

PDF constraints from the **Top sector**

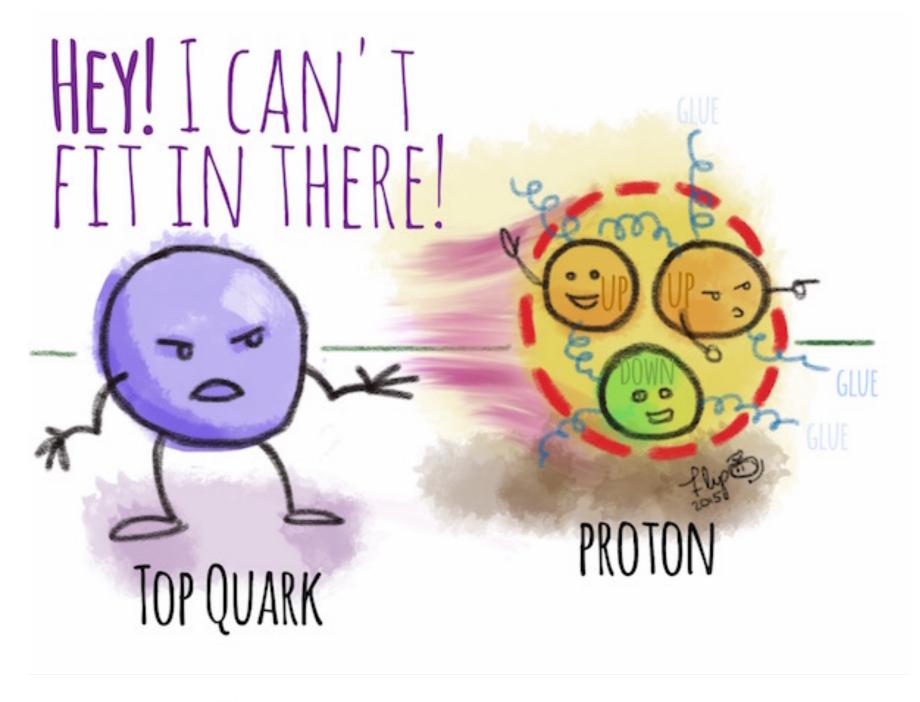
Tanjona R. Rabemananjara on behalf of the NNPDF collaboration LHCP2025, May 8th 2025 Taipei, Taiwan

	Introduction & Motivations
Part I	Top Data in NNPDF4.0
Part II	PDFs confront Top Data: A Qu
Part III	Impacts of new Top data on P
	Conclusions & Outlook

[arXiv:2109.02653; arXiv:2109.02671]

uantitative Appraisal

[arXiv:2501.10359]


PDFs & NNPDF4.1

Introduction & Motivations

- Top quark productions at the LHC complements (di-)jet measurements in providing a clean probe for PDFs at intermediate and large momentum fraction
- Processes such as top-pair productions are relevant in extracting the value of the strong coupling through the strong correlation between α_s and the gluon PDF at large partonic momentum
- Single top and top-pair productions are among the processes that can be computed at high perturbative accuracy in QCD (with electroweak corrections)

This Talk:

- Review the impacts of top measurements in current PDF fits
- Quantify the goodness of current available PDFs in describing new precision top data measurements from Run I/II
- Provide preliminary quantifications of their impacts in constraining PDFs
- Top data towards NNPDF4.1

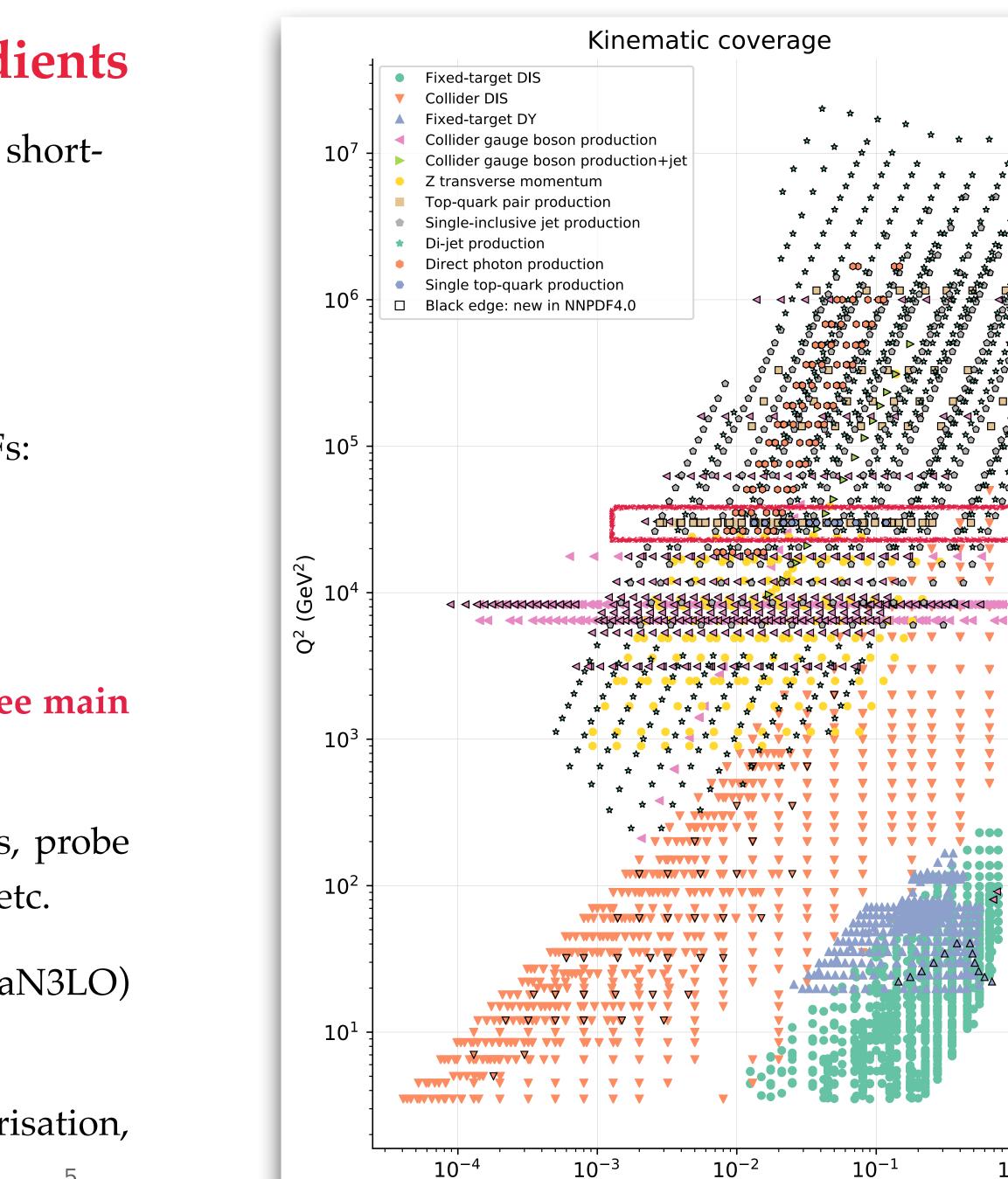
TOP QUARK

Part I	Top Data in NNPDF4.0
	Impacts of new Top data on PDFs & NNPDF4.1

[arXiv:2109.02653; arXiv:2109.02671]

PDF Determination: Formalism & Ingredients

Collinear Factorisation enables the separation between shortrange and long-range physics:


$$\mathcal{O}_{\text{LHC}}(M,s) \propto \sum_{ij} \int_{M^2}^{s} d\hat{s} \, \mathscr{L}_{ij}(\hat{s},s) \hat{\mathcal{O}}_{ij}(\hat{s},\alpha_s(M))$$

Where the Partonic luminosity directly relates to the PDFs:

$$\mathscr{L}_{ij}(Q,s) = \frac{1}{s} \int_{Q^2/s}^{1} \frac{dx}{x} f_i\left(\frac{Q^2}{sx}, Q\right) f_j(x, Q)$$

PDFs are universal and their determinations involve three main ingredients:

- Experimental data contains ~ $\mathcal{O}(4000)$ datapoints, probe different processes and channels, include LHC Run II, etc.
- Theory predictions Heavy quark schemes, NNLO (aN3LO) accuracy, MHOUs, Photon PDFs, intrinsic charm, etc.
- Methodology Neural Network (NN) parametrisation, closure & future tests, uncertainty propagation, etc.

5

10⁰

Х

Top-pair Productions

**

•

NNPDF4.0 includes Top data in the form of single-top and $t\bar{t}$ pair production

Top datasets significantly extended in NNPDF4.0: ~30 datapoints more than NNPDF3.1

Dataset	Ref.	$N_{ m dat}$	Kin_1	Kin_2 [GeV]	Theory
CMS σ_{tt}^{tot} 5 TeV (*)	[88]	1(1/1)		$Q = m_t$	MCFM+top++
ATLAS σ_{tt}^{tot} 7, 8 TeV	[65]	2(2/2)		$Q = m_t$	MCFM+top++
CMS σ_{tt}^{tot} 7, 8 TeV	[146]	2 (2/2)		$Q = m_t$	MCFM+top++
ATLAS σ_{tt}^{tot} 13 TeV (\mathcal{L} =139 fb ⁻¹) (*)	[134]	1 (1/1)		$Q = m_t$	MCFM+top++
CMS $\sigma_{tt}^{ m tot}$ 13 TeV	[<mark>69</mark>]	1(1/1)		$Q = m_t$	MCFM+top++
[ATLAS $t\bar{t} \ \ell$ +jets 8 TeV $(1/\sigma d\sigma/dp_T^t)$]	[<mark>67</mark>]	8 (/8)	$0 \le p_T^t \le 500 { m ~GeV}$	$Q = m_t$	Sherpa+NNLO
ATLAS $t\bar{t} \ell$ +jets 8 TeV $(1/\sigma d\sigma/dy_t)$	[67]	5~(4/4)	$ y_t < 2.5$	$Q = m_t$	Sherpa+NNLO
ATLAS $t\bar{t} \ \ell$ +jets 8 TeV $(1/\sigma d\sigma/dy_{t\bar{t}})$	[67]	5(4/4)	$ y_{tar{t}} < 2.5$	$Q = m_t$	Sherpa+NNLO
[ATLAS $t\bar{t} \ \ell$ +jets 8 TeV $(1/\sigma d\sigma/dm_{t\bar{t}})$]	[67]	7 (/7)	$345 \leq m_{t\bar{t}} \leq 1600~{\rm GeV}$	$Q = m_t$	Sherpa+NNLO
ATLAS $t\bar{t} \ 2\ell \ 8 \ \text{TeV} \ (1/\sigma d\sigma/dy_{t\bar{t}})$ (*)	[89]	5 (5/5)	$ y_{tar{t}} < 2.8$	$Q = m_t$	$mg5_aMC+NNLO$
CMS tt ℓ +jets 8 TeV $(1/\sigma d\sigma/dy_{t\bar{t}})$	[70]	10 (9/9)	$-2.5 < y_{t\bar{t}} < 2.5$	$Q = m_t$	Sherpa+NNLO
CMS $t\bar{t}$ 2D 2 ℓ 8 TeV $(1/\sigma d\sigma/dy_t dm_{t\bar{t}})$ (*)	[90]	16 (16/16)	$ y_t < 2.5$	$340 \le m_t \le 1500$	$mg5_aMC+NNLO$
CMS $t\bar{t} \ell$ +jet 13 TeV $(d\sigma/dy_t)$ (*)	[91]	10 (10/10)	$ y_t < 2.5$	$Q = m_t$	$mg5_aMC+NNLO$
CMS $t\bar{t} \ 2\ell \ 13 \ \text{TeV} \ (d\sigma/dy_t)$ (*)	[92]	11 (11/11)	$ y_t < 2.5$	$Q = m_t$	$mg5_aMC+NNLO$

- not included in the fit

- New in NNPDF4.0

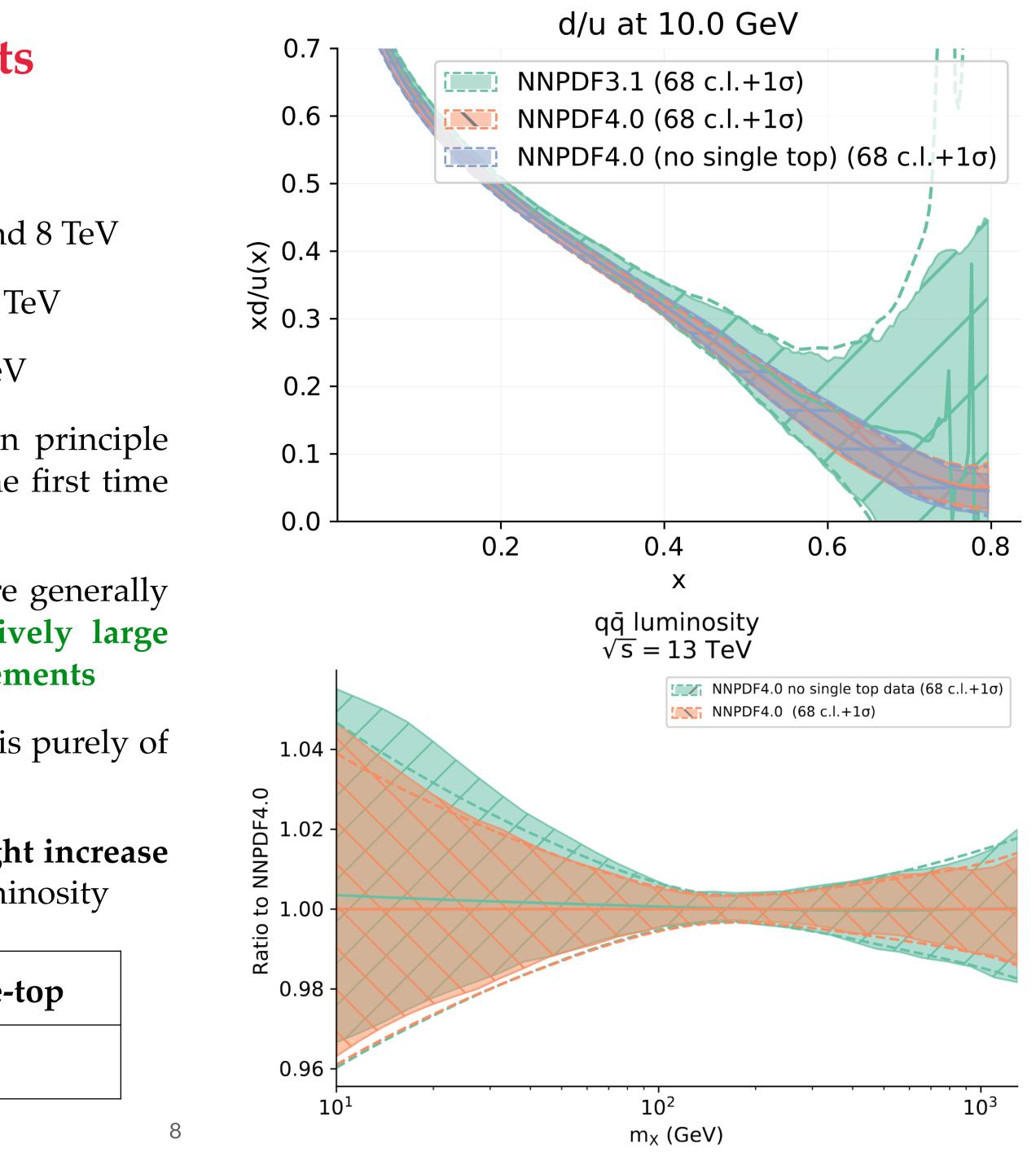
Single-Top Production

NNPDF4.0 includes Top data in the form of single-top and $t\bar{t}$ pair production Top datasets significantly extended in NNPDF4.0: ~30 datapoints more than NNPDF3.1

Dataset ATLAS single $t R_t$ 7 TeV (*) CMS single $t \sigma_t + \sigma_{\bar{t}} 7 \text{ TeV}$ (*) ATLAS single $t R_t 8 \text{ TeV}$ (*) CMS single $t R_t 8$ TeV (*) ATLAS single $t R_t$ 13 TeV (*) CMS single $t R_t$ 13 TeV (*) ATLAS single t 7 TeV $(1/\sigma d\sigma/dy_t)$ (*) ATLAS single t 7 TeV $(1/\sigma d\sigma/dy_{\bar{t}})$ (*) ATLAS single t 8 TeV $(1/\sigma d\sigma/dy_t)$ (*) ATLAS single t 8 TeV $(1/\sigma d\sigma/dy_{\bar{t}})$ (*)

Ref.	$N_{ m dat}$	Kin_1	Kin_2 [GeV]	Theory
[94]	1(1/1)		$Q = m_t$	$mg5_aMC+NNLO$
[95]	1(1/1)		$Q = m_t$	$mg5_aMC+NNLO$
[96]	1(1/1)		$Q = m_t$	$mg5_aMC+NNLO$
[97]	1(1/1)		$Q = m_t$	$mg5_aMC+NNLO$
[98]	1 (1/1)		$Q = m_t$	$mg5_aMC+NNLO$
[99]	1 (1/1)		$Q = m_t$	$mg5_aMC+NNLO$
[94]	4(3/3)	$ y_t < 3.0$	$Q = m_t$	$mg5_aMC+NNLO$
[94]	4(3/3)	$ y_{ar{t}} < 3.0$	$Q = m_t$	$mg5_aMC+NNLO$
[96]	4(3/3)	$ y_t < 2.2$	$Q = m_t$	$mg5_aMC+NNLO$
[96]	4(3/3)	$ y_{ar{t}} < 2.2$	$Q=m_t$	$mg5_aMC+NNLO$

- not included in the fit
- New in NNPDF4.0



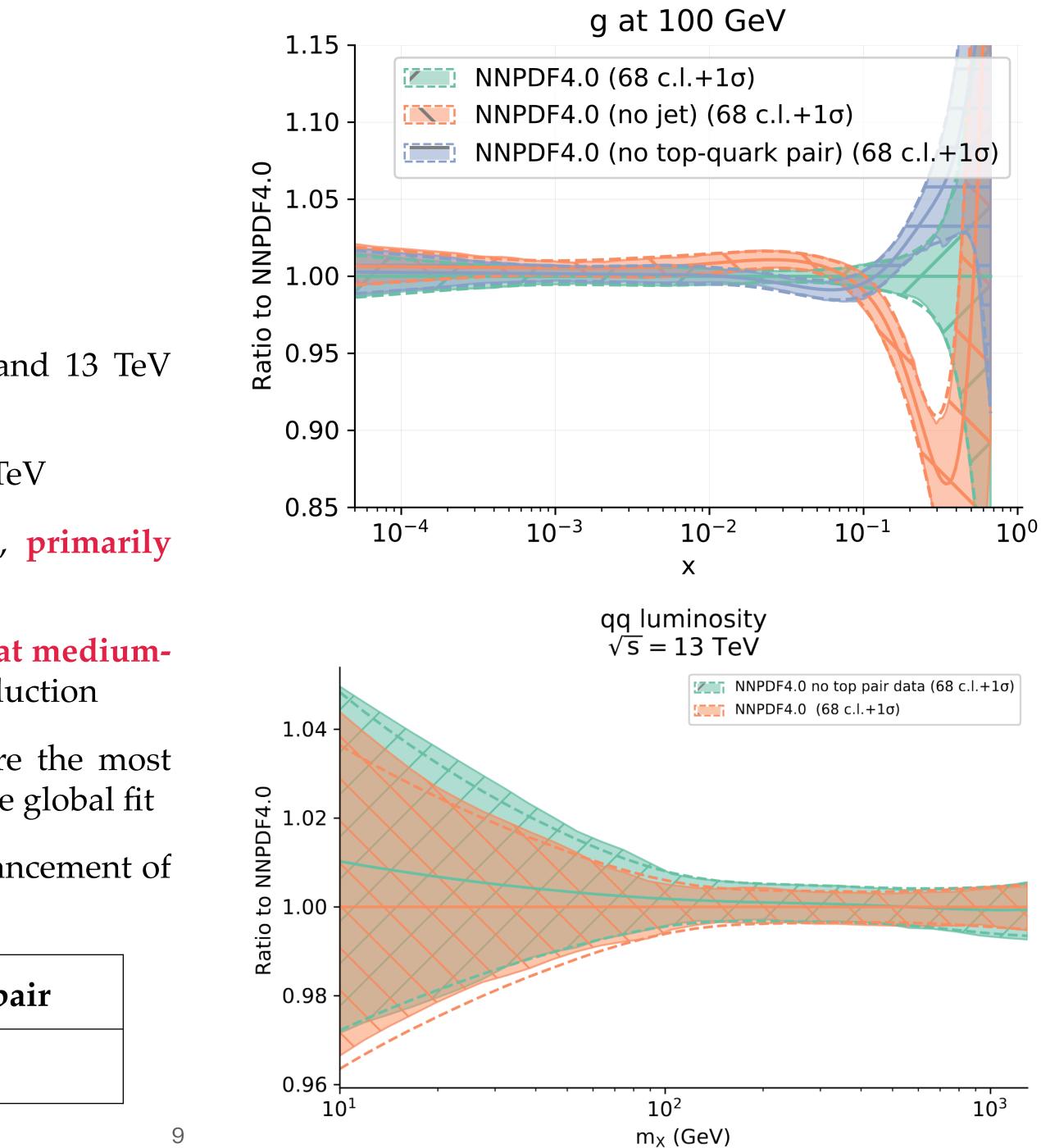
Impacts of LHC Single-Top Datasets

Single-top datasets in NNPDF4.0 include:

- normalised $y_t/y_{\bar{t}}$ distributions from ATLAS at 7 and 8 TeV
- total/ratio cross-sections from ATLAS at 7 and 13 TeV
- total/ratio cross-sections from CMS at 7 and 13 TeV
- ◆ Quark-flavour separation at large-*x* (d/u and d/\bar{u}) are in principle provided by single-top quark production (included for the first time in NNPDF4.0 along with fixed-target DY from SeaQuest)
- ★ Single-top data have no impact on the *d/u* ratio and more generally on the whole PDF determination ⇔ due to the relatively large experimental uncertainties of the corresponding measurements
- Reduction of uncertainties from NNPDF3.1 to NNPDF4.0 is purely of methodological origin
- Removing single-top production data only results to a slight increase of the uncertainties in the small-invariant mass of the Luminosity

	NNPDF4.0	NNPDF4.0 w/o single-
Chi2	1.16022	1.16278

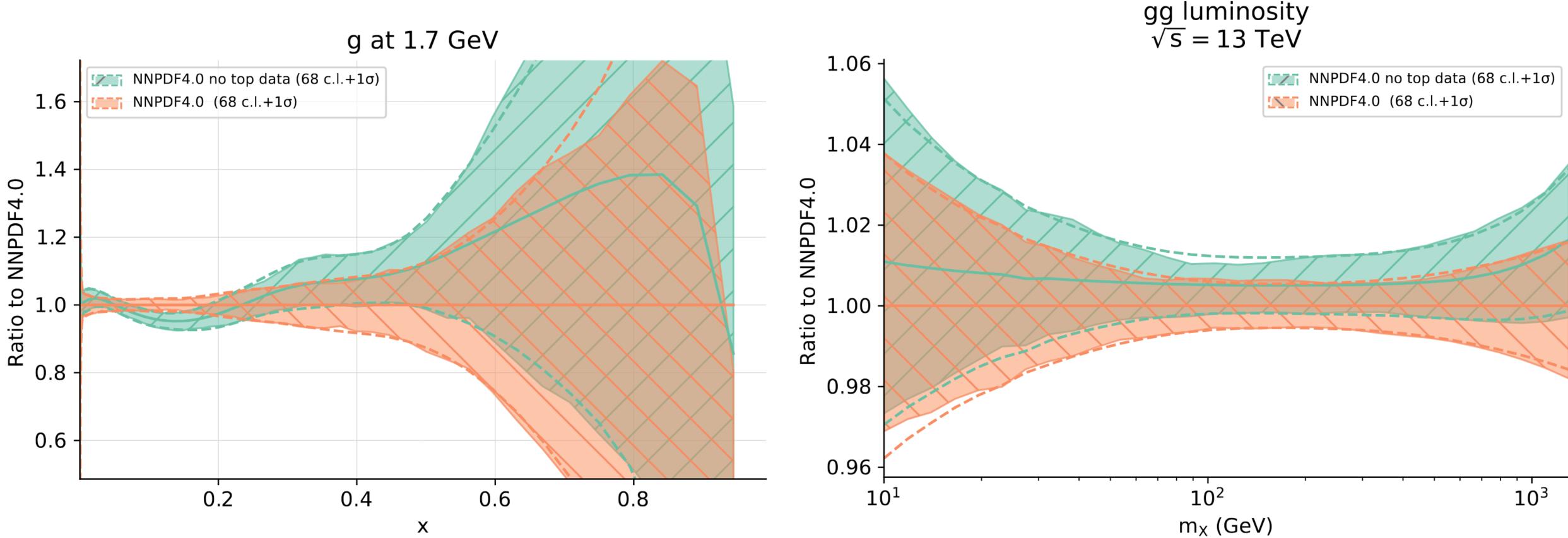
Impacts of LHC top-quark pair


Top-pair production datasets in NNPDF4.0 include:

- ✤ Total cross-sections from ATLAS at 7, 8, and 13 TeV
- ✤ Total cross-sections from CMS at 5, 7, 8, and 13 TeV
- ✤ normalised $y_t / y_{\bar{t}}$ distributions from ATLAS at 8 and 13 TeV (W/ leptons+jets in the final-state)

• y_t and 2D $y_t m_{t\bar{t}}$ distributions from CMS at 8 and 13 TeV

- Top-pair production, which is initiated by gg-scattering, primarily probes gluon PDF at large-x
- ♦ Removing jet data strongly suppresses (~15%) the gluon at mediumx ⇔ pulls from other datasets such as top-quark pair production
- single-inclusive jet and di-jet production data, which are the most abundant and precise, drive the features of the gluon in the global fit
- ✤ Top-pair data have really moderate impact ⇔ slight enhancement of the gluon PDF for $x \ge 0.1$


	NNPDF4.0	NNPDF4.0 w/o top-pa
Chi2	1.16022	1.16256

Impacts of removing all Top data

the quark PDFs remain similar

This results in some enhancements in the *gg*-luminosity with a slight increase of the uncertainties

Removing altogether all Top data results in the suppression of the gluon PDF at medium-x (~0.1) and a stronger enhancement at large-x — Major changes are only seen in the gluon while

- Part II **PDFs confront Top Data: A Quantitative Appraisal**
- **Impacts of new Top data on PDFs & NNPDF4.1**

[arXiv:2501.10359]

How well do PDFs accommodate new Top data?

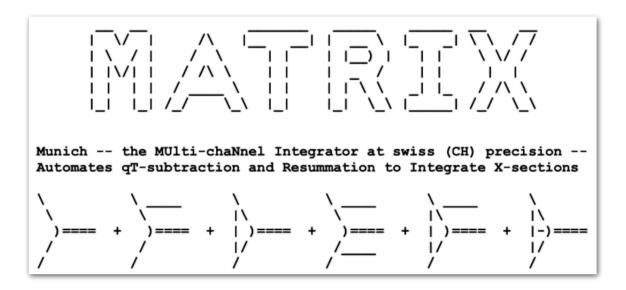
- Test PDF sets against new precise measurements from Run I/II using NNLO theories (w/o K-factors)
- Aim to assess how well PDF sets describe unseen data and whether these data will have effects on fits
- ♦ Agreement between data and theoretical predictions are quantified using the χ^2 definition:

$$\chi^{2} = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} \left(T_{i}^{(0)} - D_{i} \right) \left(\text{cov}^{-1} \right)_{ij} \left(T_{j}^{(0)} - D_{j} \right)$$

Contributions to the covariance matrix include all sources of theoretical uncertainties:

$$\begin{aligned} \operatorname{cov}_{ij} &= \left(\operatorname{cov}_{\exp} \right)_{ij} + \left(\operatorname{cov}_{th} \right)_{ij} \\ \left(\operatorname{cov}_{th} \right)_{ij} &= \left(\operatorname{cov}_{\mathsf{mho}} \right)_{ij} + \left(\operatorname{cov}_{\mathsf{pdf}} \right)_{ij} + \left(\operatorname{cov}_{\mathsf{as}} \right)_{ij} \\ \left(\operatorname{cov}_{\mathsf{pdf}}^{\mathsf{HES}} \right)_{ij} &= \sum_{k=1}^{n_{\operatorname{reg}}} \left(T_i^{(k)} - T_i^{(0)} \right) \left(T_j^{(k)} - T_j^{(0)} \right) \\ \left(\operatorname{cov}_{\mathsf{pdf}}^{\mathsf{MC}} \right)_{ij} &= \frac{1}{n_{\operatorname{rep}}} \sum_{k=1}^{n_{\operatorname{rep}}} \left(T_i^{(k)} - \left\langle T_i \right\rangle_{\operatorname{rep}} \right) \left(T_j^{(k)} - \left\langle T_j \right\rangle_{\operatorname{rep}} \right) \end{aligned}$$

PineAPPL



Ploughshare

needs

for all your interpolation grid

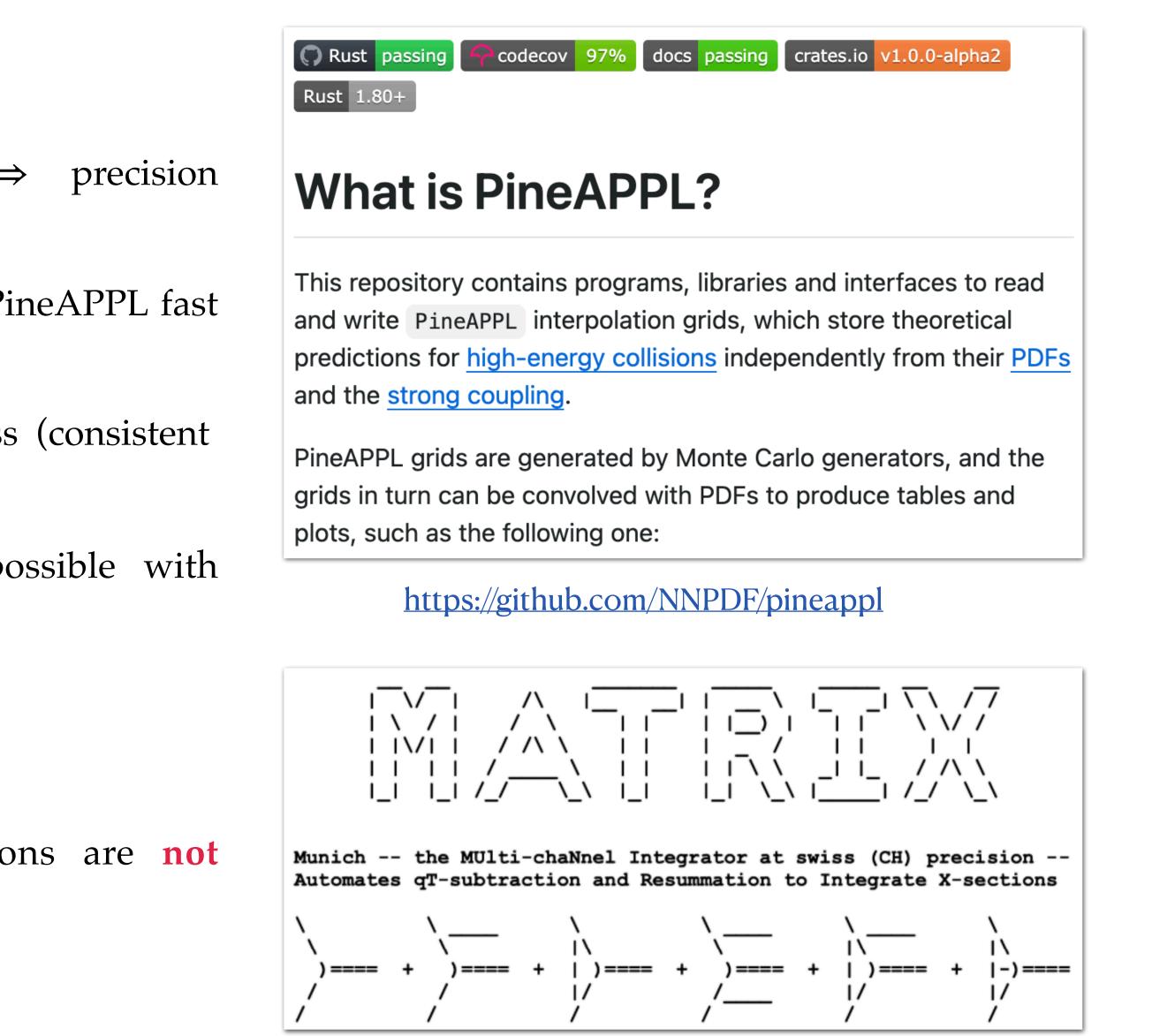
https://github.com/NNPDF/pineappl

https://matrix.hepforge.org/

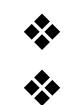
https://ploughshare.web.cern.ch/ploughshare/

$$(\operatorname{cov}_{\mathrm{mho}})_{ij} = \frac{1}{3} \left\{ \Delta_i^{+0} \Delta_j^{+0} + \Delta_i^{-0} \Delta_j^{-0} + \Delta_i^{0+} \Delta_j^{0+} + \Delta_i^{0-} \Delta_j^{0-} + \Delta_i^{++} \Delta_j^{++} + \Delta_i^{--} \Delta_j^{--} \Delta_i^{--} \Delta_i^{--}$$

$$(\operatorname{cov}_{\operatorname{as}})_{ij} = \frac{1}{2} \left\{ \Delta_{i,\alpha_s}^+ \Delta_{j,\alpha_s}^+ + \Delta_{i,\alpha_s}^- \Delta_{j,\alpha_s}^- \right\}$$
$$\Delta_{i,\alpha_s}^+ \equiv T_i \left(\alpha_s = 0.119 \right) - T_i \left(\alpha_s = 0.118 \right)$$
$$\Delta_{i,\alpha_s}^- \equiv T_i \left(\alpha_s = 0.118 \right) - T_i \left(\alpha_s = 0.117 \right)$$



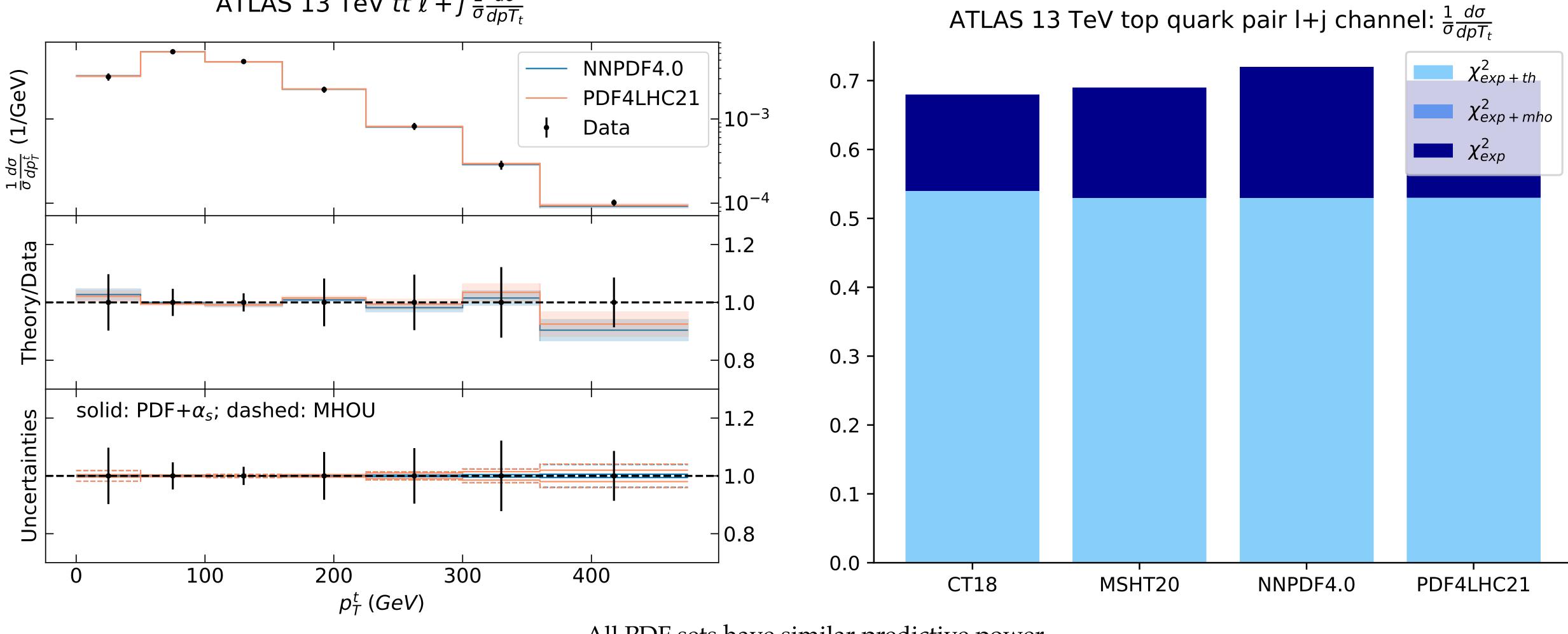
Theoretical Predictions


- Theory predictions are **accurate to NNLO QCD** ↔ precision measurements require precise theory predictions
- Predictions are computed using MATRIX interfaced to PineAPPL fast interpolation grids
- $-m_t^{\text{pole}} = 172.5 \text{ GeV}$ is used for the top-quark pole mass (consistent with latest PDG average)
- Computations have been benchmarked whenever possible with FastNLO tables

$$\mu_R = \mu_F = \frac{H_T}{2} = \frac{\sqrt{m_t^2 + (p_T^t)^2}}{2}$$

- Electroweak, QED, and photon-induced cross-sections are **not included**

Top data included in the study



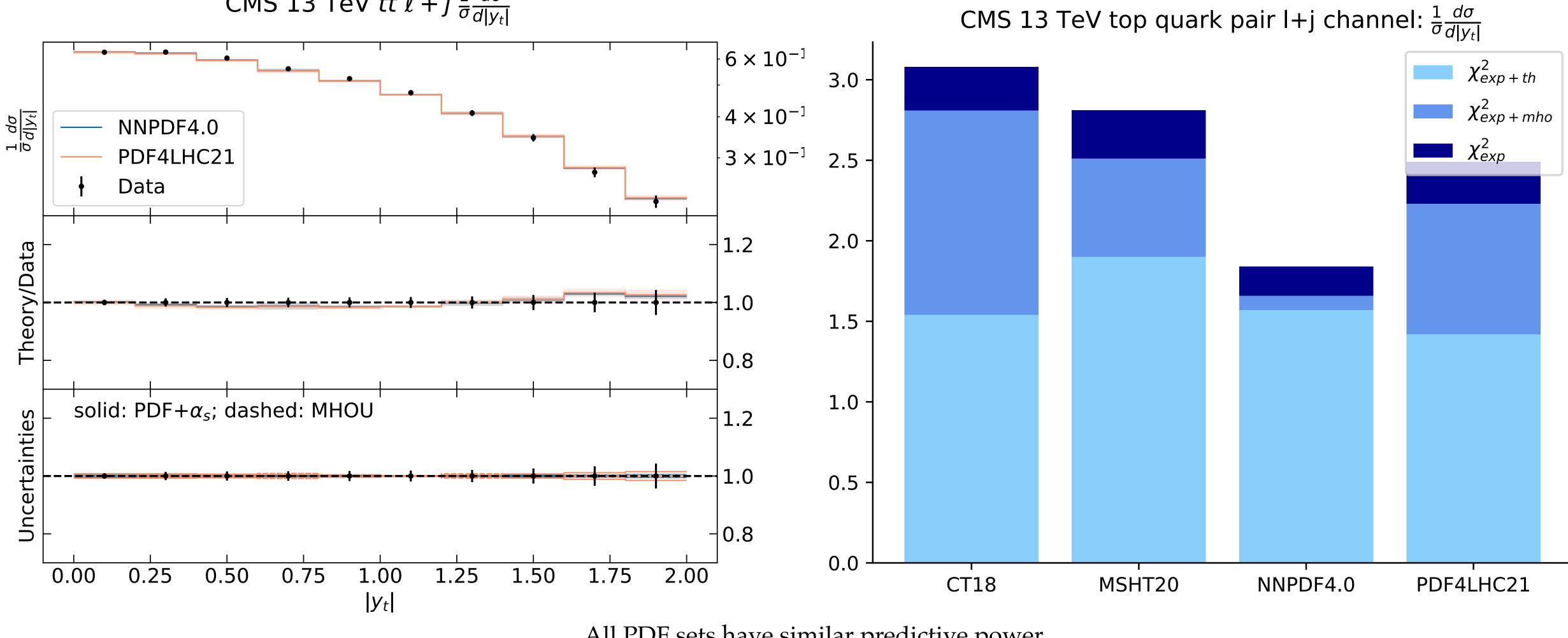
Process	Experiment	Final State	Observable	$\sqrt{s}~({ m TeV})$	\mathcal{L} (fb ⁻¹)	$n_{ m dat}$	Ref.
			$\left(rac{1}{\sigma} ight) rac{d\sigma}{dm_t ar{t}}$	13	36.1	9	[53]
	ATLAS	all-hadronic	$\left(rac{1}{\sigma} ight) rac{d\sigma}{d {y_t}_{ar{t}} }$	13	36.1	12	[53]
			$\left(rac{1}{\sigma} ight) rac{d^2\sigma}{d y_{tar{t}} dm_{tar{t}} }$	13	36.1	11	[53]
			$\left(rac{1}{\sigma} ight) rac{d\sigma}{dm_t ar{t}}$	13	36.1	9	[54]
			$\left(rac{1}{\sigma} ight) rac{d\sigma}{dp_T^t}$	13	36.1	8	[54]
top-pair	ATLAS	$\ell {+} { m jets}$	$\left(rac{1}{\sigma} ight) rac{d\sigma}{d y_t }$	13	36.1	5	[54]
top puir			$\left(rac{1}{\sigma} ight) rac{d\sigma}{d {y_t}_{ar{t}} }$	13	36.1	7	[54]
			$\left(rac{1}{\sigma} ight) rac{d\sigma}{dm_t ar{t}}$	13	137	15	[55]
			$\left(rac{1}{\sigma} ight) rac{d\sigma}{dp_T^t}$	13	137	16	[55]
	\mathbf{CMS}	$\ell {+} { m jets}$	$\left(rac{1}{\sigma} ight) rac{d\sigma}{d {y_t}_{ar{t}} }$	13	137	10	[55]
			$\left(rac{1}{\sigma} ight) rac{d\sigma}{d y_t }$	13	137	11	[55]
			$\left(rac{1}{\sigma} ight) rac{d^2\sigma}{d y_{tar{t}} dm_{tar{t}} }$	13	137	35	[55]

Dataset Criteria: Not included in NNPDF4.0 and Publicly available on HepData Provide info on PDFs of # partons & computable @ NNLO interfaced to PineAPPL fast interpolation grids

Normalised p_T **distributions at 13 TeV with** $(\ell + j)$ **from ATLAS**

ATLAS 13 TeV $t\bar{t} \ell + j \frac{1}{\sigma} \frac{d\sigma}{d\rho T_t}$

By taking into account all possible sources of uncertainties (MHO, PDF, α_s), the differences at the cross section level dissipate


LHC measurements do not strongly discriminate among PDF

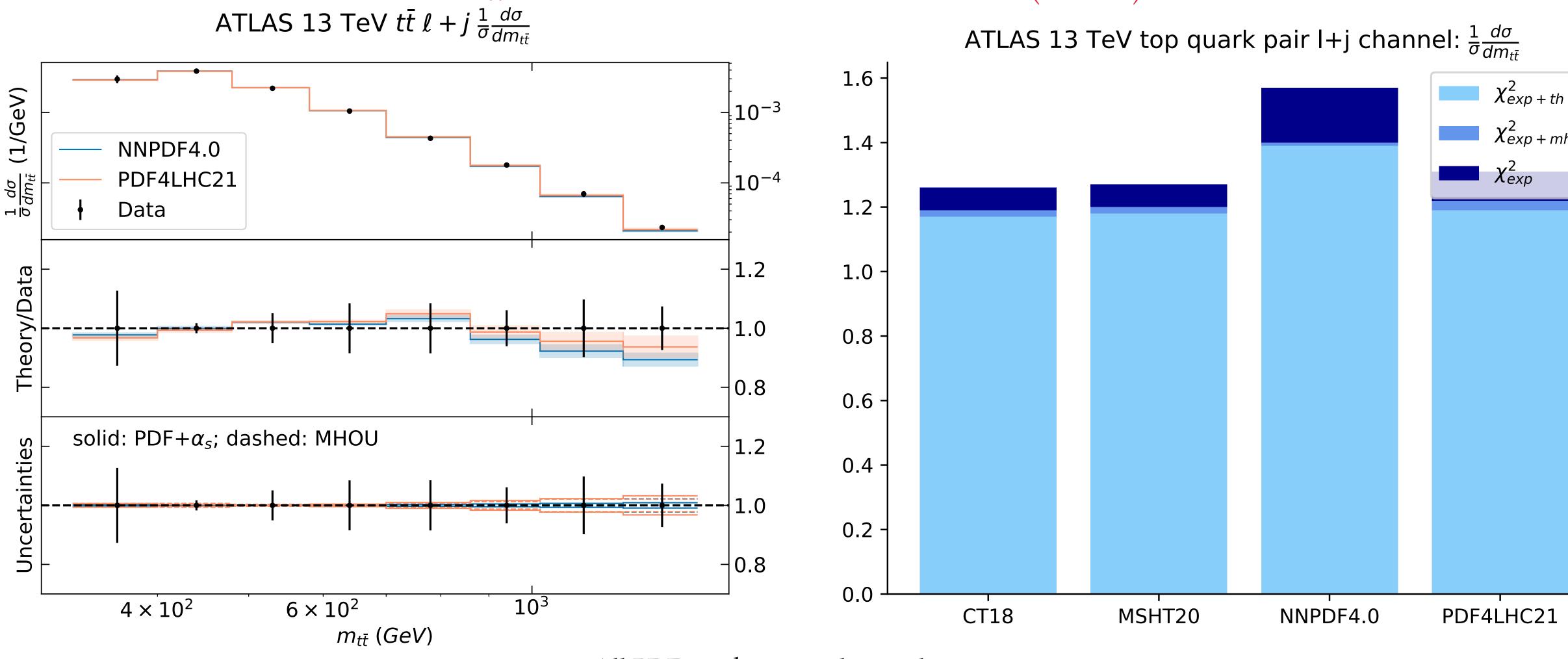
All PDF sets have similar predictive power

The inclusion of MHO uncertainties can have some impacts on the description of data

15

Normalised y_t **distributions at 13 TeV with** $(\ell + j)$ **from CMS** CMS 13 TeV $t\bar{t} \ell + j \frac{1}{\sigma} \frac{d\sigma}{d|v_t|}$

The inclusion of MHO uncertainties can have some impacts on the description of data


By taking into account all possible sources of uncertainties (MHO, PDF, α_s), the differences at the cross section level dissipate

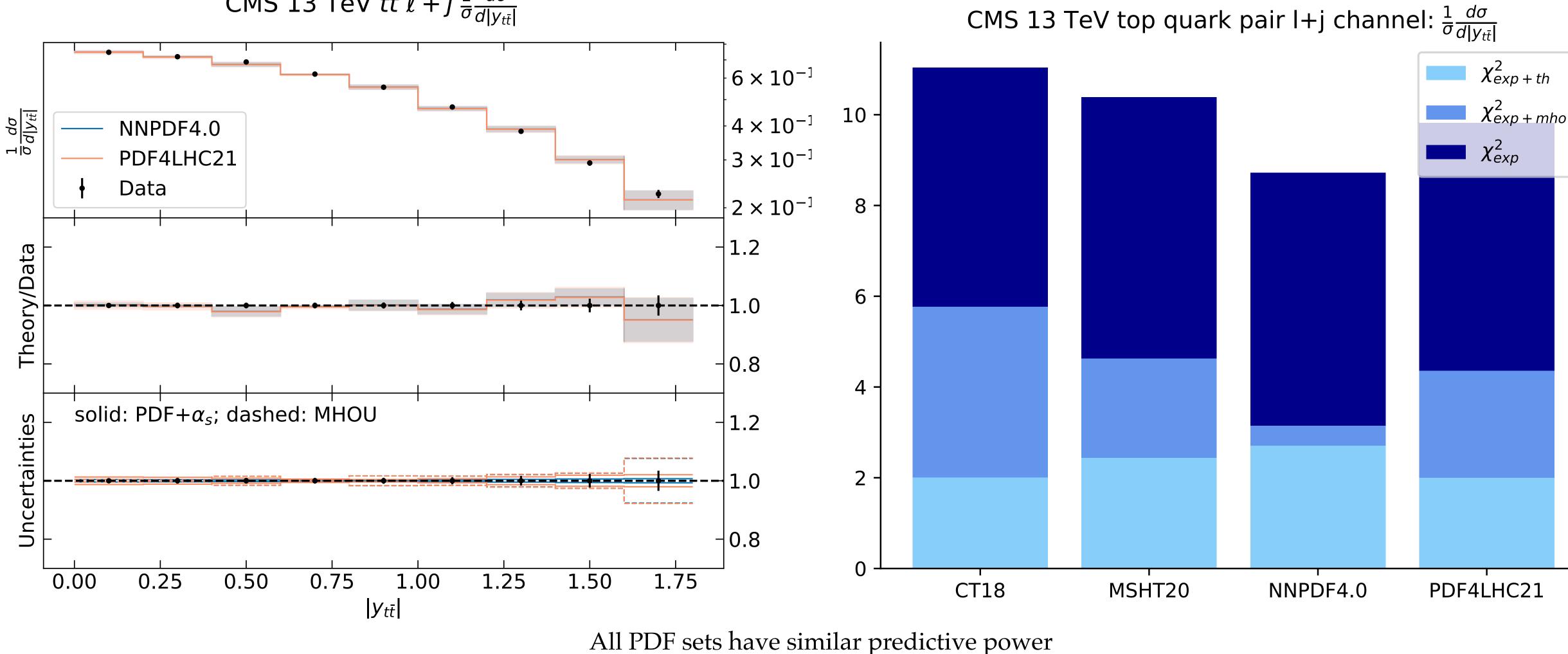
LHC measurements do not strongly discriminate among PDF

All PDF sets have similar predictive power

16

Normalised $m_{t\bar{t}}$ **distributions at 13 TeV with** $(\ell + j)$ **from ATLAS**

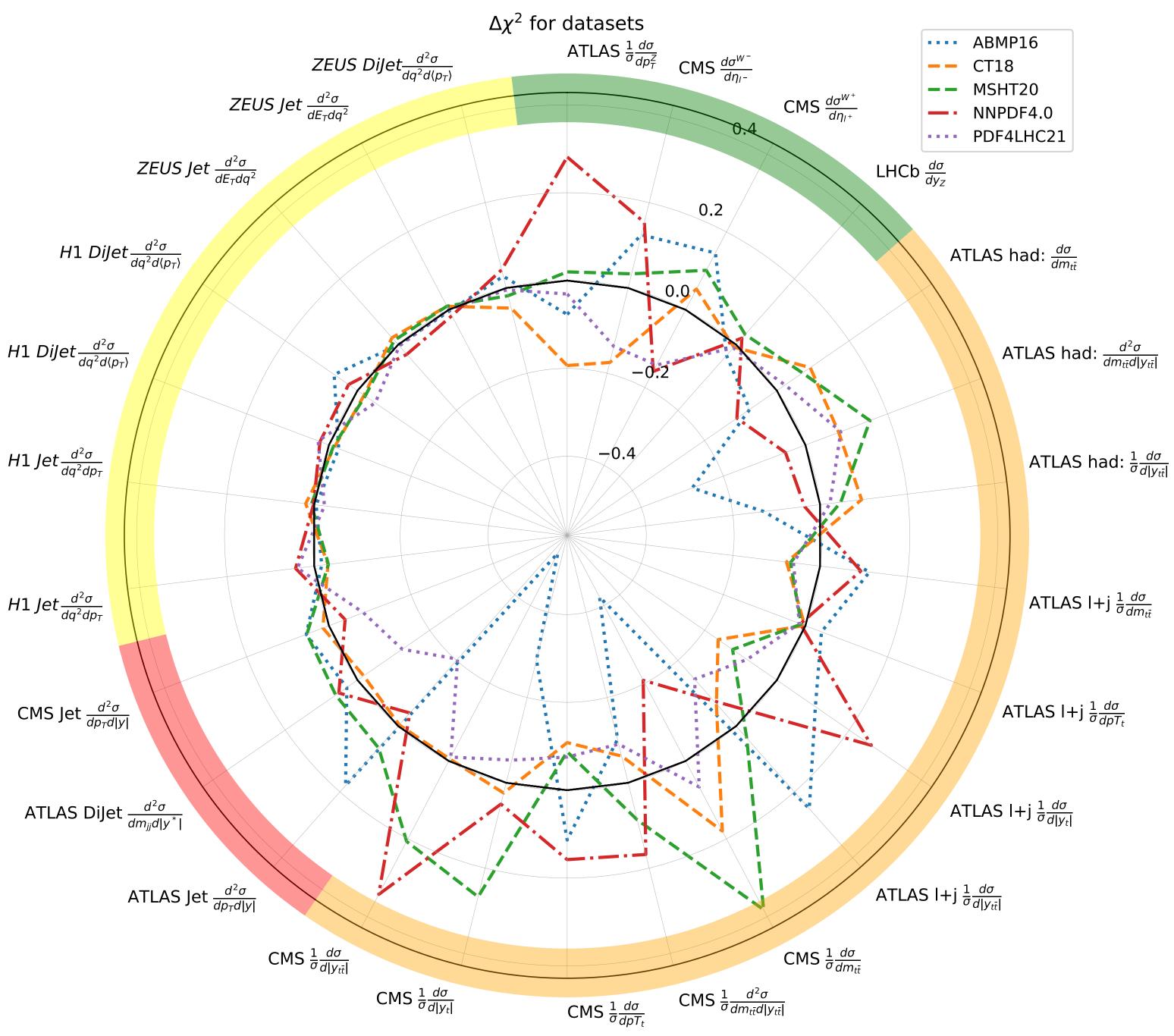
By taking into account all possible sources of uncertainties (MHO, PDF, α_s), the differences at the cross section level dissipate


All PDF sets have similar predictive power

The inclusion of MHO uncertainties can have some impacts on the description of data

```
LHC measurements do not strongly discriminate among PDF
```


Normalised $y_{t\bar{t}}$ **distributions at 13 TeV with** $(\ell + j)$ **from CMS** CMS 13 TeV $t\bar{t} \ell + j \frac{1}{\sigma} \frac{d\sigma}{d|v_{t\bar{t}}|}$


The inclusion of MHO uncertainties can have some impacts on the description of data

By taking into account all possible sources of uncertainties (MHO, PDF, α_s), the differences at the cross section level dissipate

LHC measurements do not strongly discriminate among PDF

18

 $\Delta \chi^2$ Results

• Relative change in the total χ^2 due to a change in the input PDF

$$\Delta \chi^{2(i)} = \frac{\chi^{2(i)}_{exp+th} - \left\langle \chi^2_{exp+th} \right\rangle_{pdfs}}{\left\langle \chi^2_{exp+th} \right\rangle_{pdfs}}$$

where

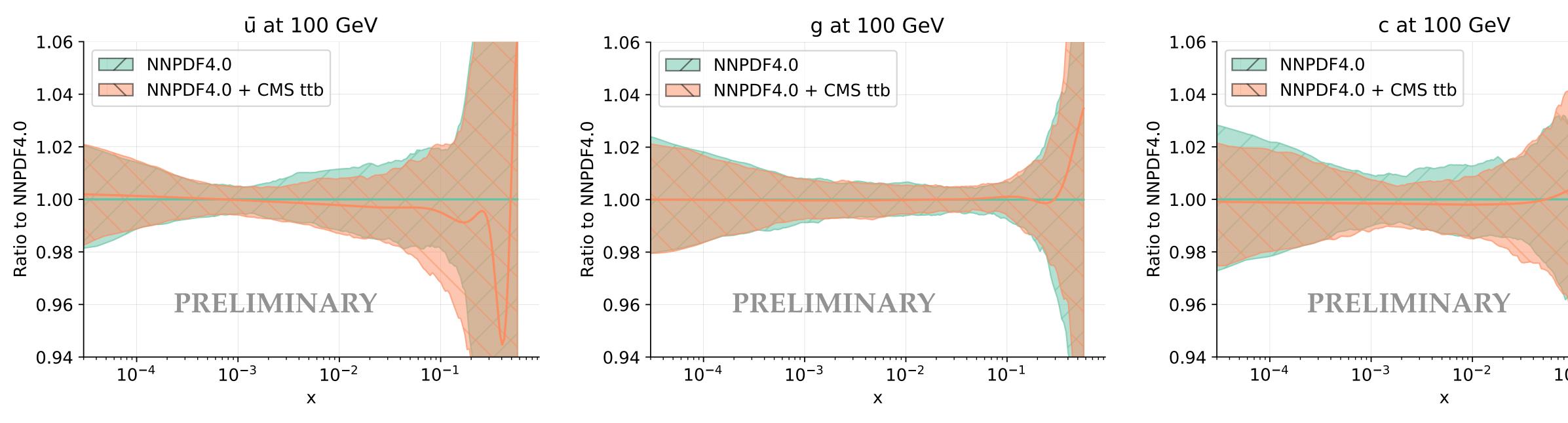
$$\left\langle \chi^2_{\text{exp+th}} \right\rangle_{\text{pdfs}} = \frac{1}{n_{\text{pdfs}}} \sum_{i=1}^{n_{\text{pdfs}}} \chi^{2(i)}_{\text{exp+th}}$$

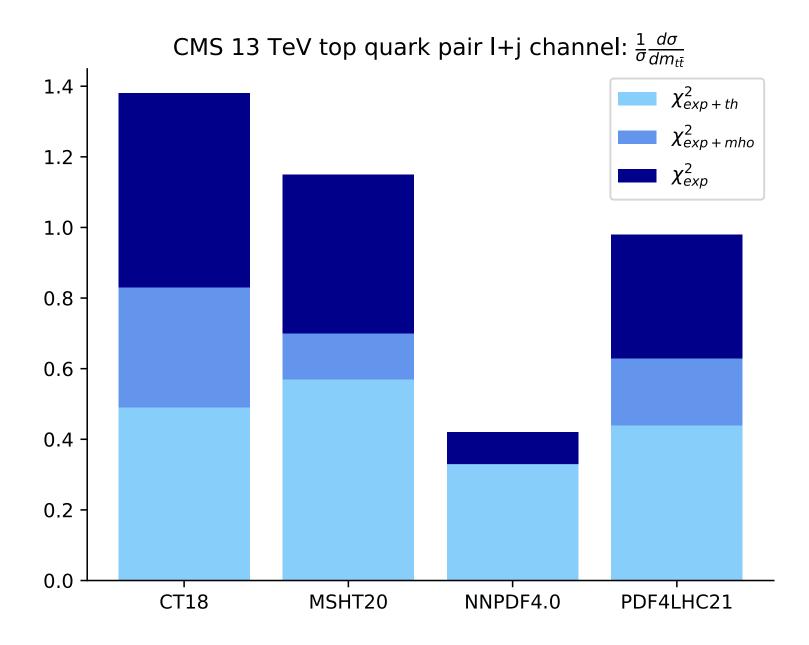
- **No systematic outlier** seen in the data description despite noticeable differences at the level of PDF
- ✤ As anticipated, PDF4LHC21 represents the **average** (with $\Delta \chi^2 \sim 0$)

Introduction & Motivations

- Part IPDF Determination: the NNPPart IITop Data in NNPDF4.0
- Part III PDFs confront Top Data: A Q
- Part III Impacts of new Top data on Pl

Conclusions & Outlook

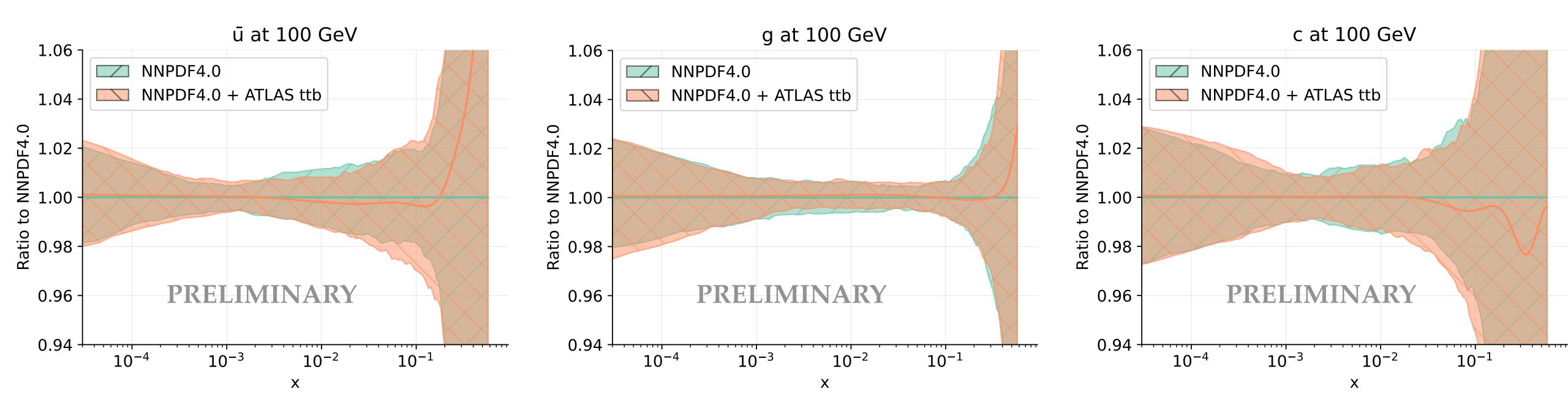

PDF Methodology	[arXiv:2109.02653; arXiv:2109.02671]
PDFs & NNPDF4.1	

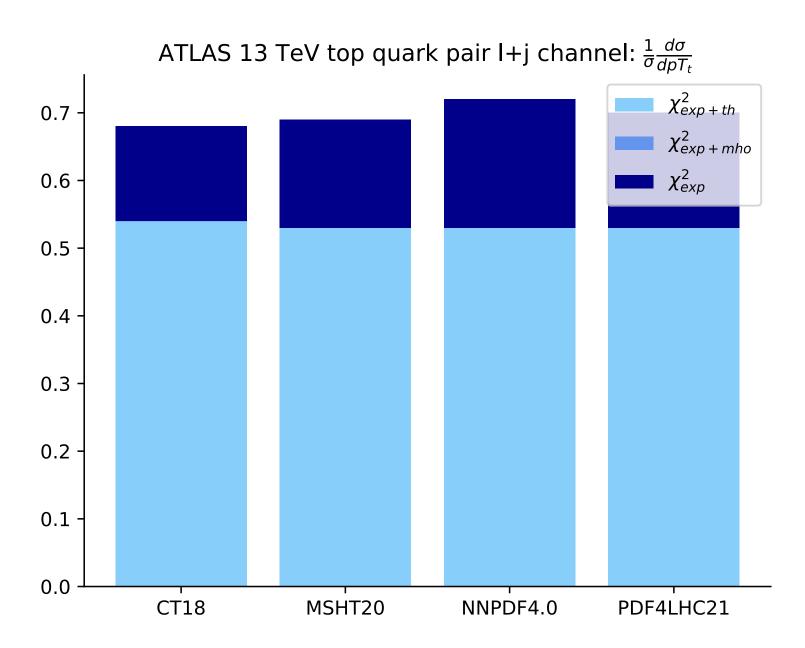

Impacts of new Top data on PDFs

 $1/\sigma d\sigma/dm_{t\bar{t}} - CMS$ at $\sqrt{s} = 13$ TeV

 $-\chi^2(\text{NNPDF4.0} + 1/\sigma d\sigma/dm_{t\bar{t}}^{\text{CMS}}) = 1.12838 \text{ vs. } \chi^2(\text{NNPDF4.0}) = 1.12832$

 $-\chi^2(\text{data})$ / N_{dat} = 0.4796 \iff consistent with the phenomenology predictions




Impacts of new Top data on PDFs

 $1/\sigma d\sigma/dp_T$ — ATLAS at $\sqrt{s} = 13$ TeV

 $-\chi^2(\text{NNPDF4.0} + 1/\sigma d\sigma/dp_T^{\text{ATLAS}}) = 1.12757 \text{ vs. }\chi^2(\text{NNPDF4.0}) = 1.12832$

 $-\chi^2(\text{data})$ / N_{dat} = 0.7822 \iff consistent with the phenomenology predictions

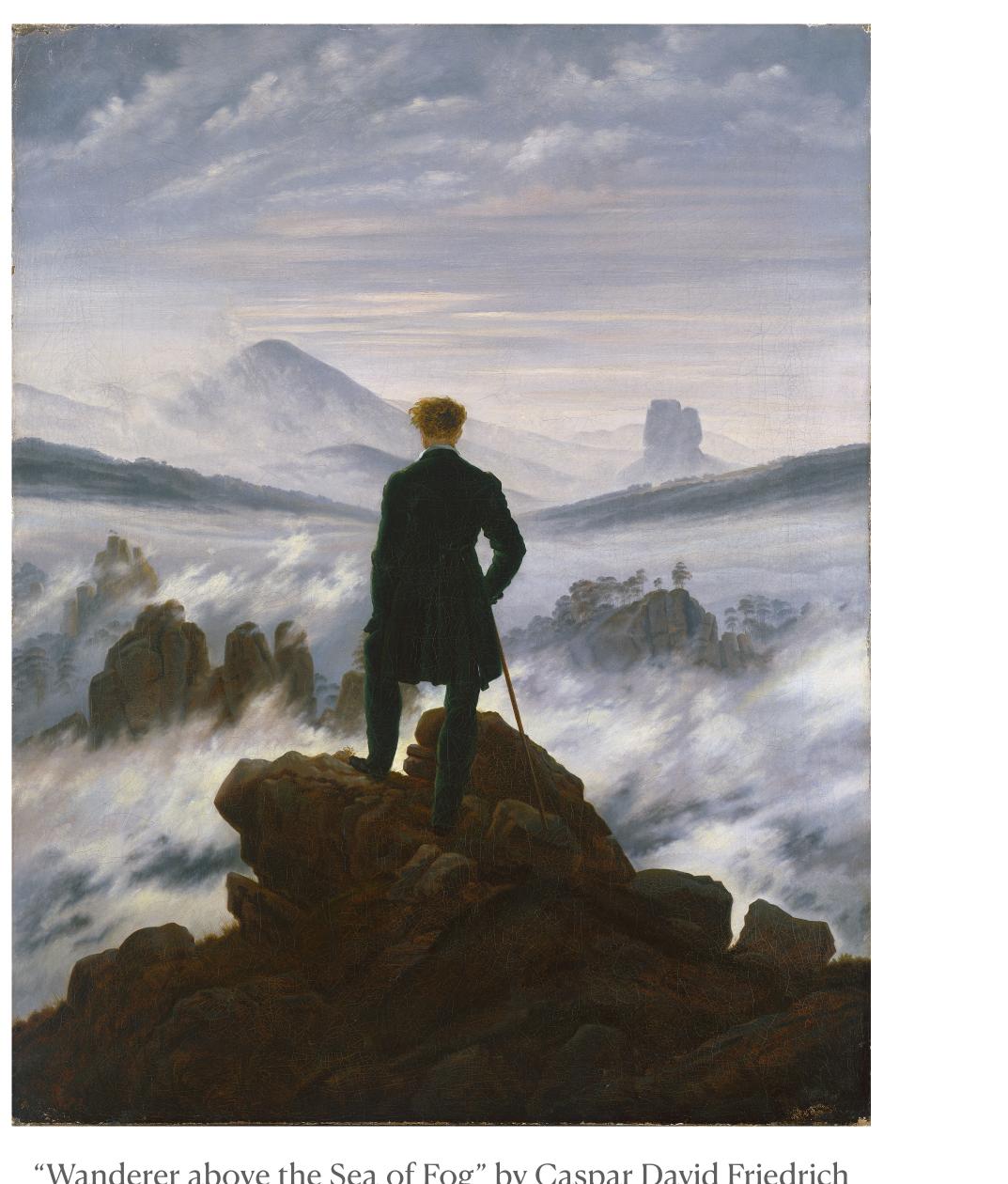
Top Datasets under consideration for NNPDF4.1 (else?)

		ATL	AS				
Description	c.m.e. (GeV)	L (fb ⁻¹)	Publication				
W, Z total cross section	13.6	0.03	2403.12902				
Z pT differential cross section	13	36.1	1912.02844				
top-pair differential distributions (all hadronic channel)	13	36.1	2006.09274				
top-pair differential distributions (lepton+jets)	13	36.1	1908.07305				
top-pair total cross section	13.6	29.0	2308.09529				
top-pair total cross section	5.02	0.257	2207.01354				
single-inclusive jet differential cross sections	13	3.2	1711.02692				
di-jet differentail cross sections	13	3.2	1711.02692				
W+c differential cross sections	13	139	2302.00336				
prompt-photon differential cross sections	13	139	2302.00510				
		CI	MS				
Description	c.m.e. (GeV)	L (fb ⁻¹)	Publication			LHCb	b
W differential cross sections	13	35.9	2008.04174	Description	c.m.e. (GeV)	L (fb ⁻¹)	Publi
forward-backward asymmetry	13	139	2202.12327	Z boson production differential cross section	13	5.1	2112.0
Z pT differential cross section	13	35.9	2205.02872	top-pair inclusive cross sections	13	1.93	1803.
top-pair differential cross sections (lepton+jets)	13	137	2108.02803		an ann an 2 an Anna an Anna ann an Anna	H1, ZEU	US
top-pair differential cross sections (dilepton)	13	137	2402.08486	Description	c.m.e. (GeV)	L (fb ⁻¹)	Publi
top-pair total cross section	13	137	1812.10505	H1 single-inclusive jet cross sections (low Q)	0.319	0.290	1611.0
single-inclusive jet differential cross sections	13	36.3	2111.10431	H1 single-inclusive jet cross sections (high Q)	0.319	0.351	1406.
di-jet differentail cross sections	13	36.3	2312.16669	ZEUS single-inclusive jet cross sections	0.300	0.038	hep-e
				ZEUS single-inclusive jet cross sections	0.319	0.082	hep-e
							_
				H1 di-jet cross sections (low Q)	0.319	0.290	1611.0
				H1 di-jet cross sections (low Q) H1 di-jet cross sections (high Q)	0.319	0.290 0.351	1611.0

_
-
 -
_
 _

Introduction & Motivations

- Part I PDF Determination: the NNI
- Part IITop Data in NNPDF4.0
- Part III PDFs confront Top Data: A Q
- Part III Impacts of new Top data on F


Conclusions & Outlook

PDF Methodology	[arXiv:2109.02653; arXiv:2109.02671]
PDFs & NNPDF4.1	

Conclusions & Outlook

- The precision era at the LHC requires precise & accurate PDFs determination and the top sector plays a major role
- ♦ (Di-)jets still place stronger constraints on the gluon PDF distribution
- A quantitative appraisal of PDF fits using precision Top measurements show that all PDF sets have similar **predictive power** despite significant differences at the PDF level
- Preliminary look at the impacts of new top data on PDFs shows consistent results as in the appraisal studies \iff no major impacts at the level of the PDFs
- ✤ Various (top) datasets are currently investigation for the new NNPDF4.1 release

THANKS FOR YOUR ATTENTION

"Wanderer above the Sea of Fog" by Caspar David Friedrich