

A determination of $\alpha_s(m_Z)$ at aN³LO_{QCD} \otimes NLO_{QED} from NNPDF4.0

Roy Stegeman

The University of Edinburgh

Stony Brook, 7 May 2025

• Updates since α_s from NNPDF3.1

α_s from NNPDF4.0

Last determination was based on NNPDF3.1. Lost of progress since then:

- Updated Machine Learning methodology [NNPDF:2109.02653]
 - Stochastic gradient descent
 - Hyperoptimization
 - Validated with closure tests
- NNPDF4.0 global dataset [NNPDF:2109.02653]
 - ~400 more datapoints, mostly from the LHC
 - Many new processes
- Missing higher order uncertainties at the level of the fit [NNPDF, 2401.10319]
- NLO QED and photon PDF [NNPDF:2401.08749]
- aN3LO QCD [NNPDF:2402.18635]

Big impact due to new treatment of theory uncertainty

- In NNPDF3.1 the dominant source of uncertainty was from missing higher orders (MHOU): $\alpha_s(m_Z) = 0.1185(5)^{\text{PDF}}(1)^{\text{meth}}(11)^{\text{MHOU}} = 0.1185(12)$
- Obtained from NNLO-NLO shift $\Delta \alpha_s^{\text{MHOU}} \equiv \frac{1}{2} \left| \alpha_s^{\text{NNLO}} - \alpha_s^{\text{NLO}} \right| = 0.0011$
- Include a theory covariance matrix from scale variations at the level of the fit leads to much reduced uncertainty: NNPDF4.0 methodology, NNPDF3.1-like data: $\alpha_s(m_Z) = 0.1188(6)^{\text{PDF+MHOU}}$

Theory uncertainties in PDFs

- To account for theory uncertainties we treat the theory covmat on the same footing as the experimental covmat: $C_{exp} \rightarrow C_{exp} + C_{th}$
- The theory covmat can be constructed as follows:

$$C_{\text{MHOU},ij} \propto \sum_{\kappa_f,\kappa_r} \left(T_i(\kappa_f,\kappa_r) - T_i(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(0,0) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(\pi_f,\kappa_r) \right) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(\pi_f,\kappa_r) - T_j(\pi_f,\kappa_r) \right) \left(T_j(\kappa_f,\kappa_r) - T_j(\pi_f,\kappa_r) \right) \left(T_j(\kappa_r) - T_j(\pi_r) \right) \left(T_j(\kappa_r) - T_j(\pi_r) - T_j(\pi_r) \right) \left(T_j(\kappa_r) - T_j(\pi_r) \right) \left(T$$

Fit without theory uncertainties

$$\chi^2 = \left(-\frac{1}{2}(T-D)^T C_{\exp}^{-1}(T-D)\right)$$

(0,0)

Fit with theory uncertainties

$$\chi^{2} = \left(-\frac{1}{2}(T-D)^{T}(C_{\exp} + C_{th})^{-1}(T-D)\right)$$

5

PDFs at approximate N³LO

A PDF fit requires several theory inputs:

- DGLAP splitting functions small-*x* and large-*x* limits Mellin moments
- Matching conditions for variable flavor number schemes Now exactly known but original aN3LO publications use approximations
- DIS coefficient functions
 Massless known, massive limits known
- Hadronic cross-section Not much is known

Strategy:

- When N³LO theory is known, it is **used**
- When partial information is available, use it while accounting for **parametrisation uncertainty**
- When it is unknown account for **missing higher order uncertainty**

DGLAP evolution from EKO: github.com/NNPDF/eko

DIS coefficients from Yadism: github.com/NNPDF/yadism

Singlet $(P_{qq}, P_{gg}, P_{gq}, P_{qg})$		
– large- n_f limit [NPB 915 (2017) 335;	; arXiv:2308.07958	
- small- x limit [JHEP 06 (2018) 145]		
- large- x limit [NPB 832 (2010) 152; J	JHEP 04 (2020) 018; JHEP 09 (2022) 155	
- 5 (10) lowest Mellin moments	[PLB 825 (2022) 136853; ibid. 842 (2023)	137944; ibid. 846 (2023) 13821
Non-singlet ($P_{NS,v}$, $P_{NS,+}$, $P_{NS,+}$,	$P_{NS,-})$	
– large- n_f limit [NPB 915 (2017) 335;	; arXiv:2308.07958	
- small- x limit [JHEP 08 (2022) 135]		
– large-x limit [JHEP 10 (2017) 041]		
– 8 lowest Mellin moments [JHEF	^P 06 (2018) 073]	
DIS structure functions (F_L ,	F2, F3)	
– DIS NC (massless) [NPB 492 (199	97) 338; PLB 606 (2005) 123; NPB 724 (2005	5) 3]
- DIS CC (massless) [Nucl.Phys.B &	813 (2009) 220	
- massive from parametrisation	combining known limits and dan	nping functions [NPB 864
PDF matching conditions		
- all known except for $a_{H_{a}}^{3}$ [NPE	B 820 (2009) 417; NPB 886 (2014) 733; JHE	EP 12 (2022) 134
Coefficient functions for other	r processes	
DV (inclusive) [UIED 11 (2020) 142	N: DY (11 differential) [PRI 128 (202)	2) 052001
— I J I I I I I I I I I I I I I I I I I		2/032001

Dalian, China, August 2024 (More is known today!)

Fit quality

- Without MHOUs the fit improves (lower χ^2) with increasing perturbative order for both NNPDF and MSHT
- With MHOUs the fit depends only weakly on the perturbative order
- At N³LO MHOUs have a small impact on the χ^2

erturbative order for both NNPDF and MSHT

QED corrections and photon PDF

NNPDF4.0QED means:

- NLO QED corrections
- $P = P_{QCD} + P_{QCD \otimes QED}$ $P_{QCD \otimes QED} = \alpha_{em} P^{(0,1)} + \alpha_{em} \alpha_s P^{(1,1)} + \alpha_{em}^2 P^{(0,2)}$

Photon PDF

PDFs at $aN^{3}LO_{QCD} \otimes NLO_{QED}$ with photon PDF represents the **most accurate PDFs**

• α_s from PDF fits

u at 100 GeV

10

In many cases α_s is determined by extracting it from a parabolic fit to the χ^2 profile

In many cases α_s is determined by extracting it from a parabolic fit to the χ^2 profile

In this way correlations between PDF parameter fluctuations and α_{s} are not fully taken into account

In many cases α_s is determined by extracting it from a parabolic fit to the χ^2 profile

Ideally minimise α_s and PDF simultaneously

In this way correlations between PDF parameter fluctuations and α_s are not fully taken into account

How to account for correlations between PDFs and α_s ?

NNPDF can't (easily) treat α_s as another trainable parameter

Rerunning Monte Carlo generators and DGLAP evolution at every training step is not feasible, therefore predictions are stored in precomputed grids

Unlike partonic cross-sections, DGLAP is not a simple expansion in α_s

How to account for correlations between PDFs and α_{s} ?

NNPDF can't (easily) treat α_s as another trainable parameter

Rerunning Monte Carlo generators and DGLAP evolution at every training step is not feasible, therefore predictions are stored in precomputed grids

Unlike partonic cross-sections, DGLAP is not a simple expansion in α_s

Two methods have been developed to avoid this limitation:

- Multiple fits of the same data replica, changing only the value of 1) $\alpha_{s}(m_{z})$, thereby correlating PDFs at different $\alpha_{s}(m_{z})$ [NNPDF, 1802.03398]
- Based on a single fit with an $\alpha_s(m_z)$ theory covmat, and computing 2) the fit's preferred value for alphas a posteriori in a Bayesian framework [Ball, Pearson, 2105.05114]

Correlated replicas fitted to the same data replica at different α_s

Definition of the bias-variance ratio

The bias variance ratio as computed by Andrea was defined as the mean of the ratios. Note that averages are computed as the average over the bootstrap sample, not the exact value o Is

	••••••••••••••••••••••••••••••••••••••													
Is the unc compu	uted correctly? (waiting respo	nse from Andrea)						Settings		тсм	CRM		EXP	
								NNPDF3.1-like		0.11894 ± 0.00054	0.11889 ± 0	.00047	0.11864 ±	£ 0.00043
Settings	_	-			(as for PDFs)			NNPDF3.1-like, MHOU		0.11900 ± 0.00071				
CRM min	Jany e	ffects	studie	bd	28			NNLO		0.12050 ± 0.00035	0.12063 ± 0	0.00036	0.12045 :	+ 0.00028
-								NNLOXQED		0.12092 ± 0.00034	0.12103 ± 0	.00037	0.12078 :	± 0.00027
CRM min		I.			08		_	NNLO, MHOU		0.11990 ± 0.00071	0.11990 ± 0	0.00063	0.11991 ±	0.00045
CRM_min_qua	rtic	0.856241 ± 0.118	3033	0.863	3550 ± 0.116322			_						
CRM lin singlet	batch	0.934201 ± 0.09	9931	0.951	1168 ± 0.099192		0.120	NNLOXQED, MHOU		0.12023 ± 0.00058	0.12014 ± 0	.00064	0.12017 ±	0.00044
CRM mean		0.956343 ± 0.10	8697	0.958	3840 ± 0.105729		0.120	N3LO, 3pt		0.11867 ± 0.00053	0.11865 ± 0	.00052	0.11871 ±	0.00038
CMR_mean_al	pha	19.50692 ± 4.44	0705	11.14	937 ± 1.992662			N3LOxQED, 3pt		0.11871 ± 0.00053	0.11875 ± 0	.00052	0.11862 ±	£ 0.00038
CRM_mean_alt	ternative	2.697771 ± 0.304	4362	2.727	2.727734 ± 0.297442			N3LO. MHOU		0.11915 ± 0.00071	0.11913 ± 0.	.00069	0.11902 ±	± 0.00050
CRM mean (ful	Isample)	0.894193 ± 0.10	0804	0.905	0.905534 ± 0.099769		ds							
PFM		0.896151 ± 0.111	656	0.898	8179 ± 0.111422			N3LOXQED, MHOU		0.11943 ± 0.00068	0.11949 ± 0	.00067	0.11931 ±	0.00050
ТСМ		1.137260 ± 0.106	5517	1.138	338 ± 0.109129		ds	N3LOxQED, MHOU, sample t0		0.11932 ± 0.00071	0.11932 ± 0	.00070	0.11927 ±	0.00049
CRM LOG min		1.144239 ± 0.184	1387	1.099	9132 ± 0.173814									
CRM LOG min	(cubic)	0.860679 ± 0.12	1940	0.859	9844 ± 0.115734				[f"?	40517 re alabas 0(a)" for a la rar	~~/1140 105	0+1 10)1	041107 01 50 5	ala alabaa
CRM LOG min	(quartic)	0.858068 ± 0.12	0877	0.860	0889 ± 0.117834					Created by Roy Stegeman, last modified on Apr 27, 2025				
						DU			[f"	Cottingo Dhu		uninked moon		
	0.12023 ± 0.00035	0.12034 ± 0.00038	0.12018 ± 0.00027	nnlo.pdf						Settings RDV CRM, no pos, no int, 25 L1 0.793875 ± 0.085003	3	0.118044 ± 0.000078	0.118022 ± 0	.000065
QED	0.12092 ± 0.00034	0.12103 ± 0.00037	0.12078 ± 0.00027	nnlo_qed.	pdf	JU		CRM is with pseuododata	[f"	CRM, no pos, 25 L1				
иноц	0.11936 ± 0.00072	0.11944 ± 0.00071	0.11961 ± 0.00043	nnlo mho	u.pdf	metric pseudodata cu	ts	resampling	rar	CRM, no pos, no int, 25 L1, don't fix 3.831740 ± 0.160884		0.119450 ± 0.000077	0.119447 ± 0.	.000056
										TCM, baseline, 100 L1 0.803437 ± 0.056767		0.118132 ± 0.000039	0.118136 ± 0.	.000027
RED, MHOU	0.12023 ± 0.00058	0.12014 ± 0.00064	0.12017 ± 0.00044	nnlo_qed_	_mhou.pdf			iteration of 240619-01-		TCM, no pos, no int, 100 L1 0.718230 ± 0.043797 TCM, no pos, 100 L1 0.705075 ± 0.047318		0.117997 ± 0.000040	0.118002 ± 0.	.000031
lop mass d	lependence)_3pt.p	odf			rs-nnpdf40-alphas-tcm-		1CM, 10 p05, 100 E1 0.705975 ± 0.047516		0.11/984 ± 0.000041	0.11/965±0.0	.000029
he mtop=172.	5 fits below use k-facto	ors to rescale ATLAS	TTBARTOT7TEV and C	CMST7_3pt_	qed.pdf			mnou		TCM, no pos, no int, 25 L1, 0.795496 ± 0.076737 faketheoryid=0.118, prior assumption = 0.119		0.118105 ± 0.000080	0.118101 ± 0.).000059
JNI O				mbo		U				TCM, no pos, no int, 25 L1, 0.729069 ± 0.070595		0.118014 ± 0.000081	0.118013 ± 0.4	.000061
)_mno	Impact of truncate	ed evolution								
Settings	тсм	CRM	EXP	_qed_	The results below differ	from the table on top o	only in the e	evolution, where the first tabl	le use	s EXA evolution while here we use	TR	weighted mean	n	bootstrapped mean
mtop=175,	0.12077 ± 0.00036	0.12091 ± 0.00031	0.12074 ± 0.00028	/2min)	=(Cottings	TOM		0014		EVD	3759	0.118138 ± 0.00	10178	0.118146 ± 0.000092
					Settings	ТСМ		CKM		EXP		0.118124 ± 0.00		0.118124 ± 0.000111
mtop=173.2	0.12030 ± 0.00036	0.12058 ± 0.00030	0.12037 ± 0.00028), no to	NNPDF3.1			0.1185 ± 0.0005			1970	0.118116 ± 0.000	0178	0.118121 ± 0.000098
					NNPDF3.1-like	0.11876 ± 0.0	0055	0.11873 ± 0.00053		0.11832 ± 0.00042	3943	0.118054 ± 0.00	00178	0.118051 ± 0.000097
mtop=172.5	0.12036 ± 0.00037	0.12056 ± 0.00032	0.12040 ± 0.00028	3), no je	NNLO	0.12023 ± 0.0	0035	0.12036 ± 0.00036		0.12016 ± 0.00027	1320	0.118037 ± 0.00	00181	0.118043 ± 0.000114
mton_174.0	0 12022 + 0 00027	0 120 42 + 0 000 42	0.12020 + 0.00020	,	NNLO, MHOU	0.11946 ± 0.0	0067	0.11958 ± 0.00063		0.11946 ± 0.00043	0002	0.118042 ± 0.0	00182	0.118047 ± 0.000090
mop=1/1.8	0.12022 ± 0.00037	0.12042 ± 0.00040	0.12020 ± 0.00028), no je	N3LO, 3pt	0.11880 ± 0.0	0054	0.11896 ± 0.00056		0.11899 ± 0.00039	y ivi ii ii	I	alphas-tcm-mh	ou-notopjet
mtop=170	0.11992 ± 0.00038	0.12007 ± 0.00040	0.11991 ± 0.00028		N3LO, MHOU	0.11917 ± 0.00	0070	0.11942 ± 0.00066		0.11942 ± 0.00050				
											CARDING COMPANY AND AN ADDRESS		and an and an an an and an an and a	

Main results

This table contains the main results. They are all done with EXA evolution and without PDF positivity at small-x.

		_
	·	
	∩.1202 ± 0.0	(
).1194 ± 0.0)
	.1216 ± 0.0	(
	1010 - 0.0	
).1216 ± 0.0)
).1222 ± 0.0)
	1206 + 0.0	
2).1206 ± 0.0	
1		
3).1204 ± 0.0	
2		
•		
7).1185 ± 0.0)
1		
0		_
	0.1181 ± 0.0)

Impact of missing higher order uncertainties (MHOUs) and aN^3LO

These and following results for the NNPDF4.0 dataset

Impact of missing higher order uncertainties (MHOUs) and $a N^3 LO$

These and following results for the NNPDF4.0 dataset

Impact of missing higher order uncertainties (MHOUs) and aN³LO

reduces impact of MHOUs?

These and following results for the NNPDF4.0 dataset

Impact of QED corrections and the photon PDF

No consistent picture of QED shifts, but clearly QED cannot be neglected

Impact of PDF- α_s correlations

Correlations increase the uncertainty by 25% to 60%

$\alpha_s(m_Z)$ at different values of m_t pole mass

mt [GeV]	NNLO	NNLO, MHOU
175	0.1208(4)	0.1200(6)
172.5	0.1204(4)	0.1200(7)
170	0.1200(4)	0.1198(6)

- Impact is negligible

• PDG value is $m_t = 172.4(7)$

Q: How to validate the methodologies? A: Closure tests [Del Debio, Giani, Wilson, 2111.05787]

Basic idea: generate a global pseudo dataset from theory predictions and extract α_s from this

Q: How to validate the methodologies? A: Closure tests [Del Debio, Giani, Wilson, 2111.05787]

and extract α_s from this

The closure test suggests a bias...

- 1) Generate pseudodata samples around $\alpha_s(m_Z) = 0.118$
- 2) Extract $\alpha_s(m_Z)$ for each pseudodata sample
- 3) Check if our method returns the correct answer §

We find a three-sigma indication for a bias!

 $\alpha_s(m_Z) = 0.11813(4)$

...but we can understand the origin!

In NNPDF4.0 we enforce positivity of observables not only for the central PDF but for all replicas

Both methodologies pass the closure test!

But how do we account for this bias?

Accounting for the positivity bias

- Simple solution: remove positivity from the fit
- Actually not so simple: the two methods no longer agree
- Conservative option: add shift due to bias as a linear correction to the uncertainty In this case 0.1194-0.1187=0.0007

')
})

Accounting for the positivity bias

- Simple solution: remove positivity from the fit
- Actually not so simple: the two methods no longer agree
- Conservative option: add shift due to bias as a linear correction to the uncertainty In this case 0.1194-0.1187=0.0007

	Theory covmat	Correlated replicas
with positivity	0.1194(7)	0.1193(7)
W/o positivity	0.1187(9)	0.1191(9)

$$\alpha_s(M_Z)^{aN3LO,QED,MHOU} = 0.1194^{+0.0007}_{-0.0007^{PDF}-0.0007^{positivity}} = 0.1194^{+0.0007}_{-0.0014}$$

Accounting for the positivity bias

- Simple solution: remove positivity from the fit
- Actually not so simple: the two methods no longer agree
- Conservative option: add shift due to bias as a linear correction to the uncertainty In this case 0.1194-0.1187=0.0007

	Theory covmat	Correlated replicas
with positivity	0.1194(7)	0.1193(7)
W/o positivity	0.1187(9)	0.1191(9)

$$\alpha_s(M_Z)^{aN3LO,QED,MHOU} = 0.1194^{+0.0007}_{-0.0007^{PDF}-0.0007^{positivity}} = 0.1194^{+0.0007}_{-0.0014}$$

Note: correction is only to the uncertainty, so previous qualitative conclusions remain

Summary and Outlook

- Strong correlations between the PDFs and α_s means that a simultaneous determination is needed
- aN3LO, MHOU, QED each have a significant impact on the value of $\alpha_{\rm s}(m_{\rm Z})$
- Impact of top mass is negligible
- Our methodologies have been validated by means of closure testing
- Account for bias due to positivity constraint
- $\alpha_s(M_Z)^{aN3LO,QED,MHOU} = 0.1194^{+0.0007}_{-0.0014}$

Summary and Outlook

- Strong correlations between the PDFs and α_s means that a simultaneous determination is needed
- aN3LO, MHOU, QED each have a significant impact on the value of $\alpha_s(m_Z)$
- Impact of top mass is negligible
- Our methodologies have been validated by means of closure testing
- Account for bias due to positivity constraint
- $\alpha_s(M_Z)^{aN3LO,QED,MHOU} = 0.1194^{+0.0007}_{-0.0014}$

Thank you for your attention!

Backup slides

Propagating experimental uncertainty to PDFs

An NNPDF set (usually) consists of 100 PDF replicas produced as follows:

- 1. Assume experimental data is **defined** by a vector of central values and a covariance matrix
- 2. Sample this distribution to create 100 Monte Carlo replicas in data space
- 3. Perform a fit to each of the data replicas

A PDF set encoding experimental uncertainties

Fit the same data replica at different values of α_s and fit a parabola for each replica ...

Fit the same data replica at different values of α_s and fit a parabola for each replica ...

... then look at the distribution of minima of the parabolas

$\alpha_{\rm c}$ from correlated theory uncertainties Theory Covariance Method [arXiv:2105.05114]

The "correlated replicas" method is computationally costly because it involves fitting PDFs at many values of α_s

Alternatively, α_s can be determined in a **Bayesian framework** from nuisance parameters:

- 1. Model the theory uncertainty as a shift correlated for all datapoints $T \to T + \lambda \cdot \beta, \text{ for } \beta \equiv T(\alpha_s^+) - T(\alpha_s^-)$ $P(T \mid D, \lambda) \propto \exp(\chi^2) = \exp\left(-\frac{1}{2}(T + \lambda \cdot \beta - D)^T C^{-1}(T + \lambda \cdot \beta - D)\right)$
- 2. Choose a prior $P(\Delta \alpha_s) \propto \exp\left(-\frac{1}{2}\lambda^2\right)$
- 3. Marginalise over λ to get P(T|D)
- 4. Compute the posterior for λ $P(\lambda \mid T, D) = \frac{P(T \mid D, \lambda)P(\lambda)}{D(T \mid D)} \propto \exp\left[-\frac{1}{2}Z^{-1}(\lambda - \overline{\lambda})\right]$ $P(T \mid D)$

 $Z = 1 - \beta^T (C + \beta \beta^T)^{-1} \beta \qquad \overline{\lambda}(T, D) = \beta^T (C + \beta \beta^T)^{-1} (D - T)$

This idea can be extended to a real PDF fit [arXiv:2105.05114]

1) Perform fit with
$$C^{exp} \rightarrow C^{exp} + C^{\alpha_s}$$
, $C^{\alpha_s} = \beta \beta^T$

Once the fit has completed, compute α_s shift preferred by 2) data as encoded in the fit

Prior dependence in the Theory Covariance Method

For some aspects of the fit we have to assume a value of $\alpha_s(m_Z)$, in reality we don't know the result so what if we choose "wrong"?

Consider the following

Pseudodata at $\alpha_s(m_Z) = 0.118$

Prior assumption is $\alpha_s(M_Z) = 0.117$

Result moves towards the true result. We update assumption and iterate!

