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‣ Updates since  from NNPDF3.1αs



 from NNPDF4.0 αs

Last determination was based on NNPDF3.1. Lost of progress since then:


• Updated Machine Learning methodology [NNPDF:2109.02653]

• Stochastic gradient descent

• Hyperoptimization

• Validated with closure tests


• NNPDF4.0 global dataset [NNPDF:2109.02653]

• ~400 more datapoints, mostly from the LHC

• Many new processes


• Missing higher order uncertainties at the level of the fit [NNPDF, 2401.10319]


• NLO QED and photon PDF [NNPDF:2401.08749]


• aN3LO QCD [NNPDF:2402.18635]
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Big impact due to new treatment of theory uncertainty 

• In NNPDF3.1 the dominant source of uncertainty was from missing higher 
orders (MHOU): 




• Obtained from NNLO-NLO shift 

  

• Include a theory covariance matrix from scale variations at the level of the fit 
leads to much reduced uncertainty: 
NNPDF4.0 methodology, NNPDF3.1-like data: 

αs(mZ) = 0.1185(5)PDF(1)meth(11)MHOU = 0.1185(12)

ΔαMHOU
s ≡

1
2

αNNLO
s − αNLO

s = 0.0011

αs(mZ) = 0.1188(6)PDF+MHOU
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Theory uncertainties in PDFs
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• To account for theory uncertainties we treat the theory covmat on the same footing 
as the experimental covmat: 


• The theory covmat can be constructed as follows: 
 
      


Cexp → Cexp + Cth

CMHOU,ij ∝ ∑
κf ,κr

(Ti(κf , κr) − Ti(0,0)) (Tj(κf , κr) − Tj(0,0))

χ2 = (−
1
2

(T − D)TC−1
exp(T − D)) χ2 = (−

1
2

(T − D)T(Cexp + Cth)−1(T − D))
Fit without theory uncertainties Fit with theory uncertainties 



PDFs at approximate N3LO
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A PDF fit requires several theory inputs:


• DGLAP splitting functions 
small-  and large-  limits 
Mellin moments


• Matching conditions for variable flavor number schemes  
Now exactly known but original aN3LO publications use approximations


• DIS coefficient functions  
Massless known, massive limits known


• Hadronic cross-section 
Not much is known

x x

Strategy:


• When N3LO theory is known, it is used


• When partial information is available, use it while accounting for 
parametrisation uncertainty 


• When it is unknown account for missing higher order uncertainty

E. Nocera, Workshop on Hadron Physics and Opportunities Worldwide 
Dalian, China, August 2024 

(More is known today!)

DGLAP evolution from EKO: github.com/NNPDF/eko 

DIS coefficients from Yadism: github.com/NNPDF/yadism

https://indico.ihep.ac.cn/event/21111/contributions/161005/attachments/80399/100731/NOCERA_Dalian.pdf
https://indico.ihep.ac.cn/event/21111/contributions/161005/attachments/80399/100731/NOCERA_Dalian.pdf
https://indico.ihep.ac.cn/event/21111/contributions/161005/attachments/80399/100731/NOCERA_Dalian.pdf
http://github.com/NNPDF/eko
http://github.com/NNPDF/yadism


Fit quality
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• Without MHOUs the fit improves (lower ) with increasing perturbative order for both NNPDF and MSHT


• With MHOUs the fit depends only weakly on the perturbative order


• At N LO MHOUs have a small impact on the 

χ2

3 χ2

NNPDF, 2402.18635
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https://arxiv.org/abs/2402.18635


• Photon subtracts momentum from the gluon PDF


• QED effect similar in magnitude to aN3LO corrections
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Q = 100GeV

PDFs at  
with photon PDF represents the 

most accurate PDFs 

aN3LOQCD ⊗ NLOQED

NNPDF, 2406.01779 

NNPDF4.0QED means:


• NLO QED corrections 
 




• Photon PDF

P = PQCD + PQCD⊗QED
PQCD⊗QED = αemP(0,1) + αemαsP(1,1) + α2

emP(0,2)

https://arxiv.org/abs/2406.01779


‣  from PDF fitsαs



PDFs and  are correlatedαs
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PDFs and  are correlatedαs
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In many cases  is determined by extracting it from a 
parabolic fit to the  profile

αs
χ2

[NNPDF,1110.2483]

https://arxiv.org/abs/1110.2483


PDFs and  are correlatedαs
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In this way correlations between PDF parameter fluctuations and 
 are not fully taken into accountαs

[NNPDF,1802.03398]

In many cases  is determined by extracting it from a 
parabolic fit to the  profile

αs
χ2

PDF parameters

[NNPDF,1110.2483]

https://arxiv.org/abs/1802.03398
https://arxiv.org/abs/1110.2483


PDFs and  are correlatedαs

11

In this way correlations between PDF parameter fluctuations and 
 are not fully taken into accountαs

[NNPDF,1802.03398]

In many cases  is determined by extracting it from a 
parabolic fit to the  profile

αs
χ2

PDF parameters

[NNPDF,1110.2483]

Ideally minimise  and PDF simultaneouslyαs

https://arxiv.org/abs/1802.03398
https://arxiv.org/abs/1110.2483


How to account for correlations between PDFs and ?αs

NNPDF can’t (easily) treat  as another trainable parameter 


Rerunning Monte Carlo generators and DGLAP evolution at every training 
step is not feasible, therefore predictions are stored in precomputed grids


Unlike partonic cross-sections, DGLAP is not a simple expansion in 

αs

αs
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How to account for correlations between PDFs and ?αs

NNPDF can’t (easily) treat  as another trainable parameter 


Rerunning Monte Carlo generators and DGLAP evolution at every training 
step is not feasible, therefore predictions are stored in precomputed grids


Unlike partonic cross-sections, DGLAP is not a simple expansion in 

αs

αs

Correlated replicas fitted to the same data replica at different αs

Two methods have been developed to avoid this limitation:

1) Multiple fits of the same data replica, changing only the value of 

, thereby correlating PDFs at different   
[NNPDF, 1802.03398] 

2) Based on a single fit with an  theory covmat, and computing 
the fit’s preferred value for alphas a posteriori in a Bayesian framework 
[Ball, Pearson, 2105.05114] 

αs(mZ) αs(mZ)

αs(mZ)
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https://arxiv.org/pdf/1802.03398.pdf


‣ Results
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Many effects studied….



Impact of missing higher order uncertainties (MHOUs) 
and aN LO3
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No MHOUs

PRELIMINARY

These and following results for the 
NNPDF4.0 dataset
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Impact of missing higher order uncertainties (MHOUs) 
and aN LO3
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No MHOUs

With MHOUs

Fewer LHC data points 
reduces impact of MHOUs?

PRELIMINARY

These and following results for the 
NNPDF4.0 dataset



Impact of QED corrections and the photon PDF

16

No consistent picture of QED shifts, but clearly QED cannot be neglected

PRELIMINARY



Impact of PDF-  correlationsαs

17

PRELIMINARY

Correlations increase the uncertainty by 25% to 60%



 at different values of  pole massαs(mZ) mt
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mt [GeV] NNLO NNLO, MHOU

175 0.1208(4) 0.1200(6)

172.5 0.1204(4) 0.1200(7)

170 0.1200(4) 0.1198(6)

• PDG value is 


• Impact is negligible 

mt = 172.4(7)

PRELIMINARY



Q: How to validate the methodologies? 
A: Closure tests

19

Basic idea: generate a global pseudo dataset from theory predictions 
and extract  from thisαs

PDFs at input  
scale Q0

Wilson coefficients + DGLAP 
depending on  αs pseudodata extracted αs⊗ methodology

Is  the same?*αs

[Del Debio, Giani, Wilson, 2111.05787 ]

https://arxiv.org/pdf/2111.05787.pdf


Q: How to validate the methodologies? 
A: Closure tests

19

Basic idea: generate a global pseudo dataset from theory predictions 
and extract  from thisαs

PDFs at input  
scale Q0

Wilson coefficients + DGLAP 
depending on  αs pseudodata extracted αs⊗ methodology

Is  the same?*αs

Experimental data is sampled from a distribution, therefore 
                    pseudodata = prediction + noise

*

[Del Debio, Giani, Wilson, 2111.05787 ]

https://arxiv.org/pdf/2111.05787.pdf


The closure test suggests a bias…

1) Generate pseudodata samples around 


2) Extract  for each pseudodata sample


3) Check if our method returns the correct answer 

αs(mZ) = 0.118

αs(mZ)

We find a three-sigma indication for a bias!


 αs(mZ) = 0.11813(4)
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…but we can understand the origin!

αs(mZ) = 0.11798(4) αs(mZ) = 0.11804(8)

In NNPDF4.0 we enforce positivity of observables not only 
for the central PDF but for all replicas

Both methodologies pass the closure test! 

But how do we account for this bias?

Theory covmat method Correlated replicas method

21



Accounting for the positivity bias

• Simple solution: remove positivity from the fit


• Actually not so simple: the two methods no longer agree


• Conservative option: add shift due to bias as a linear 
correction to the uncertainty 
In this case 0.1194-0.1187=0.0007

22

Theory covmat
Correlated 

replicas 

with positivity 0.1194(7) 0.1193(7)

W/o positivity 0.1187(9) 0.1191(9)

PRELIMINARY
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Theory covmat
Correlated 

replicas 

with positivity 0.1194(7) 0.1193(7)

W/o positivity 0.1187(9) 0.1191(9)

PRELIMINARY

Note: correction is only to the uncertainty, so 
previous qualitative conclusions remain



Summary and Outlook
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• Strong correlations between the PDFs and  means that a 
simultaneous determination is needed 


• aN3LO, MHOU, QED each have a significant impact on the value of 



• Impact of top mass is negligible 


• Our methodologies have been validated by means of closure testing


• Account for bias due to positivity constraint


•

αs

αs(mZ)

αs(MZ)aN3LO,QED,MHOU = 0.1194+0.0007
−0.0014
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Summary and Outlook

23

• Strong correlations between the PDFs and  means that a 
simultaneous determination is needed 


• aN3LO, MHOU, QED each have a significant impact on the value of 



• Impact of top mass is negligible 


• Our methodologies have been validated by means of closure testing


• Account for bias due to positivity constraint


•

αs

αs(mZ)

αs(MZ)aN3LO,QED,MHOU = 0.1194+0.0007
−0.0014

Thank you for your attention!
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Backup slides



Propagating experimental uncertainty to PDFs 
An NNPDF set (usually) consists of 100 PDF replicas produced as 
follows:

1. Assume experimental data is defined by a vector of central 

values and a covariance matrix

2. Sample this distribution to create 100 Monte Carlo replicas in 

data space

3. Perform a fit to each of the data replicas


➡A PDF set encoding experimental uncertainties 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Simultaneous minimization of PDF and  
Correlated replicas method

αs
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Simultaneous minimization of PDF and  
Correlated replicas method

αs
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Simultaneous minimization of PDF and  
Correlated replicas method

αs

26

Fit the same data replica at different values of  and 
fit a parabola for each replica …

αs



Simultaneous minimization of PDF and  
Correlated replicas method

αs
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Fit the same data replica at different values of  and 
fit a parabola for each replica …

αs … then look at the distribution of minima of the parabolas



 from correlated theory uncertainties 
Theory Covariance Method
αs

The “correlated replicas” method is computationally costly because it involves fitting 
PDFs at many values of 


Alternatively,  can be determined in a Bayesian framework from nuisance 
parameters:


1. Model the theory uncertainty as a shift correlated for all datapoints 
, for  




2. Choose a prior 




3. Marginalise over  to get 


4. Compute the posterior for  

αs

αs

T → T + λ ⋅ β β ≡ T(α+
s ) − T(α−

s )

P(T ∣ D, λ) ∝ exp(χ2) = exp (−
1
2

(T + λ ⋅ β − D)TC−1(T + λ ⋅ β − D))
P(Δαs) ∝ exp (−

1
2

λ2)
λ P (T |D)

λ

P(λ ∣ T, D) =
P(T ∣ D, λ)P(λ)

P(T ∣ D)
∝ exp [−

1
2

Z−1(λ − λ)]
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[arXiv:2105.05114] 

λ(T, D) = βT(C + ββT)−1(D − T )Z = 1 − βT(C + ββT)−1β

This idea can be extended to a real PDF fit [arXiv:2105.05114] 

1) Perform fit with , 


2) Once the fit has completed, compute  shift preferred by 
data as encoded in the fit

Cexp → Cexp + Cαs Cαs = ββT

αs



Prior dependence in the Theory Covariance Method
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For some aspects of the fit we have to assume a 
value of , in reality we don’t know the 
result so what if we choose “wrong”?


Consider the following 


Pseudodata at 


Prior assumption is 


Result moves towards the true result. We update 
assumption and iterate!

αs(mZ)

αs(mZ) = 0.118

αs(MZ) = 0.117


