
q2

)
T1(x,Q

2) +

(
Pµ − P · q

q2
qµ

)(
Pν −

P · q
q2

qν

)
T2(x,Q

2) .

(1.3.23)

We now define the structure functions through the hadronic scalar functions W1 and W2

F1(x,Q
2) ≡W1(x,Q

2) (1.3.24)

F2(x,Q
2) ≡ P · qW2(x,Q

2) (1.3.25)

therefore, the hadronic tensor can be rewritten as

Wµν(P, q) =

(
−gµν +

qµqν
q2

)
F1(x,Q

2) +

(
Pµ − P · q

q2
qµ

)(
Pν −

P · q
q2

qν

)
F2(x,Q

2)

P · q
.

(1.3.26)

In particular, the structure functions Fi contain all the information about strong interaction.
Additionally, if we want to take in account the possibility of process through weak interactions
the constraints are weaker, because we lost the parity conservation. Hence, we have a new
structure function F3 through the covariant and antysimmetric term iϵµνδγq

δqγF3(x,Q
2).

At this point, we are ready to compute the hadronic cross section, than contracting the lepton
and the hadronic tensors in Eq. 1.3.21, after some algebra, we obtain

dσ

dxdy
=

4πα2

Q2

[(
1 + (1− y)2

)
y

F1(x,Q
2) +

1− y

yx

(
F2(x,Q

2)− 2xF1(x,Q
2)
)]

, (1.3.27)

Or equivalently, using d
dy = xs̃ d

dQ2 , we have

dσ

dxdy
=

4πα2

Q4

[(
1 + (1− y)2

)
F1(x,Q

2) +
1− y

x

(
F2(x,Q

2)− 2xF1(x,Q
2)
)]

, (1.3.28)

In conclusion, we note that F1 corresponds to the absorption of transversely polarized virtual
photons, while FL = F2 − 2xF1 to the absorption of longitudinally polarized virtual photons.
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1.3.2 Leading Order

We now want to apply the factorization theorem reported in Eq.1.2 at the lowest order in pertur-
bation theory, in order to obtain explicit expressions for the structure functions introduced in the
previous section. The lowest-order process is simply the scattering off a quark. The interaction
between the struck quark and the virtual gauge photon is shown in Fig.1.4, while the overall
picture is illustrated in Fig. 1.3.

P

k
k′

q

ξp

P+

e−

}X

e−

Figure 1.3: DIS Feynman diagram in parton model picture

Firstly, if we define the momentum of the struck parton as p = ξP , then from 4-momentum
conservation and since partons are treated as massless, as one can see from Fig. 1.4, we obtain

p′2 = ŝ = (p+ q)2 = 2ξP · q −Q2 = 0 → x = ξ . (1.3.29)

Therefore, at LO the Bjorken variable acquires a clear physical interpretation: it represents the
longitudinal momentum fraction of the parent hadron carried by the struck parton. It is now
evident that the lower limit of integration in Eq. 1.2.1 corresponds precisely to the Bjorken
variable.

ξP

q

p′

q

γ∗

q′

Figure 1.4: DIS Feynman diagram at LO

Therefore, exploiting the factorization property, we need to compute the squared amplitude
at the partonic level. We note that At leading order, the process involves a QED vertex, and
therefore the interaction between the photon and the quark is purely electromagnetic. It is
important to note that, for this reason, contributions from gluon-initiated processes are absent
at LO and will only appear at next-to-leading order (NLO), associated with real emissions of
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quarks. The partonic cross section σ̂(eq → eq) follows from simple QED calculations and is given
by:

dσ̂

dxdQ2
=

4πα2

Q4
e2q [1 + (1− y)2]

1

2
δ(ξ − x) , (1.3.30)

from we can read the expressions for the partonic structure functions

F̂2 = 2xF̂1 = xe2qδ(x− ξ) (1.3.31)

Finally, if we compare the cross-section as described in terms of structure function in Eq. 1.3.28
to the cross-section as described through factorization Eq. 1.2.1 using Eq. 1.3.30, we find

F1(x,Q
2) =

∑
i=q,q̄

1

2
e2qif

(p)
i (x) , (1.3.32)

lim
Q2→∞

Fi(x,Q
2) = Fi(x) Bjorken scaling law, (1.3.33)

F2(x) = 2xF1(x) =
∑
i=q,q̄

e2qixf
(p)
i (x) Callan-Gross relation. (1.3.34)

In particular, it illustrates how DIS experiments allow us to investigate the internal structure of
the proton in terms of its quark and gluon constituents. Secondly, it explicitly shows that the
structure functions in the limit of large of large Q2 are Q2-independent, this behaviour is the
so-called Bjorken scaling law.

It is also worth noting that, in this case, quarks and antiquarks are indistinguishable. There-
fore, to independently determine the corresponding PDFs, charged current (CC) processes are
necessary.

1.4 Higher-orders Factorization

In this section, we study DIS behaviour at NLO, where IR singularities emerge, thus we provide
their physical interpenetration and methods in order to treat them. Thus, we introduce the
general factorization formula and the dependence of the PDFs by the µF energy scale, which
implies the violation of the Bjorken-scaling.

1.4.1 NLO corrections

In the previous section, we computed the leading-order contributions to DIS partonic cross sec-
tion. We now want to compute the first correction at perturbative order O(αs). In fact, at NLO
for the DIS process, we need to compute the amplitudes arising from gluon emission. These
are represented by the diagrams in Fig.1.7 and Fig.1.11, corresponding to the real and virtual
corrections, respectively. However, we have to note that gluons and quarks are treated as mass-
less in the parton model picture, hence integrals appearing in amplitudes calculations and in the
phase space manifest infrared (IR) singularities. Two different types of singularities are present,
soft and collinear. Whereas, the virtual corrections can be treated using renormalization group
arguments, obtaining Z−terms corrections by the fields renormalization. Hence, we only need to
study the real amplitudes.

We start by computing the real emissions from the incoming quark Fig.1.5. We immediately
see that when the intermediate quark becomes nearly on-shell, that is, when the denominator
of the propagator approaches zero (i.e., (p − k)2 → 0), a singularity arises. In particular, since
p2 = k2 = 0 the nature of this singularity can be viewed as follows

(p− k)2 = −2p · k = −2p0k0(1− cos θ) , (1.4.1)
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p

q

p′

p− k

k
q

γ∗

q

g

Figure 1.5: Real contribution
to the incoming quark [a]

p

q

p′

k

q

γ∗

q

Figure 1.6: Real contribution
to the outgoing quark [b]

Figure 1.7: DIS NLO Real gluon corrections

p

q

k
q
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q

Figure 1.8: Vertex
correction

p

q

kq

γ∗

q

Figure 1.9: Self-
energy correction:
incoming quark

p

q

k

p′

q

γ∗

q

Figure 1.10: Self-
energy correction:
outgoing quark

Figure 1.11: DIS NLO virtual gluon corrections

than a singularity arise when k is soft either k0 → 0 or collinear to p, namely θ → 0 then k2t → 0.

We now focus on the collinear singularity. To this end, we choose the incident quark momen-
tum to lie along the third axis, and the outgoing momenta to lie in the 1̂–3̂ plane. We define z
as the fraction of energy carried by the nearly on-shell quark relative to the incoming quark, so
that 1 − z represents the fraction of the initial quark’s energy carried away by the gluon. Then
the three 4-momenta can be written as

p = (p, 0, 0, p) (1.4.2)

k ≈ ((1− z)p, kt, 0, (1− z)kt) , (1.4.3)

p− k ≈ (zp,−kt, 0, zp) . (1.4.4)

These three vectors satisfy p2 = k2 = (p− k)2 = 0, up to terms of order k2t .

However, in the process involving the emission of a real gluon, both p2 and k2 are exactly
zero, while (p − k)2 is slightly off-shell, differing from zero by an amount of order k2t , then we
need to know the value of (p−k)2 in terms of k2t which appears in the propagator. So, we modify
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the Eq. 1.4.2 in order to satisfy the condition k2 = 0 up to terms of order k4t , rewriting k as

k =

(
(1− z)p, kt, 0, (1− z)p− k2t

2(1− z)p

)
, (1.4.5)

then p− k as

p− k =

(
zp, kt, 0, zp+

k2t
2(1− z)p

)
. (1.4.6)

Thus, we obtain

(p− k)2 = −k2t − 2z
k2t

2(1− z)
+O(k4t ) . (1.4.7)

Therefore, if the gluon is real and the quark is virtual, we have

k2 = 0 , (p− k)2 = − k2t
1− z

. (1.4.8)

Hence, since for kt → 0 the intermediate quark is almost on-shell we have that,

On-shell condition:/p =
∑
s

us(p)ūs(p) =⇒
i(/p− /k)

(p− k)2
=

∑
s u

s(p− k)ūs(p− k)

(p− k)2
+O(k2t ) , (1.4.9)

Therefore, we factorize the collinear singularity in the squared amplitude as follows∣∣∣∣∣∣∣∣∣∣∣∣∣ p

q

p′

p− k

k

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣ p

p− k

k

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

⊗

∣∣∣∣∣∣∣∣∣∣∣∣∣ p− k

q

p′

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ non singular , (1.4.10)

where the first squared amplitude on the r.h.s, is obtained by the matrix element

iM(p→ (p− k), k) = (−igs)u(p)T aγµϵ∗µ(k)ū(p− k) , (1.4.11)

then exploiting the limit k2t → 0, and using the axial physical gauge, namely∑
λ=1,2

ϵµ(k, λ)ϵ
∗
ν(k, λ) =

(
−gµν +

kµnν + kνnµ

n · k

)
, (1.4.12)

one obtains

1

3

∑
colors

1

2

∑
pols

∑
spins

|M(p→ (p− k), k)|2 = 2(4π)αsk
2
tCF

z(1− z)

[
1 + z2

1− z

]
(1.4.13)

. (1.4.14)

At this point, from Eq. 1.4.10, we can express the partonic cross section as follows

σ̂NLO(p, q → k, p′) =
1

(1 + vq)2p2q0

∫
d3k

(2π)32k0

∣∣∣∣12∑M(p→ (p− k), k)

∣∣∣∣2×(
1

(p− k)2

)2 ∫
dΠp′

∣∣M(q, (p− k) → p′)
∣∣2 . (1.4.15)

(1.4.16)
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Where vq is the velocity of q and dΠp′ is the phase integral over q′. We now substitute k0 and
(p− k) using Eqs.1.4.2 and 1.4.8, and employ Eq.1.4.2 to rewrite the integral over k as

d3k = dk3d2kt = pdzπdk2t . (1.4.17)

Then, using Eq. 1.4.13, the cross section can be expressed as

σ̂NLO(p, q → k, p′) =

∫
pdzdk2t

16π2(1− z)p

∣∣∣∣12∑M(p→ (p− k), k)

∣∣∣∣2 (1− z)2

k4t
×

z

(1 + vq)2zp2q0

∫
dΠp′

∣∣Mp′
∣∣2

=
αs

2π

∫
dz

dk2t
k2t

CF

[
1 + z2

1− z

]
σ̂(0)(zp) (1.4.18)

thus, we define the so-called splitting function as

Pqq(z) = CF

[
1 + z2

1− z

]
, (1.4.19)

then

σ̂NLO =
αs

2π

∫ k2tmax

0

dk2t
k2t

∫
dzPqq(z)σ̂

(0)(zp) . (1.4.20)

Furthermore, we remember that the incoming quark carries a fraction ξ of the momentum proton
P , then, since p′ is massless, by momentum conservation we note that the struck quark and the
photon must satisfies

(ξzP + q)2 = 0 → z = x̂ =
x

ξ
(1.4.21)

where x̂ is the corrective of the Bjorken variable at the parton level. Thus

σ̂NLO =
αs

2π

∫ k2tmax

0

dk2t
k2t

∫
dx̂Pqq(x̂)σ̂

(0)(x̂p) . (1.4.22)

We now have reached a crucial point, because we recognize the logarithmic collinear singularity,

in the integral
∫ k2tmax
0

dk2t
k2t

. Therefore, to prevent the appearance of divergences in the cross section

we are required to introduce an IR cut-off Λ. Consequently, collinear singularities are managed
similarly to UV divergences through renormalization, being absorbed into the parton distribution
functions. This absorption leads to the emergence of a scale dependence in the PDFs.

However, before proceeding further, we observe that a divergence also arises in the limit x̂→ 1,
corresponding to the case where the emitted gluon becomes soft. Nevertheless, we have not yet
taken into account the other contributions to the amplitude, in particular the virtual corrections.
Specifically, This correction contributes only when x̂ = 1. At first, we note that since all of the
virtual diagrams contain the factor δ((ξP + q)2), their contribution to the structure function is
proportional to δ(1− x̂), hence Pqq is modified as follows

Pqq = CF

[
1 + x̂2

1− x̂

]
+Kδ(1− x̂) , (1.4.23)

with k a constant to be determined. To this aim, we require that P (x̂) cannot vary with Q2, so
its integral in x̂ must be zero. Therefore, the splitting function becomes

Pqq(x̂) = CF

(
1 + x̂2

(1− x̂)+
+

3

2
δ(1− x̂)

)
, (1.4.24)
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where “plus” denotes the plus distribution defined as in the appendix A.2.1.
Finally, concerning the real corrections we note that so far, we have only considered the

squared amplitude from the squaring of the diagram of Fig. 1.5. In fact, in the light-cone gauge
the |a|2 terms is the only which gives a logarithmic divergences – the other terms, ab∗, b∗a, |b|2,
as can be seen by using dimensional analysis, give finite corrections to the structure function; all
the possible contributions to the squared amplitude are reported in Fig. 1.15.

In conclusion, the soft divergence, i.e. x̂ → 1, cancels out in the sum of the virtual and
real contributions. While, the UV-divergences are treated by using renormalization techniques.
However, the collinear divergence remains, hence we are left only with IR-divergences. Theorems
[10] and [11] ensure the cancellation of both soft and collinear singularities between the real and
virtual gluon diagrams. In particular, they state that suitably defined inclusive quantities will
be free of singularities in the massless limit, which is the case for the gluon radiation emitted by
the outgoing quark. However, when considering the radiation emitted by the incoming quark,
we are not inclusive. Indeed, the photon scatters off a quark with a definite momentum, and so
it is sensitive to collinear splitting. In other words, The virtual photon can differentiate between
a single quark and a collinear quark-gluon pair that share the same total momentum. From a
physical perspective, the limit kt → 0 corresponds to the long-range (“soft” ) component of the
strong interaction, which cannot be computed within perturbation theory.

Figure 1.12: Direct contribu-
tion |a|2

+ complex conjugate

Figure 1.13: Interference
contribution ab∗

Including virtual corrections
∼ field renormalization for fi-
nal quark

Figure 1.14: Direct contribu-
tion |b|2

Figure 1.15: DIS gluon corrections

1.4.2 Factorization of collinear singularities

The crucial idea behind the removal of collinear singularities lies in recognizing that the small-
kt limit reflects a sensitivity to long-distance strong interactions, which cannot be addressed
within perturbative QCD. The parton distribution functions originally introduced in the Sec.
1.2 are unphysical, bare quantities, and can be redefined to absorb the divergent contributions,
yielding finite, physical PDFs. Thus, the factorization formula introduced in Eq. 1.2.1 needs a
modification.

Specifically, the DIS differential partonic cross-section through Eq. 1.4.22 can be rewritten
as follows

dσ̂
(1)
q

dxdQ2
= e2q

αs

2π

[
Pqq(x̂) ln

Q2

Λ2
+ C(x̂)

]
, (1.4.25)
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where Λ is the scale introduced in order to regularize the logarithmic divergence, C(x̂) is the
non-logarithmic contribution to the cross section (sees Eq. 1.4.10) and it is a calculable function,
and Pqq is the splitting function defined as in Eq. 1.4.24.

By considering the structure function F2 and, for simplicity, focusing on a single parton
species, we can express the result up to O(αs). Thus, by adding the leading-order contribution
from Eq.1.3.32 and performing the change of variables x̂ = x/ξ in Eq.1.2.1, we obtain:

F2(x,Q
2) = xe2q

[
f (p),(0)q (x) +

αs

2π

∫ 1

x

dx̂

x̂

(
Pqq(x̂) ln

Q2

Λ2
+ C(x̂)

)
f (p),(0)q

(x
x̂

)
+O(α2

s)

]
, (1.4.26)

where the subscript (0) means bare. Then, in completely analogy to the renormalization proce-
dure, we introduce a factorization scale µF in order to split the divergent contribution

ln
Q2

Λ2
= ln

Q2

µ2F
+ ln

µ2F
Λ2

. (1.4.27)

Thus, Eq. 1.4.26 can be rewritten as

F2(x,Q
2) = xe2q

[
f (p),(0)q (x) +

αs

2π

∫ 1

x

dx̂

x̂

(
Pqq(x̂) ln

µ2F
Λ2

+ Pqq(x̂) ln
Q2

µ2F

+C(x̂)) f (p),(0)q

(x
x̂

)
+O(α2

s)
]
. (1.4.28)

The physical PDF is obtained introducing the µF -dependent term δf

δf

(
x,
Q2

Λ2

)
≡ αs

2π

∫ 1

x
df (p),(0)q

(x
x̂

)
Pqq (x̂) ln

µ2F
Λ2

(1.4.29)

thus the physical PDF have a µF dependence and it is

f (p)(x,Q2) = f (p),(0)(x) + δf

(
x,
Q2

Λ2

)
+O(α2

s) . (1.4.30)

Thus, restoring the sum over the possible flavours we obtain

F2(x,Q
2) =

∑
i

e2qi

∫ 1

x

dx̂

x̂
xf

(p)
i

(x
x̂
, µF

)(
δ(1− x̂) +

αs

2π

[
Pqq(x̂) ln

Q2

µ2F
+R(x̂)

])
(1.4.31)

=⇒
generalize

to all orders
in expansion in αs

∑
i

e2qi

∫ 1

x

dx̂

x̂
xf

(p)
i

(x
x̂
, µF

)
Ci

(
x̂, αs, ln

µ2F
Q2

)
. (1.4.32)

The above formula is a prototype of the so-called factorization formula. The sum runs over
i = q, where q represents all possible quark flavours. The PDFs fi contain long-distance effects,

including non-perturbative corrections of order O
(
ΛQCD

Q2

)
. Since these contributions cannot be

computed through perturbative calculations, they must be extracted from data. In contrast, the
functions Ci, known as coefficient functions, encode all short-distance effects and can be computed
as a series expansion in αs(Q) ≪ 1. In other words, they are derived from Feynman amplitudes
at the partonic level. In particular, we note that since the dependence by Q of the PDFs, one
the important consequences of the factorization procedure is the violation of the Bjorken scaling
beyond the leading order calculations.

However, we note that the above formula is not complete yet. Indeed, we take in account the
case where we have an incoming gluon, so a PDF of the type fg(ξ). Hence, we could have another
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possible partonic reaction γ∗g → qq̄. The calculation of this contribution at the NLO proceed in
the same way as the γ∗q → gq calculation, and we obtain the complete factorization formula:

F2(x,Q
2) = x

∑
q,q̄

e2qi

∫ 1

x

dx̂

x̂
f (p)q

(x
x̂
, µF

)(
δ(1− x̂) +

αs(µR)

2π
C(1)
q

(
x̂, ln

µ2F
Q2

, ln
µ2R
Q2

)
+ . . .

)

x
∑
q,q̄

e2qi

∫ 1

x

dx̂

x̂
f (p)g

(x
x̂
, µF

)(αs(µR)

2π
C(1)
g

(
x̂, ln

µ2F
Q2

, ln
µ2R
Q2

)
+ . . .

)
. (1.4.33)

We note that we also include the dependence on the renormalization scale, on which the coef-
ficient functions depend due to loop contributions to the partonic amplitude. However, since
the arbitrariness of the two scale we are always free to impose µ = µF = µR. The analytical
expressions for the the coefficient functions in the M̄S renormalization scheme at O(αs) were first
computed in [12]. Finally, we can repeat the process for the others structure functions present in
the formulation of the cross section (e.g. F1,F3...).

In conclusion, since the factorization theorem explained above, we can express the differential
hadronic cross section as follows

dσl+h→l+X

dxdQ2
(x,Q2) =

∑
i=q,q̄,g

∫ 1

x

dx̂

x̂
f
(h)
i

(x
x̂
, µF

)
σ̂l+i→l+X

(
x̂, αs(µR), ln

µ2F
Q2

)
. (1.4.34)

Here, σ is the physical cross section, namely the hadronic one; therefore, it must not depend
on the factorization scale. On the other hand, σ̂ is the partonic cross section with collinear
corrections removed, so it can be computed from the partonic Feynman diagrams of the process.

Meanwhile, f
(h)
i represents the PDF for the parton i with respect to the hadron h. Lastly, to

ensure perturbative stability, one should set µ ∼ Q. One then needs to determine how fi(ξ, µ = Q)
evolves as Q varies, this goal will be achieved in Sec. 1.5.

1.4.3 Dimensional regularization and soft logarithms

Before to go further with the study of the PDF dependence by the factorization scale, we briefly
review the technique used to regularize higher order corrections beyond NLO, so multiple emis-
sions.

At higher orders in the perturbative expansion, it is not strictly necessary to explicitly split
the integral over k2t into two separate regions. Instead, using dimensional regularization is more
convenient, as it preserves the Lorentz and gauge invariance of the theory, unlike the cut-off
method. Moreover, this approach highlight the structure of the singularities that appear in the
calculations. In this section, we provide its definition and show how, by means of a fundamental
distributional identity, it leads to plus distributions and logarithms.

In the partonic cross-section computation, we have two different types of integrals: loop
integrals and phase-space integrals, which are performed in four dimensions. The core idea of
dimensional regularization is to compute these integrals in d = 4− 2ϵ dimensions, with the limit
ϵ→ 0 to be taken at the end of the calculation. In the end, the infrared singularities manifest as
simple poles in ϵ. We can now distinguish two cases:

• ϵ > 0 in order to extract the UV divergences;

• ϵ < 0 in order to extract the IR divergences.

In this section we are interested in the second case.



28 CHAPTER 1. PERTURBATIVE QCD

The phase space in d-dimension for a DIS process with n−outgoing partons it is expressed as
follows

dϕn(ϵ) =

n∏
i=1

dd−1pi
(2π)d−1(2p0i )

δ(d)

p+ q −
∑
j

pj

 (1.4.35)

Therefore, the divergent integrals becomes finite but they acquire a term proportional to 1/ϵ.
ϵ-finite terms come from the interference of poles with exponentials in ϵ. For instance, we can
take the regularized collinear-divergent integral

Icoll =
∫ Q2

0

d2kt
k2t

→ µ̃2ϵ
∫ Q2

0

dk2t
(k2t )

1+ϵ
, (1.4.36)

where µ̃ is usually defined as the factorization scale multiplied by some constant; indeed, in order
to keep the mass dimension of the integral the same as in d = 4, we multiply it by µ̃4−d, where
µ̃ is parameter of mass dimension one and arbitrary value. Therefore,

Icoll = µ̃2ϵ
∫ Q2

0

dk2t
(k2t )

1+ϵ
= −1

ϵ

(
µ̃2

Q2

)ϵ

, (1.4.37)

and by a simple Taylor expansion we obtain

Icoll =
1

ϵ

(
−1 + ϵ ln

Q2

µ̃2
+O(ϵ2)

)
= −1

ϵ
+ ln

Q2

µ̃2
+O(ϵ) , (1.4.38)

On the other hand, in this context in the calculation of the real gluon emission contributions
the term (1 − x̂)−1−ϵ appears at all order because of the collinear and soft emission [13]. In
particular, the plus distribution arise from this term, in fact (for the proof see the appendix
A.2.1)

(1− x̂)−1−ϵ =
δ(1− x̂)

ϵ
+

∞∑
i=0

1

i!
ϵi
[
lni(1− x̂)

1− x̂

]
+

, (1.4.39)

depending on the order of the pole multiplying the identity, a different finite logarithm survives,
while the remaining terms are either cancelled or vanish as ϵ → 0. Thus, the IR-soft poles
cancel, while the collinear poles are cancelled against the poles present in the PDFs. In the M̄S

scheme, f
(h)
i (ξ, µ) is defined via minimal subtraction of the 1/ϵ pole. On the other hand, at the

n−perturbative order Ci and σ̂ contain the terms

• αs(µ)
n lnn Q2

µ2 and when are O(1) they spoil the perturbative approach. However, it can be
dealt by evolving PDFs at the hard scale of the process as it shown in the next section.

• αs(µ)
n
[
lnk(1−x̂)

1−x̂

]
+
where usually 0 ≤ k ≤ 2n− 1.

In this case, we recognize that these plus-distributions regularize the soft divergence at x̂ = 1.
Specifically, they represent what remains in the calculation after the cancellation of both the soft
and collinear divergences. There is, however, an important aspect to consider: IR singularities
cancel out completely, but near the singular point (though not exactly at it), a large logarithm
remains due to the cancellation of the singularity itself. Roughly speaking when x̂ is equal or
larger than a value x̄ satisfying

αs ln
2(1− x̄) ∼ O(1) (1.4.40)
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any finite order truncation would be meaningless, since all terms in the perturbative series are
of the same order. Since x̂ ∈ (0, 1), this kinematic region where x̂ → 1 is always contained
within the definition of the cross-section, so that the coefficient functions Ci need each time to
be resummed.

Clearly, this implies that soft-gluon effects may persist and become significant in kinematic
regions where there is a large imbalance between real and virtual contributions. In such cases, a
fixed-order expansion becomes unreliable, as higher-order terms can have a non-negligible weight.
Therefore, to obtain reliable predictions, calculations to all orders in perturbation theory are
required. One can note that these singularities—and the logarithms associated with them—can
be computed to all orders. This is where the threshold resummation theory comes into play, as
it allows for the summation of these logarithms. We obtain the resummation formula trough
renormalization group approach in sec. 3 and we apply it to the SIDIS process, which is the main
process studied throughout this thesis.

1.5 DGLAP equation

The dependence of the PDFs is through two variables, x̂ and µF. The first one is non-perturbative,
but the dependence on the factorization scale can be computed. Indeed, the dependence by µF
is through the collinear logarithmic terms, as we have shown in Eq. 1.4.30. For this purpose,
we can use a RGE approach, as done in Sec. 1.1.1 for the strong coupling. In this case, the
renormalization group evolution is known as the Altarelli-Parisi (or DGLAP) evolution. To
derive this equation, we use the fact that the hadronic cross section is a physical observable,
which implies that it cannot depend on µF. So, using Eq. 1.4.34, we obtain:

µ2F
d

dµ2F

(
dσ

dxdQ2

)
=
∑

i=q,q̄,g

∫ 1

x
dx̂

(
µ2F
∂f

(h)
i

∂µ2F
σ̂ + f

(h)
i µ2F

∂σ̂

∂µ2F

)
= 0 , (1.5.1)

where, for simplicity, we omitted the dependences. Since the r.h.s vanishes and σ̂ can be obtained

by perturbative calculations we can extract
df

(h)
i

d log µ2
F
. For example at LO in the strong coupling,

i.e. O(αs), from Eq.1.4.31, we have

0 =

∫ 1

x
dx̂
x

x̂
µ2F

∂

∂µ2F

(
f
(p)
i

(x
x̂
, µF

)
δ(1− x̂)

)
+
x

x̂
f
(p)
i

(x
x̂
, µF

) αs(µR)

2π
(−Pqq(x̂))+O(α2

s) , (1.5.2)

and dividing by x and defining y ≡ x/x̂→ dx̂/x̂ = −dy/y, we obtain

µ2F
∂

∂µ2F
f
(p)
i (x, µF) =

αs(µR)

2π

∫ 1

x

dy

y
P (0)
qq

(
x

y

)
f
(p)
i (y, µF) , (1.5.3)

hence, the DGLAP equation is an integro-differential equation. Here, we obtain the simplest
case, namely, up to O(αs), while the role of the subscript (0) will be clarified in the next steps.
It can be shown [14] that the general formula, including O(αn

s ) corrections and all partons, takes
the form of a (2Nf + 1)-dimensional matrix equation acting on the space of quarks, antiquarks,
and gluons, namely

µ2F
∂

∂µ2F

(
f
(h)
qi (x, µF)

f
(h)
g (x, µF)

)
=
αs(µR)

2π

∑
qj ,q̄j

∫ 1

x

dy

y

Pqiqj

(
x
y , αs(µR)

)
Pqig

(
x
y , αs(µR)

)
Pgqj

(
x
y , αs(µR)

)
Pgg

(
x
y , αs(µR)

)(f (h)qi (y, µF)

f
(h)
g (y, µF)

)
,

(1.5.4)



30 CHAPTER 1. PERTURBATIVE QCD

which can be written in a more compact form as

µ2F
∂f

(h)
i (x, µF)

∂µ2F
=
αs(µR)

2π

∑
j

Pij ⊗ f
(h)
j (x, µF) , (1.5.5)

where the sum is over all the active flavours and g, while i could be either a flavour index or a
gluon index g.

We observe that each splitting function (or evolution kernel) is also computable as a series
expansion in αs.

Pqiqj (z, αs) = δijP
(0)
qq (z) +

αs

π
P (1)
qiqj (z) + . . .

Pqg(z, αs) = P (0)
qg (z) +

αs

π
P (1)
qg (z) + . . .

Pgq(z, αs) = P (0)
gq (z) +

αs

π
P (1)
gq (z) + . . .

Pgg(z, αs) = P (0)
gg (z) +

αs

π
P (1)
gg (z) + . . . (1.5.6)

In order to obtain the splitting functions at higher orders, we must include higher-order corrections
in αs by adding multiple gluon emissions to the diagrams in Tab. 1.2. For instance, the splitting
function Pqq at higher orders is derived from the first diagram in Tab. 1.2 inserting on it multiple

gluon emissions on the quark leg. Specifically, the amplitude for P
(1)
qq is given by the diagram

with two real gluon emissions plus the diagrams with one gluon emission accompanied by a gluon
loop correction. The same argument also holds for the other splitting function. Whereas, at the
leading order we have the results reported in Tab. 1.2.

As a final remark, we emphasize that, due to the SU(Nf ) flavour symmetry and charge
conjugation invariance, we have

Pqiqj = Pq̄iq̄j

Pqiq̄j = Pq̄iqj

Pqig = Pq̄ig ≡ Pqg

Pgqi = Pgq̄i ≡ Pgq ,

(1.5.7)

Specifically, the splitting functions Pqg and Pgq are flavour-independent and the same for both
quarks and antiquarks. As we shown in the previous steps, the leading-order Pqiqj splitting
function is zero unless qi = qj .

1.5.1 Splitting functions

In this section, we provide a physical interpretation of the splitting functions and analyse their
structure beyond LO.

The leading-order splitting functions P
(0)
ab have a well-defined physical interpretation: they

describe the probability of finding a parton of type a inside a parton of type b, carrying a fraction
x of the parent parton’s longitudinal momentum, while having a transverse momentum squared
much smaller than µ2. Thus, their interpretation as probabilities requires them to be positive
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p
xp

(1− x)p

q

g

q

+ virtual contribution

→ P (0)
qq = CF

(
1 + x2

[1− x]+
+

3

2
δ(1− x)

)

p
xp

(1− x)p

q

q

g

→ P (0)
gq = CF

(
1 + (1− x)2

x

)
= P (0)

qq (x→ 1− x)

p
xp

(1− x)p

g

q

q

→ P (0)
qg = TR

(
x2 + (1− x)2

)
TR =

1

2

p
xp

(1− x)p

g

g

g

+ virtual contribution

→ P (0)
gg = 2CA

(
x

(1− x)+
+

1− x

x
+ x(1− x) + δ(1− x)

11CA − 4NfTR
6

)

Table 1.2: Splitting functions at leading order

definite for x ≤ 1 and to satisfy the following sum rules:∫ 1

0
dxP (0)

qq (x) = 0 , (1.5.8)

∫ 1

0
dx
[
P (0)
qq (x) + P (0)

gq (x)
]
= 0 , (1.5.9)

∫ 1

0
dx
[
2NfP

(0)
qg (x) + P (0)

gg (x)
]
= 0 , (1.5.10)

this corresponds to quark number conservation and momentum conservation in quark and gluon
splittings, respectively.

Beyond the LO, the flavour structure of Pqiqj is no longer trivial. Through the SU(Nf ) flavour
symmetry, we can rewrite the splitting functions in terms of flavour singlet (S) and non-singlet
(V) contributions

Pqiqj = δijP
V
qq + PS

qq , (1.5.11)

Pqiq̄j = δijP
V
qq̄ + PS

qq̄ , (1.5.12)

At NLO, the pure singlet functions are non-zero, but on the other hand, we have the symmetry
condition:

PS
qq = PS

qq̄ (1.5.13)
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The formal solution of the GLAP equation requires a treatment beyond the scope of this work.
However, we note that, in its current form, the equations for individual PDFs cannot be decou-
pled. Therefore, as previously mentioned, it is necessary to introduce appropriate combinations
of PDFs, which are classified into two categories: non-singlet PDFs and singlet PDFs. Con-
sequently, since the coefficient functions are convoluted with the PDFs, they are also classified
accordingly.

As we have shown, the DGLAP equations (Eq. 1.5.5) form a system of 2Nf + 1 coupled

equations. Therefore, using the notation f
(h)
qi = qi and f

(h)
g = g, it is convenient to rewrite the

quark sector in terms of the flavour singlet (S) and non-singlet (NS) components to decouple the
DGLAP equations. Hence, we define the singlet term as

qS ≡ 1

Nf

Nf∑
i

(qi + q̄i) , (1.5.14)

which evolves together with g according to:

∂

∂Q2

(
qS
g

)
=

(
Pqq Pqg

Pgq Pgg

)
⊗
(
qS
g

)
, (1.5.15)

while the NS sector is given by three non-singlet combinations of PDFs, namely

q±NS,ik ≡ qi ± q̄i − (qk ± q̄k) (1.5.16)

qVNS ≡ qi − q̄i (1.5.17)

which evolve independently with P+
NS, P

−
NS, P

V
NS and decouple the remaining 2Nf − 1 equations.

Specifically, we have

P±
NS = P V

qq ± P V
qq̄ (1.5.18)

P V
NS = P V

qq − P V
qq̄ +Nf (P

S
qq − P V

qq̄) ≡ P−
NS + PS

NS (1.5.19)

all the splitting functions are known up to NNLO [15–17].
For instance, we can analyze the DIS factorization formula using these redefined PDFs. From

Eq. 1.4.34, we know that the DIS structure functions, in the case of the electromagnetic interac-
tion, are given by the convolution

FDIS
k =

∑
j

(
C

qj
k ⊗ qj + C

q̄j
k ⊗ q̄j

)
+ Cg

k ⊗ g (1.5.20)

=
∑
j

e2qjC
NS
k ⊗ qNS

j (x,Q2) +

∑
j

e2qj

[CS
k ⊗ qS + Cg

k ⊗ g
]
(x,Q2) (1.5.21)

where k = 1, L, the sums run the active flavours, eqj are the electromagnetic charges of quarks.
The flavour combination qNS

j is defined as follows

qNS
j ≡ 1

Nf

Nf∑
k=1

q+NS,jk = (qj + q̄j)−
1

Nf

Nf∑
k=1

(qk + q̄k) (1.5.22)

It evolves with P+
NS, while qs, defined in Eq. 1.5.14, follows the evolution dictated by Eq. 1.5.5.

The equivalence between Eqs. 1.5.20 and 1.5.21 directly arises from the charge conjugation
symmetry Cqi

k = C q̄i
k in the context of the electromagnetic interaction. Consequently, we can
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separate NS diagrammatic contributions from pure-singlet (PS) ones and express the result as
follows:

Cqi
k = C q̄i

k = e2qiC
NS
k +

1

Nf

∑
j

e2qj

CPS
k (1.5.23)

In this case, NS contributions are defined as those in which, on either the left or right side of
the cut diagrams, the struck parton is directly connected to the incoming quark through a quark
line. On the other hand, PS contributions arise from cut diagrams in which, on both sides of the
cut, the struck parton is separated from the incoming quark by gluon lines.
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Chapter 2

Semi-Inclusive Deep Inelastic
Scattering

In this chapter, we provide an overview of SIDIS process, which is the core of the studies of
this thesis. The main difference compared to the DIS case is that we also measure one or more
hadronic final states. Therefore, we are no longer fully inclusive over the final hadronic states,
and the factorization formula in Eq. 1.4.34 requires modifications, because we need to introduce
the fragmentation functions.

In particular, we briefly introduce the kinematic variables, which closely resemble those used
in DIS case. We then present the SIDIS differential cross-section, the fragmentation functions
and their evolution and the SIDIS factorization formula. Furthermore, we also introduce the
kinematic variables for the Drell-Yan process at fixed rapidity.

Secondly, we study the nature of the enhanced logarithms that emerge in the SIDIS process
when the scaling variables become large, namely in the so-called double- and single-soft limits,
which are the regimes of interest in this thesis. To this end, we analyze the behavior of the
coefficient function in these limits. In particular, we extract its dimensional dependence in terms
of powers of a soft scale by studying the phase space and the partonic amplitudes. As a result, we
derive the form of the enhanced logarithms, which appear at all orders in the coefficient function
in the soft limits and necessitate a resummation procedure, the main topic of the next chapter.

We observe that from the phase space investigation, we obtain one of the main features of this
section: the SIDIS phase space correspondence with its crossed version, the Drell-Yan process,
as discussed in section 2.2.1. We also note that this study directly provides the resummation
formula for the SIDIS process, presented in section 3.

2.1 Kinematics

2.1.1 SIDIS Kinematic variables

We consider the SIDIS l(k) + H1(P1) −→ l(k′) + H2(P2) (Fig. 2.1) with momentum transfer
q = k − k′, hence:

H1(P1) + γ∗(q) −→ H2(P2) +X . (2.1.1)

H1 represents the incoming hadron state, and H2 is the outgoing measured hadron state. γ∗ is
the virtual gauge boson which mediates the interaction between the incoming hadron and lepton.
The variable X denotes the remaining hadronic radiation. In particular, at the parton level, the
variables ξ1 and ξ2 in Fig.2.1 and Fig.2.2 represent, respectively, the momentum fraction of the
initial hadron carried by the incoming parton and the momentum fraction that the produced
hadron takes from the parent parton.

35
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P1

k k′

q

ξ1P1

P2
ξ2

p+

e−

}X

e−

Figure 2.1: SIDIS process

The hadronic process is described by the kinematic variables:

Q2 = −q2 = −(k − k′)2 , (2.1.2)

x =
Q2

2P1 · q
space-like variable, (2.1.3)

z =
P1 · P2

P1 · q
time-like variable, (2.1.4)

y =
P1 · q
P1 · k

. (2.1.5)

Where, Q2 = xys̃ and
√
s̃ is the center-of-mass (c.m.) energy for the incoming lepton and nucleon.

If we consider only the electromagnetic interaction, in addition to the structure functions’ depen-
dence on the scaling variable z, and the terms that cancel after integrating over the azimuthal
angle of the outgoing hadron, one obtains the usual DIS tensor in Eq. 1.3.26 [18]:

Wµν(P, q) =

(
−gµν + qµqν

q2

)
FH2
1 (x, z,Q2)

+

(
Pµ
1 − P1 · q

q2
qµ
)(

P ν
1 − P1 · q

q2
qν

)
FH2
2 (x, z,Q2)

P · q
. (2.1.6)

Therefore, the triple-differential cross section may be written as [19] [20]

dσH2

dxdydz
=

4πα2

Q2

[
1 + (1− y)2

2y
FH2
T (x, z,Q2) +

1− y

y
FH2
L (x, z,Q2)

]
. (2.1.7)

Here, α is the fine structure constant and Fh
L ≡ Fh

L
x and Fh

T ≡ 2F h
1 are longitudinal and trans-

verse structure functions. We note that a part the structure functions dependence by the scaling
variable z this cross section is analogous to the one obtained in the DIS case in Eq. 1.3.28.

At the partonic level, the SIDIS process reads as follows:

f1(p1) + γ∗(q) −→ f2(p2) +X , (2.1.8)
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f1 is the incoming parton from the parent hadron H1. f2 is the outgoing parton that fragments
to the outgoing hadron H2. Hence, p1 = ξ1P1 and p2 =

P2
ξ2
, where ξ1, ξ2 are momentum fractions,

then 0 ≤ ξ1, ξ2 ≤ 1. γ∗ is the virtual gauge boson and X is the remaining parton radiation.
Therefore, the partonic kinematic variables become:

x̂ =
Q2

p1 · q
=

Q2

ξ1P1 · q
=

x

ξ1
, (2.1.9)

ẑ =
p1 · p2
p1 · q

=
ξ1P1 · P2

ξ2

ξ1P1 · q
=

z

ξ2
. (2.1.10)

p1 = ξ1P1

q
p2 =

P2
ξ2

q

γ∗

q′

Figure 2.2: Diagram for the SIDIS process at leading order.

At the leading order, the partonic process is represented in Fig. 2.2. Then from momentum
conservation is interesting to observe that

z =
P1 · P2

P1 · q
=
p1 · ξ2p2
p1 · q

= ξ2
p1 · (p1 + q)

p1 · q
= ξ2 → z = ξ2 , (2.1.11)

(p1 + q)2 = (ξ1P1 + q)2 = 2ξ1P1 · q −Q2 = 0 → ξ1 = x , (2.1.12)

In both cases, we have used the massless condition for the partons. Thus, at leading order,
x represents the momentum fraction carried by the incoming parton relative to the incoming
proton, while z corresponds to the momentum fraction carried by the outgoing hadron relative
to the outgoing quark.

2.1.2 DY process at fixed rapidity

In this section, we briefly review the kinematics of the DY process at fixed rapidity in order to
introduce its correspondence with the SIDIS process in the threshold limit. To this aim we follow,
the arguments presented in [3].

The DY process is given by the interaction of two hadrons into a lepton pair, namely

H1(P1) +H2(P2) → l(k) + l′(k′) +X (2.1.13)

where H1 and H2 are the incoming hadrons and l, l′ are the outgoing leptons. As for the SIDIS
case we can consider the interaction mediated by a virtual photon. Therefore, at the parton level,
the interaction is given by

f1(p1) + f2(p2) −→ γ∗(p) +X(k) , (2.1.14)

f1 is the incoming parton from the parent hadron H1 and f2 is the incoming parton from the
parent hadron H2. At the leading order the process is represented in Fig. 2.3 what one immedi-
ately can see from the diagram in Fig. 2.3 is the fact that DY process is the crossed version of
the SIDIS case. After this consideration, we can introduce its kinematic. The DY partonic cross
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p1 = ξ1P1 q

p2 = ξ1P2

q

q̄

γ∗

Figure 2.3: Diagram for the DY process at the leading order.

section is expressed through the rapidity of the outgoing gauge boson, namely its longitudinal
boost, and the following scaling variable

τ ≡ M2

s
s = (p1 + p2)

2 (2.1.15)

where M2 is the invariant mass of the final lepton state. We now consider the system in the
partonic center of mass (CM) frame, then we obtain

p1 =

√
s

2
(1, 0, 0, 1) (2.1.16)

p2 =

√
s

2
(1, 0, 0,−1) (2.1.17)

p1 + p2 =
√
s(1, 0, 0, 0) (2.1.18)

p =

(√
M2 + p2t + p2z, p⃗t, pz

)
=
(√

M2 + p2z cosh y, p⃗t,
√
M2 + p2z sinh y

)
(2.1.19)

k =

(√
M2

X + p2t + p2z,−p⃗t,−pz
)

(2.1.20)

then we want re-express the dependence of the process through two new scaling variables

x1 =
√
τey , (2.1.21)

x2 =
√
τe−y. (2.1.22)

so that

x1x2 = τ (2.1.23)

y =
1

2
ln
x1
x2

(2.1.24)

in particular the Jacobian of the transformation (x1, x2) to (y, τ) equals one. As it shown in Sec.
2.2.1, the above changing variable makes clear the correspondence between the soft limits in the
DY and SIDIS processes. Moreover, we note that, for fixed τ , the rapidity domain is constrained
by the fact that |pz| in Eq. 2.1.19 cannot exceed the value allowed by the maximum available
energy. We now note that s is given by

s = (p1+p2)
2 = (q+k)2 =M2+M2

X +2p2t +2p2z+2
√
M2 + p2t + p2z

√
M2

x + p2t + p2z , (2.1.25)

then at fixed rapidity (at fixed pz), we can note that the minimum value of s corresponds to the
minimum energy configuration, determined by both the photon’s energy and the invariant mass
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Mx of the recoiling system X. Therefore, the minimum value of the energy s is reached when
pt = 0 and MX = 0, thus

s ≥ smin(pz) =
(√

M2 + p2z +
√
p2z

)
. (2.1.26)

Therefore, we obtain that

pz ≤ pzmax =
s−M2

2
√
s

=
1− τ

2
√
τ
, (2.1.27)

then pzmax is reached when pt = 0 then using Eq. 2.1.19 we have pzmax =M sinh ymax, hence

ln τ ≤ y ≤ ln
1√
τ
. (2.1.28)

The corresponding bounds on x1 and x2 are

0 ≤ x1, x2 ≤ 1. (2.1.29)

Using the Eq. 2.1.19 the double-soft limit is defined as follows

s→ smin(0) =M2 (2.1.30)

that means

pt → 0 pz → 0 ⇒ τ → 1 y → 0 (2.1.31)

namely

x1 → 1 x2 → 1 . (2.1.32)

On the other hand single-soft limit is defined as

s→ smin(pz) (2.1.33)

at fixed pz namely at fixed rapidity. Therefore, in terms of variables xi Eq. 2.1.21 the condition
of fixed y implies fixed ratio x1

x2
= e2y and the condition of minimum s implies that τ must be at

its maximum, i.e. maximum product x1x2. If we assume without loss of generality x1 ≥ x2, for
fixed e2y we have maximum x1e

−2y, namely x1 = 1. So the single-soft is the limit where either

x1 → 1 x2 fixed (2.1.34)

or

x2 → 1 x1 fixed (2.1.35)

2.1.3 Fragmentation functions

In the SIDIS process, compared to the DIS case, we need to account for a new non-perturbative
effect: the probability that the outgoing parton fragments into the measured final hadron. This
probability is defined through the fragmentation function (FF), referred to as DH

j (ξ2, µF), which
represents the probability that the parton j, with a longitudinal momentum fraction P/ξ, frag-
ments into the observed hadron H. In analogy to the PDF case the evolution of the FFs is
predicted by the DGLAP equation [21]. Hence, in analogy to Eq. 1.5.5, we obtain

µ2F
∂DH

j (z, µF)

∂µ2F
=
αs(µR)

2π

∑
j

P T
ij ⊗DH

j (z, µF) , (2.1.36)
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where µF is the factorization scale, the sum runs over all possible partons j, while i represents a
specific parton, and P T

ij denotes the time-like splitting functions. These, compared to the space-
like splitting functions, are obtained from gluon emissions off the outgoing parton line, namely in
the case where the emission occurs after the hard interaction with the photon. At leading order,
there is no difference between time-like and space-like contributions. However, beyond leading
order, virtual contributions appear, and the direction of the Wick rotation differs, resulting in
sign differences between the space-like and time-like cases. In particular, we note the difference
compared to the PDF case. In that case, the kinematics of the incoming parton is governed
by the Bjorken variable, making the kinematics space-like, and we thus use space-like splitting
functions, Pij , in order to evolve the PDFs. On the other hand, the kinematics of the outgoing
parton is governed by the z variable, which is time-like, so we need to use time-like splitting
functions, P T

ij , in order to evolve the FFs.

As we shown in sec. 1.5.1, in order to decouple the 2Nf +1 DGLAP equations. We can split
the FFs into flavour singlet and NS contributions. Hence, we define the singlet term as

DH
S ≡ 1

Nf

Nf∑
i

(DH
qi +DH

q̄i ) , (2.1.37)

which evolves together with DH
g according to

∂

∂Q2

(
DH

S

DH
g

)
=

(
P T
qq P T

qg

P T
gq P T

gg

)
⊗
(
DH

S

DH
G

)
, (2.1.38)

while the NS sector is given by three non-singlet combinations of PDFs, namely

DH,±
NS,ik ≡ DH

qi ±DH
q̄i − (DH

qk
±DH

q̄k
) (2.1.39)

DV,H
NS ≡ DH

qi −DH
q̄i (2.1.40)

which evolve independently with P T,+
NS , P T,−

NS , P T,V
NS and decouple the remaining 2Nf−1 equations.

Specifically, we have

P±
T,NS = P T,V

qq ± P T,V
qq̄ (2.1.41)

P T,V
NS = P T,V

qq − P V,T
qq̄ +Nf (P

S,T
qq − P T,V

qq̄ ) ≡ P T,−
NS + P T,S

NS , (2.1.42)

where we have rewritten the time-like splitting functions in terms of flavour singlet (S) and
non-singlet (V) as

P T
qiqj = δijP

T,V
qq + P T,S

qq , (2.1.43)

P T
qiq̄j = δijP

T,V
qq̄ + P T,S

qq̄ . (2.1.44)

All the NS and PS time-like splitting functions are known up to NNLO [22–24].

2.1.4 z-distribution factorization

In section 1.4, we apply the factorization theorem to express the hadronic cross section as a
convolution of a long-scale perturbative term and a short-scale non-perturbative term, specifically
we obtained the Eq. 1.4.34. Although a rigorous proof of the factorization theorem via the
Operator Product Expansion (OPE) cannot be provided for the SIDIS case, alternative methods
have been developed to establish it (see, for instance, [6]). Therefore, we can state that the
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factorization theorem holds for SIDIS as well. Due to the different nature of the two non-
perturbative phenomena present in the SIDIS process, described by the PDF and the FF, the
SIDIS z−differential hadronic cross-section can be factorized as the convolution of a ẑ−differential
partonic cross-section with a PDF and a FF:

dσ

dz
(x, z,Q2) =

∑
i,j

∫ 1

x

dξ1
ξ1

∫ 1

z

dξ2
ξ2
fi(ξ1)D

H2
j (ξ2)

dσ̂ij
dẑ

(
x

ξ1
,
z

ξ2

)
. (2.1.45)

Here, fi(ξ1) is the PDF of parton i = q, q̄, g in the nucleon at momentum fraction ξ1, while
DH2

j (ξ2) is the corresponding FF for the parton j going to the observed hadron H2. The functions
dσ̂ij

dẑ (x̂, ẑ) are the partonic differential cross sections for incoming parton i and outgoing parton
j and represent the perturbative terms of the convolution. Finally, note that, to simplify the
notation, we omit the dependence on the renormalization and factorization scales, µR and µF ,
respectively.

After the change of variables, we can express the z distribution as follows:

dσ

dz
(x, z,Q2) =

∑
i,j

∫ 1

x

dx̂

x̂

∫ 1

z

dẑ

ẑ
fi

(x
x̂

)
DH2

j

(z
ẑ

) dσ̂ij
dẑ

(x̂, ẑ) . (2.1.46)

Secondly, we express the z-distribution in Mellin space, as the resummation procedure showed
in the next chapters cannot be performed in x̂, ẑ space (see, for instance, [25]); while for the
definition and properties of the Mellin transformation the interest reader can find a summary
about it in Appendix A.2. For simplicity, with a little abuse of notation we denote z−distributions
only by their dependences, namely:

dσ

dz
(x, z,Q2) := σ(x, z,Q2) , (2.1.47)

dσ̂ij
dz

(x, z,Q2) := σ̂ij(x, z,Q
2) . (2.1.48)

Applying a double-Mellin transformation to Eq.2.1.46, we obtain:

σ̃(N,M,Q2) =

∫ 1

0
dxxN−1

∫ 1

0
dzzM−1σ(x, z,Q2) , (2.1.49)

σ̃(N,M,Q2) =
∑
i,j

f̃i(N)D̃H2
j (M)˜̂σij(N,M,Q2) , (2.1.50)

where

f̃i(N) =

∫ 1

0
dxxN−1fi(x) , (2.1.51)

D̃H2
j (M) =

∫ 1

0
dzzM−1DH2

j (z) , (2.1.52)

˜̂σij(N,M,Q2) =

∫ 1

0
dx̂x̂N−1

∫ 1

0
dẑẑM−1 σ̂ij(x, z,Q

2) . (2.1.53)

To obtain the above relations we used the factorisation of convolution product under a Mellin
transformation A.2. Furthermore, we stress that the above argument can also be applied to the
individual terms of the SIDIS cross section in Eq. (2.1.7), namely the longitudinal and trans-
verse structure functions. Owing to the universality of the parton density and the fragmentation
function, it suffices to split the perturbative partonic cross section into its transverse and longi-
tudinal components. Therefore, using H2 = h for notation simplicity, the structure functions are
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expressed as

Fh
k (x, z,Q

2) =
∑
ij

∫ 1

x

dx̂

x̂

∫ 1

z

dẑ

ẑ
fi

(x
x̂
, µF

)
Cij
k

(
x̂, ẑ, αs(µR),

µR

Q
,
µF

Q

)
Dh

j

(z
ẑ
, µF

)
(2.1.54)

where k = T, L and Ck are the coefficient functions. So in Mellin space the structure functions
become

F̃h
k (N,M,Q2) =

∑
ij

f̃i(N,µF)C̃
ij
k

(
N,M,αs(µR),

µR

Q
,
µF

Q

)
D̃H2

j (M,µF) , (2.1.55)

with f̃i and D̃
h
j defined as above and

C̃ij
k

(
N,M,αs(µR),

µR

Q
,
µF

Q

)
=

∫ 1

0
dx̂x̂N−1

∫ 1

0
dẑẑM−1 Cij

k

(
x̂, ẑ, αs(µR),

µR

Q
,
µF

Q

)
. (2.1.56)

As it shown for the DIS case similarly the coefficient function of the SIDIS process can be
rewritten in NS and PS terms, for instance at NNLO as it done in [26] and [21] we have

Ci
p′p = C

i,(0)
p′p +

αs(µ
2
R)

π
C

i,(1)
p′p +

(
αs(µ

2
R)

π

)2

C
i,(2)
p′p +O(α3

s) . (2.1.57)

where i = T, L. Therefore, using the notation NS and PS we have

Ci,(2)
qq = C

i,(2)
q̄q̄ = e2qC

i,NS
qq +

∑
j

e2qj

Ci,PS
qq ,

C
i,(2)
q̄q = C

i,(2)
qq̄ = e2qC

i
q̄q ,

C
i,(2)
q′q = C

i,(2)
q̄′q̄ = e2qC

i,1
q′q + e2q′C

i,2
q′q + eqeq′C

i,3
q′q ,

C
i,(2)
q̄′q = C

i,(2)
q′q̄ = e2qC

i,1
q′q + e2q′C

i,2
q′q − eqeq′C

i,3
q′q ,

Ci,(2)
gq = C

i,(2)
gq̄ = e2qC

i
gq ,

Ci,(2)
qg = C

i,(2)
q̄g = e2qC

i
qg ,

Ci,(2)
gg =

(∑
j

e2qj

)
Ci
gg , (2.1.58)

again for i = T, L. With q′ (q̄′) we indicate a quark (antiquark) of flavour different from q,
whereas the NS and PS superscripts in the quark-to-quark channel denote the non-singlet and
the pure-singlet components respectively.

2.2 Soft limits

As shown in the previous chapter for the DIS case, starting from NLO we have real gluon emissions
either from the incoming quark line, the outgoing quark line, or both. The aim of this thesis
is to to study what happen when the radiation reaches the boundaries of the phase space. In
particular this is achieved in the following cases:

• The double-soft limit, where x̂, ẑ → 1.

• The single-soft limit, also referred to as the asymmetric case, where either x̂ → 1 or
ẑ → 1 while the other scaling variable remains fixed.
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Therefore, we have to solve three problems. Firstly, we need to show to which system config-
urations these limits correspond. Secondly, we need to understand which kinematical configura-
tions of the outgoing radiation correspond to the three soft limits. Finally, we must analyze how
the differential partonic cross section behaves in these limits, implying the need for a resummation
procedure.

2.2.1 Phase space in soft limits

We now analyze the phase space of the partonic process in Eq. (2.1.8) in soft limits in order to
extract the dependence of the partonic cross-section, and consequently the coefficient functions,
in the double- and single-soft limits through the scaling variables x̂ and ẑ.

We focus on the ẑ−distribution when the system X includes n final-state massless partons
with momenta k1, . . . , kn, which are emitted from both the incoming (p1) and the outgoing
(p) partons. The momenta of the incoming and outgoing partons must satisfy the momentum
conservation equation:

p1 + q = p+ k1 + ...+ kn . (2.2.1)

We are interested in the double- and single-soft limits and in how the SIDIS phase space behaves
in this limit similar to the double- and single soft limits of the Drell-Yan process in rapidity, [3]
and Sec. 2.1.2. This correspondence allows us to apply the same resummation formula to both
processes.

To this end, we use the partonic Breit frame. The frame is defined by the gauge boson and
incoming parton being back-to-back, with q being purely spatial, this last choice is possible since
q is a space-like vector. Defining the four-momentum of the virtual gauge boson as

q = (0, 0, 0,−Q) , (2.2.2)

and imposing the conditions s = (p1 + q)2, that p1 and q are back-to-back, and that p21 = 0, we
obtain:

p1 =
s+Q2

2Q
(1, 0, 0, 1) . (2.2.3)

In order to obtain the ẑ dependence for p, we use the fact that p1 · p = ẑp1 · q and p2 = 0, leading
to:

p =

(
1

2

(
p2t
ẑQ

+ ẑQ

)
, p⃗t,

1

2

(
p2t
ẑQ

− ẑQ

))
. (2.2.4)

We now can use the crossing symmetry between SIDIS and DY process. In the DY case
(Sec. 2.1.2) the single-soft limits are determined through the Mandelstam variable s = (p1+p2)

2.
Then, using the notation adopted in the two cases and exploiting the crossing symmetry, we have
the following correspondences

DY p1 ↔ p1 SIDIS (2.2.5)

DY p2 ↔ −p SIDIS (2.2.6)

DY k ↔ k SIDIS (2.2.7)

DY p↔ −q SIDIS (2.2.8)

therefore

DY s = (p1 + p2)
2 ↔ t = (p1 − p)2 = − ẑ

x̂
Q2 SIDIS . (2.2.9)
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In the DY case in the soft limits s is at its minimum value, therefore also t in the SIDIS case in
the soft-limits must be at its minimum value.

The double-soft limit in the DY case is provided by the condition s =M2, hence in its crossed
version (SIDIS case) is obtained by t = −Q2 with x̂, ẑ → 1, which is the so-called elastic limit.
Whereas, in the DY process single-soft limits correspond to the case where the photon has a
fixed longitudinal momentum with s at its minimum (then k2 = pt = 0). Thus, the photon must
have fixed longitudinal momentum even in the single-soft limits of the crossed process. We now
observe that in the SIDIS process we have

k2 = (p1 + q − p)2 (2.2.10)

and using the Breit frame we obtain:

k2 = s(1− ẑ)− p2t
ẑ
, (2.2.11)

thus

k2 ≤ s(1− ẑ) = Q2 (1− x̂)(1− ẑ)

x̂
= k2max . (2.2.12)

Here, we use the fact that s = Q2 1−x̂
x̂ . Therefore, in the single soft limits k2 → 0 that implies

pt → 0. Then, using Eqs. 2.2.4 and 2.2.3, we have

p1 =
1

2
(Q, 0, 0, Q) x̂→ 1 , (2.2.13)

p =
1

2
(Q, 0, 0,−Q) ẑ → 1 (2.2.14)

then in the single-soft limits one of the two above conditions is satisfied. That implies that either
the incoming parton p1 or the outgoing parton p has fixed longitudinal momentum, because Q is
fixed. Furthermore, in this cases the exchange of momentum t approaches its minimum value in
order to allow this configuration.

As a final step, we determine the relation which determines the kinematical configurations
of the extra radiation in the soft-limits. Using the fact that all partons are massless, squaring
Eq.2.2.1 we obtain:

s =
n∑

i,j=1

ki · kj + 2
n∑

i=1

p · ki , (2.2.15)

where both terms in the LHS are positive semi-definite. Moreover, in Breit frame it becomes

Q2 1− x̂

x̂
=

n∑
i,j=1

k0i k
0
j (1− cos θij) + 2

n∑
i=1

1

2

(
p2t
ẑQ

+ ẑQ

)
k0i (1− cos θi2). (2.2.16)

One of the aim of the next section is to exploit the above relations to obtain the kinematical
configuration of the outgoing partons in the threshold limits.

2.2.2 Double-soft limit

As we can see in the appendix of [25] we can write the phase space as:

dϕn+1(p1 + q; p, k1, . . . , k2) =

∫
dk2

2π
dϕ2(p1 + q; p, k) dϕn(k; k1, . . . , kn) (2.2.17)
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with n ≥ 0. Here, dϕ2 is the phase space for production from the incoming total momentum
p1 + q of a massless final state with momentum p differential in ẑ, and system with momentum
k recoiling against it. Meanwhile, dϕn represents the phase space for the production, from the
incoming momentum k, of a n-parton final state with momenta ki.

We now compute the two-body phase space in terms of the ẑ variable in d = 4−2ϵ dimensions.
In the Breit frame we have:

dϕ2(p1 + q; p, k) =
dd−1k

(2π)d−12k0
dd−1p

(2π)d−12p0
(2π)d δ(d) (p1 + q − p− k)

=
(2π)d−2

4

dd−1p

p0k0
δ
(
p01 + q0 − p0 − k0

)
=

(4π)ϵ

16πΓ(1− ϵ)

(p2t )
−ϵ

p0k0
dp2tdp2z δ

(
s+Q2

2Q
− p0 − k0

)
. (2.2.18)

In the second equality, we perform the integration using the three-dimensional delta function. In
the third equality, we express the integration over dd−2pt in spherical coordinates and exploit the

identity for the solid angle Ωd = 2π
d
2

Γ( d
2 )
, where Γ(x) denotes the Gamma function. For notation

simplicity, from this point onward, we will identify p as p.

Next, we aim to express the phase space as differential in ẑ. Therefore, using 2.2.4, we perform
the following change of variables:

pz =
1

2

(
p2t
ẑQ

− ẑQ

)
(2.2.19)

therefore

dpz =
dpz
dẑ

dẑ = −1

ẑ

1

2

(
p2t
ẑQ

+ ẑQ

)
dẑ = −1

ẑ
p0dẑ. (2.2.20)

Thus, Eq.2.2.18 is equal to:

− (4π)ϵ

16πΓ(1− ϵ)

(p2t )
−ϵ

ẑk0
dp2tdẑ δ

(
s+Q2

2Q
− p0 − k0

)
. (2.2.21)

We now perform the integration over p2t . To this end, we need to express the argument of the
δ-function in terms of a function of p2t . We note that, by momentum conservation, k⃗t = −p⃗t, so
that |k⃗t| = |p⃗t| = pt. Hence, we have:

k0 =
√
k2 + p2t + (k3)2 .

Furthermore, by expressing k3 as p31 + q3 − p3, and using the fact from Eq.2.2.4 that p0 and p3

can be expressed in terms of p2t , we find that the argument of the δ-function becomes:

g(p2t ) =
s+Q2

2Q
− p0 −

√
k2 + p2t +

(
s−Q2

2Q

)2

+ (p3)2 − 2

(
s−Q2

2Q

)
p3

=
s+Q2

2Q
− p0 −

√
k2 + (p0)2 +

(
s−Q2

2Q

)2

− 2

(
s−Q2

2Q

)
p3. (2.2.22)
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In the second equality we use the fact that p2 = 0. Hence, the solution to the equation g(p2t ) = 0

is p̃t = ẑ[s(1− ẑ)− k2]. Furthermore, using from Eq.2.2.4 the fact that dp3

dp2t
= dp0

dp2t
, we obtain:∣∣∣∣dg(p2t )dp2t

∣∣∣∣ = [1 + 1

k0

(
p0 − s−Q2

2Q

)]
dp0

dp2t

=

[
1 +

1

k0

(
s+Q2

2Q
− k0 − s−Q2

2Q

)]
dp0

dp2t

=
Q

k0
dp0

dp2t
=

1

2ẑk0
. (2.2.23)

Thus, using the delta identity δ(f(x)) =
∑

i
δ(x−xi)∣∣∣ df(x)dx

|x=xi

∣∣∣ , we can rewrite the 2-phase space as:

dϕ2(p1 + q; p, k) = − (4π)ϵ

8πΓ(1− ϵ)
(p̃t

2)−ϵdẑ . (2.2.24)

Hence, the phase space in Eq.2.2.17 becomes:

dϕn+1(p1 + q; p, k1, . . . , kn) = −dẑ (4π)ϵ

8πΓ(1− ϵ)

∫
dk2

2π
(p̃t

2)−ϵdϕn(k; k1, . . . , kn). (2.2.25)

We can now compute the kinematics limits for k2 integration. Of course, k2min = 0, e.g. when
we have only a single parton in the final state. The upper bound is obtained through the Eq.
2.2.12

Introducing a dimensionless variable v in order to interpolate between 0 and k2max we can set

k2 = vk2max; 0 ≤ v ≤ 1 , (2.2.26)

and rewrite the measure over k2 in the phase space Eq.2.2.17 as:

dk2 = dv Q2 (1− x̂)(1− ẑ)

x̂
(2.2.27)

with v ranging from 0 to 1. Furthermore, the phase space dϕn(k; k1, . . . , kn) can be viewed
as a phase space with the same structure as in deep-inelastic scattering, where the incoming
momentum is k2. Here, the variable k is now integrated over and vanishes in the soft limit. As
shown in Ref.[25], it can be written in terms of a dimensionless integration measure, with the
dimensional dependence contained in a power of k2. Thus, using Eq. (4.17) of Ref.[25] we obtain:

dϕn(k; k1, . . . , kn) = 2π

[
N(ϵ

2π

]n−1

(k2)n−2−(n−1)ϵdΩn−1(ϵ), (2.2.28)

where N(ϵ) = 1
2(4π)2−2ϵ and

dΩn−1(ϵ) = dΩ1 . . . dΩn−1

∫ 1

0
dzn−1z

(n−3)−(n−2)ϵ
n−1 (1−zn−1)

1−2ϵ· · ·
∫ 1

0
dz2z

−ϵ
2 (1−z2)1−2ϵ . (2.2.29)

The definition of the dimensionless zi variables is irrelevant here.
We can finally consider the double-soft limit of the phase space. Eq.2.2.12 implies that k2 −→ 0

as both x̂ and ẑ approach 1. Furthermore, as shown in Eq.2.2.28 the dimensional dependence of
the phase space dϕn(k; k1, . . . , kn) is entirely contained in powers of a soft scale:

Λds = k2max = Q2(1− x̂)(1− ẑ)(1 +O(1− x̂) +O(1− ẑ)). (2.2.30)
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Hence, from Eq.2.2.25 the double-soft limit dependence on x̂, ẑ → 1 for the SIDIS phase space is
given by the soft scale in Eq.2.2.30. In other words, since the remain integral of the phase space
ranging from 0 to 1, and the SIDIS differential partonic cross-section is a function of the scaling
x̂, ẑ and the hard scale Q2 we obtain that

dσ̂

dẑ
(Q2, x̂, ẑ) =⇒

double-soft
limit

dσ̂

dẑ
(Λds(Q

2, x̂, ẑ)) , (2.2.31)

hence we have just showed what has been anticipated in the sec. 1.4.3.
As it shown in Ref. [3], by replacing the kinematic variables Q2 with M2, the invariant mass

of the lepton pair, and the pair x̂, ẑ with x1, x2 defined in Sec. 2.1.2, the SIDIS double-soft limit
is equivalent to the double-soft limit of its crossed version: the Drell-Yan process at fixed rapidity
(DY).

2.2.3 Single-soft limit

We now focus on the single-soft limit, which is very similar to the double-soft limit discussed
above. Indeed, the double-soft limit is nothing but a particular case of the single-soft limit. In
particular, through the study of this limit we are able to understand the kinematical configuration
of the outgoing partons in the soft limits. As we note from Eq. 2.2.17 we have

n∑
i=1

ki = k . (2.2.32)

Instead, from Eqs. 2.2.11 and 2.2.12, in the single-soft limits, namely x̂→ 1 and ẑ fixed or ẑ → 1
and x̂ fixed, we obtain the conditions

pt = 0 → kt = 0 , k2 = 0 . (2.2.33)

Therefore, in the Breit frame as defined above we obtain

p = (−pz, 0, 0, pz) , (2.2.34)

k =

(
pz +

s+Q2

2Q
, 0, 0,−pz +

s−Q2

2Q

)
. (2.2.35)

Hence,

2
n∑

i=1

p · ki = 2p · k = sẑ =

{
0 if x̂→ 1 , ẑ fixed

s if ẑ → 1 , x̂ fixed
(2.2.36)

therefore using the momentum conservation relation given by the Eq. 2.2.15 we obtain that in
both single-soft limits, so also in the double-soft case, ki · kj = 0 for all i, j, so all the radiated
partons must be collinear. They are not necessarily soft, although some of them may be; the
only requirement is that their longitudinal momentum fractions combine in a way that satisfies
Eq. 2.2.35.

The phase space can again be written in the form of Eq. 2.2.17. In particular, Eq. 2.2.25
still holds and upper bound of k2 is still given by k2max Eq.2.2.12. Therefore, in the single-soft
cases by Eq. 2.2.28 we obtain that the dimensional dependence of the phase space is contained
in power of a soft scale

Λss =

{
Q2(1− x̂) [1 +O(1− x̂)] if x̂→ 1 , ẑ fixed

Q2(1− ẑ) [1 +O(1− ẑ)] if ẑ → 1 , x̂ fixed ,
(2.2.37)
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therefore

dσ̂

dẑ
(Q2, x̂, ẑ) =⇒

x̂−single-soft
limit

dσ̂

dẑ
(Λss(Q

2, x̂), ẑ) , (2.2.38)

dσ̂

dẑ
(Q2, x̂, ẑ) =⇒

ẑ−single-soft
limit

dσ̂

dẑ
(Λss(Q

2, ẑ), x̂) . (2.2.39)

Again, as for the double-soft case, these results are completely equivalent to the ones obtained
in the DY at fixed rapidity case [3]. Consequently, it is clear that the kinematic behaviour in the
soft limit is the same for the SIDIS and DY processes at fixed rapidity. The only difference lies
in the fact that the DY kinematic variables x1, x2 are both time-like, whereas in the SIDIS case,
x̂ is space-like and ẑ is time-like. This reflects the fact that one process is the crossed version
of the other: indeed, the outgoing quark and the incoming gauge boson in the SIDIS case are
exchanged in the DY case.



Chapter 3

Resummation

In this chapter, we provide the resummation formula for the SIDIS case in threshold limit. In
particular, we demonstrate how the enhanced logarithms introduced in Sec. 1.4.3 are mapped
into Mellin space, then we identify the enhanced logarithms in x̂ and ẑ space in the threshold
limit in the case of the SIDIS process. We then analyze how these terms are organized by the
resummation formula in terms of logarithmic towers in the double-soft limit. Consequently, we
provide an interpretation of the resummed terms in Mellin space in the single-soft limit. Finally,
we derive the resummation formula for a process with single scale dependence, explaining the
matching procedure and providing the resummation formula for both soft limits in the SIDIS
case.

3.1 Logarithm towers and Mellin space

As shown in Sec. 1.4.3, in the threshold limit, large logarithms in the form of plus distributions
appear in the partonic cross section. Specifically, these logarithms dominate the behaviour of the
partonic cross section in the soft limit. In the case of a single scale dependence z, which in the
threshold (or soft) limit approaches 1, these terms are given by Eq. 1.4.39. Then, they take the

form αs(µ)
n
[
lnk(1−x̂)

1−x̂

]
+
, where typically 0 ≤ k ≤ 2n − 1, these logarithms terms are enhanced

in the limit z → 1. Threshold resummation accounts for these large logarithmic terms to all
orders in the strong coupling. However, as shown in [25], the resummation procedure cannot
be performed in z-space. This problem can, however, be resolved by transforming to Mellin
space and performing the resummation in that space. Therefore, we briefly review how the plus
distributions showed above appear in Mellin space.

As shown in appendix A.2, the Mellin transform exchanges the threshold variable z with a
complex with a complex variable N , indeed given a function f(z) its Mellin transformation is

M[f(z)](N) =

∫ 1

0
dz zN−1f(z) . (3.1.1)

We note that, in the limit |N | → ∞, the only finite contribution to the integral comes from f(1).
Hence, the two limits z → 1 and |N | → ∞ lead to the same result.

So we define,

Ip :=

∫ 1

0
dz zN−1

[
lnp(1− z)

(1− z)

]
+

=

∫ 1

0
dz
zN−1 − 1

1− z
lnp(1− z) . (3.1.2)

Thus, we define the generating functional

G(N, η) :=

∫ 1

0
d(zN−1 − 1)(1− z)η−1 (3.1.3)

49
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we can obtain the plus-distribution term in Mellin space through

Ip =
dp

dηp
G(N, η)

∣∣∣∣
η=0

. (3.1.4)

We can recognize the definition of the Euler Beta function in the definition of the generating
functional, namely

G(N, η) = B(N, η)− 1

η
=

Γ(N)Γ(η)

Γ(N + η)
− 1

η
, (3.1.5)

where in the second equality we used the Stirling approximation. We now focus on the case p = 1,
then taking the first derivative of the above expression in relation to 3.1.4 we obtain

I1 =
1

2

[
(ψ(0)(N) + γE)

2 + ζ(2)− ψ(1)(N)
]
, (3.1.6)

where γE is Euler-Mascheroni constant, ζ(n) denotes the Riemann zeta function evaluated at n,
and ψ(n) is the n−th polygamma function, that is defined as follows

ψ(n)(x) =
dn+1

dxn+1
ln Γ(x) . (3.1.7)

In the large N−limit, it can be shown that

I1 =
1

2
ln2(NeγE ) +

ζ(2)

2
+O

(
1

N

)
. (3.1.8)

If we repeat the procedure for p = 0, we obtain

I0 = − ln(NeγE ) +O
(

1

N

)
. (3.1.9)

In general, at order p = n, we obtain a term proportional to lnp+1(NeγE ). This provides the
leading logarithmic conversion valid for N → ∞,[

lnp(1− z)

(1− z)

]
+

⇔ lnp+1 (NeγE ) . (3.1.10)

In this thesis, in order to obtain the Mellin transformation of the partonic coefficient function we
use the correspondence between the Mellin transformation and harmonic sums [27, 28]. Specifi-
cally, the analytical continuation of harmonic sums in Mellin space can be exploited to express
the Mellin transformation of distributions in terms of harmonic sums. Through this approach,
the Mellin transformation of the plus distribution can be rewritten as a linear combination of
harmonic sums. Consequently, the behavior in Mellin space for large N can be easily determined
by extracting the leading coefficient in the expansion of the harmonic sums. For the definition
and a complete overview about the harmonic sums one can see [28].

We now focus on the SIDIS case, which has two scaling variables x̂ and ẑ, then we can have
logarithms terms written in terms of either x̂ or ẑ. In particular, at the kth order in perturbation
theory, we have the following contributions [29]

• The delta contributions, αk
sδ(1− x̂)

[
lnn(1−ẑ)
(1−ẑ)

]
+
and αk

sδ(1− ẑ)
[
lnm(1−x̂)
(1−x̂)

]
+
with n ≤ 2k− 1

and m ≤ 2k − 1.

• The mixed contributions, αk
s

[
lnm(1−x̂)
(1−x̂)

]
+

[
lnn(1−ẑ)
(1−ẑ)

]
+
with m+ n ≤ 2k − 2
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For the SIDIS case, from the above considerations, in the double-soft limit case it is clear that
summing the mixed and delta contributions in Mellin space yields contributions of the form

αk
sLm m ≤ 2k , (3.1.11)

where

L :=
1

2
(ln N̄ + ln M̄) (3.1.12)

N̄ = NeγE M̄ =MeγE . (3.1.13)

For convenience we include the factor eγE which appears in the limit of the logs Mellin transfor-
mation in the definition of the Mellin variable. In this manner we simplify a lot the calculations.

Figure 3.1: All-order threshold logarithmic structure [30]

From Eq. 3.1.11 it is easy to understand that the enhanced logarithms which appear to all
orders in perturbation thepry follows a peculiar hierarchy which is displayed in Fig.3.1. Specifi-
cally, the row denotes the fixed order calculation while the columns denotes how the logarithms
that are summed through the resummation formula, as it is proved in the next chapter. Towers
of logs are denoted by the notation LL (leading logarithm), NLL (next-to-leading logarithm),
NNLL and so on; where the LL tower contains the most significant corrections.

In conclusion, we express in Mellin space the soft scales on which the partonic cross section
depends in the threshold limit. We associate to the x̂ scaling the N̄ mellin variable, while to ẑ
the M̄ variable.

Therefore, from above considerations for the single-soft limits we obtain that the scales in Eq.
2.2.37 in Mellin space becomes

Λss =

{
Q2

N̄
N̄ → ∞, M̄ fixed

Q2

M̄
M̄ → ∞, N̄ fixed ,

(3.1.14)

Whereas, for the double-soft case, using an approach similar to the one applied above to establish
the correspondence between a single-soft scale and its Mellin-space representation, one can, with
extra work, show—as done in the appendix of [3]—that the double-soft scale in Eq. 2.2.30
transforms in Mellin space as

Λds =
Q2

N̄M̄
N̄ → ∞, M̄ → ∞ . (3.1.15)

In particular, in the appendix of [3] is showed that in the double-soft limit one can use as
resummation formula of the DY at fixed rapidity, and so also for the SIDIS process, the same
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resummation formula of the inclusive case. From [25] we know that the soft scale of the inclusive
case in Mellin space is Q2/N̄2, therefore

C̃res
SIDIS(N̄ , M̄) = C̃res

DY,ŷ(N̄ , M̄) = C̃res
DY(

√
N̄M̄) , (3.1.16)

where C̃res is the resummed coefficient function. The aim of the next chapter is to find an explicit
expression for C̃res.

3.1.1 Interpretation of the single-soft resummation

Before proceeding further, it is important to understand the meaning of the single-soft resum-
mation. In Sec. 3.1, we discussed which terms the resummation formula sums in the double-soft
limit; however, we still need to interpret the terms summed in the single-soft regime.

Firstly, we note that the contributions from enhanced logarithms to the fixed-order correc-
tions of the coefficient function in both soft limits arise from the distributional terms, i.e., those
involving either δ- or +-distributions. In fact, all other terms are suppressed, as they are propor-
tional to at least the first power of either 1/(NM), ln(N̄)/(NM), or ln(M̄)/(NM), all of which
approach zero in both the double-soft and single-soft limits. However, in the single-soft case, one
of the two Mellin variables is kept constant, which allows some contributions of the type either
1/N or 1/M to survive compared to the double-soft limit.

Hence, we conclude that, compared to the double-soft case, the single-soft resummation for-
mula also resums the next-to-leading power (NLP) corrections, which take the form of either
ln(N̄)k/M j or ln(M̄)k/N j with k ≥ 0, j > 0, but never terms like ln(N)k/N j or ln(M)k/M j .

3.2 Single-scale resummation

In this section, we derive the resummation formula for the partonic coefficient function in the case
of single-scale dependence in the soft limit. As shown in the previous chapter, SIDIS in both the
double-soft and single-soft limits serves as an example of single-scale dependence. The following
derivation is based on [25] and [31]. The key difference between the two works lies in the further
assumption of full factorization of the soft singularities. The goal is to obtain a resummation
formula that is valid to all orders. To achieve this, we use a renormalization group argument.

We note that, in this section, in contrast to the notation introduced in Sec. 2.1.4 we avoid to
use the Tilde symbol over quantities expressed in Mellin space to keep the notation as simple as
possible. The correct notation will be restored in the next section.

We express the SIDIS hadron cross section in double-Mellin space, as shown in Eq.2.1.50 but
with the scale dependences restored:

σ(N,M,Q2) =
∑
i,j

fi(N,µ
2
F )D

H2
j (M,µ2F )σ̂ij

(
N,M,Q2, αs(µ

2
R)
)
, (3.2.1)

here, µR and µF are renormalization and factorization scales. Because of the arbitrariness of the
two varibles µR, µF we can choose them to be equal, so µR = µF = µ, therefore:

σ(N,M,Q2) =
∑
i,j

fi(N,µ
2)DH2

j (M,µ2)σ̂ij
(
N,M,Q2, αs(µ

2)
)
. (3.2.2)

To obtain the single-scale resummation formula, we use a cross-section that depends on only
one Mellin moment, N . By the end of the chapter, we recover the SIDIS case, where both the
double-soft and single-soft limits depend on the two Mellin variables, N̄ and M̄ . Finally, we
remark that the hadronic cross section cannot depend on an arbitrary scale such as µ.
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We note that resummation is expressed for a coefficient function. The coefficient function is
defined factoring out of the cross-section the Born-level expression

σ̂ij
(
N,Q2, αs(Q

2)
)
= Cij(N,Q

2/µ2, αs(µ
2))σ0ij

(
Q2
)
. (3.2.3)

Furthermore, in the soft limit, only diagonal partonic channels are unsuppressed, resummation
can be performed independently in the quark singlet and gluon channel and we will consequently
suppress the parton indices i, j.

The argument is based on the observation that, due to collinear factorization, the physical
anomalous dimension

γ(N,αs(Q
2)) =

d

d lnQ2
lnC

(
N,αs(µ

2),
µ2

Q2

)
, (3.2.4)

is renormalization-group invariant and finite when expressed in terms of the renormalized coupling
αs(µ

2).
We now consider the perturbative expansion of the bare coefficient function in powers of the

bare coupling constant, which in Mellin-space is given by:

Cb(N,Q2, αb
s, ϵ) =

∞∑
n=0

(αb
s)

nCb
n(N,Q

2, ϵ) , (3.2.5)

where we adopted the dimensional regularization with d = 4−2ϵ space-time dimensions and with
bmeans bare. We now recall that the renormalized coefficient function C undergoes multiplicative
renormalization. This means that all divergences can be removed from the bare coefficient func-
tion Cb(N,Q2, αb

s, ϵ) (Eq.3.2.5) by defining a renormalized coupling constant αs(µ
2) according to

the implicit equation

αb
s(µ

2, αs(µ
2), ϵ) = µ2ϵαs(µ

2)Z(αs)(αs(µ
2), ϵ) , (3.2.6)

and a renormalized coefficient function according to

C

(
N,

Q2

µ2
, αs(µ

2)

)
= Z(C)(N,αs(µ

2), ϵ)Cb(N,Q2, αb
s, ϵ) . (3.2.7)

Where Z(αs) and Z(C) are computable in perturbation theory and have multiple poles at ϵ = 0.
Moreover, thanks to dimensional analysis, we find that the dependence of Cb on Q2 and αb

s

is only through the dimensionless combination Q−2ϵαb
s, namely

Cb(N,Q2, αb
s, ϵ) = Cb(N,Q−2ϵαb

s, ϵ) . (3.2.8)

Therefore, by the independence of Z(C) on Q2, and using Eq.3.2.8 the anomalous dimension γ
can be rewritten as:

γ(N,αs(Q
2)) = −ϵαb

s

d

dαb
s

lnCb(N,Q2, αb
s, ϵ) . (3.2.9)

Note that for a single-scale process in the soft limit the dimensional dependence of the phase
space, therefore of the coefficient function, is through a fixed combination of the scale and the
scaling variable

Λa(x, λ
2) = λ2(1− x)a a ∈ N , (3.2.10)

where, for example, from [25] a = 1 for DIS and a = 2 for DY, otherwise for the SIDIS one can
seen the Eqs. 2.2.37,2.2.30. This implies that Mellin-space coefficient function only depends on
N through the dimensional variable

Λ̄a(N,λ
2) =

λ2

Na
a ∈ N . (3.2.11)
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We now consider the further assumption of full factorization of the soft scales singularities.
This in turn implies that the bare coefficient function C(0) in Mellin space factorizes in the product
of two bare coefficient functions

Cb(N,Q2, αb
s, ϵ) = C(b,c)(Q2, αb

s, ϵ)C
(b,l)(Λ̄a(N,Q

2), αb
s, ϵ) , (3.2.12)

where C(b,c) collects virtual contributions, that have Born kinematics (hence, C(b,c) does not
depend on N), and C(b,l) collects contributions due to real emission. The two bare coefficients
function can be written in power series as

C(b,c)(Q2, αb
s, ϵ) =

∞∑
n=0

(
αb
s

)n
Q−2ϵnC(b,c)

n (ϵ) , (3.2.13)

C(b,l)(Λ̄a(N,Q
2), αb

s, ϵ) =

∞∑
n=0

(
αb
s

)n
Λ̄−2ϵn
a C(b,l)

n (ϵ) . (3.2.14)

Hence, we can rewrite the anomalous dimension as

γ(Q2, αs(Q
2)) = γc

(
Q2

µ2
, αs(µ

2), ϵ

)
+ γl

(
Λ̄a(N,Q

2)

µ2
, αs(µ

2), ϵ

)
, (3.2.15)

γc
(
Q2

µ2
, αs(µ

2), ϵ

)
:= −ϵd lnC

(0,c)

d lnαb
s

(Q2, αb
s, ϵ) , (3.2.16)

γl
(
Λ̄a(N,Q

2)

µ2
, αs(µ

2), ϵ

)
:= −ϵd lnC

(0,l)

d lnαb
s

(Λ̄a(N,Q
2), αb

s, ϵ) . (3.2.17)

It is important to stress that γc and γl are not individually finite for ϵ −→ 0, and thus depend a
priori on the scale µ. However, their sum, namely the physical anomalous dimension γ is finite
and renormalization group invariant. Hence deriving both sides of Eq.3.2.15 with respect to µ2

we obtain

lim
ϵ→0

dγc

d lnµ2

(
Q2

µ2
, αs(µ

2), ϵ

)
= −g(αs(µ

2)) , (3.2.18)

lim
ϵ→0

dγl

d lnµ2

(
Λ̄a(N,Q

2)

µ2
, αs(µ

2), ϵ

)
= g(αs(µ

2)) . (3.2.19)

Here, g(α(µ2)) is finite power series of the coupling constant αs(µ
2). Therefore, by solving RGE

for both γl and γc and by adding the solutions, we obtain the following resummation formula for
the anomalous dimension:

γ(N,αs(Q
2)) = g̃0(αs(Q

2)) +

∫ Λ̄2
a(N,Q2)

Q2

dk2

k2
g(αs(k

2)) (3.2.20)

where g0 is an analytic function of its argument.
Therefore, using Eq. 3.2.20 for the physical anomalous dimensions that emerge from the RG

argument, we obtain a resummed expression for the coefficient function of the form

Cres

(
N,

Q2

µ2
, αs(µ

2)

)
= g0

(
Q2

µ2
, αs(Q

2)

)
exp


∫ Q2

µ2

dk2

k2

∫ k2

Na

k2

dλ2

λ2
g(αs(λ

2))

 , (3.2.21)

where

g0(αs) = 1 +
∞∑
i=1

g
(i)
0

(αs

π

)i
, (3.2.22)

g(αs) =
∞∑
i=1

gi

(αs

π

)i
. (3.2.23)
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We now want to rewrite the resummation formula in an equivalent form, but as we show in
the next sections, that it is more convenient for our aims.

We introduce the standard anomalous dimension γAP , defined by

µ2
dF (N,µ2)

dµ2
= γAP (N,αs(µ

2))F (N,µ2) , (3.2.24)

Where F , in the inclusive case, represents the PDF in DIS or the luminosity in DY, where by
luminosity we mean the product of the two PDFs of the incoming partons. Obviously, in non-
inclusive cases such as DY and SIDIS, F is a function of both Mellin variables N and M . For
instance, in the SIDIS case, it corresponds to the product of the PDF and the FF.

Therefore, the anomalous dimension can be rewritten as

γ(N,αs(Q
2)) =

d

d lnQ2
lnC

(
N,αs(µ

2),
µ2

Q2

)
= γAP (N,αs(Q

2)) +
d

d lnQ2
lnC

(
N,αs(Q

2), 1
)

(3.2.25)

where, in the second equation we used Eq. (3.2.1) with Q2 = µ2.
From the last equation, it follows that the physical and standard anomalous dimensions

coincide at leading order in αs hence at NLO in perturbation theory, but differ beyond leading
order. Then, we now note that∫ Q2

Q2
0

dk2

k2
γ(N,αs(k

2)) =

∫ Q2

Q2
0

dk2

k2
γAP (N,αs(k

2))

+ lnC
(
N,αs(Q

2), 1
)
− lnC

(
N,αs(Q

2
0), 1

)
(3.2.26)

It is thus natural to separate in Eq. 3.2.21 the contribution from the standard anomalous
dimension and that from the coefficient function. To achieve this, we perform the change of
variable λ2 = k2/n and interchange the integration over k2 and dn in Eq. 3.2.21:

Cres

(
N,

Q2

µ2
, αs(µ

2)

)
= g0

(
αs(Q

2),
Q2

µ2

)
exp

{
−
∫ Na

1

dn

n

∫ Q2

nµ2

dk2

k2
g(αs(k

2/n))

}
, (3.2.27)

hence, from Eq. 3.2.26 we can rewrite the resummation formula as

Cres

(
N,

Q2

µ2
, αs(µ

2)

)
= g0

(
αs(Q

2),
Q2

µ2

)
×

exp

{∫ Na

1

dn

n

[∫ nµ2

Q2

dk2

k2
A(αs(k

2/n))−D(αs(Q
2/n))

]}
, (3.2.28)

where again A,D are power series in αs. Specifically, A is the contribution given by the standard
anomalous dimension while D is the extra terms which provide the difference between γ and γAP .
Consequently, we have:

A(αs) =

∞∑
i=1

A(i)
(αs

π

)i
, (3.2.29)

D(αs) =

∞∑
i=i

D(i)
(αs

π

)i
. (3.2.30)

Including the first k + 1 terms in the perturbative expansion of A and g0, and the first k terms
in the perturbative expansion of D, leads to resumattion with NkLL accuracy.
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Finally, we can note that for large x it can be proved [32] that only the diagonal splitting
functions have an enhancement behaviour, and it is given by:

Pii(x) ≃
Ai

(1− x)+
+Biδ(1− x) . (3.2.31)

Thus, from DGLAP equations (Sec. 1.5) A (sometimes called Γcusp(αs)) is given by

γAP (N,αs) = −
∫ 1

0
dxxN−1P (x) (3.2.32)

lim
N→∞

γAP (N,αs) = Γ(cusp)(αs) ln N̄ + const., (3.2.33)

Γ(cusp)(αs) = A(1)αs

π
+A(2)

(αs

π

)2
+ . . . (3.2.34)

where P is the splitting function.

As a final step, it is useful to rewrite the resummation formula reported in Eq. 3.2.28 with
one less integration. So, taking the exponential∫ Na

1

dn

n

[∫ nµ2

Q2

dk2

k2
A

(
αs

(
k2

n

))
−D

(
αs

(
Q2

n

))]
=

∫ Na

1

dn

n

[∫ nQ2

Q2

dk2

k2
A

(
αs

(
k2

n

))
+

∫ nµ2

nQ2

dk2

k2
A

(
αs

(
k2

n

))
−D

(
αs

(
Q2

n

))]
=

∫ Na

1

dn

n

∫ Q2

Q2

n

dq2

q2
A(αs(q

2)) +

∫ Na

1

dn

n

∫ µ2

Q2

dq2

q2
A(αs(q

2))−
∫ Q2

Q2

Na

dq2

q2
D(αs(q

2)) =

∫ Q2

Q2

Na

dq2

q2
A(αs(q

2))

∫ Na

Q2

q2

dn

n
+ lnNa

∫ µ2

Q2

dq2

q2
A(αs(q

2))−
∫ Q2

Q2

Na

dq2

q2
D(αs(q

2)) =

∫ Q2

Q2

Na

dq2

q2

[
A(αs(q

2)) ln
Naq2

Q2
−D(αs(q

2))

]
+ lnNa

∫ µ2

Q2

dq2

q2
A(αs(q

2)) , (3.2.35)

where in third step we made the change of variables q2 = k2/n for the first two integral, while
for the third q2 = Q2/n. Therefore, Eq. 3.2.28 can be written as

Cres

(
N,

Q2

µ2
, αs(µ

2)

)
= g0

(
αs(Q

2),
Q2

µ2

)
×

exp

{∫ Q2

Q2

Na

dq2

q2

[
A(αs(q

2)) ln
Naq2

Q2
−D(αs(q

2))

]

+ lnNa

∫ µ2

Q2

dq2

q2
A(αs(q

2))

}
. (3.2.36)

3.2.1 Matching procedure

From Eqs. 3.2.36 and 3.2.28, we see that the resummation formula exponentiates the logarithms,
summing them to all orders. What remains to be determined are the coefficients of the power

series in the exponent, in our notation (Ai and Di), and the constant factors (g
(i)
0 ). To reach
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this aim, we can solve the integrals in the exponential of our resummation formula, then we can
expand it to a fixed order in perturbation theory, for instance at order αn

s .

This computation should yield the fixed-order result (in Mellin space), which must coincide
with the fixed-order calculation of the partonic cross section in the same space in the threshold
limit. By comparing the two expressions, we can extract the coefficients of the power series,
which can then be substituted back into the all-order resummation formula. From Fig. 3.1 it is
clear which towers of logarithms we are able to determine through the coefficient obtained by the
comparison with the n−th fixed order. In particular, from the NnLO fixed order we predict the
towers of logs up to NnLL.

In the next chapter, we determine the coefficients up to NNLL for the resummation of the
SIDIS process.

Now that we have determined how to obtain the resummation formulas, it is important to
note that these formulas are valid only in the threshold region. Outside of this kinematic regime,
we must rely on the fixed-order calculation. To combine both results, we must subtract the fixed-
order expansion of the resummation formula up to the highest order of the fixed-order calculation,
ensuring that these terms do not appear twice, as that would lead to a non-physical result.

3.2.2 SIDIS resummation formulas

In this thesis, for simplicity we work withQ2 = µ2F = µ2R, because the dependence by the arbitrary
scales µ2R and µ2F can be restored at the end of the calculations through the RGE and DGLAP
equations. Therefore, from Eq. 3.1.16 and from the formula in Eq.3.2.36 obtained for the re-
summation formulas for processes that have a single-scale dependence in the soft-limit, we obtain,

double-soft limit resummation formula:

C̃res
(
N,M,αs(Q

2)
)
= g0

(
αs(Q

2)
)
×

exp

{∫ Q2

Q2

N̄M̄

dk2

k2

[
A(αs(k

2)) ln
N̄M̄k2

Q2
−D(αs(k

2))

]}
, (3.2.37)

or equivalently using Eq. 3.2.28

C̃res
(
N,M,αs(Q

2)
)
= g0

(
αs(Q

2)
)
×

exp

{∫ N̄M̄

1

dn

n

[∫ nQ2

Q2

dk2

k2
A(αs(k

2/n))−D(αs(Q
2/n))

]}
. (3.2.38)

On the other hand, for the single-soft limits, the behaviour of the resummation formula is some-
what different. In both single-soft limits, we have a single-scale dependence, as shown in Sec.
2.2.1. However, now one of the two Mellin variables is constant, meaning that the coefficients of
the resummation formula must depend on this Mellin variable. Consequently, from the single-soft
scales in Eq. 3.1.14, we obtain,

x̂-single-soft limit resummation formula:

C̃res
(
N,M,αs(Q

2)
)
= g0

(
M,αs(Q

2)
)
×

exp

{∫ Q2

Q2

N̄

dk2

k2

[
A(M,αs(k

2)) ln
N̄k2

Q2
−D(M,αs(k

2))

]}
, (3.2.39)
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or equivalently

C̃res
(
N,M,αs(Q

2)
)
= g0

(
M,αs(Q

2)
)
×

exp

{∫ N̄

1

dn

n

[∫ nQ2

Q2

dk2

k2
A(M,αs(k

2/n))−D(M,αs(Q
2/n))

]}
, (3.2.40)

ẑ-single-soft limit resummation formula:

C̃res
(
N,M,αs(Q

2)
)
= g0

(
N,αs(Q

2)
)
×

exp

{∫ Q2

Q2

M̄

dk2

k2

[
A(N,αs(k

2)) ln
M̄k2

Q2
−D(N,αs(k

2))

]}
, (3.2.41)

or equivalently

C̃res
(
N,M,αs(Q

2)
)
= g0

(
N,αs(Q

2)
)
×

exp

{∫ M̄

1

dn

n

[∫ nQ2

Q2

dk2

k2
A(N,αs(k

2/n))−D(N,αs(Q
2/n))

]}
. (3.2.42)



Chapter 4

NNLL SIDIS resummation

In this chapter, we derive the resummation formula coefficients at NNLL accuracy for the qq
channel of the SIDIS process in both the double-soft and single-soft limits, using the matching
procedure. This channel contains, in fact, the most significant logarithmic corrections.

In particular, in Sec. 4.2 we report the theoretical predictions for the DY at fixed rapidity
provided by [3] and from then we establish the theoretical predictions at NNLL for the SIDIS
case. After that, we verify explicitly these predictions for SIDIS case, providing for the first time
the single-soft resummation of this process.

4.1 NS transverse coefficient function up to NNLO

For the matching procedure Sec. 3.2.1, we need a fixed-order result at NNLO. To this aim,
we use the SIDIS coefficient functions Cqq recently obtained in [26] at NNLO. We note that,
more recently, in [33] they obtained the polarized case and also the same results of [26] for the
unpolarized case at NNLO. As it shown in Secs. 3.1.1 and 3.1 the double- single-soft limits of
the coefficient function are provided by its delta and plus-distribution contributions.

In this section, we report some properties of the distributional behaviour of the coefficient
function Cqq. As shown in Sec. 2.1, all coefficient functions are split into two contributions,
representing the perturbative contributions to the transverse structure function (FT ), namely
CT
qq, and to the longitudinal structure function (FL), namely CL

qq. The aforementioned work

provides both CT
qq and CL

qq.

First, we note that CL
qq does not contain distributional contributions; therefore, we focus only

on the study of CT
qq. Furthermore, as shown in Sec. 1.5.1, beyond NLO, CT

qq can be split into a
NS and a PS contribution. Again, the PS contribution does not contain any distributional terms.

Therefore, the resummation problem concerns only the non-singlet contribution CT
qq up to

NNLO. Hence, the distributional part of the coefficient function can be written as a perturbative
expansion in αs as follows

CT,d
qq = C(0)

qq +
(αs

π

)
CT,d,(1)
qq +

(αs

π

)2
CT,d,NS,(2)
qq +O(α3

s) , (4.1.1)

where CT,d represents the distributional part of the coefficient function. Furthermore at the LO
from Callan-Gross relation the longitudinal contribution is not present, in particular

C(0)
qq (x̂, ẑ) = δ(1− x̂)δ(1− ẑ) , (4.1.2)

that in Mellin space becomes

C̃(0)
qq (N,M) = 1 . (4.1.3)

59
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Finally, taking the mellin-transformation of Eq. 4.1.1, in either single- or double-soft limit
C̃T
qq could be expressed as:

C̃T,d
qq (N,M) = 1 +

(αs

π

)
C̃T,d,(1)
qq (N,M) +

(αs

π

)2
C̃T,d,NS,(2)
qq (N,M) +O(α3

s) , (4.1.4)

C̃T
qq(N,M) ≃ C̃T,d

qq (N,M) when either N , M or both approach to ∞. (4.1.5)

where N,M are the mellin moments of x̂, ẑ respectively, hence, as x̂ → 1 then N → ∞ and
as ẑ → 1 then M → ∞. We remember that C̃T is the Mellin transformation of the coefficient
function CT , then C̃T,d is the Mellin transformation of the distributional part of the coefficient
function. Finally, as it shown in the next section, we observe that the single-soft cases the
coefficient function needs a further modification.

In order to provide the Mellin transformation of the distributional part of the coefficient

function we extracted them from the contributions to the coefficient function at NLO C
T,(1)
qq and

at NNLO C
T,(2)
qq provided in [26]. In this manner, we have also showed that CL and CPS do not

contain any distributional contribution.
Therefore, we derived the Mellin transformation of the distributional contributions of CT

using the Mathematica package MT in particular its function MTMellin (for the package usage see
[34]). Consequently, we proceed to compute their asymptotic behaviour in single- and double-
soft limits. As shown in appendix A.2, the Mellin transformation of the plus distributions that
appear in the QCD coefficient functions leads to harmonic sums. Hence, to treat the asymptotic

behaviour in Mellin space of the coefficients functions C̃
T,(1)
qq and C̃

T,(2)
qq we used the Mathematica

package HarmonicSums, in particular its function SExpansion (for the package usage see [28]).

4.2 Theoretical predictions at NNLL

In this section we provide a theoretical prediction for the SIDIS resummation formula at NNLL
in both double- and single-soft limits based on the result provided in [3] for the DY process at
fixed rapidity. We anticipate that the goal of the next sections is to verify these predictions,
consequently providing for the first time the asymmetric resummation for the SIDIS process. For
the DY we follow the notation introduced in Eq. 2.1.21 in Mellin-space we associate to the x̂1
variable the moment N , while to the variable x̂2 the moment M .

As it shown in [3] and [4], and as we verify explicitly in the next chapter, in the double-soft
limit at NNLL the resummation formula for both SIDIS and DY at fixed rapidity in Eq. 3.2.37
becomes

C̃ds,T
qq

(
N,M,αs(Q

2)
)
= g0,(ds,qq)

(
αs(Q

2)
)
×

exp

{∫ Q2

Q2

N̄M̄

dk2

k2

[
Aqq(αs(k

2)) ln
N̄M̄k2

Q2
−D

(2)
ds,qq

α2
s(k

2)

π2

]}
, (4.2.1)

where with the subscript ds we mean double-soft and A is the cusp function, then

Aqq(αs) = A(1)
qq

αs

π
+A(2)

qq

α2
s

π
+A(3)

qq

α3
s

π
+ . . . , (4.2.2)

and

g0,(ds,qq)(αs) = 1 + g
(1)
0,(ds,qq)

αs

π
+ g

(2)
0,(ds,qq)

(αs

π

)2
+ . . . (4.2.3)

Therefore, in double-soft limit the D1 term vanishes. In the next section, we verify up to α2
s

that the coefficients Aqq are the coefficients of the cusp, and we obtain the explicit expression for

D
(2)
qq ,g

(1)
0,(ds,qq) and g

(2)
0,(ds,qq).
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The work in [3] also presents a resummation formula for the DY process at fixed rapidity
up to NNLL. Specifically, this resummation formula using the soft-scale of the double-soft limit
taking one of the two Mellin variables as fixed produce both the double- and single-soft limits.
In this manner, one can obtain the double-soft coefficients simply by sending the fixed Mellin
variable to infinity.

This result is derived in [3] by translating a previous finding obtained within the framework of
Soft-Collinear Effective Theory (SCET) [35] into QCD. However, explaining how SCETs work is
beyond the scope of this thesis, but an introduction to the topic can be found in [13]. Therefore,
we directly report the translated result. For instance, for the x̂1−single-soft limit we have

C̃SCET,T
qq

(
N,M,αs(Q

2)
)
= Ĥ

(
αs(Q

2)
)
exp

{∫ Q2

Q2

N̄M̄

dk2

k2

[
Γcusp(αs(k

2)) ln
N̄M̄k2

Q2

−P̂ (0)
qq (M)

αs(k
2)

π
−
(
D

(2)
ds,qq − πβ0F (M) + P̂ (1)

qq (M)
) α2

s(k
2)

π2

]}
,

(4.2.4)

where, taking the space-like splitting function Pqq, we define, with a slight abuse of notation,

Pqq(M) =

∫ 1

0
dx̂M−1

2 Pqq(x̂2) , (4.2.5)

Pqq(M) = P (0)
qq

αs

π
+ P (1)

qq

α2
s

π
+ . . . , (4.2.6)

P̂ (i)
qq (M) = Pqq(M)− lim

M→∞
Pqq(M) , (4.2.7)

whereas the prefactor Ĥ is given by

Ĥ = 1 + g
(1)
0,(ds,qq)

αs

π
+ F (M)

αs

π
+O(α2

s) . (4.2.8)

Thus, it is straightforward to generalize the double-soft result in order to match the SCET result.
In fact, we can do it simply writing

C̃gen,T
qq

(
N,M,αs(Q

2)
)
= ggen0,qq

(
M,αs(Q

2)
)
×

exp

{∫ Q2

Q2

N̄M̄

dk2

k2

[
Aqq(αs(k

2)) ln
N̄M̄k2

Q2
−Dgen

qq (M,αs(k
2))

]}
, (4.2.9)

where

ggen0,qq(M,αs) = 1 + g
gen,(1)
0,qq (M)

αs

π
+ g

gen,(2)
0,qq (M)

(αs

π

)2
+O(α3

s) (4.2.10)

Dgen
qq (M,αs) = Dgen,(1)

qq (M)
αs

π
+Dgen,(2)

qq (M)
(αs

π

)2
+O(α3

s) (4.2.11)

and

g
(1)
0,(ds,qq) → g

gen,(1)
0,qq (M) ≡ Ĥ1 = g

(1)
0,(ds,qq) + F (M) , (4.2.12)

D
(1)
ds,qq → Dgen,(1)

qq (M) = P̂ (0)
qq (M) , (4.2.13)

D
(2)
ds,qq → Dgen,(2)

qq (M) = D
(2)
ds,qq − πβ0F (M) + P̂ (1)

qq (M) (4.2.14)
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In particular

F (M) = P̂ (0)
qq (M) ln M̄ + other terms , (4.2.15)

lim
M→∞

F (M) = 0 , (4.2.16)

lim
M→∞

P̂ (i)
qq (M) = 0 , (4.2.17)

lim
M→∞

g
gen,(2)
0,qq (M) = g

(2)
0,(ds,qq) . (4.2.18)

the complete definition of F (M) for the DY at fixed rapidity is given in [3]. In the next sections,
we provide the complete F (M) function for the SIDIS case.

In DY at fixed rapidity, the x̂1- and x̂2-single-soft cases are identical since both variables are
the scaling variable of a PDF. Consequently, the splitting functions appearing in the resummation
formula are space-like in both cases. Therefore, changing M with N into the Eq. 4.2.9 we obtain
the resummation formula in the x̂2−single-soft limit.

On the contrary, in the SIDIS case, the behavior in the x̂- and ẑ-single-soft limits differs: x̂
is the scaling variable of a PDF, while ẑ is the scaling variable of a FF. Therefore:

• x̂−single-soft limit: we need to use the time-like splitting function P T,NS
qq (ẑ) in Mellin space;

• ẑ−single-soft limit: we need to use the space-like splitting function PNS
qq (x̂) in Mellin sapce.

It is important to note that in the notation of [26] the NS contributions that into account all
the contributes q → q. Therefore, it also considers diagrams of the type q → qqq̄, where there
are two quark lines of the same flavour and one tags a q from one line and a q from the other.
These terms in double-soft limit vanish, but in the single-soft limit they are still present. In this
case, we cannot use the Pqq splitting function in order to predict the soft corrections due to these
diagrams, because we are considering only the case where we have only one fermion line. So,
to verify our theoretical predictions in the single-soft limit we have to subtract them from the
coefficient function Cqq.

Finally, we observe that in Eq. 4.2.9 we present the resummation formula for the single-soft
case of the DY process at fixed rapidity, which, with the above considerations, also applies to the
SIDIS case. However, we used the soft-scale of the double-soft limit, namely Q2/(N̄M̄). Thus,
in Eq. 4.2.9, the exponential also resums the ln M̄ terms, which are not large. In fact, when we
expand the resummation formula, these terms must vanish. It is now clear why we use P̂ instead
of P : we need to subtract the logarithmic terms that are not large in the single-soft limit. Indeed,
as shown in [3], if we use the scale Q2/N̄ instead of Q2/N̄M̄ , the resummation formula takes the
form of Eq. 4.2.9, but written in terms of the splitting functions without the constant terms and
the function F (M) without its logarithmic contributions.

4.3 Resummation formula expansion

To verify the theoretical predictions at NNLL from the previous section, we need to extract
the coefficients of the resummation formulas through the matching procedure. This requires
comparing the resummation formulas expanded up to NNLO with the soft-limits of the coefficient
function, also computed up to NNLO. Here, we provide the expanded expression of the SIDIS
resummation formulas obtained in Sec.3.2.2.

We start with the expanded expression for the double-soft limit. We take the resummation
formula as in Eq. 3.2.38. Firstly, we rewrite the first integral using RGE equation for the strong
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coupling as

∫ Q2

nQ2

dk2

k2
αs(k

2/n) =

∫ αs(Q2/n)

αs

dα

β(α)
α (4.3.1)

with αs = αs(Q
2) and

β(α) = −α2
(
β0 + β1α+ β2α

2 +O
(
α3
))

= −α2b0
(
1 + b1α+ b2α

2 +O
(
α3
))
. (4.3.2)

Where b0 = β0 and for i ̸= 0 bi =
βi

β0
. The values of βk up to k = 2 are given in appendix. B.

Whereas the second integrand can be rewritten with the following change of variables

∫ M̄N̄

1

dn

n
= − 1

b0αs

∫ 1−λ

1
dl , (4.3.3)

with

l ≡ 1− b0αs ln(n) , (4.3.4)

λ ≡ b0αs ln(N̄M̄) . (4.3.5)

We can apply this change of variable because, by using the RGE, the solutions of αs(Q
2/n) are

functions of αs and l; see Appendix B for the solutions up to third order. Hence, we can write
αs(Q

2/n) = αs(l).

At NNLL we need to expand A and g0 up to order 3 and D up to order 2, hence the
resummation formula becomes:

C̃ds,T
qq

(
N,M,αs(Q

2)
)
=
(
1 + g

qq,(1)
0 αs(Q

2) + g
qq,(2)
0 αs(Q

2)2
)
×

exp

{
− 1

b0αs

∫ 1−λ

1
dl

∫ αs(l)

αs

dα

[
A

(1)
qq

πb0

1

α+ b1α2 + b2α3

+
A

(2)
qq

π2b0

1

1 + b1α+ b2α2
+
A

(3)
qq

π3b0

α

1 + b1α+ b2α2

]
+

+
1

b0αs

∫ 1−λ

1
dlD(1)

qq

αs(l)

π
+D(2)

qq

(
αs(l)

π

)2
}

+O
(
α3
s

)
. (4.3.6)

Then, we perform the integrations in the exponential up to order αs obtaining

C̃ds,T
qq

(
N,M,αs(Q

2)
)
=
(
1 + g

qq,(1)
0 αs(Q

2) + g
qq,(2)
0 αs(Q

2)2
)
×

exp

(
1

αs
g1(λ) + g2(λ) + αsg3(λ)

)
+O

(
α3
s

)
, (4.3.7)
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with

g1(λ) =
A

(1)
qq

πb20
(λ+ (1− λ) ln(1− λ)) , (4.3.8)

g2(λ) =
A

(1)
qq b1
2πb20

(
2λ+ log2(1− λ) + 2 ln(1− λ)

)
− A

(2)
qq

π2b20
(λ+ log(1− λ))

+
D

(1)
qq ln(1− λ)

πb0
,

g3(λ) =
A

(1)
qq b21

πb20(1− λ)

(
λ2

2
+

1

2
ln2(1− λ) + λ ln(1− λ)

)

+
A

(1)
qq b2

πb20(1− λ)

(
log(1− λ)− λ log(1− λ)− λ2

2
+ λ

)

− A
(2)
qq b1

π2b20(1− λ)

(
λ2

2
+ λ+ log(1− λ)

)
+

A
(3)
qq λ2

2π3b20(1− λ)

− D
(2)
qq λ

π2b0(1− λ)
+

D
(1)
qq b1

πb0(1− λ)
(λ+ b1 ln(1− λ)) . (4.3.9)

we note that the functions g1(λ), g2(λ), and g3(λ) are identical to the ones appearing in the
exponent of the resummation formula used in [4].

We now expand Eq.(4.3.7) up to order α2
s, therefore:

C̃ds,T
qq

(
N,M,αs(Q

2)
)
∼1 +

αs

π

(
2A1L2 − 2D1L+ g

(1)
0

)
+
α2
s

π2

(
2A2

1L4 +
4

3
A1πb0L3 − 4A1D1L3 + 2A1g

(1)
0 L2

+2A2L2 − 2πb0D1L2 + 2D2
1L2 − 2D1g

(1)
0 L − 2D2L+ g

(2)
0

)
,

(4.3.10)

where for simplicity we omitted the qq index in resummation coefficients and we remember that
L ≡ 1

2(lnM + lnN). Hence, in order to extract the resummation coefficients in the double-soft
limit we compare the Eq. 4.3.10 with the fixed order result.

We now proceed to obtain the single-soft resumattion formula expanded up to α2
s. If we want

to use the scale Q2/(N̄M̄) the expanded expression is simply given by 4.3.10 with ln M̄ and ln N̄
written explicitly. Then, for instance, in the x̂-single-soft limit, where, for simplicity, we again
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omit the qq subscript and the M dependence in the coefficients, we obtain:

C̃res,T
qq

(
N,M,αs(Q

2)
)
∼1 +

αs

π

(
1

2
A1 ln

2 M̄ −D1 ln M̄ + g
(1)
0

+ ln N̄(A1 ln M̄ −D1) +
A1 ln

2 N̄

2

)

+
α2
s

π2

{
A2

1 ln
4 M̄

8
+
A1πβ0 ln

3 M̄

6
− A1D1 ln

3 M̄

2

+
A1g

(1)
0 ln2 M̄

2
+
A2 ln

2 M̄

2

− β0πD1 ln
2 M̄

2
+
D2

1 ln
2 M̄

2
−D1g

(1)
0 ln M̄ −D2 ln M̄ + g

(2)
0

+ ln N̄

[
1

2
A2

1 ln
3 M̄ − 3

2
A1D1 ln

2 M̄ +A1g
(1)
0 ln M̄ +A2

ln M̄ +D2
1 ln M̄ −D1g

(1)
0 −D2

+
1

2
A1πβ0 ln

2 M̄ − β0πD1 ln M̄

]

+ ln2 N̄

[
3

4
A2

1 ln
2 M̄ − 3

2
A1D1 ln M̄ +

A1g
(1)
0

2
+
A2

2
+
D2

1

2

+
1

2
A1β0π ln M̄ − β0πD1

2

]

+ ln3 N̄

(
1

2
A2

1 ln M̄ − A1D1

2
+
A1β0π

6

)
+
A2

1 ln
4 N̄

8

}
. (4.3.11)

Noting that the various coefficients in the above case are functions of the Mellin variableM , then
the ẑ-single-soft limit is analogous; we simply need to exchange N and M .

Finally, if we express the single-soft limit using the correct scale, namely Q2/N̄ for the x̂-
single-soft limit and Q2/M̄ for the ẑ-single-soft limit, the procedure is the same. We simply need
to make the following re-definition in the calculations above

• λ ≡ b0αs ln N̄ for the x̂−single soft case;

• λ ≡ b0αs ln M̄ for the ẑ−single soft case.

Therefore, for x̂−single-soft the resummation formula in Eq. 3.2.39 expanded up to α2
s becomes

C̃ss,T
qq

(
N,M,αs(Q

2)
)
= 1 +

αs

π

(
1

2
A1 ln

2 N̄ −D1 ln N̄ + g
(1)
0

)

+
α2
s

π2

[
g
(2)
0 + ln N̄

(
−D1g

(1)
0 −D2

)
+ ln2 N̄

(
A1g

(1)
0

2
+
A2

2
− b0πD1

2
+
D2

1

2

)
+ ln3 N̄

(
A1πb0

6
− A1D1

2

)

+
A2

1 ln
4 N̄

8

]
. (4.3.12)
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As in the previous case, the ẑ-single-soft limit is analogous; we simply need to exchange N and
M .

4.4 Double-soft limit

In this section we derive the resummation formula at NNLL accuracy for the qq channel of the
SIDIS process in the double-soft limit.

This goal has already been achieved in previous works: at NNL accuracy in [36], at NNLL
in [29], and more recently also at N3LL in [4]. However, there is a substantial difference between
the procedure followed in those works and ours. Because, in the aforementioned works, the
resummation coefficients were extracted through a matching procedure based on the conjecture
proposed in [37], which suggests that the SIDIS process is the crossed version of Drell-Yan, a
statement that we have proven in a more rigorous manner in Sec. 2.2.2. Consequently, according
to this correspondence, the SIDIS coefficient functions are derived from the Drell-Yan results,
that is from CDY

qq̄ we obtain CSIDIS
qq . Instead, we directly use the SIDIS coefficient functions up to

NNLO, as we mention in the section 4.1. Hence, we have a validity check for both the resummation
formalism introduced in the previous chapter, and for the crossed-process correspondence. After
this check, we can use the resummation formula obtained by the RGE argument and the crossing
correspondence to study new cases of interest for SIDIS process, namely the single-soft cases.

As it shown in the previous section, the integration in the exponential of the resummation
formula leads to the same result of [29]. So this check the validity of our resummation formula.
Otherwise, one can see that the resummation formula written as in Eq. 3.2.38 is the same
resummation formula used in [29] and [4].

We observe that the coefficient functions provided in [26] are expressed in terms of C2
A, CA,

and NF , where CA = 3 and NF represent the number of colors and the number of active flavors
in QCD, respectively. Once we obtain the asymptotic expression of the Mellin transform of the
coefficient function in the double-soft limit—using the computational tools cited in Sec. 4.1—we

rewrite this limit in terms of CF = TR
C2

A−1
CA

, CA, and NF , where TR = 1/2 and CF = 4/3 in
QCD. this choice explicitly highlights that the resummation terms As are the coefficients of the
perturbative expansion of the cusp function.

Therefore, by performing this transformation and comparing their results with ours, we find
full equivalence between the results directly obtained from the SIDIS coefficient functions in our
case and those derived by exploiting the crossing symmetry of the Drell-Yan process in [29].

Hence, the final step is the matching between resummation formula and the fixed order result.

At NLO, in the asymptotic limit we obtain

C̃T,(1)
qq = CF

{
2L2 +

π2

6
− 4

}
+O

(
1

N

)
+O

(
1

M

)
. (4.4.1)
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While at NNLO, in the asymptotic limit we obtain

C̃T,NS,(2)
qq (N,M) = 2C2

FL4 + 4CFL3
(π
3
b0

)
+ CFL2

[
CF

(
−8 +

π2

3

)
+

(
67

18
− π2

6

)
CA − 5

9
Nf

]

+ CFL
[(

101

27
− 7

2
ζ(3)

)
CA − 14

27
Nf

]

+ C2
F

[
511

64
− π2

16
− π4

60
− 15

4
ζ(3)

]

+ CFCA

[
−1535

192
− 5π2

16
+

7π4

720
+

151

36
ζ(3)

]

+ CFNf

[
127

96
+
π2

24
+
ζ(3)

18

]
+O

(
1

N

)
+O

(
1

M

)
. (4.4.2)

Up to order
(
αs
π

)2
the resummed coefficient function is provided by Eq. 4.3.10, at NLO the

coefficient is:

C̃ds,T,(1)
qq

(
N,M,αs(Q

2)
)
= 2A1L2 − 2D1L+ g

(1)
0 , (4.4.3)

and by comparison with Eqs.(4.1.1,4.4.1) we obtain

A(1)
qq = CF , (4.4.4)

D
(1)
ds,qq = 0 , (4.4.5)

g
(1)
0,(ds,qq) = CF

(
π2

6
− 4

)
= CF (ζ(2)− 4) , (4.4.6)

where ds means double-soft. Hence, at order α2
s using D1 = 0 we remain with

C̃ds,T,(2)
qq

(
N,M,αs(Q

2)
)
= 2A2

1L4 +
4

3
A1πb0L3 + 2A1g

(1)
0 L2 + 2A2L2 − 2D2L+ g

(2)
0 ,

(4.4.7)

and by comparison with Eqs.(4.1.1,4.4.2) we obtain

A(2)
qq =

1

2
CF

[(
67

18
− π2

6

)
CA − 5

9
Nf

]
, (4.4.8)

D
(2)
ds,qq =

1

2
CF

[(
−101

27
+

7

2
ζ(3)

)
CA +

14

27
Nf

]
, (4.4.9)

g
(2)
0,(ds,qq) = C2

F

[
511

64
− π2

16
− π4

60
− 15

4
ζ(3)

]

+ CFCA

[
−1535

192
− 5π2

16
+

7π4

720
+

151

36
ζ(3)

]

+ CFNf

[
127

96
+
π2

24
+
ζ(3)

18

]
. (4.4.10)

Obviously, the resummation coefficients are the same of [29], except for a factor of 1/2 in the
term D2, as in their case the resummation formula includes a 1/2 multiplying the D terms.
Furthermore, we note that the coefficients A are the coefficients of the cusp. In conclusion, we
have proved the validity of the theoretical predictions given by Eq.4.2.1.
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4.5 Single-soft limit

In this section, we present the novel contribution of this thesis, specifically, the single-soft coef-
ficients up to NNLL for the SIDIS process in the qq-channel. Since the coefficient function in
the single-soft limit contains significantly more terms than in the double-soft case, it is useful
to introduce a convenient notation. We observe that, in the limit where one of the two Mellin
variables approaches ∞, the coefficient function can be rewritten, e.g., in the x-single-soft limit,
as follows:

CT
qq(N̄ , M̄) = 1 +

(αs

π

)(
ln2 N̄f

(1)
2 (M) + ln N̄f

(1)
1 (M) + f

(1)
0 (M)

)
+
(αs

π

)2 (
ln4 N̄f

(2)
4 (M) + ln3 N̄f

(2)
3 (M)

+ ln2 N̄f
(2)
2 (M) + ln N̄f

(2)
1 (M) + f

(2)
0 (M)

)
+O

(
1

N

)
+O

(
1

M

)
+O(α3

s) , (4.5.1)

where f
(j)
i (M) is a function only of the Mellin variable that does not approach ∞, where i denotes

the power of lnN and j denotes the order of the perturbative expansion. The ẑ-single-soft case
is entirely analogous; it suffices to exchange the roles of N and M .

The functions f
(j)
i are listed in Appendix D.Furthermore, as before they were obtained using

the packages [34] and [28] by applying the computational methods described in the previous
sections,

Finally, we observe that the functions f
(i)
0 contain the constant terms. In particular, in the

x̂-single-soft limit, they include all terms of the form δ(1− x̂)
[
lnn(1−ẑ)
(1−ẑ)

]
+
, δ(1− x̂)δ(1− ẑ), as well

as the constants that arise when taking the asymptotic limit of the Harmonic sums with respect

to N . Whereas, the other functions f
(i)
j arise from the δ(1 − ẑ) contributions and the mixed

contributions showed in Sec. 3.1. Obviously, the functions f
(i)
j are different if we take either the

x̂−single-soft limit or the ẑ−single-soft limit.

4.5.1 x̂-single-soft

Firstly, we consider the case with the scale Q2/(N̄M̄). As we done in the previous section for the
double soft case, taking the resummation formula expanded up to α2

s as in 4.3.11 and comparing
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it with the fixed order expression expressed as in 4.5.1, we obtain the relations:

A1 = 2f
(1)
2 (M) , (4.5.2)

D1(M) = −f (1)1 (M) +A1 ln M̄ , (4.5.3)

g
(1)
0,qq(M) = f

(1)
0 (M) +D1(M) ln M̄ − A1

2
ln2 M̄ , (4.5.4)

f
(2)
4 (M)− A2

1

8
= 0 , (4.5.5)

f
(2)
3 (M)− A1b0π

6
− D1A1

2
+
A2

1

2
ln M̄ = 0 , (4.5.6)

A2(M) = 2f
(2)
2 (M)− 2

(
−b0πD1

2
+
A1b0π

2
ln M̄ +

D2
1

2
+
A1g

(1)
0

2

−3

2
A1D1 ln M̄ +

3

4
A2

1 ln M̄

)
, (4.5.7)

D2(M) = −f (2)1 (M) +

(
−b0πD1 ln M̄ +

A1b0π

2
ln2 M̄ −D1g

(1)
0 +A2 ln M̄ +D2

1 ln M̄

+A1g
(1)
0 ln M̄ − 3

2
A1D1 ln

2 M̄ +
1

2
A1 ln

3 M̄

)
(4.5.8)

g
(2)
0 (M) = f

(2)
0 (M)−

(
A2

1 ln
4 M̄

8
+
A1πβ0 ln

3 M̄

6
− A1D1 ln

3 M̄

2

+
A1g

(1)
0 ln2 M̄

2
+
A2 ln

2 M̄

2

−β0πD1 ln
2 M̄

2
+
D2

1 ln
2 M̄

2
−D1g

(1)
0 ln M̄ −D2 ln M̄

)
, (4.5.9)

for simplicity we omitted the qq subscript and the M dependence of the coefficients. Then,
computing the above relations one obtains the single-soft coefficients

A(1)
qq = CF , (4.5.10)

A(2)
qq =

1

2
CF

[(
67

18
− π2

6

)
CA − 5

9
Nf

]
, (4.5.11)

D(1)
qq (M) = P̂ (0),T

qq (M) , (4.5.12)

D(2)
qq (M) = D

(2)
ds,qq − πβ0F (M) + P̂

(1),T
qq,NS(M) , (4.5.13)

g
(1)
0,qq(M) = g

(1)
0,(ds,qq) + F (M) = f

(1)
2 (M) ln2 M̄ − f

(1)
1 (M) ln M̄ + f

(1)
0 (M) , (4.5.14)

g
(2)
0,qq(M) = f

(2)
4 (M) ln4 M̄ − f

(2)
3 (M) ln3 M̄ + f

(2)
2 (M) ln2 M̄

− f
(2)
1 (M) ln M̄ + f

(2)
0 (M) . (4.5.15)
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with

F (M) = CF ln M̄

(
ln M̄ +

1

2M2 + 2M
− S1(M)

)
+

1

2
CF

(
S1(M)2 − ln2(M̄)

)
+
CF

(
2M2 −M − 1

)
2M2(M + 1)2

+
3

2
CF (S2(M)− ζ(2))− CFS1(M)

2M(M + 1)
. (4.5.16)

where Si are the harmonic sums, while the time-like P̂ T s are expressed in an explicit manner in
the appendix C. Therefore, we have verified the theoretical prediction for the SIDIS process as
reported in Eq. 4.2.9.

In particular, we have confirmed that by substituting the coefficients above into the expression
4.5.1 and taking the asymptotic limit for the variable M̄ , we recover the double-soft limit. In
other words, we find the coefficient function in the double-soft limit as given by Eqs. 4.4.1 and
4.4.2. In fact, the coefficients in Eqs. 4.5.10-4.5.15 taking the asymptotic limit for M reduce to
the double-soft coefficients.

Whereas, using the scale Q2/(N̄). Following the previous steps, but now taking the resum-
mation formula expanded up to α2

s as in 4.3.12 we obtain the following resummation coefficients

A(1)
qq = CF , (4.5.17)

A(2)
qq =

1

2
CF

[(
67

18
− π2

6

)
CA − 5

9
Nf

]
, (4.5.18)

D(1)
qq (M) = P̃ (0),T

qq (M) , (4.5.19)

D(2)
qq (M) = D

(2)
ds,qq − πβ0F̃ (M) + P̃

(1),T
qq,NS(M) , (4.5.20)

g
(1)
0,qq(M) = g

(1)
0,(ds,qq) + F̃ (M) = f

(1)
0 (M) , (4.5.21)

g
(2)
0,qq(M) = f

(2)
0 (M) (4.5.22)

where F̃ (M) is the non-logarithmic part of F (M), while P̃
T,(i)
qq is simply the Mellin transform of

the time-like splitting function at order i without the constant terms.

As a final check, we have shown that the resummation formula with the scale Q2/N̄ and the
one with Q2/N̄M̄ , using the respective coefficients reported above and their expansion up to
α2
s, namely Eq. 4.3.12 for Q2/N̄ and Eq. 4.3.11, produce the same result. Therefore, the two

resummation formulas are equivalent.

4.5.2 ẑ-single-soft

In this section we provide the resummation coefficients for the ẑ−single-soft limit. Since the
methods used to find the coefficients through the matching procedure with the fixed order are the
same explained in the previous case, we only report the final results. Using the scale Q2/(N̄M̄),
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we obtain

A(1)
qq = CF , (4.5.23)

A(2)
qq =

1

2
CF

[(
67

18
− π2

6

)
CA − 5

9
Nf

]
, (4.5.24)

D(1)
qq (N) = P̂

(0)
qq,NS(N) (4.5.25)

D(2)
qq (N) = D

(2)
ds,qq − πb0F (N) + P̂

(1)
qq,NS(N) (4.5.26)

g
(1)
0,qq(N) = g

(1)
0,(ds,qq) + F (N) = f

(1)
2 (N) ln2 N̄ − f

(1)
1 (N) ln N̄ + f

(1)
0 (N) , (4.5.27)

g
(2)
0,qq(M) = f

(2)
4 (N) ln4 N̄ − f

(2)
3 (N) ln3 N̄ + f

(2)
2 (N) ln2 N̄

− f
(2)
1 (N) ln N̄ + f

(2)
0 (N) (4.5.28)

with

F (N) = CF ln N̄

(
ln N̄ +

1

2N2 + 2N
− S1(N)

)
+

1

2
CF

(
S1(N)2 − ln2 N̄

)
− CFS1(N)

2N2 + 2N
+
CF (2N + 1)

2N2(N + 1)
+

1

2
CF (ζ(2)− S2(N)) (4.5.29)

where Si are the harmonic sums, while the space-like P̂ s are expressed in an explicit manner in
the appendix C.

Whereas, using the scale Q2/N̄ we obtain

A(1)
qq = CF , (4.5.30)

A(2)
qq =

1

2
CF

[(
67

18
− π2

6

)
CA − 5

9
Nf

]
, (4.5.31)

D(1)
qq (N) = P̃ (0)

qq (N) , (4.5.32)

D(2)
qq (N) = D

(2)
ds,qq − πβ0F̃ (N) + P̃

(1)
qq,NS(N) , (4.5.33)

g
(1)
0,qq(N) = g

(1)
0,(ds,qq) + F̃ (N) = f

(1)
0 (N) , (4.5.34)

g
(2)
0,qq(N) = f

(2)
0 (N) (4.5.35)

where F̃ (M) is the non-logarithmic part of F (M), while P̃
(i)
qq is simply the Mellin transform of

the space-like splitting function at order i without the constant terms. Furthermore, as we done
in the previous case, we verified that the resummation with the scale Q2/(N̄M̄) is equal to the
one with the scale Q2/M̄ , and we have also checked the correct reduction to the double-soft limit
case.
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Conclusion

In this thesis, we have studied the SIDIS process, focusing specifically on the resummation of
soft logarithms in the threshold limit. In particular, we have analyzed two distinct threshold
regions: the double-soft limit, which corresponds to the elastic configuration where there is no
momentum exchange between the incoming and outgoing partons, and the single-soft limit, which
occurs when either the incoming or outgoing parton carries a fixed longitudinal momentum while
the transferred momentum approaches its minimum value to allow this configuration. These two
configurations correspond to the limits x̂, ẑ → 1 and either x̂ → 1 with fixed ẑ or ẑ → 1 with
fixed x̂, respectively. In particular, the single-soft case is the novel result. The peculiarity of the
asymmetric case is that, compared to the double-soft case, it also predicts all the next-to-leading
power (NLP) corrections to the enhanced logarithms that emerge in the threshold limit.

Specifically, through a phase space argument we have verified that in both limits the coeffi-
cients function dependence is given in terms of a single soft scale, which is Q2(1 − x̂)(1 − ẑ) in
the double-soft case and either Q2(1− x̂) or Q2(1− ẑ) in the single-soft cases. Which in Mellin
space becomes Q2/N̄M̄ and either Q2/N̄ or Q2/M̄ . This result is completely analogous to the
one obtained in the threshold limit for the DY at fixed rapidity [3], thereby showing the corre-
spondence of the two process in the threshold limit. Thus we have obtained the resummation
formula and its theoretical predictions for the SIDIS from the DY case [3]. Then through the
fixed order results up to NNLO provided by [26] we have obtained the resummation coefficients
up to NNLL in both soft limits for the NS case of the qq channel finding a perfect agreement
with theoretical predictions.

A natural subsequent application is to extract from these results the first NLP corrections,
namely soft logarithms suppressed by a factor N or M , in order to verify the predictions for this
case established in [4]. Furthermore, as we have shown in Sec. 4.2, in the single-soft limit for the
qq channel we have subtracted from the NS coefficient function terms which are represented by
the diagrams of the type q → qqq̄, where there are two quark lines of the same flavour and one
tags a q from one line and a q from the other. Therefore, a possible future development is to
understand how to incorporate these terms into the resummation formula.
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Appendix A

Analytic tools

A.1 Laplace transform

The Mellin transform is a specific case of the Laplace transform. Therefore, we begin by introduc-
ing the definition of the Laplace transform and some of its properties, which are also applicable
in the Mellin case.

Def A.1. Given a function f(t) with t ∈ [0,∞] its monolateral Laplace trasnform is defined as
follows:

f̃(s) ≡ L[f(t)](s) ≡
∫ ∞

0
dte−tsf(t) (A.1)

The inverse of the monolateral Laplace transform is given by

f(t) ≡ L−1[f̃(s)](t) =
1

2πi

∫ c−i∞

c+i∞
dsetsf̃(s) (A.2)

From Eq.(A.1) it follows immediately that if f(t) is a real function, then f̃(s) is real, hence
we have the relation:

f̃(s∗) = f̃(s)∗ , (A.3)

where ∗ indicates complex conjugation.

A.2 Mellin Transform

The SIDIS coefficient functions dependence is given by the scaling variables x, z ∈ [0, 1]. When a
function is defined in the range [0, 1] the Laplace transform can be reduced to a Mellin transform
through the change of variable x = e−t

Def A.2. Given a function f(x) with x ∈ (0, 1) its Mellin Transform is defined as follows

f̃(N) ≡ M[f(x)](N) ≡
∫ 1

0
xN−1f(x) . (A.4)

Obviously, here we only renamed s as N , and then the inverse of the Mellin transform ac-
cording to Eq.(A.2) is given by

f(t) ≡ M−1[f̃(N)](t) =
1

2πi

∫ c+i∞

c−i∞
dNx−N f̃(N) (A.5)
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Like in the Fourier and Laplace transforms exist a convolution product which factorize under
Mellin transform, this convolution is defined as follows

(f ⊗ g)(x) =

∫ 1

x
dyf(y)g

(
x

y

)

=

∫ 1

0
dy

∫ 1

0
dzf(y)g(z)δ(x− yz) , (A.6)

and it can be extended to the many function case

(f1 ⊗ · · · ⊗ fn)(x) =

∫ 1

0
dy1· · ·

∫ 1

0
dynf1(y1) . . . fn(yn)δ(x− y1 . . . yn) . (A.7)

And from the second form of the convolution product we can note that g ⊗ f = f ⊗ g. Under
Mellin transformation, as we expect, the convolution product factorize

M[f ⊗ g](N) =

∫ 1

0
dxxN−1

∫ 1

0
dy

∫ 1

0
dzf(y)g(z)δ(x− yz)

=

∫ 1

0
dyyN−1f(y)

∫ 1

0
dzzN−1g(z) = f̃(N)g̃(N) . (A.8)

A.2.1 Plus distribution

From the cancellation of the collinear singularities in the coefficient function, plus distribution
terms emerge. The plus distribution is defined as follows:∫ 1

0
dz[f(z)]+g(z) ≡

∫ 1

0
dzf(z)[g(z)− g(1)] . (A.9)

Hence, from the definition, we obtain the following useful property∫ 1

0
dz[f(z)]+ = 0 . (A.10)

Furthermore, an equivalent definition for the plus distribution is provided in terms as the limit
of a class of distributions:

[f(z)]+ = lim
ϵ→0+

[
Θ(1− ϵ− z)f(z)− δ(1− z)

∫ 1−ϵ

0
dyf(y)

]
. (A.11)

where the limit is performed after the integration over the test function g(z).
Plus distribution arise from d−dimensional regularized calculations from the identity

x−1+ϵ =
δ(x)

ϵ
+

(
1

x

)
+

+ ϵ2
(
lnx

x

)
+

+O(ϵ2) , (A.12)

for divergences in x = 0 or equivalently exchange x with 1− x for x = 1. The above identity can
be derived acting on a test function g(x) as follows∫ 1

0
dxx−1+ϵg(x) =

∫ 1

0
dxx−1+ϵ[g(x)− g(0)] +

g(0)

ϵ

=

∫ 1

0
dx

[
1

x
+ ϵ

lnx

x
+O(ϵ2)

]
[g(x)− g(0)] +

g(0)

ϵ

=

∫ 1

0
dx

[(
1

x

)
+

+ ϵ

(
lnx

x

)
+

+
δ(x)

ϵ

]
g(x) (A.13)

(1− x̂)−1−ϵ =
δ(1− x̂)

ϵ
+

∞∑
i=0

1

i!
ϵi
[
lni(1− x̂)

1− x̂

]
+

, (A.14)
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A.2.2 Harmonic sums

In Sec. 3.1 we have shown that the Mellin transformation of a plus distribution can be expressed
through polygamma functions ψ(i)s. These functions can be viewed as the analytical continuation
in the complex plan of the harmonic sums, this fact is showed in [28] and [27]. Here, we report
the definition of the harmonic sums in order to introduce the notation for the results in the next
appendices. A generic harmonic sums is defined as

Sa1,...,ak(N) =
∑

N≥i1≥i2≥···≥ik≥1

sign(a1)
i1

i
|a1|
1

. . .
sign(ak)

ik

i
|ak|
k

, (A.15)

where k is called the depth and w =
∑k

i=0 |ai| is called the weight of the harmonic sum Sa1,...,ak .
For instance, we report the explicit expression for the harmonic sums that appear more frequently
in the calculation of the double- and single- soft limits, namely k = 1, w = i > 0

Si(N) =
N∑
j=1

1

ji
, (A.16)

then

S1(N) =

N∑
j=1

1

j
S2(N) =

N∑
j=1

1

j2
. (A.17)

In particular at large limit N we have

S1(N) = ln N̄ +O
(

1

N

)
S2(N) =

π2

6
+O

(
1

N

)
. (A.18)

For completeness we provide the relation with ψ(0) and ψ(1) polygamma functions [27]

S1(N) = ψ(0)(N + 1) + γE , (A.19)

S2(N) = −ψ(1)(N + 1) + ζ(2) . (A.20)

where ζ(i) represent the Riemann function evaluated at the point i, while γE is the Eulero-
Mascheroni constant.
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Appendix B

Running coupling and β values

We use the following expansion of the running strong coupling

αs(µ) =
αs(µR)

l

[
1− αs(µR)

l
b1 ln(l)

+

(
αs(µR)

l

)2 (
b21
(
ln2(l)− ln(l) + l − 1

)
− b2(l − 1)

)]
+O(αs(µR)) , (B.1)

where

l ≡ 1 + b0αs(µR) ln
µ2

µ2R
, (B.2)

and

β0 =
1

12π
(11CA − 2Nf ) , β1 =

1

24π2
(
17C2

A − 5CANf − 3CFNf

)
,

β2 =
1

64π3

(
2857

54
C3
A − 1415

54
C2
ANf − 205

18
CACFNf + C2

FNf +
79

54
CAN

2
f +

11

9
CFN

2
f

)
,

(B.3)

with Nf the number of flavors and

CF =
N2

c − 1

2Nc
=

4

3
, CA = Nc = 3 . (B.4)
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Appendix C

NLO splitting functions

Here we reports the NS splitting function space-like and time-like up to NLO.

Pqq =
αs

π
P (0)
qq +

(αs

π

)2
P (1)
qq +O(α2

s) (C.1)

Note that at leading order, the time-like case and space-like case are equivalent. Then, from [5]

P (0)
qq (x) = P T,(0)

qq (x) =
CF

2

[
1 + x2

[1− x]+
+

3

2
δ(1− x)

]
, (C.2)

that in Mellin space becomes

P (0)
qq (N) =

CF

2

[
3

2
+

1

N(N + 1)
− 2S1(N)

]
, (C.3)

therefore

P̂ (0)
qq (N) = CF

(
ln N̄ +

1

2N2 + 2N
− S1(N)

)
. (C.4)

At NLO the difference between the NS singlet space-like splitting function and the NS time-like
splitting function is given by [38]

∆
(1)
qq,NS(x) =

1

16
C2
F

((
−32

[
1

1− x

]
+

+ 16x+ 16

)
H1,0(x) +

(
−32

[
1

1− x

]
+

+ 24x+ 24

)
H0,0(x)

+H2(x)

(
−32

[
1

1− x

]
+

+ 16x+ 16

)
+H0(x)

(
24

[
1

1− x

]
+

− 4x− 20

))
,

(C.5)

which in Mellin space becomes

∆
(1)
qq,NS(N) = C2

F

(
(2N + 1)S1(N)

N2(N + 1)2
+

(
3N2 + 3N + 2

)
S2(N)

2N(N + 1)
−
(
3N2 + 3N + 2

)
ζ(2)

2N(N + 1)

−6N3 + 9N2 + 7N + 2

4N3(N + 1)3
+ 2ζ(2)S1(N)− 2S1(N)S2(N)

)
. (C.6)
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Whereas, the space-like splitting function in x space provided by [5] is

P
(1)
qq,NS(x) =

1

4

(
C2
F

((
2H0(x)H1(x)−

3H0(x)

2

)(
2

[
1

1− x

]
+

− x− 1

)
− 1

2
(x+ 1)H0(x)

2−

(
7x

2
+

3

2

)
H0(x)− 5(1− x)

)

+ CFCA

((
1

2
H0(x)

2 +
11H0(x)

6
− π2

6
+

67

18

)(
2

[
1

1− x

]
+

− x− 1

)

+(x+ 1)H0(x) +
20(1− x)

3

)

+
1

2
CFNF

((
−2

3
H0(x)−

10

9

)(
2

[
1

1− x

]
+

− x− 1

)
− 4(1− x)

3

))

+
1

4
δ(1− x)

(
C2
F

(
6ζ(3) +

3

8
− π2

2

)
− CFCA

(
−3ζ(3) +

17

24
+

11π2

18

)

−1

2
CFNF

(
1

6
+

2π2

9

))
, (C.7)

then

P
(1),T
qq,NS(x) = P

(1)
qq,NS(x) + ∆

(1)
qq,NS(x) . (C.8)

Whereas, the space-like splitting function in Mellin space becomes

P
(1)
qq,NS(N) = C2

F

(
−(2N + 1)S1(N)

2N2(N + 1)2
−
(
3N2 + 3N + 2

)
S2(N)

4N(N + 1)
+

(
3N2 + 3N + 2

)
ζ(2)

4N(N + 1)

+
3N3 +N2 − 1

4N3(N + 1)3
− ζ(2)S1(N) + S1(N)S2(N) + S3(N)− ζ(3)

)

+ CFNF

(
−11N2 + 5N − 3

36N2(N + 1)2
+

5S1(N)

18
− S2(N)

6
+
ζ(2)

6

)

+ CFCA

(
−
(
11N2 + 11N + 3

)
ζ(2)

12N(N + 1)
+

151N4 + 236N3 + 88N2 + 3N + 18

72N3(N + 1)3

+
1

2
ζ(2)S1(N)− 67S1(N)

36
+

11S2(N)

12
− S3(N)

2
+
ζ(3)

2

)

+
1

4

(
C2
F

(
6ζ(3) +

3

8
− π2

2

)

−CFCA

(
−3ζ(3) +

17

24
+

11π2

18

)
− 1

2

(
1

6
+

2π2

9

)
CFNF

)
, (C.9)

then

P
(1),T
qq,NS(N) = P

(1)
qq,NS(N) + ∆

(1)
qq,NS(N) . (C.10)
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In conclusion we provide the explicit form of the P̂ splitting function in both cases:

P̂
(1)
qq,NS(N) = C2

F

(
−(2N + 1)S1(N)

2N2(N + 1)2
−
(
3N2 + 3N + 2

)
S2(N)

4N(N + 1)
+

(
3N2 + 3N + 2

)
ζ(2)

4N(N + 1)

+
3N3 +N2 − 1

4N3(N + 1)3
− ζ(2)S1(N) + S1(N)S2(N) + S3(N)− ζ(3)

)

+ CFNF

(
−5 ln N̄

18
− 11N2 + 5N − 3

36N2(N + 1)2
+

5S1(N)

18
− S2(N)

6
+
ζ(2)

6

)

+ CFCA

(
−1

2
ζ(2) ln N̄ +

67 ln N̄

36
−
(
11N2 + 11N + 3

)
ζ(2)

12N(N + 1)

+
151N4 + 236N3 + 88N2 + 3N + 18

72N3(N + 1)3

+
1

2
ζ(2)S1(N)− 67S1(N)

36
+

11S2(N)

12
− S3(N)

2
+
ζ(3)

2

)
, (C.11)

while, the time-like is

P̂ (1),T
qq (N) = C2

F

(
(2N + 1)S1(N)

2N2(N + 1)2
+

(
3N2 + 3N + 2

)
S2(N)

4N(N + 1)
−
(
3N2 + 3N + 2

)
ζ(2)

4N(N + 1)

−3N3 + 8N2 + 7N + 3

4N3(N + 1)3
+ ζ(2)S1(N)− S1(N)S2(N) + S3(N)− ζ(3)

)

+ CFNF

(
−5 ln N̄

18
− 11N2 + 5N − 3

36N2(N + 1)2
+

5S1(N)

18
− S2(N)

6
+
ζ(2)

6

)

+ CFCA

(
−1

2
ζ(2) ln N̄ +

67 ln N̄

36
−
(
11N2 + 11N + 3

)
ζ(2)

12N(N + 1)

+
151N4 + 236N3 + 88N2 + 3N + 18

72N3(N + 1)3

+
1

2
ζ(2)S1(N)− 67S1(N)

36
+

11S2(N)

12
− S3(N)

2
+
ζ(3)

2

)
. (C.12)
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Appendix D

Coefficient functions in soft limits

D.1 x̂ single-soft limit

We report the coefficient function CT
qq in Mellin space and in the x̂ single-soft limit using the

notation of Eq.(4.5.1).

NLO results

f
(1)
2 (M) =

CF

2
(D.1)

f
(1)
1 (M) = CF

(
S1(M)− 2

4M2 + 4M

)
(D.2)

f
(1)
0 (M) =

CF

(
2M2 −M − 1

)
2M2(M + 1)2

+
1

2
CFS1(M)2 − CFS1(M)

2M(M + 1)

+
3

2
CFS2(M)− CFζ(2)

2
− 4CF (D.3)

NNLO results

f
(2)
4 (M) =

1

8
C2

F , (D.4)

f
(2)
3 (M) = C2

F

(
S1(M)

2
− 1

4M(M + 1)

)
+

11CFCA

72
−
CFNf

36
, (D.5)

f
(2)
2 (M) = C2

F

(
4M2 − 2M − 1

8M2(M + 1)2
+

3

4
S1(M)2 − 3S1(M)

4M(M + 1)
+

3S2(M)

4
− ζ(2)

4
− 2

)

+ CFCA

(
11S1(M)

24
− 11

48M(M + 1)
− ζ(2)

4
+

67

72

)

+ CFNf

(
− 1

12
S1(M) +

1

24M(M + 1)
− 5

36

)
, (D.6)
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f
(2)
1 (M) = C2

F

(
−
(
3M2 + 3M + 5

)
S2(M)

4M(M + 1)
+

3
(
M2 +M + 1

)
ζ(2)

4M(M + 1)

−
(
16M4 + 32M3 + 12M2 + 6M + 3

)
S1(M)

4M2(M + 1)2
+

8M4 + 19M3 + 14M2 + 8M + 4

4M3(M + 1)3

−3

2
ζ(2)S1(M) +

1

2
S1(M)3 − 3S1(M)2

4M(M + 1)
+

5

2
S2(M)S1(M)− S3(M) + ζ(3)

)

+ CFNf

(
−
(
10M2 + 10M − 3

)
S1(M)

36M(M + 1)
− 1

12
S1(M)2 − S2(M)

12

+
5M + 8
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192

)
(D.9)

D.2 ẑ single-soft limit

We report the coefficient function CT
qq in Mellin space and in the ẑ single-soft limit using the

notation of Eq.(4.5.1).
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NLO results
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NNLO results:
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