

THEORY FRONTIERS

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

extracting α_s @ EIC

CFNS, Stony Brook, May 7 2025

α_s AND THE PRECISION FRONTIER HIGGS IN GLUON FUSION: UNCERTAINTIES

Higgs production in gluon fusion

7 QCD@LHC

Precision calculations in the Higgs sector

Gudrun Heinrich

G. Heinrich

UNCERTAINTY ON $\alpha_s \sim 1\% \Rightarrow \sim 3\%$ on CROSS Section LO $\propto \alpha_s^2$; NLO \approx LO ≈ 2 NNLO

DO WE KNOW THE α_s UNCERTAINTY?

DO WE KNOW THE α_s UNCERTAINTY?

THE PDG VALUE OVER TIME

- RESULT DEPENDS ON WHO PERFORMS THE ANALYSIS
- UNCERTAINTY INCREASES WITH NEW DATA

HOW DO WE GET AN ACCURATE DETERMINATION? THE NEED TO DETERMINE PDFS

 α_s from individual processes do not average to the global fit: WHY?

 α_s from profiling of datasets in global fit

- INDIVIDUAL PROCESSES \Rightarrow FLAT DIRECTIONS
- PROFILING MOVES ALONG A LINE IN PDF SPACE
- MISSES TRUE MINIMUM

SF. Kassabov. 2020

HOW DO WE GET AN ACCURATE DETERMINATION? THE NEED FOR A GLOBAL DATASET

 α_s FROM DIS HISTORICALLY LOW (Virchaux, Milsztajn, 1992): WHY?

CORRELATION BETWEEN χ^2 AND GLUON

- INDIVIDUAL PROCESSES \Rightarrow RUNAWAY DIRECTIONS
- DIS: LOW $\chi^2 \Leftrightarrow$ HIGH GLUON \Leftrightarrow LOW α_s
- QUENCHED BY OTHER DATA (JETS)

HOW DO WE GET AN ACCURATE DETERMINATION? COLLIDERS AND MULTIPLICATIVE UNCERTAINTIES

- COLLIDER DATA: MULTIPLICATIVE UNCERTAINTIES IN COVARIANCE MATRIX
- EXPERIMENTAL COVARIANCE MATRIX \Rightarrow BIASED RESULT (d'Agostini, 1994)
- ITERATIVE PROCEDURE NEEDED COVARIANCE MATRIX COMPUTED FROM PREVIOUS FIT

WHAT DO WE NEED FOR AN ACCURATE DETERMINATION?

- COLLIDER DATA
- SEVERAL PROCESSES
- SIMULTANEOUS FIT OF PDFS
- ACCURATE THEORY

COLLIDER DATA: THE HL-LHC AND THE EIC

ACCURATE THEORY: THE FRONTIER

THE N³LO FRONTIER MATRIX ELEMENTS

- TOTAL XSECT: $gg \to H$ (2015), $gg \to HH$ (2020), CC& NC DY (2020-2021)
- FULLY DIFFERENTIAL ggH (2021)
- MORE N^3LO MATRIX ELEMENTS: HIGGS DECAY TO $b\bar{b}$ OR gg, INDIVIDUAL PARTON CHANNELS UP TO N^3LO Chen, Jakubćík, Marcoli, Stagnitto, 2024

SPLITTING FUNCTIONS

- LO: 1973 Gross, Wilckzek; NLO: 1979 Floratos, Ross, Sachrajda; Gonzalez-Arroyo, López, Ynduráin; NNLO: 2004 Moch, Vermaseren, Vogt
- N³LO: SUBLEADING LARGE AND SMALL x BEHAVIOUR, INCREASINGLY LARGE NUMBER OF MELLIN MOMENTS (SINCE 2017): FIVE MOMENTS FOR P_{ij} KNOWN (2022)
- FIVE MORE MOMENTS FOR ALL P_{ij} SINCE EARLY 2023 Falcioni, Herzog, Moch, Vogt; + Pelloni, Ruijl, Ueda, Vermaseren EXACT N_f^2 TERMS Gehrmann, von Manteuffel, Sotnikov, Yang
- HEAVY QUARK MATCHING FULLY KNOWN (Ablinger, Behring, Blümlein, De Freitas, von Manteuffel, Schneider, Schönwald, 2024)

N³LO SPLITTING FUNCTIONS

aN³LO (MHOU)

aN³LO (IHOU)

NNLO

 10^{-1}

 10^{-2}

x

NLQ

- UNCERTAINTY APPROX (IHOU) \ll missing N⁴LO uncertainty (MHOU) \Rightarrow known exactly FAPP ullet
- FIXED-ORDER N³LO EVOLUTION KNOWN FAPP •

N³LO PDFs AND MHOUS

- AN³LO PDF SETS NOW AVAILABLE: MSHT20 (2023), NNPDF4.0 (2024), COMBINATION (2024)
 - NNPDF IHOU ESTIMATED FROM THEORY COVARIANCE MATRIX
 - MSHT IHOU ESTIMATED FITTING NUISANCE PARMS TO DATA
- MHOU ON PDF FIT AVAILABLE:
 - NNPDF4.0 AT ANY ORDER, FROM SCALE VARIATION
 - MSHT20 AT AN³LO FROM NUISANCE PARMS, AT NNLO FROM N³LO-NNLO DIFFERENCE

DOMINANT UNCERTAINTY: SMALL *x* LOGS TOWARDS NNLO BFKL

- ONLY LL FULLY RESUMMED \rightarrow DOMINANT UNCERTAINTY AT N³LO
- HIGH ENERGY (BFKL, SMALL x) LOGS \leftrightarrow HIGH-ENERGY BEHAVIOR OF FACTORIZED $2 \rightarrow n$ AMPLITUDES
- BFKL FACTORIZATION BROKEN AT NNLO
- $2 \rightarrow 3$ AMPLITUDE COMPUTED TO TWO LOOPS (Buccioni, Caola, Devoto, Gambuti, 2024; Abreu, De Laurentis, Falcioni, Gardi, Milloy, Vernazza, 2025)
- RESTORED IN COLLINEAR LIMIT BY MULTIGLUON EXCHANGES?

Regge-pole factorisation broken at NNLL for A(-,-):

$$\mathcal{A}_{\lambda}^{AB}(\mathbf{s}) = s_{12} \left[\mathbf{T}_{A}^{a} \mathcal{C}_{A,\lambda_{A}}(s_{51}) \right] \frac{\mathcal{R}(s_{45},s_{51})}{s_{51}} \left[f^{aba_{4}} \mathcal{V}_{\lambda_{g}}(k_{\perp},\mathbf{q}_{1},\mathbf{q}_{2}) \right] \frac{\mathcal{R}(s_{34},s_{23})}{s_{23}} \left[\mathbf{T}_{B}^{b} \mathcal{C}_{B,\lambda_{B}}(s_{51}) \right] + \frac{\text{Multi-Reggeon}}{\text{exchanges}}$$

they respect colour symmetry of [8,8] exchange

F. Buccioni

ACCURACY FOR EIC PROCESSES SIDIS AT NNLO

- SEMI-INCLUSIVE DIS: $ep \rightarrow h + X$ (tagged hadron in final state)
- SIMULTANEOUS DETERMINATION OF PDF AND FRAGMENTATION FUNCTIONS DEPENDS ON TWO MOMENTUM FRACTIONS x & z
- STRINGENT CONSTRAINTS ON PDF FLAVOR SEPARATION \Rightarrow NEW PHYSICS SEARCHES AT HL-LHC
- NNLO CORRECTIONS COMPUTED (Bonino, Gehrmann, Stagnitto, 2024; Goyal, Moch, Pathak, Rana, Ravindran, 2024), ALSO IN POLARIZED CASE (Bonino, Gehrmann, Stagnitto, 2024)
- SIMILAR IN SIZE TO INCLUSIVE, NONTRIVIAL z DEPENDENCE
- NNLO EXTENDED TO SI PRODUCTION @ LHC (Czakon, Generet, Mitov, Poncelet, 2025)

NNLO/LO & NLO/LO K-factors vs z

COMPASS X BINS (Bonino et al., 2024)

ACCURACY FOR EIC PROCESSES RESUMMATION, HQ MASSES

• THRESOLD RESUMMATION GENERALISED TO EIC PROCESSES: SIDIS AT NNLO, NLP (Abele, de Florian, Vogelsang 2022), EXTENSION TO ALL NLP (SF, Ventola, in preparation)

- $m_b \gtrsim m_c \Rightarrow$ MUST INCLUDE BOTH AT ONCE IN VARIABLE-FLAVOR NUMBER SCHEME
- NEW TWO-MASS CONTRIBUTIONS Ablinger, Behring, Blümlein, De Freitas, Manteuffel, Schneider, Schönwald 2024
- SIZABLE WILSON COEFFICIENT AT LOW SCALE, VALENCE PEAK

HEAVY QUARK TAGGING THE PROBLEM OF HEAVY FLAVORED JETS

- DEFINITION OF HEAVY FLAVORED JET NONTRIVIAL \Rightarrow "EXPERIMENTAL" DEFINITION NOT IRC SAFE
- LONG-STANDING OPEN PROBLEM: SOLUTIONS
 - LIMITED (IRC ONLY AT LOW ORDER)
 - IMPRACTICAL (DIFFICUL TO MERGE WITH ANTI- k_t .)
- FULL SOLUTION (IFN SCHEME), CONSISTENT WITH ANTI- k_t , ALL-ORDER IRC-SAFETY TEST (Caola, Grabarczyk, Hitt, Salam, Sczyboz, Thaler, 2024)

B JET FROM TOP PRODUCTION

PARTON SHOWER MONTECARLOS: THE PATH TO NN LOGARITHMIC ACCURACY

- CLOSE TO ACHIEVING FULL AGREEMENT WITH NLL ANALYTIC RESUMMATION \Rightarrow COLOR DIPOLE
 - Alaric \Rightarrow NLL FOR GLOBAL LHC OBSERVABLES (Höche, Krauss, Reichelt, 2024)
 - PanScales \Rightarrow EXACT NLL FOR e^+e^- (van Beekveld et al., 2023)
- INITIAL-STATE MASSIVE QUARK EFFECTS INCLUDED IN Alaric (Assi, Höche, 2024)
- FULL NNLL ACCURACY FOR JET EVENT SHAPES! (van Beekveld, Dasgupta, El-Menoufi, Ferrario-Ravasio, Helliwell, Hamilton, Karlberg, Monni, Salam, Soto-Ontoso, Sczyboz, Soyez, 2024)

PanScales: NNLL EVENT SHAPES

PARTON SHOWER MCs FOR DIS

NLL SHOWER

• PanScales FULLY IMPLEMENTED FOR DIS AND VBF (van Beekveld, Ferrario Ravasio, 2023)

- FIXED-ORDER \Rightarrow WIDELY SEPARATED EMISSIONS INDEPENDENT
- FIXED-ORDER \Rightarrow EXACT SUBLEADING COLOR
- All-order \Rightarrow Tested VS. Exact NLO evolution

NLO+PS

- NLO+PS EVENT GENERATOR IMPLEMENTED IN POWHEG BOX FOR DIS (Banfi, Ferrario Ravasio, Jäger, Karlberg, Reichenbach, Zanderighi, 2023)
- FSR does not preserve x_B , y, Q^2 \Rightarrow momentum mappings adapted \Rightarrow preserve incoming & outgoing lepton momenta
- NLO CORRECTIONS SIGNIFICANT IN EIC KINEMATICS
- EXTENDED TO FINAL-STATE MASSIVE QUARKS (Buonocore, Limatola, Nason, Tramontano, 2024)
- EXTENDED TO NLL+NLO! (van Beekveld, Ferrario-Ravasio, Helliwell, Karlberg, Salam, Scyboz, Soto-Ontoso, Soyez, Zanoli, 2025)

WHAT ABOUT QED & EW CORRECTIONS? THE PHOTON PDF HIGGS IN GLUON FUSION

- PHOTON PDF MIXES UPON QCD \times QED evolution
- SUBTRACTS MOMENTUM FROM GLUON \Rightarrow GLUON SUPPRESSED
- 1-2% EFFECT ON TOTAL GLUON FUSION HIGGS CROSS-SECTION NOT ACCOUNTED FOR & NOT INCLUDED IN UNCERTAINTY IN HXSWG

$\begin{array}{c} \mbox{QED \& EW CORRECTIONS LHC} \\ \mbox{MIXED QCD}{\times} \mbox{EW CORRECTIONS TO DY} \end{array}$

- $\alpha \sim (\alpha_s(M_Z))^2$ so $\alpha \alpha_s \sim \alpha_s^3$; nontrivial interference
- FULL TWO LOOP QCD×EW CORRECTIONS TO NC DRELL-YAN INCLUDING DECAY RECENTLY COMPLETED, RESONANT AND HIGH-MASS Bonciani et al., Buccioni et al. (2022)
- CC DRELL-YAN AVAILABLE WITH TWO LOOP VIRTUAL CORRECTIONS IN POLE APPROX (2021)
- EXACT TWO-LOOP VIRTUAL CORRECTIONS TO CC NOW AVAILABLE (Armadillo, Bonciani, Devoto, Rana, Vicini, 2024)
- DETAILED PHENO: CORRECTIONS UP TO PERCENT AT HIGH RAPIDITY (Armadillo, et al., 2025)

VIRTUAL TWO–LOOP RATIO TO BORN IN UNITS OF $lpha lpha_s$

• PERCENT-LEVEL INTERFERENCE (NEGATIVE)

GED & EW CORRECTIONS @ LHC COMBINED QCD-EW RESUMMATION

- DRELL-YAN FIXED ORDER MIXED QCD+EW COMPUTATION IMPROVED WITH TRANSVERSE MOMENTUM RESUMMATION THROUGH PARTON SHOWERING LONG AGO
- ANALYTIC NLL (EW) X NNLL(QCD) X NLL (MIXED) NOW AVAILABLE (Buonocore, Rottoli, Torrielli, 2024)

QED & EW CORRECTIONS @ EIC?

- RADIATIVE CORRECTIONS TO $DIS \Rightarrow$ included in expt analysis
- MONTECARLOS HECTOR, HERACLES, DJANGOH (Bardin, Spiesberger 1995-2005)
- NLO EW FOR ν DIS AVAILABLE (Diener, Dittmaier, Hollik, 2003)
- NEED TO GO BEYOND STRUCTURE FUNCTIONS!

α_s WITHOUT PDFs ENERGY CORRELATORS

Simplest example is the two-point function

$$EEC(\chi) = \sum_{a,b} \int d\sigma_{e^+e^- \to a+b+X} \frac{E_a E_b}{Q^2} \,\delta(\cos\chi_{ab} - \cos\chi)$$

large logarithms both for small and large angles. For large angle N⁴LL is known!

- FACTORIZATION AND RESUMMATION TO HIGH ORDER
- CURRENTLY \Rightarrow JET SUBSTRUCTURE $\Rightarrow \alpha_s$ (ATLAS, CMS)
- PARISI'S IDEA (1978): \Rightarrow PARTON TO HADRON TRANSITION \Rightarrow PDF-INDEPENDENT α_s DETERMINATION

FAITHFUL ERROR ESTIMATION

- MHO TERMS \Rightarrow COVMAT / NUISANCE PARAMETERS (NNPDF, 2019; Tackmann, 2024; Lim, Poncelet, 2024)
- EXTRACT BEHAVIOR FROM KNOWN INFORMATION

MACHINE LEARNING AMPLITUDES

- TRANSFORMERS \Rightarrow LARGE LANGUAGE MODELS \Leftrightarrow ATTENTION (TOKENS)
- PREDICT ANSWER TO QUESTION \Rightarrow PREDICT ITEM IN SEQUENCE
- PREDICT n + k-JET RADIATION FEATURES FROM n-JET RADIATION (Butter, Charton, Villadamigo, Ore, Plehn, Spinner, 2024)
- PREDICT COEFFICIENTS OF SPECIFIC HIGHER-ORDER TERMS IN AMPLITUDES (Cai, Merz, Charton, Nolte, Wilhelm, K. Cranmer, Dixon, 2024)

SUMMARY

THEORY AT THE HL-LHC & EIC START?

- SAME ACCURACY FOR STANDARD CANDLES @ LHC (DY, TOP, HIGGS) & EIC (DIS, SIDIS)
- N³LO QCD+ N(N)LO EW FIXED ORDER; NLP SOFT (SUDAKOV) RESUMMATION; N(N)LO HIGH-ENERGY BFKL RESUMMATION; NNLO PARTON SHOWER MATCHED TO N(N)LO
- INCREASING ROLE OF ML: MHOUS & MODELING UNCERTAINTIES

 \Rightarrow RELIABLE FEW PERMILLE α_s

HOWEVER BEWARE OF GRESHAM'S LAW OF α_s DETERMINATION "Bad determinations drive our good determinations"

(T. Gresham, 1519-1579)

- ACCURATELY ASSESSED UNCERTAINTY \Rightarrow LARGER!
- DETERMINATIONS WITH LARGE UNCERTAINTY ARE DISFAVORED W.R. TO SMALL UNCERTAINTY