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PROTONS ARENOT FUNDAMENTAL OBJECTS



Why study the structure of the Protons?
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We want answers to fundamental Questions:

Inside the Proton, the ‘Most Complicated
Thing You Could Possibly Imagine’

+ Imaging of the Protons: How are quarks and gluons
distributed both in space and in momentum? How do
nuclear properties emerge from their interactions?

+ Proton Spin mystery: How are spins of the sea
quarks and gluons distributed inside the protons?
How much of the proton spins comes from the
Orbital motion?

¢+ Gluon saturation: Does Gluon density in nuclei
exhibit Saturation at high-energy? How does a dense
nuclear environment affect the quarks and gluons,
their correlations and their interactions?

+ What is the origin of Mass? Can new Physics hide
inside the protons? etc.




Discoveries using Protons as a Gateway

NewsScientist sanin &) ( ()

Physics

Physicists surprised to discover the
proton contains a charm quark

See Juan Rojo's talk on “Al-driven discovery of charm quarks in the proton”
this Thursday in WGs.3
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Proton Spin Mystery Gains a New Clue

Physicists long assumed a proton’s spin came from its three constituent quarks. New
measurements suggest particles called gluons make a significant contribution
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Decades-Long Quest Reveals Details of the
Proton’s Inner Antimatter

symme ry follow + o

sions of particle physics

A joint Fermilab/SLAC publication

04/10/14

o rd i n a r m atte r Scientists have gained new insight into how matter
y can change from a hot soup of particles to the

matter we know today.

| By Karen McNulty Walsh, Brookhaven National Laboratory


https://indico.nikhef.nl/event/4875/contributions/20464/

Predictions in High-Energy Physics
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Predictions in High-Energy Physics

~ 173 GeV
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Hard scattering 6,: encodes short-
range interactions; computed from
first principles.

Parton Distribution Functions
(PDFs): encodes long-range non-
perturbative interactions; cannot be
computed from first principle and
have to be determined from
experimental Data.

PDFs are Universal




How does the inside of a Proton look like?
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NNPDF Methodology in a Nutshell
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Snapshot of the Experimental
Datasets

+0(5000) datapoints that span a wide
range of kinematic regions and probe
various channels => Large space of
functional forms

+ Precision of the data reach the percent
level accuracy; mostly from correlated

systematic uncertainties

+ Significant amount of the datasets
(O(500) datapoints) were introduced
in the NNPDF4.0 release (LHC Run II
data)
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Instances of such samplings are called “Pseudodata
Replicas”. Each of the pseudodata replica is then fitted to
a NN with different training/validation random seeds.
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The final output - which defines the PDF distribution - is
an ensemble of PDF replicas.
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Hyperparameter Optimisation

One of the main reasons to resort to Neural Network (NN) was to
reduce biases in defining a functional form, however:

{Generate new hyperparameter conﬁguration}

¥ The hyperparameters that define the NN have to be chosen
¥ Random and/or Manual selection of hyperparameters are tedious LFit to subset of fol ds}
and not guaranteed

- [ hyperopt J l l i i
Perform an automated scan of the search space by running fits with -
thousands of hyperparameter combinations using a suitable metric !! { folds 1,2,3 J [ folds 1,2,4 } { folds 1,3,4 J [ folds 2,3,4 J
When a measure becomes a target, ,zt ceases to be a good { 2 J L 2 J { 2 J L X 1
measure” Goodhart’s law
The choice of figure of merit is crucial in obtaining a “Good Fit” r l a
(smoothness of the PDFs, generalisation power to future experimental _ 1 2
L . L =3 Z Xk
data, time/iterations it takes to complete a fit, etc.) -
- J
4 )

In NNPDF4.0, the figure of merit is defined in terms of k-fold cross
validation method. For each hyperparameter configuration, we run 4
fits to the central experimental data, and in each of these fits, the n-th

fold is left out.

The metric is then defined as the y*-averaged of the left-out folds.
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Hyperparameter Optimisation a la NNPDF4.0

+ Large parameter space that takes into account all possible hyperparameters: optimiser, initialiser, number of layers, activation
functions, learning rates, number of epochs, stopping patience, Lagrange multiplier.

+ Due to the computationally intensive nature of the fit @ hyperoptimisation, only one single replica was considered during the

hyperparameter tuning. A single replica fit requires about ~4 hrs (4X4 folds=16 hrs) and ~16 GB of memory).

| .
I\

2.2 -

|
R

A

n n
S 3 2.0
— —
1.8
1.6
2 1 3 Nadam Amsgrad Adadelta Adam
number _of layers optimizer

But what if we want to perform hyperparameter tuning at the level of the PDF distribution?
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netherlands

Sciencdu e Hyperopt on PDF Distribution using GPUs

Parallel Fit

Significant improvements on two main fronts, namely the
hyperparameter optimisation procedure and at the level of the
fits themselves.

+ Simultaneous fit of multiple replicas:
- Tensorflow allows the exact same codebase to be used for
both CPU and GPU
- Redesign of the framework in order to share memory-
heavy objects across all the replicas
- Resort to single PDF neural network model

— Running ~150 replicas at once on a A100 Nvidia GPU is
now as fast as a fit of one single replica.

+ Distributed asynchronous Hyperparameter Optimisation:
- Evaluate trials in parallel across many different GPUs
- Each instance of the worker shares the same database

(MongoDB)
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Hyperopt on PDF Distribution using GPUs: Figure of Merit

The difficult question: which figure of merit(s) should be considered? It turns out that defining what the perfect metric is a very
challenging task (should the ensuing metric be just a combination of various metrics?).

We can define the properties of a “Good Fit”:

- Not under-learned nor overfitted: smoothness vs wiggles

} < k-fold loss L =

- Generalisable to accommodate for future experiments

- Provides a faithful representation of the data uncertainties ?

A possible metric that accounts for all these criteria is a combination of the k-fold loss function with an indicator that assesses
the PDF uncertainties w.r.t the ones from experimental data.

[ ™

gﬂ)?% — <)(k2[f7[fﬁt]a 9]>rep o ]g[<tc7[fﬁt]>rep? @]

. W

ga)?z measures the standard deviation over the replicas in units of data uncertainties.
k
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What does such a Hyperopt
look like?

+ Define some hyperopt loss threshold
in terms of the ( y*) of non-fitted folds

+ Compute one-sigma standard
deviation and select a range defined

by [<)(2>min9 <)(2>min T 10]

+ Select n configurations based on the
smallest 1/¢?



Hyperopt Models: PDF Distributions

s at 2 GeV
\
/1 NNPDF4.0 (68% c. I +10)
1.15 1 507 Hyperopt Model 1 (68% c.l.+10)
S 1.10 ——=! Hyperopt Model 2 (68% c.l.+10)
<
L A -
E o
=
Z 1.00
S
© 0.95
©
© 0.90 |
0.85 “
adl :
107> 10~4 103 1072 10°1
X
d at 2 GeV
1.06 | '~ NNPDF4.0 (68% c.l.+10) .
X! Hyperopt Model 1 (68% c.l.+10) S~
o 1.04 { ——' Hyperopt Model 2 (68% c.l.+10)
3 o
L
0O 1.02
o
=
o 1.00
O
© 0.98
o
0.96 R NG "~
-7 v
R A =
107> 10~4 103 102 10°1

100

l] at 2 GeV
iEr NNPDF4 0 (68% c. | +10) 5
1.04 - I\7! Hyperopt Model 1 (68% c.l.+10) . -
(— Hyperopt Model 2 (68% c.l. +1o) .
2 ‘ + Representative tuned hyper-
L 1.02 o
g parameter from the selected
=
Z 1.00 - configurations
.
5 0.98 o
+ All models are consistent with
0.96 o . .
the published baseline
10> 10* 10 102 107t 10°  NNPDF4.0 (in the data region)
X
g at 2 GeV with one-sigma uncertainties
1.15 o
1.10 ¢ Should the different PDF fits
o °
< 1.05 ~ combined to account for the
D ° ° °
Z 1,00 - methodological uncertainties?
Z 1.
IS
o 0.95 74 —
© 7/
“ 0.90 7. NNPDF4.0 (68% c.I.+10) -
/N1 Hyperopt Model 1 (68% c.l.+10)
0.85 AP Hyperopt Model 2 (68% cl+lo)
20 107> 104 10-3 10_2 10_1 10°
X



Uncertainty Validations: Future Tests

Fit Data to specific kinematic regions, and then checks the generalisation (extrapolation) to unseen experimental data:
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Uncertainty Validations: Closure Tests

Generate “toy data” based on some known PDF and check a posteriori that the true underlying law & is reproduced
within errors. Fit replicas to pseudodata in the standard way according to:

Y =F +n+¢e wheren ~ NH/(0,C)and € ~ N(0,C)

[f the uncertainty associated to the PDF replicas is faithfully reproduced, then the bias-to-variance ratio should be unity, ie.
Ry, = \/Eﬂ[ bias ]/En[ variance | = 1.
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Open Source Framework

(Search docs >

Getting started

Fitting code: n3fit

Code for data: validphys

NNPDF: An open-source machine learning framework for ettt

Theory

global analyses of parton distributions Chi square figures of meri

Contributing guidelines and tools
The NNPDF collaboration determines the structure of the proton using Machine Learning methods. This is the

main repository of the fitting and analysis frameworks. In particular it contains all the necessary tools to reproduce
the NNPDF4.0 PDF determinations.

Releases and compatibility policy

Continuous integration and deployment

Servers
Documentation External codes
B Tutorials

The documentation is available at https://docs.nnpdf.science/ +) Running fits
5 qocr J{10U [e SASI|SPI6 3 4 Analysing results

+) Closure tests
+ Special PDF sets

+] Miscellaneous

Github: https:/github.com/NNPDEnnpdf

Documentation: https:/docs.nnpdf.science/
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Tutorials

This section contains tutorials for common things you might want to do using the code.
Adding to the Documentation and Reviewing pull requests).

Running fits

How to run a PDF fit
How to run an iterated fit
How to run a QED fit
e How to run a Polarized fit

Including a general theory covariance matrix in a fit

How to include a theory covariance matrix in a fit

Analysing results

e How to compare two fits

e How to generate a report

e How to run an analysis in parallel

e Using dask without a Scheduler

e How to plot PDFs, distances and luminosities

¢ Plotting non-trivial combinations of PDFs

e How to do a data theory comparison

e Interpreting the \(\mathcal{R}_O\) overfit metric

Closure tests

e How to run a closure test

e How to analyse a closure test

Special PDF sets

e Bundle PDFs with \(\alpha_s\) replicas
e How to transform a Monte Carlo PDF set into a Hessian PDF set


https://github.com/NNPDF/nnpdf

Conclusions & Outlook

+ NNPDF4.0 studies the proton PDFs by fitting to
experimental datasets and achieves high accuracy in
an unprecedentedly broad kinematic range thanks to
deep learning models

+ Hyperparameter tuning 1s an important part in
selecting good Machine Learning models; the
definition of the figure of merit is crucial

+ GPU optimisation allows for a tuning of the
hyperparameters at the level of PDF distributions
thanks to parallelisations

+ The full NNPDF frameworks is Open Source and
contains documentations and tutorials

24

“Wanderer above the Sea of Fog” by Caspar David Friedrich



