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Abstract

The focus of this Ph.D. thesis is the improvement in the determination of parton dis-
tribution functions (PDFs) through the inclusion of new theoretical effects in the the-
oretical predictions that are compared to experimental data. Such effects are the in-
clusion of Quantum Electrodynamics (QED) corrections, the inclusion of the so-called
missing higher orders uncertainties (MHOUs) and the inclusion of approximate next-to-
next-to-next-to-leading order contributions (aN3LO). This work aims to overcome the
NNPDF4.0 PDFs determination, that did not include such effects and whose method-
ology is at the basis of this analysis. We first present the methodology used in the
NNPDF4.0 PDFs fit. Then, we explain how the QED effects have been added in the
NNPDF4.0 fitting framework, describing the details of the implementation, the result-
ing PDFs determination and the impact on physical processes of such PDFs. Moreover,
we explain how the MHOUs and aN3LO effects have been included in NNPDF4.0, pre-
senting the results of the two effects both separately and combined. We also show how
the QED effects have been combined to MHOUs and aN3LO and we will present the
results of the PDFs determination that includes all the three effects. In conclusion, we
will show an application to Monte Carlo event generator of the implementation of the
QED effects and of the development of a more flexible and efficient theory pipeline for
the computation of the theoretical predictions that has been interfaced to the NNPDF4.0
code and is at the basis of all the work described in this thesis.
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Introduction

“Please allow me to introduce myself
I’m a man of wealth and taste”

– The Rolling Stones, Sympathy For The Devil

Motivation

To explore physics beyond the Standard Model (BSM), it is essential to achieve a high
understanding in the description of the Standard Model (SM) processes, both in exper-
imental measurements and in theoretical predictions. Indeed, if one of the two did not
have enough precision, in presence of data that slightly deviate from the SM theoret-
ical prediction, we wouldn’t be able to understand whether this deviation is due to a
BSM effect or to our poor knowledge, either from the experimental or the theoretical
point of view, of the SM physics. For this reason, high-energy experimental physics is
moving towards a phase of high precision [1–3]. In fact, during the High Luminosity
LHC (HL-LHC) era, the goal will be to increase the LHC’s luminosity by a factor of 10
beyond its current level. This will significantly enhance the precision of experimental
measurements, with the aim of achieving accuracy on the order of percent or better.
Consequently, theoretical predictions will need to match this level of precision to enable
meaningful comparisons between theory and experiments.

As we will discuss in the following chapters, in high-energy physics the hadronic
cross sections are computed using the factorization theorem. This involves a convolu-
tion between partonic cross sections, where the external particles are the hadron’s ele-
mentary constituents (quarks and gluons) rather than the hadron itself, and the parton
distribution functions (PDFs), which provide information about the hadron’s internal
structure. The PDFs currently represent a significant source of uncertainty in theoretical
predictions. Therefore, achieving a better accuracy in PDFs determination is essential in
order to reach the percent accuracy in the theory predictions and therefore to be able to
compare theory and experiments.

In the SM the observables are computed in perturbation theory as a power series in
a certain coupling (there can be even more couplings at the same time). For example,
in the case of the strong interaction, that is the one governing the internal structure of
hadrons, a generic observable O is computed as

O = O(0) + αsO(1) + α2
sO(2) + α3

sO(3) + . . . , (1)

ix



x Thesis overview

where αs is the strong coupling, that will be defined in Chap. 1. The first term of Eq. (1)
is usually called leading order (LO), the second nex-to-leading order (NLO), the third
next-to-next-to-leading order (NNLO) and so on. As we will see in Chap. 1, truncating
Eq. (1) up to a certain order and neglecting the higher orders is a good approximation
only at scales much larger than the typical hadronization scale, i.e. 1 GeV. It means that
the PDFs, that describe the internal structure of hadrons, cannot be computed in per-
turbation theory. Therefore, they must be extracted from data. Such procedure is called
PDFs fit. In order to perform a PDFs fit three main ingredients are needed: a dataset, a
methodology and certain theory settings.

The dataset is the set of all the experimental measurements that we want to use to
compare experiments with theory predictions. They can be of two types: electron-proton
scattering and proton-proton collisions. The first ones are very clean processes both from
the experimental and the theoretical point of view, since they involve only one hadron
in the initial state. For this reason they are easier to be studied theoretically and to be
reconstructed experimentally. Moreover, the presence of only one hadron in the initial
state results in the presence of only one PDF in the factorization theorem, and there-
fore provides a strong constraint in the fit. The proton-proton collisions instead involve
two PDFs in the computation of the theory predictions, so finding the best configura-
tion in the PDFs space is more complicated. However, they are very precise data that
must be included in the fit in order to increase the accuracy of the PDFs determination.
Moreover, all these experimental measurements are associated with an error that must
be propagated into the fit, as it will be discussed in Chap 2.

The methodology is the way the PDFs are extracted from experimental data. In other
words, it is the way the theory predictions are compared to the experimental measure-
ments to find the best configuration for the PDFs that provide a faithful description of
data. In 2021 the NNPDF collaboration released the NNPDF4.0 PDFs set [4], in which a
lots of technical improvements in the fitting methodology were introduced with respect
to its predecessor NNPDF3.1 [5]. Indeed, the new analysis is based on a new fitting algo-
rithm based on stochastic gradient descent and it includes a systematic implementation
of both positivity constraints and integrability of sum rules. Moreover, the new fitting
algorithm is based on a semi-automatic selection of the features of the algorithm, called
hyperoptimization. All these improvements aim to reduce the uncertainty associated to
the fitting procedure itself. The NNPDF4.0 fitting framework is at the basis of the analy-
ses described in this thesis. For this reason it will be briefly described in Chap. 2. For a
more detailed description see Ref. [4].

The last ingredient of a PDFs fit is given by the theory settings used in the extraction.
Indeed, the partonic cross sections are computed up to a given order in perturbation
theory. Moreover, the dependence of the PDFs on the hard scale of the considered ob-
servable is given by an integro-differential equation that depends on the so-called split-
ting functions that are computed in perturbation theory. The perturbative order that we
use in the theory predictions of the dataset used in the PDFs fit is one of the theory set-
ting that define a fit. Other settings that we can choose are the inclusion of Quantum
Electrodynamics (QED) correction, the inclusion of Electroweak (EW) effects, the use of
theory uncertainties and so on. The NNPDF4.0 analysis is a NNLO PDFs fit, i.e. it uses
the partonic cross section and the splitting functions at NNLO. Moreover, it uses pure
Quantum Chromodynamics (QCD) predictions, i.e. it neglects QED effects, and it uses
only experimental errors in the fitting procedure. However, this level of accuracy in the
theoretical calculations is not enough if we want to reach the percent accuracy in the
PDFs determination.

The subject of this thesis is the improvement of the accuracy of the theory predictions
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in order to reach the percent accuracy needed to obtain a high precision PDFs determi-
nation that can match the accuracy of the experimental data in the HL-LHC era. Such
improvement is carried out in three independent ways: through the inclusion of QED
corrections in the PDFs fit, the inclusion of the so-called missing higher orders uncer-
tainties (MHOU) in the theory predictions and the inclusion of approximate next-to-
next-to-next-to-leading order (N3LO) corrections in electron-proton scattering observ-
ables and in the PDFs evolution equations. Each of these effects have been implemented
independently and produced three different PDFs sets that have been compared against
NNPDF4.0. Moreover, in the end they have been combined to produce another PDFs set
that has been compared with the three of them and with NNPDF4.0. Let’s briefly discuss
each of them.

• When we include QED corrections in a PDFs fit we allow the quarks inside the pro-
tons to split into a quark-photon pair. For this reason we must consider a photon
component of the proton, i.e. a photon PDF. Since this type of splitting is governed
by the QED coupling, the photon PDF will be suppressed with respect to the other
PDFs and therefore it will be a small correction. However, we will see that there
are regions in which these effects are not negligible, i.e. their size is larger than
the percent accuracy that we aim to reach. It means that we have to include such
corrections to improve the precision of PDFs fits.

• When we compute an observable in perturbation theory using Eq. (1) we are in-
troducing an error in the theory predictions that is related to the fact that we are
truncating the series at a given order instead of using all the (infinite) terms. Obvi-
ously, as we go up with perturbative orders, this error becomes smaller and smaller
but still of finite size. This error is what we call MHOU. Therefore, first we have to
associate a MHOU to the theory predictions, and this will be done with the tech-
nique of scale variations, and then we have to include this additional uncertainty
in the fitting algorithm. This last step will be done with the construction of a theory
covariance matrix that will be combined with the experimental one.

• At NNLO, all the ingredients needed for a PDFs fit are currently known. Such
ingredients are the theory predictions of electron-proton scattering, processes from
proton-proton collision (that are known at NNLO through the so-called K-factor)
and the splitting functions needed for the evolution equations. At N3LO instead,
due to the complexity of the fixed order calculations, only partial information is
currently available in the literature. For this reason we used all the terms that are
known at N3LO and for the ones that are still missing we used approximations
that are based on the information that are currently available.

In this thesis, these three fits will be referred to as NNPDF4.0QED [6], NNPDF4.0MHOU [7]
and aN3LO NNPDF4.0 [8], respectively. The inclusion of these contributions will lead
to in improvement in the precision of the theory predictions that propagates into an im-
provement in the accuracy of the PDFs determination.

Thesis overview

This thesis is organized as follows:
Chapter 1: Introduction on the theory of strong interactions.
In this chapter we will briefly overview the theory of strong interactions. We will
start by writing down the Lagrangian of QCD, describing all the terms that compose
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it. Then, we will give some details about renormalization and we will explain how
it is related to the running of the strong coupling. Moreover, we will overview the
parton model, that is the theory describing the collision between composite particles,
i.e. the hadrons. We will also explain the factorization of collinear divergences and we
will show how it causes the running of the PDFs with the hard scale of the process we
are considering. This will lead us to the so-called DGLAP equations, whose solution
will be also presented. Next, we will describe the insurgence of the large logarithms,
how these terms spoil the perturbative convergence of the observables, and how this
problem is solved. We will also show how this is related to the construction of a
so-called variable flavor number scheme.

Chapter 2: Description of the NNPDF4.0 fitting framework.

In this chapter we will describe how the PDFs are extracted from experimental data
in the NNPDF4.0 methodology. We will explain how the PDFs are parametrized at
the fitting scale, and how the fit is performed, i.e. we will write down the χ2 used in
the fit and we will briefly describe the stopping algorithm. We will also give some
details on the numerical techniques used to compare theory predictions with exper-
imental data in an efficient way. Moreover, we will explain how the experimental
uncertainties are propagated to the PDFs in the fitting procedure. Next, we will de-
scribe the experimental data used in the fit. In the end we will briefly present new
computational tools used to automatize the computation af the theory predictions,
and we will show that they give the same results with respect to the ones used for
the NNPDF4.0 determination.

Chapter 3: Inclusion of QED corrections in PDFs fits.

In this chapter we will describe how the QED effects are included into a PDFs fit and
how it has been interfaced with the NNPDF4.0 fitting framework. We will start with
a brief overview of the LuxQED approach, that is used to determine the photon PDF,
and we will describe how it has been used in order to perform a QED fit. We will
describe how PDFs evolution equations are changed in presence of QED effects and
how the solution of such equations is modified in this case. In this chapter we will
also benchmark the solution of the QED DGLAP equations that we implemented,
with the one implemented in the APFEL code, that uses a different solution method.
We will also compare the solution in presence of QED corrections with the pure QCD
one. Then we will show the results of the QED fit using the NNPDF4.0 methodology,
and we will compare the results both with the pure QCD counterpart, i.e. NNPDF4.0,
and with the most recent QED fits. In the end, we will show the impact of QED
corrections on the physical processes of interests for the LHC studies.

Chapter 4: Inclusion of MHOU and N3LO corrections and their combination with
QED effects.

In this chapter we will describe how the QED effects are combined with the inclusion
of MHOU and N3LO corrections. We will start by reviewing how MHOU is included
into a PDFs fit through the construction of a theory covariance matrix and how it
is combined with the experimental one. Then, we will give the results of the pure
QCD fit that includes the MHOU and we will compare it with the baseline fit, i.e.
NNPDF4.0. Next, we will show how N3LO corrections have been included when
they are known, and the approximation that has been used for the terms that are still
missing. We will show the results of the fit, we will compare it with NNPDF4.0 and
we will combine it with the inclusion of MHOU. In the end, we will show how the
QED effects are combined both with MHOU, with N3LO and with the combination
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of the two. We will compare the results with the pure QCD MHOU and N3LO fits
and we will compare the photon PDFs obtained in the different cases. In the end we
will briefly assess the impact on the phenomenology of the different fits.

Chapter 5: Applications to Monte Carlo event generators.

In this chapter we will apply the implementation of a new theory pipeline and the
one of QED effects in the NNPDF4.0 code, to the construction of PDFs sets that are
suitable for being used in Monte Carlo event generators. We will describe which are
the features that such PDFs must satisfy, we will describe how the QED effects have
been included, and we will present the results that we obtained, comparing them
with the standard NNPDF4.0 fit. We will also briefly investigate the impact of such
modified PDFs to the LHC phenomenology.





Part I

Prologue





CHAPTER 1

Introduction on the theory of Strong Interactions

“We are only as strong as we are united, as weak as we are divided.”

– Albus Dumbledore, Harry Potter and the Goblet of Fire

The Standard Model (SM) is the theory describing the fundamental interactions be-
tween the elementary particles and it is based on the gauge symmetry group

SU(3)C ⊗ SU(2)W ⊗ U(1)Y . (1.1)

The part we will discuss in this chapter is SU(3)C , that is the part that describes the
so-called strong interactions. It is called Quantum Chromodynamics (QCD) and it is a
quantum field theory based on the non Abelian symmetry group SU(3) whose charge is
called color.

The fundamental fields of QCD are the ones describing the quarks and the gluons:
the quarks are spin 1/2 particles that belong to the fundamental representation of SU(3)
(i.e. the triplet) and therefore they appear with three possible colors. In addition to the
quarks there are their anti-particles that are the anti-quarks: they are particles that have
the same properties of their corresponding quark but opposite charge. They belong to
the anti-fundamental representation of SU(3) (i.e. the anti-triplet). The different kind
of quarks and anti-quarks are the so-called flavors. Being the strong interaction inde-
pendent on the flavor, the differences in the processes involving different quarks come
only from the kinematics due to the different masses of the flavors. In the end there are
the gluons, that are the gauge bosons of the strong interaction and therefore belong to
the adjoint representation of SU(3) (i.e. the octet). It means that they appear with eight
possible colors.

Two fundamental properties of QCD that distinguishes it from QED and that will be
further explained in this chapter are the color confinement and asymptotic freedom: color
confinement is the property that quarks and gluons cannot be observed in the final
state since only colorless particles, i.e. the hadrons, can be detected experimentally. This
makes the computation of hadronic cross sections impossible in the context of pertur-
bative QCD because of the the failure of the series expansion at scales of the order of
the hadron masses. This problem is solved with the introduction of the parton model that
will be introduced in Sec. 1.4. The asymptotic freedom is the property that the strong
coupling decreases at high energies. Indeed, if we call Λ the typical scale of the hadronic
physics, i.e. Λ ∼ 1 GeV, then the strong coupling is small for energies much larger than
Λ, while it is ofO(1) at energies of the order of Λ. This means that we can obtain reason-
able predictions only at high energies, since the perturbative expansion is well behaved,

3



4 1.1 Basics of Quantum Chromodynamics

being every term much smaller than the previous ones. Instead, at small energies per-
turbation theory breaks down since every term is comparable (or even larger) with the
previous ones and therefore we should include an infinite number of terms in the series.
It means that at small energies the theory is no longer predictive.

In this chapter we will describe the basics of the theory of the strong interactions. In
Sec. 1.1 we will introduce the lagrangian of QCD and we will explain all the possible
terms allowed by the symmetries, in Sec. 1.2 we will give some details about renormal-
ization explaining its consequences and in Sec. 1.3 we will describe the running of the
strong coupling. In Sec. 1.4 we will describe the parton model, that is needed in order
to have predictions with composite initial states. In Sec. 1.5 we will explain how to deal
with the collinear divergences coming from initial state emissions and in Sec. 1.6 we will
describe how this procedure leads to evolution equations. In Sec. 1.7 we will describe
how to treat large logarithms coming from the mass of the heavy quarks and in the end
in Sec. 1.8 we will see how this applies when we deal with very different energy scales.
In the end in Sec. 1.9 we will describe how the so-called matching conditions are applied
to the PDFs, when a heavy quark threshold is crossed.

1.1 Basics of Quantum Chromodynamics

The strong interaction is described by the QCD lagrangian that reads

LQCD = Lgauge + LCP + Lgauge
fixing

+ Lghosts . (1.2)

Let’s see Eq. (1.2) term by term. The first contribution Lgauge contains the mass terms
of the quarks, the kinetic terms of both quarks and gluons and the quark-gluon and the
gluon-gluon interaction terms. It reads

Lgauge =
∑

f=flavors

ψ̄
(f)
i

(
i /Dij −m(f)δij

)
ψ

(f)
j − 1

4
F aµνF

a,µν , (1.3)

where

Dµ,ij = δij∂µ − igsT aijAaµ , (1.4)

F aµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (1.5)

In Eqs. (1.3-1.5) ψ(f)
i and Aaµ are respectively the quark and gluon fields, T aij are the Gell-

Mann matrices [9], i.e. the generators of the fundamental representation of SU(3), and
fabc are the structure constant of SU(3), i.e. they satisfy

[T a, T b] = ifabcT c , a, b, c = 1, . . . , 8 . (1.6)

Moreover, the Gell-Mann matrices satisfy

Tr
(
T aT b

)
= TRδ

ab , TR =
1

2
, (1.7)

T aikT
a
kj = CF δij , CF =

4

3
, (1.8)

(
T aadj

)
bc

(
T aadj

)
cd

= CAδbd , CA = 3 , (1.9)

where (
T aadj

)
bc

= −ifabc , (1.10)
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is the generator of the adjoint representation, i.e. the octet. We have that the indices are i,
j=1, 2, 3 and a, b, c, d=1, 2, . . . , 8, i.e. they are the color indices respectively of the triplet
and of the octet. The sum over repeated indices is understood. Inserting Eqs. (1.4-1.5)
into Eq. (1.3) we find

Lgauge =
∑

f

(
iψ̄

(f)
i
/∂ψ

(f)
i −m(f)ψ̄

(f)
i ψ

(f)
i + gsψ̄

(f)
i γµT aijA

a
µψ

(f)
j

)

+
1

2
Aa,µ

(
ηµν∂

2 − ∂µ∂ν
)
Aa,ν − gsfabcAa,µAb,ν∂µAcν

− 1

4
g2
sf

abef cdeAa,µAb,νAcµA
d
ν .

(1.11)

where γµ are the Dirac matrices [10].
The next term in Eq. (1.2) is the CP violation term, that reads

LCP = θ
αs
4π
F̃ aµνF

a,µν , (1.12)

where θ is a dimensionless parameter, F̃ aµν is defined as

F̃ aµν =
1

2
εµνρσF

a,ρσ , (1.13)

and we used that

αs =
g2
s

4π
. (1.14)

αs is the coupling of QCD, also called strong coupling. This term violates CP because of
the completely antisymmetric tensor εµνρσ. However, CP violation in the strong sector
has never been observed in experiments and this gives an experimental bound on θ such
that θ . 10−10.

Then we have the gauge fixing term

Lgauge
fixing

= − 1

2ξ

8∑

a=1

(∂µA
a,µ)

2
, (1.15)

that is needed to avoid the infinities that arise in the functional integral formalism due to
the gauge invariance of the lagrangian. Hence, this term is needed to correctly quantize
the theory. The parameter ξ is what fixes the gauge. For example ξ = 1 is the Feynman
gauge while ξ = 0 is the Landau gauge.

In the end, the last term of Eq. (1.2) is

Lghosts = (∂µχa)
∗
Dab
µ χ

b , (1.16)

where Dab
µ is the covariant derivative in the adjoint representation and reads

Dab
µ = δab∂µ − gsfabcAcµ , (1.17)

and χb are the so-called Faddev-Popov ghosts. They are anticommuting complex scalar
fields (Grassmann variables). Also this term, like the previous one, is needed to correctly
quantize the theory and it comes from the fact that QCD is a non-abelian gauge theory.
Ghosts are not “real” particles in the sense that they cannot appear in the final states
but only appear in virtual corrections and can be eliminated with a gauge transforma-
tion. They are also needed since in QCD when we sum over the gluon polarizations, the
longitudinal polarizations do not cancel as it happens for the photon.
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1.2 Renormalization

Whenever we compute a cross section beyond leading order in the SM, we observe the
appearance of divergences. However, being the cross section a physical observable it
must be finite. Therefore, these divergences are unphysical and they must be canceled.
This procedure is called renormalization. In this section we will only discuss the diver-
gences appearing in the virtual diagrams, i.e. diagrams that don’t change the number of
particles in the final state. In such diagrams we have integrals like

∫ ∞

0

dkkD−1 , (1.18)

where k is the modulus of the momentum flowing in the loop. This integral is divergent
both for k → ∞, called ultraviolet (UV) divergence, and for k → 0, called infrared (IR)
divergence. Let us concentrate for the moment only on the UV divergences (the IR ones
will be discussed in Sec. 1.5). In order to cancel them we must “modify” the theory in
a way such that all the divergences are regularized: it means that we must introduce a
regulator that prevents all quantities from being divergent. In this way, the divergences
are transformed into terms that diverge in the limit in which the regulator is removed.
For example, a possible regulator is a cutoff on the integral in Eq. (1.18), i.e. we don’t
integrate up to infinity but up to a certain finite value Λ. In this case, removing the reg-
ulator means performing the limit Λ → ∞. The problem of regularizing with a cutoff is
that the regularized theory is no longer gauge invariant. Therefore, a much more conve-
nient regularization is the so-called dimensional regularization: the theory is regularized
performing the integration over the momenta in d = 4−2ε dimensions. In this way both
the UV and IR divergences appear as poles in ε. Performing the renormalization means
removing such poles. After regularizing the theory, we perform the computation of the
observables in this modified theory assuring that the divergent quantities are canceled.
In the end, we can remove the regulator recovering the “true” theory in which the ob-
servables are finite.

In order to cancel the divergences, we observe that the fields and the couplings of
the divergent theory are non physical since they are the fields and the couplings of a
divergent theory. We will call them bare fields and bare couplings. Bare quantities will be
addressed with a subscript 0. Then, we rescale the bare quantities defining

ψ =
ψ0√
Z2

, Aaµ =
Aa0µ√
Z3

, m =
Z2

Zm
, gs =

Z2

√
Z3

Z1
µ−εgs0 . (1.19)

The objects Zi are called renormalization constants. Observe that in the definition of gs
we had to introduce a scale µ that has the dimension of an energy. The reason is that,
in dimensional regularization, the bare coupling gs0 is no more dimensionless but has
dimension of an energy to the power of ε, i.e. [gs0] = ε. Therefore, the definition of gs in
Eq. (1.19) assures that it is dimensionless. µ is called renormalization scale and its choice
is completely arbitrary. Now we can compute the renormalization constants order by
order in perturbation theory so that the poles are removed in the matrix elements and
we can safely remove the regulator, i.e. we can send ε → 0, and all the observables will
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be finite. At O(αs) they read

Z1 = 1− (CF + CA)
αs
4π

1

ε
+O(α2

s) , (1.20)

Z2 = 1− CF
αs
4π

1

ε
+O(α2

s) , (1.21)

Z3 = 1 +

(
5

3
CA −

4

3
nfTF

)
αs
4π

1

ε
+O(α2

s) . (1.22)

In other words, we are reabsorbing the infinities into a redefinition of fields and cou-
plings. This doesn’t represent a problem since, as we already said, the bare fields and
quantities are unphysical.

1.3 Running of the strong coupling

As a consequence of dimensional regularization, in order to cancel the divergences, we
had to introduce an arbitrary scale µ with the dimension of an energy. Obviously, be-
ing µ arbitrary, we have to require that the physical observables are independent on its
choice. Equivalently, we can observe that the bare strong coupling is independent on µ.
Therefore, imposing that

µ2 d

dµ2
αs0 = 0 , (1.23)

we obtain

µ2 d

dµ2
αs(µ

2) = β
(
αs(µ

2)
)
, (1.24)

that is called renormalization group equation (RGE) of QCD. In the end, we have found
that the strong coupling acquires a dependence on the renormalization scale µ. β(αs) is
called beta function of QCD and it is computed in perturbation theory as

β(αs) = −α2
s

(
β0 + β1αs + β2α

2
s + . . .

)
. (1.25)

If we solve Eq. (1.24) at LO (i.e. keeping only the term β0) with a certain initial con-
dition αs(µ2

0), we obtain

αLO
s (µ2) =

αs(µ
2
0)

1 + αs(µ2
0)β0 log

(
µ2

µ2
0

) =
1

β0 log
(
µ2

Λ2

) , (1.26)

where we defined

Λ2 = µ2
0e
− 1

β0αs(µ2
0) . (1.27)

Λ is called Landau pole of QCD and it is the value such that Eq. (1.26) diverges. One can
observe that, depending on the sign of β0, Eq. (1.26) can give two opposite behaviors:

• If β0 > 0 the strong coupling goes to zero for µ2 � Λ2. In this case the theory is
called UV free.

• If β0 < 0 the strong coupling goes to zero for µ2 � Λ2. In this case the theory is
called IR free.
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The computation of β0 in QCD gives

β0 =
11CA − 4nfTF

12π
. (1.28)

where nf is the number of quarks. Since in the SM we have nf = 6 we are in the case
β0 > 0 and therefore QCD is UV free. This is the origin of asymptotic freedom in QCD.
For computing the value of Λ we can use Eq. (1.27) with αs(M2

z ) = 0.118 [11] finding that
Λ ' 200 MeV. It means that, at energies smaller than the typical hadronization scale, i.e.
1 GeV, the strong coupling is not small but is ofO(1). Hence, at these scales perturbation
theory breaks down: in order to have reliable predictions we should be able to include
an infinite series of contributions, since every term in the perturbative expansion is of
the same order of the previous ones.

1.3.1 Solution methods

We have seen that at LO the solution of the RGE is exact and is given by Eq. (1.26).
Beyond LO instead, it is not possible to find an analytical solution. Therefore, approx-
imate solutions are needed. A first possibility is to use Runge-Kutta solutions to solve
iteratively Eq. (1.24), that with a change of variable can be rewritten as

d

dt
αs(t) = β (αs(t)) , (1.29)

with t = log µ2. In this way we find a numerical solution for αs(µ2) starting from the
initial condition α0

s = αs(µ
2
0).

Another possibility is to obtain an expanded solution for the strong coupling. It
means that we will find an expression that will be solution of Eq. (1.24) up to higher
order corrections. Therefore, if we want to solve it at NkLO we will obtain an expression
that solves the NkLO RGE up to terms of O(α2+k

s ). For example, at NLO we have that
the expanded solution is

αNLO
s (µ2) = αLO

s (µ2)

[
1 +

β1

β0
αLO
s (µ2) log

(
αLO
s (µ2)

α0
s

)]
, (1.30)

that, as it can be easily verified, satisfies

µ2 d

dµ2
αNLO
s (µ2) = −

(
αNLO
s (µ2)

)2 (
β0 + αNLO

s (µ2)β1

)
+O

((
αNLO
s (µ2)

)3)
. (1.31)

1.3.2 Running with different flavor numbers

From the expression of β0 in Eq. (1.28) we can observe that the running of αs of Eq. (1.26)
depends on the number of flavors. Indeed, the computation of the beta function in-
volves quark loops of all possible flavors. Therefore, as far as we know, we must use
nf = 6. However, we expect that if a particle is much heavier than the typical scale
of the considered process, its contribution to the computation of an observable must
be suppressed. For example, if there are other quark families that we don’t know yet
whose mass is higher than the energies that are currently accessible by experiments, it’s
reasonable to think that their contribution to observables at scales much smaller than
their mass is completely negligible. This is the Applequist-Carazzone decoupling theo-
rem [12]. Indeed, using the so-called decoupling renormalization scheme (DS) we perform
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the subtraction at zero momentum and so the propagators of the flavors with µ2 � m2

go to zero. Therefore, the heavy flavor disappears from the computation of the physical
observables. However, the beta function is not an observable and therefore Applequist-
Carazzone decoupling theorem does not apply. It means that the RGE of QCD must be
written with nf = 6 even if we use the DS.

This problem is avoided using effective field theories (EFT). Let us consider a theory
with nf massless quarks and one heavy quark with mass much larger than the scale of
the process we are considering. This is the nf + 1 flavor scheme. Then, we can consider
a theory in which we have nf light flavors and no heavy quark. This is the nf flavor
scheme. It practice, we have integrated out a degree of freedom of the theory (the heavy
quark). In the nf flavor scheme the RGE will be written in terms of nf flavors while in
the nf + 1 scheme the RGE will be written in terms of nf + 1 flavors. Obviously the two
schemes must yield the same result for the physical observables. This is obtained using
matching conditions between the strong couplings in the two theories, namely α[nf+1]

s

and α[nf ]
s . Such matching conditions are, up to NNLO [13]

α
[nf ]
s (µ2)

α
[nf+1]
s (µ2)

= 1− α
[nf+1]
s (µ2)

6π
+

(
α

[nf+1]
s (µ2)

)2

6π2

(
1

6
log2 µ2

m2
h

− 19

4
log

µ2

m2
h

− 7

4

)

+O
((

α
[nf+1]
s

)3
)
.

(1.32)

In this procedure, we have to introduce a matching scale µh such that if µ > µh we use
the nf + 1 flavor scheme, while if µ < µh we use the nf flavor scheme. In order to avoid
the appearance of large logarithms that would spoil the perturbative convergence we
must use µh ∼ O(mh).

In conclusion, we have constructed a scheme in which the number of flavors varies
with the renormalization scale µ. This is a so-called variable flavor number (renormal-
ization) scheme (VFNS).

1.4 Parton model

So far in this chapter we have discussed about the fundamental fields of QCD, i.e. quarks
and gluons. However, due to the confinement property, these particles cannot be ob-
served experimentally. Indeed, only color singlet can be observed as asymptotic states.
Therefore, what are really observed in experiments are hadrons, that are composite states
made of quark and gluons, that for this reason are called partons. However, a problem
arises: because of the failure of perturbative QCD at the scales of the hadron confine-
ment, computing cross sections involving hadrons in the external states is impossible.
For this reason we must introduce the so called parton model to describe scattering pro-
cesses involving hadrons. First of all, we will consider a simpler process in which there
is only one hadron in the initial state. Such process is easier to be studied from the theo-
retical point of view and to be reconstructed experimentally. Then we will generalize to
hadron-hadron collisions.

Let us consider a process in which an electron scatters off a proton via the exchange
of a virtual photon. The differential cross section for this process is

dσ

dxdy
=

4πα2
em(S −m2

p)

Q4

(
y2xF1(x,Q2) +

(
1− y − xym2

p

S −m2
p

)
F2(x,Q2)

)
, (1.33)
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where we defined

Q2 = −q2 , (1.34)

x =
Q2

2P · q , (1.35)

y =
q · P
k · P , (1.36)

where k and k′ are the momenta of the electron before and after the scattering, q2 is the
virtuality of the emitted photon, i.e. q2 = (k−k′)2, P and mp are the momentum and the
mass of the proton, S is the hadronic center of mass energy (squared), i.e. S = (k + P )2,
and Fa with a = 1, 2 are called the structure functions of the proton and parametrize
the internal structure of the proton seen by the virtual photon. In this discussion we
are assuming that the energy of the electron is low enough to completely neglect the
possibility that the interaction is mediated by an electroweak boson.

If the electron has low energy then the scattering will be elastic and the proton will
be still present in the final state. In this case it’s easy to show that x = 1. Instead, if the
electron has enough energy, it can break the the internal structure of the proton and it
will form new hadrons in the final state. In this case we will have that x < 1. This process
is called deep inelastic scattering (DIS). Neglecting the proton mass, the cross section can
be written as

dσ

dxdQ2
=

2πα2
em

xQ4

((
1 + (1− y)2

)
F2 − y2FL

)
, (1.37)

where we defined FL = F2 − 2xF1. In the parton model the hadronic cross section is
computed as a incoherent sum of the cross sections for the scattering of the virtual pho-
ton against point-like particles that are the constituents of the proton, i.e. the partons. Let
us suppose that the virtual photons interacts with a parton that carries a fraction z of the
proton’s momentum. We are neglecting the possibility that the parton has a momentum
component in the transverse plane with respect to the one of the proton. Then, we have
to introduce the parton distribution function (PDF) fi(z,Q2) that is the probability den-
sity that the photon interacts with a parton of type i, where i can be quarks, anti-quarks
or gluons, that carries a fraction z of the proton’s momentum. Observe that the PDF
depends also on Q2, since as we will see in the following, it depends also on the scale
at which we probe the proton structure. Therefore, if we denote the partonic structure
function, i.e. the one involving partons in the external states, with F̂i,a, we have that the
hadronic structure functions, i.e. the ones involving hadrons in the final states, can be
computed as

Fa(x,Q2) =
∑

i=q,q̄,g

∫ 1

x

dzfi(z,Q
2)F̂i,a

(x
z
,Q2

)
, a = 2, L . (1.38)

The label q means all possible type of quarks whose component in the proton is non
negligible. We will further explain what we mean in the following. Eq. (1.38) is accurate
as long as we are at energy scales such that the interactions between the hadron con-
stituents can be neglected and the partons can be treated as free on-shell particles. For
this reason, we are neglecting corrections of O(Λ2/Q2), called higher-twist corrections.
Usually, the DIS structure functions are not written in terms of the partonic structure
functions but in terms of the so-called coefficient functions, defined as

Ca,i(z,Q
2) =

F̂a,i(z,Q
2)

z
. (1.39)
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In this way Eq. (1.38) becomes

Fa(x,Q2) = x
∑

i=q,q̄,g

∫ 1

x

dz

z
fi(z,Q

2)Ci,a

(x
z
,Q2

)
, a = 2, L . (1.40)

In the following of this thesis we will use the handy notation

(f ⊗ g) (x) =

∫ 1

x

dz

z
f(z)g

(x
z

)
=

∫ 1

x

dz

z
f
(x
z

)
g(z) , (1.41)

so that Eq. (1.40) becomes

Fa(x,Q2) = x
∑

q,q̄,g

Ca,i(Q
2)⊗ fi(Q2) . (1.42)

The coefficient functions are computed in perturbation theory as

Ca,i = C
(0)
a,i + αsC

(1)
a,i + α2

sC
(2)
a,i + . . . . (1.43)

From the discussion we carried out so far, it is clear that the PDFs contain the informa-
tion on the internal structure of the proton. For this reason they are non-perturbative ob-
jects: they are governed by a value of the strong coupling related to the typical hadroniza-
tion scale, i.e. where it is of order O(1) and QCD is non-perturbative. For this reason,
they cannot be computed in perturbation theory but they must be extracted from data.
Now we may ask: which flavors do have a PDF? From what we said so far, the up, down
and strange quarks (with their corresponding anti-quarks), having a mass that is much
smaller than the hadronization scale, must be described by the non perturbative physics
of the hadrons. Indeed, they are formed inside the hadron by quarks that split into a
quark-gluon pair. This splitting happens at a scale that is clearly in the non perturbative
regime and therefore they are non perturbative objects. For this reason, they do have a
PDF. From now on, these three quarks will be called light quarks and their mass will be
neglected since it gives a correction of the order O(m2/Q2) that is completely negligible
with respect to the terms that Eq. (1.38) is neglecting, i.e. the higher-twist corrections.
For the same reason, also the gluon content of the proton must be described by a PDF
since it is generated at non perturbative scales.

Let us consider now the quarks whose mass is larger than the proton mass and that,
for this reason, will be called heavy quarks. The bottom and the top quarks have a mass
that is much larger than the proton mass and therefore they are generated by splittings
happening at scales that are in the perturbative regime. It means that they will not be
described by a non perturbative PDF, but rather by perturbative splittings included in
the matrix elements. Instead, the charm quark has a mass slightly larger than the proton
mass. Therefore, it cannot be considered light such that its mass is neglected, but we
cannot even discard a non perturbative contribution. For this reason, we will consider
also a charm PDF that is the so-called intrinsic charm.

The PDFs must also satisfy some sum rules coming from conservation arguments.
First of all, requiring proton’s momentum conservation, we have the momentum sum rule
that reads ∫ 1

0

dz
∑

i=q,q̄,g

zfi(z,Q
2) = 1 . (1.44)
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Then, requiring flavor conservation in the proton we have that

∫ 1

0

dz
(
fu(z,Q2)− fū(z,Q2)

)
= 2 , (1.45)

∫ 1

0

dz
(
fd(z,Q

2)− fd̄(z,Q2)
)

= 1 , (1.46)
∫ 1

0

dz
(
fs(z,Q

2)− fs̄(z,Q2)
)

= 0 , (1.47)
∫ 1

0

dz
(
fc(z,Q

2)− fc̄(z,Q2)
)

= 0 , (1.48)

that are called valence sum rules.
So far we focused on the electron-proton scattering, a process in which we have

only one hadron in the initial state and therefore only one PDF. The extension of the
parton model to proton-proton collision is straightforward: the two protons interact
through their point-like constituents that carry a fraction z1 and z2 of their momenta.
The hadronic cross section will be given by

σ(Q2) =
∑

i,j=q,q̄,g

∫ 1

0

dz1

∫ 1

0

dz2fH1,i(z1, Q
2)fH2,j(z2, Q

2)σ̂ij(z1, z2, Q
2) , (1.49)

where fH1,i(z1) is the probability of finding in the first hadron a parton of of type i that
carries a fraction z1 of its momentum (and analogous considerations holds for fH2,j(z2))
and σ̂ij is the partonic cross section, i.e. the cross section involving partons as the external
particles, and is computed in perturbation theory. With an abuse of notation with respect
to the definition given in Eq. (1.41), Eq. (1.49) will be written in the compact form

σ(Q2) =
∑

i,j=q,q̄,g

σ̂ij(Q
2)⊗ fH1,i(Q

2)⊗ fH2,j(Q
2) . (1.50)

1.5 Factorization of collinear divergences

In Sec. 1.2 we observed that when we compute a cross section beyond the leading order
in the SM, we have to deal with the insurgence of divergences. We already talked about
the UV divergences, that are removed with renormalization. Now we will talk about the
IR divergences.

In the computation of the cross sections IR divergences arise whenever we have to
deal with massless particles, like gluons. Moreover, if we neglect the mass of the light
quarks (as we usually do) we have the appearance of other IR divergences that we have
to remove. IR divergences appear both in the virtual corrections and in the real ones.
For the virtual corrections, they appear when the momentum of the massless particle
flowing in the propagator goes to zero. The real corrections consist in the emission of
real particles (where with real we mean on-shell) that change the number of particles
in the final state. In this case IR divergences arise when the momenta of these particles
go to zero or when the angle between the emitted particle and the emitting one go to
zero. These two types of divergences are called respectively soft or collinear. Like the UV
divergences, the IR ones are unphysical. Therefore, we have to find a way to remove
them. Thanks to Bloch-Nordsieck theorem we know that when we sum real and virtual
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diagrams the soft and collinear divergences coming from the final state emissions cancel.
Moreover, the Kinoshita-Lee-Nauenberg theorem assures that the soft divergences com-
ing from the initial state emissions also cancel. These cancellations happen at any given
order in perturbation theory. We are left with the collinear divergences coming from the
initial state emissions, that are removed with the so-called factorization

Also in the case of IR divergences we need to regularize them, in the same way we
regularized the UV divergences. This can be done in various ways, like introducing a
cutoff that prevents the momentum from going to zero or performing the dimensional
regularization. In the following we will apply the latter. Let us focus on the DIS structure
function F2. When we compute the O(αs) correction we have that [14]

F2(x,Q2) =
∑

q,q̄

e2
qx

∫ 1

x

dz

z
q0(z)

[
δ
(

1− x

z

)
+ αs(µ

2)

(
C

(1)
2,q

(
x

z
,
µ2

Q2

)
− 1

ε
P (0)
qq

(x
z

))]

+
∑

q,q̄

e2
qx

∫ 1

x

dz

z
g0(z)αs(µ

2)

[
C

(1)
2,g

(
x

z
,
µ2

Q2

)
− 1

ε
P (0)
qg

(x
z

)]
,

(1.51)

where C(1)
2,q and C

(1)
2,g are the regular part of the first order correction to the coefficient

functions in which we considered only light quarks and P
(0)
qq and P

(0)
qg are objects that

describe respectively the splitting of a quark into a gluon-quark pair and of a gluon into
a quark–anti-quark pair. They read

P (0)
qg (z) =

2TF
4π

(
z2 + (1− z)2

)
, (1.52)

P (0)
qq (z) =

CF
2π

(
1 + z2

1− z

)

+

, (1.53)

where with the subscript + we indicated the plus distribution. µ is the so-called factoriza-
tion scale: like the renormalization scale it is an unphysical scale that has been introduced
due to the dimensional regularization. It is in principle different from the renormaliza-
tion scale, but a standard choice is to set µR = µF = µ. Observe that the PDFs have been
denoted with q0 and g0 since at this points they are the bare PDFs, i.e. the PDFs in the IR
divergent theory. In order to cancel the poles in ε we reabsorb them into a redefinition of
the PDFs:

q(x, µ2) =

∫ 1

x

dz

z
q0(z)

[
δ
(

1− x

z

)
− 1

ε
αs(µ

2)P (0)
qq

(x
z

)]

+

∫ 1

x

dz

z
g0(z)

[
−1

ε
αs(µ

2)P (0)
qg

(x
z

)]
,

(1.54)

g(x, µ2) = g0(x) , (1.55)

so that we get

F2(x,Q2) =
∑

q,q̄

e2
qx

∫ 1

x

dz

z
q(z, µ2)

[
δ
(

1− x

z

)
+ αs(µ

2)C
(1)
2,q

(
x

z
,
µ2

Q2

)]

+
∑

q,q̄

e2
qx

∫ 1

x

dz

z
g(z, µ2)αs(µ

2)C
(1)
2,g

(
x

z
,
µ2

Q2

)
,

(1.56)
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that is not divergent anymore.
So far we did a discussion at O(αs) in perturbation theory. However, at any order

we can reabsorb the initial state collinear IR divergences into a redefinition of the PDFs.
Indeed, starting from the hadronic structure functions in the regularized theory we have
that

Fa = x
∑

i=q,q̄,g

C0,a,i ⊗ f0,i , (1.57)

where f0,i are the bare PDFs and C0,i are the bare coefficient functions, i.e. the ones with
the poles in ε. One can show that the bare coefficient functions always factorize as

C0,a,i =
∑

j=q,q̄,g

Ca,j(µ
2)⊗ Γji(µ

2) , (1.58)

where Ca,i is no longer singular and Γji contain the collinear divergences and reads

Γij(z, µ
2) = δijδ(1− z)−

1

ε
αs(µ

2)P
(0)
ij (z) +O(α2

s) . (1.59)

If we plug Eq. (1.59) into Eq. (1.57) we find

Fa = x
∑

i,j=q,q̄,g

C0,a,j ⊗ Γji(µ
2)⊗ f0,i . (1.60)

Therefore, if we redefine the PDFs as

fj(µ
2) =

∑

i=q,q̄,g

Γji(µ
2)⊗ f0,i , (1.61)

we find
Fa = x

∑

i=q,q̄,g

Ci(µ
2)⊗ fi(µ2) . (1.62)

that is written in terms of non-divergent quantities. Expanding Eqs. (1.61-1.62) at O(αs)
we find exactly Eqs. (1.54-1.56). Like in the case of renormalization, we have reabsorbed
the infinities into a redefinition of the PDFs. This is not a problem since the bare PDFs
are unphysical objects, being the PDFs of the divergent theory.

1.6 DGLAP evolution equations

Requiring the independence of the bare PDFs on the factorization scale µ we can derive
the so-called Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations that read

µ2 d

dµ2
fi(x, µ

2) =
∑

j=q,q̄,g

∫ 1

x

dz

z
Pij

(x
z
, as(µ

2)
)
fj(z, µ

2) , i = q, q̄, g , (1.63)

where we defined
as =

αs
4π

, (1.64)

and Pij are called splitting functions and are computed in perturbation theory as

Pij(z) = asP
(0)
ij + a2

sP
(1)
ij + a3

sP
(2)
ij + . . . . (1.65)
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DGLAP equations are a system of 2nf + 1 integro-differential equations, with nf being
the number of light quarks, whose solution gives the PDFs dependence on the factoriza-
tion scale. It is the analogous for the PDFs of the RGE, Eq. (1.24), for the running of αs.
Solving Eq. (1.63) with a certain initial condition at a certain scale µ0, we obtain the PDFs
at any arbitrary scale µ. It means that

fi(µ
2) =

∑

j=q,q̄,g

Eij
(
µ2 ← µ2

0

)
⊗ fj(µ2

0) , i = q, q̄, g . (1.66)

The PDFs evolved using the splitting functions at NkLO are usually called NkLO PDFs.
What about intrinsic heavy quarks? For these quarks we consider a PDF (i.e. we consider
a non perturbative component) but the fact that the mass of the quark is not neglected
prevents the insurgence of collinear divergences associated to the intrinsic quark. Since
we have said that the factorization of collinear singularities is what produces the scale
dependence of the PDFs, we conclude that the intrinsic heavy quarks PDF do not evolve
with DGLAP. Therefore, we have that

fi(µ
2) = fi(µ

2
0) , i = c, c̄ . (1.67)

Before explaining how to solve Eq. (1.63) we observe that DGLAP evolution is resum-
ming to all orders in αs large logarithms of the form log(µ2/µ2

0).

1.6.1 Maximally decoupling the system

In order to solve Eq. (1.63) we have to maximally decouple the system. First of all we
rewrite Eq. (1.63) in the matrix form

µ2 d

dµ2



qi
g
q̄i


 =

nf∑

j=1



Pqiqj Pqig Pqiq̄j
Pgqj Pgg Pgq̄j
Pq̄iqj Pq̄ig Pq̄iq̄j


⊗



qj
g
q̄j


 . (1.68)

Then, we observe that, due to charge conjugation invariance and SU(nf ) symmetry, the
splitting functions satisfy

Pqiqj = Pq̄iq̄j = δijP
V
qq + PSqq ,

Pq̄iqj = Pqiq̄j = δijP
V
qq̄ + PSqq̄ ,

Pqig = Pq̄ig = Pqg ,

Pgqi = Pgq̄i = Pgq .

(1.69)

Plugging Eqs. (1.69) into Eq. (1.68) we obtain

µ2 d

dµ2



qi
g
q̄i


 =



PVqq Pqg PVqq̄
Pgq Pgg Pgq
PVq̄q Pqg PVqq


⊗



qi
g
q̄i


+



PSqq 0 PSqq̄
0 0 0
PSqq̄ 0 PSqq


⊗



∑nf
j=1 qj
g∑nf
j=1 q̄j


 . (1.70)

If now we define
q±i = qi ± q̄i , (1.71)
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we find that

µ2 d

dµ2



q+
i

g
q−i


 =




(PVqq + PVqq̄) 2Pqg 0
Pgq Pgg 0
0 0 (PVqq − PVqq̄)


⊗



q+
i

g
q−i




+




(PSqq + PSqq̄) 0 0
0 0 0
0 0 (PSqq − PSqq̄)


⊗



∑nf
i=1 q

+
i

g∑nf
i=1 q

−
i


 .

(1.72)

Defining the the singlet and valence distributions as

Σ =

nf∑

i=1

q+
i , V =

nf∑

i=1

q−i , (1.73)

and the following splitting functions combinations

P± = PVqq ± PVqq̄ , (1.74)

Pqq = P+ + nf (PSqq + PSqq̄) = P+ + Pps , (1.75)

PV = P− + nf (PSqq − PSqq̄) = P− + PS , (1.76)

we find that the plus, minus and gluon distributions satisfy

µ2 d

dµ2
g = Pgg ⊗ g + Pgq ⊗ Σ , (1.77)

µ2 d

dµ2
q+
i = P+ ⊗ q+

i +
1

nf
(Pqq − P+)⊗ Σ + 2Pqg ⊗ g , (1.78)

µ2 d

dµ2
q−i = P− ⊗ q−i +

1

nf
(PV − P−)⊗ V . (1.79)

From Eqs. (1.78-1.79) we can observe that if we define linear combinations of q+
i (the

same applies for q−i ) that are differences between different flavors, we obtain a distribu-
tion whose DGLAP equation is decoupled from all the other distributions. The usually
adopted combinations are the following

T3 = u+ − d+ , (1.80)

T8 = u+ + d+ − 2s+ , (1.81)

T15 = u+ + d+ + s+ − 3c+ , (1.82)

T24 = u+ + d+ + s+ + c+ − 4b+ , (1.83)

T35 = u+ + d+ + s+ + c+ + b+ − 5t+ , (1.84)

V3 = u− − d− , (1.85)

V8 = u− + d− − 2s− , (1.86)

V15 = u− + d− + s− − 3c− , (1.87)

V24 = u− + d− + s− + c− − 4b− , (1.88)

V35 = u− + d− + s− + c− + b− − 5t− , (1.89)
(1.90)
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whose evolution equation is given by

µ2 d

dµ2
Ti = P+ ⊗ Ti , (1.91)

µ2 d

dµ2
Vi = P− ⊗ Vi . (1.92)

Then, summing Eq. (1.79) over all flavours we find

µ2 d

dµ2
V = PV ⊗ V , (1.93)

that again evolves decoupled from all the other distributions. Instead, if we sum Eq. (1.78)
over all flavours we cannot get a completely decoupled differential equation. Indeed, it
is not possible to decouple the gluon from the singlet evolution. In the end, what we
find is a two dimensional sector composed by the gluon and the singlet distributions
that evolve coupled through the equation

µ2 d

dµ2

(
Σ
g

)
=

(
Pqq 2nfPqg
Pgq Pgg

)
⊗
(

Σ
g

)
. (1.94)

The basis composed by the combinations defined in Eqs. (1.80-1.89), the singlet and the
valence distributions defined in Eq. (1.73) and the gluon distribution is called evolution
basis. On the other hand, the basis composed by quarks, anti-quarks and gluon is called
flavor basis.

In presence of intrinsic flavors a further decomposition is needed. Let us consider
for example the case nf = 3. Σ and V in this case are composed only by up, down
and strange quarks and anti-quarks. This is the same for T3, T8, V3 and V8. However,
the remaining non-singlet distributions are combinations of evolving and non evolving
distributions. Therefore, in this case, instead of using T15, T24, T35, V15, V24 and V35, it is
more convenient to use the heavy flavor in the flavor basis. It means that our basis will
be given by

g , Σ , V , T3 , V3 , T8 , V8 , c , c̄ , b , b̄ , t , t̄ , (1.95)

where the distributions of charm, bottom and top are non evolving. In the same way, if
nf = 4 the basis will be

g , Σ , V , T3 , V3 , T8 , V8 , T15 , V15 , b , b̄ , t , t̄ , (1.96)

and so on. We will refer to this basis as intrinsic evolution basis.

1.6.2 Passing to Mellin space

A possible way to solve the differential equations in Eqs. (1.91-1.94) is performing the
Mellin transform, defined as

f̃(N) ≡M [f ] (N) =

∫ 1

0

dzzN−1f(z) . (1.97)

One can show that in N -space the convolutions, defined in Eq. (1.41), are transformed
into products. Therefore, if we define

γij(N) = −M [Pij ] (N) , (1.98)



18 1.6 DGLAP evolution equations

that are called anomalous dimensions, Eqs. (1.80-1.89) become

µ2 d

dµ2
T̃i = −γ+T̃i , (1.99)

µ2 d

dµ2
Ṽi = −γ−Ṽi , (1.100)

µ2 d

dµ2
Ṽ = −γV Ṽ , (1.101)

µ2 d

dµ2

(
Σ̃
g̃

)
= −

(
γqq 2nfγqg
γgq γgg

)(
Σ̃
g̃

)
, (1.102)

where T̃i, Ṽi, Ṽ , g̃ and Σ̃ are the PDFs in N -space. Eqs. (1.99-1.102) are now easier to
solve than their corresponding x-space equations. Indeed, finding theN -space solutions
of the diagonal sectors is trivial. Regarding, the coupled sector, being the anomalous
dimensions dependent on µ through the dependence on αs, it is not possible to find an
exact solution of Eq. (1.102) 1.

Once we have solved DGLAP equations in Mellin space, we have to perform the
inverse Mellin transform to find the x-space solution. It is obtained as

f(x) =M−1[f̃ ](x) =
1

2πi

∫

P
x−N f̃(N)dN , (1.103)

where P is an arbitrary path in the complex plane that passes to the right of the right-
most singularity and such that its imaginary part starts from −∞ and ends to∞. If the
function f̃(N) is holomorphic Eq. (1.103) can be written as

f(x) =
1

2πi

∫ 1

0

x−P(t)f̃ (P(t))
dP(t)

dt
dt , (1.104)

where P(t) is the parametrization of the integration path in the complex plane:

P(t) : [0, 1]→ C : t→ P(t) . (1.105)

Since the imaginary part of the integration path starts at−∞ and ends to∞, a convenient
choice is to choose a path that is symmetric with respect to the real axis and that crosses
it at t = 1/2. It means that

P
(

1

2
− t
)

= P∗
(

1

2
+ t

)
. (1.106)

With this property, Eq. (1.104) becomes

f(x) =
1

π

∫ 1

1
2

Re

(
x−P(t)f̃ (P(t))

1

i

dP(t)

dt

)
dt , (1.107)

Regarding the choice of the integration path P(t), even if in principle every paths are
equivalent, in practice some choices provide a better numerical convergence than others.
Indeed, being x < 1, if the real part of P(t) goes to−∞ at the two ends of the integration

1The solution of a linear differential equation of the form d
dt
~y(t) = A(t) ·~y(t) can be computed analytically

and is ~y(t) = e
∫ t
t0
dt′A(t′) · ~y(t0) if and only if [A(t1),A(t2)] = 0 for all the choices of t1 and t2.
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path the convergence of the numerical integral is assured. A powerful choice for P(t) is
to use the so-called Talbot Path, where it is parametrized as

P(t) = o+ r

(
θ(t)

tan θ(t)
+ iθ(t)

)
, (1.108)

with
θ(t) = π (2t− 1) , (1.109)

and r and o are two free parameters to be fixed. Regarding r, in Ref. [15] it has been
suggested r = 0.4M/(− log x) with M being the number of accurate digits, e.g. M = 16.
However, this seems to yield unstable results for the Mellin inversion of the matching
conditions in the large x region so we added an additional regularization, which makes
the path less “edgy” there. The form that we used was

r =
0.4 · 16

0.1− log x
. (1.110)

Larger values of the additional regularization seem to produce again some instabilities in
the large x region. Regarding the choice of o instead, since for the non-singlet anomalous
dimensions the rightmost singularity is for N = 0, while in the singlet sector it is for
N = 1, it has been chosen as

o =

{
1 , singlet sector
0 , non-singlet sector

. (1.111)

In this way, given that the path intersects the real axis for N = o+ r we are sure that the
integration path passes to the right of all the singularities.

1.6.3 Solving the Mellin space equations

The last step we need to do to solve DGLAP equations is to solve the system in Mellin
space, i.e. to solve Eqs. (1.99-1.102). For the diagonal parts the differential equation can
be solved exactly. First of all we perform a change of variable from µ to as so that the
differential equation becomes

d

das
fi = −γns(as)

β(as)
fi , (1.112)

where fi = {T̃i, Ṽi, Ṽ } and γns = {γ+, γ−, γV }. The solution of Eq. (1.112) is

fi(as) = Ens

(
as ← a0

s

)
fi(a

0
s) , (1.113)

with

Ens

(
as ← a0

s

)
= exp

[
−
∫ as

a0
s

γns(a
′
s)

β(a′s)
da′s

]

= exp

[∫ as

a0
s

a′sγ
(0)
ns + a′2s γ

(1)
ns + a′3s γ

(2)
ns

a′2s β0 + a′3s β1 + a′4s β2
da′s

]

= exp
[
γ(0)

ns j
(0,2)(as, a

0
s) + γ(1)

ns j
(1,2)(as, a

0
s) + γ(2)

ns j
(2,2)(as, a

0
s)
]
, (1.114)
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where the functions j(k,2) are defined as

j(k,2)(as, a
0
s) =

∫ as

a0
s

a′ks
a′sβ0 + a′2s β1 + a′3s β2

, (1.115)

and read

j(2,2)(as, a
0
s) = arctan

[
β0(as − a0

s)∆

2β0 + β1(as + a0
s) + 2asa0

sβ2

]
, (1.116)

j(1,2)(as, a
0
s) =

2

β0∆

[
arctan

(
β1 + 2asβ2

β0∆

)
− arctan

(
β1 + 2a0

sβ2

β0∆

)]
, (1.117)

j(0,2)(as, a
0
s) =

log
(
as
a0
s

)

β0
− β1

β0
j(1,2)(as, a

0
s)−

β2

β0
j(2,2)(as, a

0
s) , (1.118)

where ∆ =
√

4β0β2 − β2
1/β0. From Eq. (1.114) is clear that the change of variable from

µ2 to as in Eq. (1.112) avoids us to compute the integral of as(µ2), that is a complicate
expression already at LO. In this way we only have to compute the initial and the final
values of as(µ2), i.e. as = as(µ

2) and a0
s = as(µ

2
0), solving the RGE, Eq. (1.24), with one

of the methods described in Sec. 1.3 and then we can apply Eq. (1.114).
For the coupled sector in Eq. (1.102), as we already observed, it is not possible to find

an exact solution, due to the dependence of the anomalous dimension on the factoriza-
tion scale. However, approximate solutions are available in the literature. First of all,
also in this case we can rewrite the differential equation in terms of as:

d

das
~f = −γS(as)

β(as)
· ~f , (1.119)

where
~f =

(
Σ̃
g̃

)
, γS =

(
γqq 2nfγqg
γgq γgg

)
. (1.120)

The solution of Eq. (1.119) is given by

~f(as) = ES

(
as ← a0

s

)
· ~f(a0

s) , (1.121)

where

ES

(
as ← a0

s

)
= P exp

[
−
∫ as

a0
s

γS(a′s)
β(a′s)

da′s

]
, (1.122)

where P is the path-ordering operator. In the remaining of this section we will review
two possible approximate ways to compute Eq. (1.122).

Truncated solution

This solution is based on the observation that at LO Eq. (1.122) can be solved exactly.
Indeed, we have that at LO it reads

ES
(0)
(
as ← a0

s

)
= exp

[∫ as

a0
s

γS
(0)

a′sβ0
da′s

]
= exp

[
γS

(0)
log as

a0
s

β0

]
. (1.123)
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Observe that at LO the path ordering operator can be removed and therefore the solution
is just the exponential of a matrix. The solution beyond LO can be obtained expanding
around the LO solution [16]. Indeed, we can rewrite Eq. (1.119) expanding the denomi-
nator so that it reads

d

das
~f =

R(as)

as
· ~f , (1.124)

whereR(as) satisfies a perturbative expansion, i.e.R(as) =
∑∞
k=0 a

k
sR

(k), and its coeffi-
cients read

R(0) =
γS

(0)

β0
, R(k) =

γS
(k)

β0
−

k∑

i=1

biR
(k−i) , (1.125)

with bi = βi/β0. In order to find the solution, we make the following ansatz:

ES
(k)
(
as ← a0

s

)
= U(as)ES

(0)
(
as ← a0

s

)
U−1(a0

s) , (1.126)

where

U(as) = 1 +

∞∑

k=1

asU
(k) , (1.127)

withU (k) to be determined. Inserting Eq. (1.127) into Eq. (1.124) and collecting the pow-
ers of as we derive a recursive series of commutation relations for the coefficients of the
evolution operator U , that read

[
U (1),R(0)

]
= R(1) −U (1) , (1.128)

[
U (2),R(0)

]
= R(2) +R(1)U (1) − 2U (2) , (1.129)

...
[
U (k),R(0)

]
= R(k) +

k−1∑

i=1

R(k−i)U (i) − kU (k) = R′(k) − kU (k) , (1.130)

with

R′(k) = R(k) +

k−1∑

i=1

R(k−i)U (i) . (1.131)

Then we decomposeR(0) as

R(0) = e+λ+ + e−λ− , (1.132)

where λ± are the eigenvalues of R(0) and e± are the projectors on their eigenspaces.
They read

λ± =
1

2β0

[
γ(0)
qq + γ(0)

gg ±
√(

γ
(0)
qq − γ(0)

gg

)2

+ 4γ
(0)
qg γ

(0)
gq

]
, (1.133)

e± =
1

λ± − λ∓

(
R(0) − λ∓1

)
. (1.134)

Obviously, the projectors satisfy the following relations

e± · e± = e± , e± · e∓ = 0 , e+ + e− = 1 . (1.135)
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Using Eq. (1.135) we can write the identity

U (k) = e−U
(k)e− + e−U

(k)e+ + e+U
(k)e− + e+U

(k)e+ , (1.136)

that, inserted into Eq. (1.130), yields

U (k) =
e−R

′(k)e− + e+R
′(k)e+

k
+

e+R
′(k)e−

λ− − λ+ + k
+

e−R
′(k)e+

λ+ − λ− + k
. (1.137)

For consistency, when we use this solution, the values of as and a0
s are computed using

the expanded solution.

Iterated solution

Another possible way to solve Eq. (1.122) is using a discretized path-ordering [17]. The
evolution operator is computed as

ES

(
as ← a0

s

)
=

0∏

k=n

ES

(
ak+1
s ← aks

)
, (1.138)

with an+1
s = as and

ES

(
ak+1
s ← aks

)
= exp


−

γS

(
a
k+ 1

2
s

)

β
(
a
k+ 1

2
s

) ∆as


 , (1.139)

where

aks = a0 + k∆as , (1.140)

a
k+ 1

2
s = a0 +

(
k +

1

2

)
∆as , (1.141)

∆as =
as − a0

s

n+ 1
. (1.142)

In Eq. (1.138) the order of the product is such that later operators are to the left. We have
observed that choosing n = 30 is enough for the solution to converge. In this case, the
values of as and a0

s are computed using the iterated solution. In the following of this
thesis we will refer to this solution also as iterated-exact solution or just exact solution.

1.7 Factorization of large logarithms

In the past sections we have seen that when we treat some quark as massless, it gives rise
to IR divergences (in addition to those coming from the fact that the gluon is massless).
We have seen also that all such IR divergences cancel when we sum virtual diagrams
with real emission diagrams, with the exception of the initial state collinear emissions.
The way the remaining divergences are handled is by reabsorbing them into a redefini-
tion of the PDFs and this gives rise to the running of the PDFs (of the massless particles)
with the factorization scale. However, in addition to the light quarks there are also the
heavy quarks whose mass is not neglected: when we keep the mass of a quark it acts
as a IR regulator and the cross sections (in the following we will concentrate on the DIS
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coefficient functions) will be finite. The IR divergence is replaced by a logarithm of the
form log Q2

m2 , with Q and m being respectively the hard scale of the process and the mass
of the heavy quark. However, also in this case some problems arise: indeed, the cross
section will satisfy a perturbative expansion of the form

σ = a0
sc

(0)
0

+ as

(
c
(1)
0 log

Q2

m2
+ c

(1)
1

)

+ a2
s

(
c
(2)
0 log2 Q

2

m2
+ c

(2)
1 log

Q2

m2
+ c

(2)
2

)

+ a3
s

(
c
(3)
0 log3 Q

2

m2
+ c

(3)
1 log2 Q

2

m2
+ c

(3)
2 log

Q2

m2
+ c

(3)
3

)

+O(α4
s) ,

(1.143)

that clearly gives a large logarithms problem. In fact, at order k in as we have that the
leading term is aks logk Q2

m2 . At scales such that Q ∼ m we have no problems since the
logarithms are small and then we can safely truncate the perturbative series because
every term is much smaller than the previous ones. At large scales instead, we have
that as log Q2

m2 ∼ 1 and therefore perturbation theory breaks down since every term in
the series is of the same order or larger than the previous ones. It means that we can no
longer truncate the series but we need to resum to all orders if we want to have reliable
predictions.

The way this problem is handled, for example considering the charm as the heavy
quark, is the following: the three flavor scheme (3FS) uses the three light flavors as massless
and keeps the exact dependence on the mass of the charm quark. Therefore, only the
light PDFs will run with DGLAP (they will be called active flavors) and both the QCD
beta function, Eq. (1.28), and DGLAP equations, Eq. (1.91-1.94), will be written in terms
of nf = 3. From now on we will use the symbol q for the three light quarks and we
will add c and c̄ to the sums to make the presence of intrinsic charm explicit. The DIS
structure functions will be written as

Fa(x,Q2) = x
∑

i=q,q̄,g,c,c̄

C
[3]
a,i

(
m2
c

Q2
, a[3]
s (Q2)

)
⊗ f [3]

i (Q2) , (1.144)

while the PDF running will be written as

f
[3]
i (Q2) =

∑

j=q,q̄,g

U
[3]
ij (Q2 ← Q2

0)⊗ f [3]
i (Q2

0) , i = q, q̄, g . (1.145)

f
[3]
i (Q2) = f

[3]
i (Q2

0) , i = c, c̄ . (1.146)

In Eq. (1.146) we used that, as we discussed in the past section, the intrinsic heavy flavor
PDF does not evolve. For the discussion that we carried out so far, the 3FS is reliable
when Q ∼ mc since the mass logarithms will be small. In the 3FS, in the case of heavy
quark production, the coefficient functions contain a factor θ(s − 4m2

c) that comes from
the momentum conservation. It means that, if s < 4m2

c the charm quark does not appear
in the final state (and the same for the other heavy quarks). Moreover, the adoption of the
DS scheme assures the decoupling of all the heavy quark loops. Therefore, if Q2 � m2

c

the dependence on the heavy quark mass completely disappears. For this reason if the
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hard scale of the process is far below the mass of the charm, we can neglect the charm
mass corrections. In the same way, if we are close to the charm mass, we can neglect the
corrections given by the mass of the bottom.

When Q2 � m2
c instead, the mass logarithms become large and must be resummed.

This is achieved with the four flavor scheme (4FS): the large logarithms are reabsorbed into
a redefinition af the PDFs and DGLAP evolution and as running are performed in terms
of nf = 4. In fact, in the massive coefficient functions computed in the 3FS the mass
logarithms factorize as

C
[3]
a,i

(
m2
c

Q2
, a[4]
s (Q2)

)
=

∑

j=q,q̄,g,c,c̄

C
[4]
a,j

(
m2
c

Q2
, a[4]
s (Q2)

)
⊗Aji

(
m2
c

Q2
, a[4]
s (Q2)

)
, (1.147)

where the functions Aji are called matching conditions and read

Aij

(
z,
m2
c

Q2
, as(Q

2)

)
= δ(1− z)δij +

∞∑

k=1

(
as(Q

2)
)k
A

(k)
ij

(
z,
m2
c

Q2

)
. (1.148)

The matching conditions exactly contain the large logarithms dependence of the coeffi-
cient functions. Therefore, the coefficient functions in the 4FS are free from large loga-
rithms and we can safely take the massless limit, i.e.

C
[4]
a,i

(
m2
c

Q2
, a[4]
s (Q2)

)
Q2�m2

c−−−−−→ C
[4]
a,i

(
0, a[4]

s (Q2)
)

+O
(
m2
c

Q2

)
, (1.149)

where C [4]
a,i

(
0, a

[4]
s (Q2)

)
is the coefficient function computed neglecting the charm mass

(also called massless coefficient function). Observe that, in Eq. (1.147) the coefficient
functions in the 3FS are written in terms of a[4]

s . This is easily done expanding a
[3]
s in

terms of a[4]
s using Eq. (1.32) and inserting it in the expression of the coefficient function

in the 3FS.
Now we are ready to factorize the large logarithms into the PDFs: plugging Eq. (1.147)

into Eq. (1.144) we have that

Fa(x,Q2) = x
∑

i,j=q,q̄,g,c,c̄

C
[4]
a,j

(
m2
c

Q2
, a[4]
s (Q2)

)
⊗Aji

(
m2
c

Q2
, a[4]
s (Q2)

)
⊗ f [3]

i (Q2) . (1.150)

Then, defining the PDFs in the 4FS as

f
[4]
i (Q2) =

∑

j=q,q̄,g,c,c̄

Aij

(
m2
c

Q2
, a[4]
s (Q2)

)
⊗ f [3]

j (Q2) , i = q, q̄, g, c, c̄ , (1.151)

we have that Eq. (1.150) can be rewritten as

Fa(x,Q2) = x
∑

i=q,q̄,g,c,c̄

C
[4]
a,i

(
m2
c

Q2
, a[4]
s (Q2)

)
⊗ f [4]

i (Q2) . (1.152)

In the 4FS the PDFs will run with nf = 4:

f
[4]
i (Q2) =

∑

j=q,q̄,g,c,c̄

U
[4]
ij (Q2 ← Q2

0)⊗ f [4]
i (Q2

0) , i = q, q̄, g, c, c̄ . (1.153)
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Observe that in this scheme we have a component of the PDFs that is perturbatively
generated. It is the result of reabsorbing into the PDFs the splittings involving the heavy
quark, that in the 3FS were included in the coefficient functions. Moreover, in this
scheme the heavy quark PDF evolves with DGLAP evolution together with the other
PDFs. The evolution given by Eq. (1.153) is resumming the collinear logarithms to all
orders in as.

In conclusion, we have that if Q ∼ mc the 3FS gives reliable predictions since the
perturbative expansion is well behaved, while if Q2 � m2

c perturbation theory breaks
down and we have to resum the large logarithms and use the 4FS. But the question is:
how do we transition from the 3FS to the 4FS? In other words, how do we decide when
we can truncate the series and when we have to resum? This is achieved by combining
the fixed order result with the resummed one and subtracting the double counted terms.
For example, observing Eq. (1.143), the fixed order result consists in the rows while the
resummed one consists in the columns. Therefore, what we want to implement is

Fa(Q2) = F f.o.
a (Q2) + F res.

a (Q2)− F d.c.
a (Q2) . (1.154)

In literature there are different prescriptions available that implement Eq. (1.154), like
ACOT [18, 19], S-ACOT [20, 21], TR and TR’ [22, 23] and FONLL [24–26]. In the FONLL
scheme for example, the subtraction of Eq. (1.154) is implemented observing that the
fixed order calculation is just the structure function in the 3FS, the resummed result is
the structure function in the 4FS computed with the massless coefficient functions, i.e. in
the limit m2

c/Q
2 → 0, and the double counting are the 3FS structure functions computed

keeping the mass logarithms but sending the power terms to zero. In other words, the
coefficient functions that we need to subtract are obtained as

C
[3,0]
a,i

(
m2
c

Q2
, a[3]
s (Q2)

)
=

∑

j=q,q̄,g,c,c̄

C
[4]
a,j(0, a

[3]
s (Q2))⊗Aji

(
m2
c

Q2
, a[3]
s (Q2)

)
. (1.155)

In conclusion, in the FONLL scheme Eq. (1.154) is given by

FFONLL
a (Q2,m2

c) = F (3)
a (Q2,m2

c) + F (4)
a (Q2, 0)− F (3,0)

a (Q2,m2
c)

=
∑

i=
q,q̄,g,c,c̄




∑

j=
q,q̄,g,c,c̄

[
C

(3)
a,j

(
m2
c

Q2

)
− C(3,0)

a,j

(
m2
c

Q2

)]
⊗A−1

ji

(
m2
c

Q2

)
+ C

[4]
a,i(0)


⊗ f [4]

i (Q2) ,

(1.156)

where all the quantities are computed in terms of a[4]
s (Q2). To conclude this section we

remark that we considered the mass logarithms of the charm but the same considerations
hold for the other heavy quarks, with the only difference that in these cases we don’t
have an intrinsic component. It means that the bottom PDF in the 5FS will be purely
perturbative.

1.8 Variable flavor number scheme

We have seen that at scales much smaller that a certain heavy quark mass, the heavy
quark completely decouples as it cannot be produced neither in loops nor in the final
states. As we go up with the energy, the heavy quark starts being produced and we have
unresummed mass logarithms (3FS). As we increase again the energy, these logarithms
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become large and spoil the perturbative convergence of the theory. Therefore, we have
to use the 4FS in which the logarithms are resummed. When we cross the threshold of
the next heavy flavor, all these considerations apply in the same way. Therefore, we need
to construct a scheme in which below a certain threshold the heavy flavor is completely
decoupled and as we cross the threshold, that flavor contributes. When we approach the
next heavy flavor the same situation applies: below its threshold it cannot be produced
but as we cross it, it starts contributing. In practice, what we want is the following: we
want to define thresholds for the production of each heavy quark, i.e. µc for the charm,
µb for the bottom and µt for the top, and use an EFT such that below a certain threshold
the corresponding heavy quark is completely decoupled. Then, in all the energy ranges
we will implement Eq. (1.154) (that in the case of the FONLL scheme is Eq. (1.156)) with
the corresponding value of nf . When we will cross a given threshold, the new heavy
quark will be switched on. For example, if Q < µc we will have nf = 3 and no heavy
quarks in the the theory, if µc < Q < µb we will have nf = 4 and the only heavy quark
present will be the charm, and so on. The equivalence between the physical observables
in the different energy ranges is assured by the matching performed by Eq. (1.151).

So, if we want to evolve the PDFs from a scale µ2
0 below µc to a scale µ2 above it, we

have to evolve first to µc with nf = 3, then we have to perform the matching and in the
end we can evolve to µ2 with nf = 4. It means that the evolution will read

f
[4]
i (µ2) =

∑

j=q,q̄,g,c,c̄
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[4]
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c
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=
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Tij(µ
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j (µ2
0) , (1.157)

with

Tij(µ
2 ← µ2

0,m
2
c) =

∑

k,h=
q,q̄,g,c,c̄

U
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, a[4]
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⊗ U [3]
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c ← µ2

0) .

(1.158)
Observe that in Eq. (1.158) the dependence on the charm matching scale has to disap-
pear. Indeed, being it an arbitrary scale, the physical quantities cannot depend on it.
Therefore, since the coefficient functions in the 4FS do not depend on µc, if the PDFs
in the 4FS depended on it, the left hand side of Eq. (1.152) would depend on it as well.
This is true if we include all the orders in the series, but it is no longer true when we
truncate at a given order in perturbation theory. Regarding the choice of the threshold
scales, from Eq. (1.158) it is clear that we must choose µc ∼ O(mc) otherwise we would
have unresummed large logarithms coming from the matching conditions. Observe that
Eq. (1.157) has been written in terms of the charm quark, but the very same procedure
applies when we cross the threshold of the bottom quark. The only difference is that we
are not considering an intrinsic bottom component and therefore the bottom PDF in the
5FS will be generated purely perturbatively by the matching conditions.
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In conclusion, we have constructed a scheme in which the number of flavors that
take part to DGLAP evolution (from now on called “active” flavors) varies with the
factorization scale µ. This is called variable flavor number (factorization) scheme and it
is analogous to what we did in Sec. 1.3 with the running of the strong coupling.

1.9 Matching and basis rotation

Let us now briefly describe how to perform the matching given in Eq. (1.158), for a
generic value of nf . Since in Mellin space convolutions are transformed into products,
in this section we will drop the convolution sign. The matching between the nf scheme
and the nf + 1 scheme reads

g[nf+1] = AS
ggg

[nf ] +ASgqΣ
[nf ]

(nf ) +ASgHh
[nf ] , (1.159)

q[nf+1] =
1

2nf
AS
qgg

[nf ] +
1

2nf
Aps
qqΣ

[nf ]

(nf) +Ans
qqq

[nf ] , and the same for q̄ , (1.160)

h[nf+1] =
1

2
AS
Hgg

[nf ] +
1

2
Aps
HqΣ

[nf ]

(nf ) +AHHh
[nf ] , and the same for h̄ , (1.161)

where AS
qq = Ans

qq + Aps
qq and in Σ

[nf ]

(nf ) the label [nf ] refers to the flavor scheme while the
label (nf ) refers to the value in the sum in Eq. (1.73). From Eq. (1.160) we get that

q
[nf+1]
+ =

1

nf
AS
qgg

[nf ] +
1

nf
Aps
qqΣ

[nf ]

(nf) +Ans
qqq

[nf ]
+ , (1.162)

q
[nf+1]
− = Ans

qqq
[nf ]
− , (1.163)

that implies

Σ
[nf+1]

(nf ) = AS
qgg

[nf ] +
(
Ans
qq +Aps

qq

)
Σ

[nf ]

(nf ) , (1.164)

V
[nf+1]

(nf ) = Ans
qqV

[nf ]

(nf ) , (1.165)

T
[nf+1]
i = Ans

qqT
[nf ]
i , (1.166)

V
[nf+1]
i = Ans

qqV
[nf ]
i , (1.167)

where Σ
[nf+1]

(nf ) and V
[nf+1]

(nf ) are the singlet and valence distributions composed by the
first nf flavors but expressed in the nf + 1 flavor scheme. From Eq. (1.161) we get that

h
[nf+1]
+ = AS

Hgg
[nf ]

(nf ) +Aps
HqΣ

[nf ]

(nf ) +AHHh
[nf ]
+ , (1.168)

h
[nf+1]
− = AHHh

[nf ]
− . (1.169)

In the end, in order to obtain the singlet and the valence in the nf + 1 flavor scheme we
have that

Σ
[nf+1]

(nf+1) = Σ
[nf+1]

(nf ) + h
[nf+1]
+ , (1.170)

V
[nf+1]

(nf+1) = V
[nf+1]

(nf ) + h
[nf+1]
− . (1.171)
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Moreover, in the new scheme we have to activate two new non-singlet combinations, i.e.
T(nf+1)2−1 and V(nf+1)2−1. From the form of the non-singlet combinations, it is straight-
forward to prove that this is obtained simply by

T
[nf+1]
j = Σ

[nf+1]

(nf ) − nfh[nf+1]
+ , (1.172)

V
[nf+1]
j = V

[nf+1]

(nf ) − nfh[nf+1]
− , (1.173)

with j = (nf + 1)2 − 1. Therefore, the matching between the nf scheme and the nf + 1
can be written in the matrix form




g
Σ(nf+1)

Tj




[nf+1]

= R
(nf )
S A

(nf )
S




g
Σ(nf )

h+




[nf ]

, (1.174)

(
V(nf+1)

Vj

)[nf+1]

= R(nf )
ns A(nf )

ns

(
V(nf )

h−

)[nf ]

, (1.175)

T
[nf+1]
i = Ans

qqT
[nf ]
i , (1.176)

V
[nf+1]
i = Ans

qqV
[nf ]
i , (1.177)

where in Eqs. (1.176-1.177) we have that i = 3, 8, . . . , n2
f − 1. The matching and rotation

matrices read

A
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

AS
gg AS

gq AS
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AS
qg Ans

qq +Aps
qq 0

AS
Hg AS

Hq AS
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
 , (1.178)

A(nf )
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(
Ans
qq 0
0 Ans

HH

)
, (1.179)

and

R
(nf )
S =




1 0 0
0 1 1
0 1 −nf


 , (1.180)

R(nf )
ns =

(
1 1
1 −nf

)
. (1.181)

As a conclusion of this section we observe that the entry in the last column of the second
line of Eq. (1.178) is null for the reason that is still unknown in the literature. It would
correspond to a matching term AqH .



CHAPTER 2

NNPDF4.0 fitting framework

“All I wanted to say,” bellowed the computer, “is that my circuits are now irrevocably
committed to calculating the answer to the Ultimate Question of Life, the Universe,
and Everything.” [...] “But the program will take me a little while to run.” Fook
glanced impatiently at his watch. “How long?” he said. “Seven and a half million
years.” said Deep Thought.

– The Hitchhiker’s Guide to the Galaxy

In Chap. 1 we saw that whenever we compute a cross section involving hadrons
in the initial state, we have to use the parton model to split the long distance physics
(hadronic physics) from the short distance physics (partonic physics) using the PDFs.
Moreover, we said that the PDFs cannot be computed in QCD due to the failure of per-
turbation theory, but must be extracted from data. In the end we saw that DGLAP equa-
tions give the running of the PDFs with the factorization scale. Therefore, if we extract
the PDFs at a certain fitting scale Q0 we can evolve them at every scale using DGLAP.
Given that the DGLAP evolution is known, the problem of PDFs fitting reduces into ob-
taining the PDFs at the fitting scale. In this chapter we will explain how the PDFs are
extracted at the fitting scale Q0 in the NNPDF4.0 fitting framework. NNPDF4.0 is the
PDF set released by the NNPDF collaboration in 2021 that superseded the previous set
NNPDF3.1. With respect to its predecessor, it included new data (mainly from LHC), but
the main improvement consisted in a completely new fitting framework. Indeed, the fit-
ting methodology has been redesigned in order to use stochastic gradient descent, that
with respect to the previously adopted genetic algorithms provides better performances.
Moreover, this new PDFs determination included a systematic application of positivity
constraints and the enforcement of sum rule integrability.

This chapter is organized as follows: in Sec. 2.1 we will explain the fitting methodol-
ogy describing the PDFs parametrization, the form of the χ2 function (i.e. the function
that has to be minimized in the fitting procedure, that in the context of deep learning is
often called loss function), the way it is optimized and the treatment of the experimental
uncertainties. In Sec. 2.2 we will describe the dataset used in the NNPDF4.0 analysis.
In the end, in Sec. 2.3 we will describe a new theory pipeline for computing the theory
predictions that has been developed after the release of NNPDF4.0 and we will compare
the results of the new fit using this pipeline with the old one.

29
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2.1 Methodology

As we said in Chap. 1, the observables in high energy physics are computed as

Fa(x,Q2) = x
∑

i=q,q̄,g

Ca,i(Q
2)⊗ fi(Q2)

= x
∑

i,j=q,q̄,g

Ca,i(Q
2)⊗ Uij(Q2 ← Q2

0)⊗ fj(Q2
0) , (2.1)

for the DIS data, and as

σ(Q2) =
∑

i,j=q,q̄,g

σ̂ij(Q
2)⊗ fi(Q2)⊗ fj(Q2)

=
∑

i,j,k,l=q,q̄,g

σ̂ij(Q
2)⊗ Uik(Q2 ← Q2

0)⊗ Ujl(Q2 ← Q2
0)⊗ fk(Q2

0)⊗ fl(Q2
0) , (2.2)

for the collider data. Given that using DGLAP evolution we can obtain the PDFs at every
scales starting from the PDFs at a given scale, the goal of a PDFs fit is to extract the PDFs
at the fitting scale, i.e. extracting fi(Q2

0) appearing in Eqs. (2.1-2.2).
In this section we will review the methodology that NNPDF uses for the PDFs ex-

traction. In particular we will describe the methodology used in the NNPDF4.0 analysis,
that is at the basis of the work carried out in this thesis. First of all we will explain
how the PDFs are parametrized at the fitting scale, how the theory predictions are ob-
tained and then compared to data, we will explain how the experimental uncertainties
are propagated in the PDFs and in the end how the PDFs are evolved towards all scales
with DGLAP.

2.1.1 PDF parametrization

In order to extract the PDFs at fitting scale we have to choose a parametrization to
parametrize fi(x,Q2

0). This is a delicate issue since, from the fact that we have almost
no information on the shape of the PDFs we are trying to fit, except for some sum rules
or integrability constraints, we have to use a general enough parametrization in order
not to introduce a bias on the fit. For example, this problem appears when the PDFs are
parametrized using fixed functional forms. With this approach, called Hessian method,
the PDFs are parametrized with functional forms constructed from polynomials in x
and
√
x and the uncertainties are estimated performing a least square fit to the data us-

ing standard error propagation. With this approach it is observed that the PDFs obtained
tend to underestimate the uncertainties of the theory predictions. For this reason a “tol-
erance” factor is introduced a posteriori to enlarge such uncertainties. Therefore, the
use of fixed functional forms introduces a bias in the PDFs determination that propa-
gates into a poor description of the uncertainties of theory predictions. For this reason,
the NNPDF collaboration chooses a different way to parametrize the PDFs at the fitting
scale, using the neural networks. The reason is that, in the limit of an infinite number
of parameters, neural networks can approximate any given differentiable function. The
parametrization that is adopted from NNPDF is

xfi(x,Q
2
0;θ) = Aix

1−αi(1− x)βiNNi(x;θ) , i = 1, . . . , 8 , (2.3)

where NNi is one of the outputs of the neural network, θ is the set of all its parameters
(the weights and the biases), Ai and the factor x1−αi(1 − x)βi are prefactors included to
assure the normalization given by the sum rules and to increase convergence.
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x ln x

xg(x, Q0) xΣ(x, Q0) xV(x, Q0) xV3(x, Q0) xT3(x, Q0) xT15(x, Q0)xT8(x, Q0)xV8(x, Q0)

xg(x, Q0) xu(x, Q0) xū(x, Q0) xd(x, Q0) xs(x, Q0) xc+(x, Q0)xs̄(x, Q0)xd̄(x, Q0)

n(4) = 8

n(3) = 20

n(2) = 25

n(1) = 2

Figure 2.1: Architecture of the neural network used in the NNPDF4.0 PDFs determination.

Now we will briefly describe the architecture of the neural network used in the anal-
ysis of NNPDF4.0. First of all, we recall that a neural network provides a non linear
mapping from a certain input space (that in our case is the space of the x values) to a
certain output space (that in our case is the 8-dimensional space of the PDFs). It does
it implementing a layer structure in which the output of every layer is the input of the
next one. The input of the first layer and the output of the last one are respectively the
input and the output of the neural network. Fig. 2.1 shows the architecture of the neural
network used in the NNPDF4.0 methodology. The blue dots corresponds to the nodes
of the network. The output of the i-th node of the l-th layer is given by

ξ
(l)
i = g



n(l−1)∑

j=1

w
(l)
ij ξ

(l−1)
j + b

(l)
i


 , (2.4)

where ξ(l−1)
j is the output of the j-th node of the previous layer, w(l)

ij and b
(l)
i are called

weights and biases of the l-th layer and g(x) is a non linear monotonic function called
activation function. Different layers can have different activation functions. The set of
the weights and biases of all the nodes are the free parameters of the network, i.e. what
we have to vary to find the best configuration, and it is what we called θ in Eq. (2.3). Re-
garding the activation function, a common choice is to use the so-called sigmoid function
that reads

g(x) =
1

1 + e−x
. (2.5)

This function gives an output that is bounded between 0 and 1 and therefore is the most
suitable for approximating the PDFs.

Regarding the input of the neural network, we already said that the input space is the
space of the x values. However, we can observe from Fig. 2.1 that the neural network
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takes as input both x and log(x). Indeed, passing also log(x) to the network, assures
that the PDFs at small-x have an adequate weight in the fitting algorithm, that otherwise
would result in a poor description of the experimental data in that region.

In addition to its parameters, a neural network is characterized from the so-called
hyperparameters, that are the settings of the network that we do not vary during the
training. These are for example the number of layers, the number of nodes for each
layer, the activation functions, the optimization algorithm and so on. Obviously, there
are combinations of such hyperparameters that will perform better in training the net-
work on the data, while others will perform worse. In the NNPDF4.0 methodology such
hyperparameters are determined through a semi-automatic algorithm called hyperopti-
mization.

To avoid the polynomial prefactor in Eq. (2.3) from limiting the functional form and
thus resulting in underestimated uncertainties, the exponents αi and βi are randomly
chosen from a range that is determined in a self-consistent way [27, 28]. Specifically,
when a change is made to the methodology or dataset, an initial fit is performed, with
the effective exponents of each distribution calculated as

αeff,i =
log fi(x)

log 1/x
, βeff,i =

log fi(x)

log(1− x)
. (2.6)

For the next fit, the sampling distribution for the αi and βi exponents is uniformly chosen
within an interval defined by doubling the 68% confidence interval of the respective
effective exponent. This procedure is repeated until the sampling range stabilizes.

As we can observe from Fig. 2.1, the fit is performed in the evolution basis defined in
Eq. (1.73) and Eqs. (1.80-1.89). The fitting scale is

Q0 = 1.65 GeV . (2.7)

Since the threshold used for the matching has been chosen equal to the heavy quark
masses, the fit is performed at a scale in which the bottom and the top are not active.
For this reason we don’t need to fit these distributions since they are zero below their
matching scale (we are not considering intrinsic bottom or intrinsic top) and they are
perturbatively generated above such scale by the matching performed in Eq. (1.157).
Therefore, among the combinations defined in Eqs. (1.80-1.89), we have to fit only the
ones that do not include bottom or top. Regarding the charm, the fit is performed at
a scale that is slightly above its threshold. Therefore, it will be an active flavor and it
will be composed by a perturbative and a non perturbative component. Performing
a backward matching to get the charm PDF below the charm mass we can extract the
non perturbative component, i.e. the intrinsic charm [29]. In the NNPDF4.0 analysis
it has been set for simplicity c = c̄ at fitting scale. Indeed, thanks to flavor symmetry
considerations, we expect the difference between charm and anti-charm to be very small
(even if some asymmetry is generated by evolution). This condition can be relaxed.
Indeed, in Ref. [30] another output has been added to the network to fit also c̄. Requiring
the symmetry between c and c̄ implies that we have to fit T15 but not V15 since in the latter
the c− component cancels. In App. C we performed a study in which the fitting scale has
been varied both below the threshold of the charm and above the one of the bottom. In
the first case we are fitting directly the non perturbative component of the charm PDF.
The results show that the fit is stable when we perform the fit below or above a heavy
quark threshold.

Regarding the base choice, it is obviously possible to perform the fit in the flavor
basis, i.e. to fit fi = u, ū, d, d̄, s, s̄, c, g. It has tested explicitly that performing a fit in



NNPDF4.0 fitting framework 33

flavor basis doesn’t affects the results since the fits performed in the two different basis
agree within 1σ uncertainty band.

2.1.2 Performing the fit

Performing the fit means finding the best configuration of the parameters of the neural
network θ = {w(l)

ij , b
(l)
i }, such that the theoretical predictions in Eqs. (2.1-2.2) agree with

the experimental data. In order to do it, we have to provide as input to the fitting al-
gorithm both the experimental data and a way to compute their theory prediction. The
first one will be discussed in detail in Sec. 2.2. Regarding the second one instead, the sit-
uation is a little bit more delicate. Indeed, looking at Eqs. (2.1-2.2) we can observe that,
in order to get the theory predictions (the right hand side) to be compared with the ex-
perimental data (the left hand side), we have to compute the DGLAP evolution from the
PDFs at fitting scale to the scale Q2 relative to the data, and then perform an integration
(a double integration in the case of hadronic data) with the partonic cross section. These
operations can be computationally heavy and slowing the fitting procedure. This prob-
lem is solved with the use of the so-called Fast-Kernel (FK) tables [28]. If we define an
interpolation grid in x, i.e. {xi}, we can define tables that encode all the information on
the partonic cross sections and on the DGLAP evolution factors in a PDFs independent
way, such that the theory predictions can be obtained as

F (n) = FK
(n)
i;k fi

(
xk, Q

2
0

)
, (2.8)

for the DIS data, and

σ(n) = FK
(n)
ij;klfi

(
xk, Q

2
0

)
fj
(
xl, Q

2
0

)
, (2.9)

for collider data. The suffix n labels the FK tables for the different datasets. In this way,
evaluating the theory predictions reduces to computing a matrix-vector product, that is
much more efficient from the computational point of view.

Now that we can compute the theory predictions in an efficient way we have to com-
pare them with experimental data. This is done computing the χ2, that reads

χ2 =

Ndata∑

i,j=1

(Di − Pi)
(
cov−1

)
ij

(Dj − Pj) , (2.10)

where Di are the experimental data, Pi are the corresponding predictions and covij is
the covariance matrix. The experimental covariance matrix reads

(covexp)ij = δijσ
(uncorr)
i σ

(uncorr)
j +

(
Nmult∑

m=1

σ
(norm)
i,m σ

(norm)
j,m +

Ncorr∑

l=1

σ
(corr)
i,l σ

(corr)
j,l

)
DiDj ,

(2.11)
where σ(uncorr)

i are the uncorrelated uncertainties that are obtained by summing in quadra-
ture the uncorrelated systematic uncertainties and the statistical uncertainties, σ(norm)

i,m

are the multiplicative normalization uncertainties and σ
(corr)
i,m are other correlated sys-

tematic uncertainties. The χ2 computed from Eq. (2.10) gives an estimation of the agree-
ment between experimental data and theory predictions. However, in order to avoid
the D’Agostini bias [31], that arises in presence of multiplicative uncertainties when the
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Figure 2.2: Flowchart illustrating the early stopping algorithm employed in NNPDF4.0 to identify
the optimal stopping point for the fit.

experimental covariance matrix is used for minimization, the so-called t0 prescription is
applied. With this prescription, the χ2 is minimized using the covariance matrix given
by

(covt0
)ij = δijσ

(uncorr)
i σ

(uncorr)
j +

Nmult∑

m=1

σ
(norm)
i,m σ

(norm)
j,m P

(0)
i P

(0)
j +

Ncorr∑

l=1

σ
(corr)
i,l σ

(corr)
j,l DiDj ,

(2.12)
where P (0)

i is the central value of a theoretical prediction computed using PDFs from a
previous fit. Therefore, the t0 prescription introduces the need of an iterative procedure,
in which at every step P (0)

i are computed using the PDFs obtained from the previous fit.
The iteration is stopped only when the t0 covariance matrix stabilizes. It is observed that
two or three iterations are enough to achieve convergence.

Now the question is: when do we stop optimizing the neural network parameters?
Indeed, a sufficiently large neural network has a flexibility such that the χ2 can be re-
duced indefinitely and the network starts learning the noise present in the data. This is
the so-called overfitting and regularization algorithms must be used to prevent it. In the
NNPDF framework, this regularization method primarily depends on an early stopping
algorithm that uses cross-validation, as illustrated by the flowchart in Fig. 2.2.

This stopping algorithm serves two main purposes: identifying the optimal set of
neural network parameters found during training, and determining the point at which
to stop further searching and end the training process. To determine the optimal instance
of the neural network (defined as the one that generalizes best to new data) a cross-
validation method is employed. In this method, the entire global NNPDF4.0 dataset
is split into a validation dataset and a training dataset: each experimental dataset is
randomly divided with 75% of its data points going into the training set and 25% into
the validation set. Fig. 2.3 demonstrates how this division helps to identify the best
instance of the neural network. Specifically, during the fitting process, the training set
is used to establish a training error function χ2

tr which the optimizer targets and can
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Figure 2.3: Idealized behavior of training loss (dotted, blue) and validation loss (dashed, orange)
during a typical PDF fitting process. For clarity, the curves have been smoothed. While the opti-
mization algorithm keeps reducing the training loss, monitoring the validation loss allows us to
stop the training at the optimal point, avoiding the overfitting.

theoretically minimize indefinitely. This is represented by the blue curve. The validation
set, however, is not accessible to the optimizer, but its error function χ2

val is evaluated at
each training epoch and is shown by the orange line. As illustrated, after χ2

val reaches its
minimum value just before 6000 epochs, it starts to increase again. This increase indicates
overfitting, where the optimizer starts fitting the noise in the training data, thus failing
to generalize to new data. The final fitting result corresponds to the instance where χ2

val

is at its lowest value. The epoch representing the best neural network instance is marked
by the vertical dashed line.

To determine when a neural network has completed its training, a counter is initi-
ated once the validation loss, χ2

val, falls below a certain threshold. From this point, the
counter monitors the number of epochs that pass, and the training stops if the validation
loss does not improve for a specified number of epochs. If this occurs, the training stops,
and the model reverts to the instance with the best validation loss. If the threshold value
for the validation loss is never reached during training, the fit is considered inadequate
and discarded. Additionally, to be deemed acceptable, the instance must meet certain
positivity criteria [4] to ensure that the PDFs for up, down, and strange quarks and anti-
quarks, as well as the gluon PDF, are positive. These constraints are based on Ref. [32],
which demonstrated that PDFs for individual quark flavors and the gluon, as defined in
the MS factorization scheme, are non-negative. Lastly, there is a maximum epoch thresh-
old for training the model. If the model is still improving upon reaching this threshold,
the training will be terminated anyway.

After completing the training of the full set of replicas, first the initial scale PDFs are
evolved through DGLAP equations to obtain the PDFs for a set of Q values logarithmi-
cally spaced between Q = 1 GeV and Q = 100 TeV. PDFs at scales that are between two
consecutive Q values are obtained through interpolation. Then, specific post-fit crite-
ria are assessed. Any replicas failing to meet these criteria are discarded. In particular,
replicas with an arc-length or χ2 value, calculated against the experimental data, that de-
viates more than 4σ from the central value of their distribution are removed. The post-fit
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Figure 2.4: Diagrammatic representation of the NNPDF4.0 fitting framework.

check also ensures the integrability of the solutions by verifying that the inequality
∑

k

∣∣∣xint
k fi

(
xint
k , Q2

)∣∣∣ < 1

2
, (2.13)

is satisfied for fi = V, V3, V8, T3, T8 and xint
k = 10−9, 10−8, 10−7 with Q2 = 5 GeV2. It is

observed that roughly 1% of the replicas do not pass post-fit criteria.
In the end the output of the fitting procedure is converted into LHAPDF6 [33] format.

In Fig. 2.4 the whole fitting procedure that we described is shown.

2.1.3 Treatment of experimental uncertainties

In order to provide a useful description of physics observables, it is necessary to provide
an uncertainty band for the PDFs. The way this problem is handled in the NNPDF4.0
framework is with the use of Nrep Monte Carlo replicas (where usually Nrep = 100). It
means that the uncertainties are estimated providing a set of Nrep different PDFs f (r)

i ,
with r = 1, . . . , Nrep, that give an importance sampling of the PDFs probability distri-
bution. The different replicas are obtained by constructing Nrep sets of artificial data,
called “pseudodata”, that are generated by shifting the original data around their cen-
tral values with a multigaussian distribution given by the covariance matrices associ-
ated to each dataset and then performing Nrep independent fits. Since all the replicas are
equally probable, they are statistically uncorrelated. Therefore, a generic objectX[f ] that
depends on the PDFs, can be obtained by averaging over the PDFs set, i.e.

〈X[f ]〉 =
1

Nrep

Nrep∑

r=1

X
[
f (r)

]
, (2.14)

where the object X can be a cross section, a DIS structure function or the PDF itself. In
the same way, the variance is obtained as

Var [X[f ]] =
1

Nrep

Nrep∑

r=1

(
X
[
f (r)

]
− 〈X[f ]〉

)2

. (2.15)

In Fig. 2.5 it is shown the set of replicas for the gluon PDF at fitting scale (on the left)
and the uncertainty band constructed from these replicas. The continuos solid band cor-
responds to the 68% of the envelope of all replicas, while the dashed line is the Monte
Carlo error obtained computing the variance of the replicas with Eq. (2.15). The agree-
ment of the two kind of errors gives an estimate of the goodness of the gaussian approx-
imation for the experimental uncertainties.
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Figure 2.5: A distribution of 100 PDF replicas (left) and the corresponding 1σ interval at a 68%
confidence level, calculated using Eqs. (2.14-2.15) with X as the identity operator (right). Both are
displayed for the gluon distribution at 1.65 GeV.

Dataset Ref. Ndat x Q [GeV]

NMC Fd2 /F
p
2 [34] 260 (121/121) [0.012, 0.680] [2.1, 10.]

NMC σNC,p [35] 292 (204/204) [0.012, 0.500] [1.8, 7.9]

SLAC Fp2 [36] 211 (33/33) [0.140, 0.550] [1.9, 4.4]

SLAC Fd2 [36] 211 (34/34) [0.140, 0.550] [1.9, 4.4]

BCDMS Fp2 [37] 351 (333/333) [0.070, 0.750] [2.7, 15.]

BCDMS Fd2 [37] 254 (248/248) [0.070, 0.750] [2.7, 15.]

CHORUS σνCC [38] 607 (416/416) [0.045, 0.650] [1.9, 9.8]

CHORUS σν̄CC [38] 607 (416/416) [0.045, 0.650] [1.9, 9.8]

NuTeV σνCC (dimuon) [39, 40] 45 (39/39) [0.020, 0.330] [2.0, 11.]

NuTeV σν̄CC (dimuon) [39, 40] 45 (36/37) [0.020, 0.210] [1.9, 8.3]

[NOMADRµµ(Eν)] (*) [41] 15 (—/15) [0.030, 0.640] [1.0, 28.]

[EMC F c2 ] [42] 21 (—/16) [0.014, 0.440] [2.1, 8.8]

HERA I+II σpNC,CC [43] 1306 (1011/1145) [4·10−5, 0.65] [1.87, 223]

HERA I+II σcNC (*) [44] 52 (—/37) [7·10−5, 0.05] [2.2, 45]

HERA I+II σbNC (*) [44] 27 (26/26) [2·10−4, 0.50] [2.2, 45]

Table 2.1: The DIS datasets examined for the NNPDF4.0 PDF determination are detailed here.
For each dataset, we provide its name as used in this paper, the relevant reference, the number of
data points included in the NLO/NNLO fits both before and after applying kinematic cuts (refer to
Sec. 4 of Ref. [4]), and the kinematic ranges covered after the cuts. Datasets not previously included
in NNPDF3.1 are marked with an asterisk, while those not part of the baseline determination are
noted in square brackets. The Q coverage for NOMAD should be understood as an integration
range.

2.2 Dataset

The data used in the NNPDF4.0 PDFs determination are outlined in Tabs. 2.1-2.5. These
tables contain DIS, DIS jets, fixed-target Drell–Yan, inclusive gauge boson production
at colliders, and other LHC processes, respectively. For each dataset, we provide the
dataset name, the corresponding reference, the number of data points used in the NLO
and NNLO fits both before and after applying kinematic cuts (i.e. some data points are
discarded for being at too low scales, as detailed in Sec. 4 of Ref. [4]), and the kinematic
ranges considered post-cuts. Datasets not previously featured in NNPDF3.1 are marked
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Dataset Ref. Ndat Q2 [GeV2] pT [GeV]

[ZEUS 820 (HQ) (1j)] (*) [45] 30 (—/30) [125,10000] [8,100]

[ZEUS 920 (HQ) (1j)] (*) [46] 30 (—/30) [125,10000] [8,100]

[H1 (LQ) (1j)] (*) [47] 48 (—/48) [5.5,80] [4.5,50]

[H1 (HQ) (1j)] (*) [48] 24 (—/24) [150,15000] [5,50]

[ZEUS 920 (HQ) (2j)] (*) [49] 22 (—/22) [125,20000] [8,60]

[H1 (LQ) (2j)] (*) [47] 48 (—/48) [5.5,80] [5,50]

[H1 (HQ) (2j)] (*) [48] 24 (—/24) [150,15000] [7,50]

Table 2.2: As Tab. 2.1 for DIS jet data.

Dataset Ref. Ndat y`` m`` [GeV]

E866 σd/2σp (NuSea) [50] 15 (15/15) [0.07, 1.53] [4.60, 12.9]

E866 σp (NuSea) [51] 184 (89/89) [0.00, 1.36] [4.50, 8.50]

E605 σp [52] 119 (85/85) [-0.20, 0.40] [7.10, 10.9]

E906 σd/2σp (SeaQuest) (*) [53] 6 (6/6) [0.11, 0.77] [4.71, 6.36]

Table 2.3: As Tab. 2.1 for fixed-target DY data.

with an asterisk, while those excluded from the baseline determination are shown in
brackets.

The NNPDF4.0 analysis uses a total of 4426 data points at NLO and 4618 at NNLO
(after the kinematic cuts). This is an increase compared to NNPDF3.1, which had 4295
data points at NLO and 4285 at NNLO. For a comparison of the datasets used in NNPDF4.0
with those in NNPDF3.1 and other recent PDF analyses (namely ABMP16 [54], CT18 [55],
and MSHT20 [56]) refer to App. B of Ref. [4], see Tables B.1-B.6.

Fig. 2.6 shows the kinematic coverage in the (x,Q2) plane for the NNPDF4.0 dataset
used in the default NNLO fit. For hadronic data, the kinematic variables are calculated
using leading-order (LO) kinematics. When an observable is averaged over rapidity, the
midpoint of the integration range is used to determine the x values. Data points from
datasets introduced in NNPDF4.0 are highlighted with a black border.

2.3 New computational tools

In Sec. 2.1 we described the fitting methodology of the NNPDF4.0 PDFs determination.
We also mentioned how the theory predictions used in the fit to be compared with the
experiments are obtained through the FKtables approach, i.e. Eqs. (2.8-2.9). These tables
are numerically computed with a computing framework that relied on a combination of
various codes, including APFEL [110] for PDF evolution and DIS structure function cal-
culations, and APFELgrid [111] for creating interpolation grids of NLO partonic matrix
elements. These grids utilized the APPLgrid [112] and FastNLO [113] interpolators. Af-
ter the NNPDF4.0 analysis, the NNPDF collaboration started working on a new theory
pipeline to replace the old one. The primary advantage of the new pipeline is its cohe-
sive yet modular and adaptable structure. It is described in Ref. [114]. This new pipeline
has been fully benchmarked with the old one for DGLAP evolution (both pure QCD
and mixed QCD⊗QED, as we will see in Chap. 3), for the computation of the structure
functions, the interpolation of grids and the interface to mg5 aMC@NLO. With this new
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Dataset Ref. Ndat Kin1 Kin2 [GeV]

CDF Z differential [57] 29 (29/29) 0.0 ≤ y`` ≤ 2.9 66 ≤ m`` ≤ 116

D0 Z differential [58] 28 (28/28) 0.0 ≤ y`` ≤ 2.8 66 ≤ m`` ≤ 116

[D0W electron asymmetry] [59] 13 (13/8) 0.0 ≤ ye ≤ 2.9 Q = mW

D0W muon asymmetry [60] 10 (10/9) 0.0 ≤ yµ ≤ 1.9 Q = mW

ATLAS low-mass DY 7 TeV [61] 6 (4/6) |η`| ≤ 2.1 14 ≤ m`` ≤ 56

ATLAS high-mass DY 7 TeV [62] 13 (5/5) |η`| ≤ 2.1 116 ≤ m`` ≤ 1500

ATLASW,Z 7 TeV (L = 35 pb−1) [63] 30 (30/30) |η`, yZ | ≤ 3.2 Q = mW ,mZ

ATLASW,Z 7 TeV (L = 4.6 fb−1) (*) [64] 61 (53/61) |η`, yZ | ≤ 2.5, 3.6 Q = mW ,mZ

CMSW electron asymmetry 7 TeV [65] 11 (11/11) |ηe| ≤ 2.4 Q = mW

CMSW muon asymmetry 7 TeV [66] 11 (11/11) |ηµ| ≤ 2.4 Q = mW

CMS DY 2D 7 TeV [67] 132 (88/110) |η``| ≤ 2.2 20.0 ≤ m`` ≤ 200

LHCb Z → ee 7 TeV [68] 9 (9/9) 2.0 ≤ η` ≤ 4.5 Q = mZ

LHCbW,Z → µ 7 TeV [69] 33 (29/29) 2.0 ≤ η` ≤ 4.5 Q = mW

[ATLASW 8 TeV] (*) [70] 22 (—/22) |η`| < 2.4 Q = mW

ATLAS low-mass DY 2D 8 TeV (*) [71] 84 (47/60) |y``| < 2.4 46 ≤ m`` ≤ 200

ATLAS high-mass DY 2D 8 TeV (*) [72] 48 (48/48) |y``| < 2.4 116 ≤ m`` ≤ 1500

CMSW rapidity 8 TeV [73] 22 (22/22) |η`| ≤ 2.3 Q = mW

LHCb Z → ee 8 TeV [74] 17 (17/17) 2.00 < |ηe| < 4.25 Q = mZ

LHCbW,Z → µ 8 TeV [75] 34 (29/30) 2.00 < |ηµ| < 4.25 Q = mZ

[LHCbW → e 8 TeV] (*) [76] 8 (—/8) 2.00 < |ηe| < 4.25 Q = mW

ATLAS σtot
W,Z 13 TeV (*) [77] 3 (3/3) — Q = mW ,mZ

LHCb Z → ee 13 TeV (*) [78] 17 (15/15) 2.00 < |yZ | < 4.25 Q = mZ

LHCb Z → µµ 13 TeV (*) [78] 18 (16/16) 2.00 < |yZ | < 4.50 Q = mZ

Table 2.4: As Tab. 2.1 for collider (Tevatron, top, and LHC, bottom) inclusive gauge boson produc-
tion data.

pipeline, interpolations grids for different processes have been recomputed:

• All fully inclusive DIS processes have been recomputed using the code YADISM [115,
116]. This code reimplements the FONLL prescription in a way that heavy quarks
mass effects are treated in a better way [117].

• All fixed-target Drell–Yan processes have been recomputed using a modified ver-
sion [114] of VRAP [118].

• The following datasets of Tabs. 2.4-2.5 have been recomputed using mg5 aMC@NLO
(all grids, in the PineAPPL format, are available at https://github.com/NNPDF/
pineapplgrids):

– ATLAS W,Z 7 TeV (L = 4.6 fb−1)

– ATLAS low-mass DY 7 TeV

– ATLAS high-mass DY 7 TeV

– ATLAS σtot
tt 7, 8

– ATLAS σtot
tt 13 (L = 139 fb−1)

– ATLAS tt̄ lepton+jets 8 TeV

– ATLAS tt̄ dilepton 8 TeV

– CMS Drell–Yan 2D 7 TeV

https://github.com/NNPDF/pineapplgrids
https://github.com/NNPDF/pineapplgrids
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Dataset Ref. Ndat Kin1 Kin2 [GeV]

ATLASW± + c 7 TeV (*) [79] 22 (22/—) |η`| < 2.5 Q = mW

CMSW± + c 7 TeV [80] 10 (10/—) |η`| < 2.1 Q = mW

CMSW± + c 13 TeV (*) [81] 5 (5/—) |η`| < 2.4 Q = mW

ATLASW±+jet 8 TeV (*) [82] 32 (30/30) 0 ≤ pWT ≤ 800 GeV Q = mW

ATLAS Z pT 8 TeV (pT ,m``) [83] 64 (40/44) 12 ≤ m`` ≤ 150 GeV 30 ≤ pZT ≤ 900

ATLAS Z pT 8 TeV (pT , yZ ) [83] 120 (18/48) |yZ | < 2.4 30 ≤ pZT ≤ 150

CMS Z pT 8 TeV [73] 50 (28/28)) |yZ | < 1.6 30 ≤ pZT ≤ 170

CMS σtot
tt 5 TeV (*) [84] 1 (1/1) — Q = mt

ATLAS σtot
tt 7, 8 TeV [85] 2 (2/2) — Q = mt

CMS σtot
tt 7, 8 TeV [86] 2 (2/2) — Q = mt

ATLAS σtot
tt 13 TeV (L=139 fb−1) (*) [87] 1 (1/1) — Q = mt

CMS σtot
tt 13 TeV [88] 1 (1/1) — Q = mt

[ATLAS tt̄ `+jets 8 TeV (1/σdσ/dptT )] [89] 8 (—/8) 0 ≤ ptT ≤ 500 GeV Q = mt

ATLAS tt̄ `+jets 8 TeV (1/σdσ/dyt) [89] 5 (4/4) |yt| < 2.5 Q = mt

ATLAS tt̄ `+jets 8 TeV (1/σdσ/dytt̄) [89] 5 (4/4) |ytt̄| < 2.5 Q = mt

[ATLAS tt̄ `+jets 8 TeV
(1/σdσ/dmtt̄)]

[89] 7 (—/7) 345 ≤ mtt̄ ≤ 1600 GeV Q = mt

ATLAS tt̄ 2` 8 TeV (1/σdσ/dytt̄) (*) [90] 5 (5/5) |ytt̄| < 2.8 Q = mt

CMS tt̄ `+jets 8 TeV (1/σdσ/dytt̄) [91] 10 (9/9) −2.5 < ytt̄ < 2.5 Q = mt

CMS tt̄ 2D 2` 8 TeV
(1/σdσ/dytdmtt̄) (*)

[92] 16 (16/16) |yt| < 2.5 340 ≤ mt ≤ 1500

CMS tt̄ `+jet 13 TeV (dσ/dyt) (*) [93] 10 (10/10) |yt| < 2.5 Q = mt

CMS tt̄ 2` 13 TeV (dσ/dyt) (*) [94] 11 (11/11) |yt| < 2.5 Q = mt

[ATLAS incl. jets 7 TeV, R=0.6] [95] 90 (—/90) |yjet| < 3.0 100 ≤ pjet
T ≤ 1992

[CMS incl. jets 7 TeV] [96] 133 (—/133) |yjet| < 2.5 100 ≤ pjet
T ≤ 2000

ATLAS incl. jets 8 TeV, R=0.6 (*) [97] 171 (171/171) |yjet| < 3.0 70 ≤ pjet
T ≤ 2500

CMS incl. jets 8 TeV (*) [98] 185 (185/185) |yjet| < 3.0 74 ≤ pjet
T ≤ 2500

ATLAS dijets 7 TeV, R=0.6 (*) [99] 90 (90/90) 0.0 ≤ y∗ ≤ 3.0 260 ≤ mjj ≤ 4270

CMS dijets 7 TeV (*) [100] 54 (54/54) |ymax| < 2.5 200 ≤ mjj ≤ 5000

[CMS 3D dijets 8 TeV] (*) [101] 122 (122/122) 0.0 < yb, y
∗ < 3.0 133 ≤ pT,avg ≤ 1780

[ATLAS isolated γ prod. 8 TeV] (*) [102] 49 (—/—) |ηγ | < 2.37 EγT < 1500

ATLAS isolated γ prod. 13 TeV (*) [103] 53 (53/53) |ηγ | < 2.37 EγT < 1500

ATLAS single t Rt 7 TeV (*) [104] 1 (1/1) — Q = mt

CMS single t σt + σt̄ 7 TeV (*) [105] 1 (1/1) — Q = mt

ATLAS single t Rt 8 TeV (*) [106] 1 (1/1) — Q = mt

CMS single t Rt 8 TeV (*) [107] 1 (1/1) — Q = mt

ATLAS single t Rt 13 TeV (*) [108] 1 (1/1) — Q = mt

CMS single t Rt 13 TeV (*) [109] 1 (1/1) — Q = mt

ATLAS single t 7 TeV (1/σdσ/dyt) (*) [104] 4 (3/3) |yt| < 3.0 Q = mt

ATLAS single t 7 TeV (1/σdσ/dyt̄) (*) [104] 4 (3/3) |yt̄| < 3.0 Q = mt

ATLAS single t 8 TeV (1/σdσ/dyt) (*) [106] 4 (3/3) |yt| < 2.2 Q = mt

ATLAS single t 8 TeV (1/σdσ/dyt̄) (*) [106] 4 (3/3) |yt̄| < 2.2 Q = mt

Table 2.5: As Tab. 2.1, this table presents information for other LHC processes. The entries, listed
from top to bottom, include: W -boson production associated with either a charm jet or a light
quark jet; transverse momentum production of Z-bosons; both total and differential top quark
pair production; single-inclusive and dijet production; inclusive production of isolated photons;
and single top t-channel production, covering both total and differential aspects.
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Figure 2.6: The kinematic coverage of the NNPDF4.0 dataset in the (x,Q2) plane.

– CMS tt̄ 2D dilepton 8 TeV
– CMS tt̄ lepton+jets 13 TeV
– CMS tt̄ dilepton 13 TeV
– CMS σtot

tt 5.02 TeV
– CMS σtot

tt 7, 8 TeV
– CMS σtot

tt 13 TeV

– LHCb Z 7 TeV (L = 940 pb−1)

– LHCb Z → ee 8 TeV (L = 2 fb−1)
– LHCb W,Z → µ 7 TeV
– LHCb W,Z → µ 8 TeV

Grids for all remaining datasets have been converted to the PineAPPL format without
recalculating them. Naturally, aside from the new FONLL implementation, none of these
changes should affect the results, provided both the previous and new theoretical meth-
ods are numerically accurate. The new FONLL implementation introduces differences
from the previous one due to sub-leading corrections, which result in NNLO variations
in the NLO fit and N3LO variations in the NNLO fit. These differences are limited to the
charm and bottom mass corrections in DIS structure functions, impacting only a small
number of data points at the NNLO level, and only by a fraction of a percent.

Finally, during the transition to the new pipeline, a few bugs were found in the imple-
mentation of some data points, including issues like incorrect normalization, incorrect
scale assignment, or incorrect bin size. These corrections have a negligible impact in
practice, as they affect only a handful of points out of more than 4500.

We have produced variants of the published NNPDF4.0 NLO and NNLO fits using
the new theory pipeline. To demonstrate the equivalence between these fits and the
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NLO QCD NNLO QCD

New Published New Published

χ2 1.26 1.24 1.17 1.16

〈Etr〉 rep 2.41 ± 0.06 2.43 ± 0.08 2.28 ± 0.05 2.27 ± 0.07

〈Eval〉 rep 2.57 ± 0.10 2.62 ± 0.13 2.37 ± 0.11 2.35 ± 0.11〈
χ2

〉
rep 1.29 ± 0.02 1.27 ± 0.02 1.20 ± 0.02 1.18 ± 0.02

〈TL〉 rep 12900 ± 2000 13200 ± 2100 12400 ± 2600 13400 ± 2400

φ 0.156 ± 0.006 0.178 ± 0.007 0.153 ± 0.005 0.162 ± 0.005

Table 2.6: Comparison of statistical indicators for a set of 100 NNPDF4.0 NNLO PDF replicas
generated with the new theory pipeline and the published NNPDF4.0 NNLO 100 replica set.
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Figure 2.7: Distances at Q = 100 GeV between the central values (left) and uncertainties (right) of
the 100 NNPDF4.0 PDF replicas at NLO (top) and NNLO (bottom) whose statistical indicators are
compared in Tab. 2.6.

original NNPDF4.0 fits, which were generated using the previous theory pipeline, we
compare each pair of fits. All fits consist of 100 replicas. The corresponding statistical
estimators are presented in Tab. 2.6. Besides the fit quality estimators, we also include the
φ estimator, defined in Equation (4.6) of Ref. [119]. This estimator measures the ratio of
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Figure 2.8: The NLO PDFs at Q = 100 GeV from the 100 replica sets compared in Tab. 2.6 and
Fig. 2.7. Results are shown normalized to the central value of the published set. Bands correspond
to 1σ uncertainties. From left to right and from top to bottom, we show the up, anti-up, down,
anti-down, strange and gluon PDFs.
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Figure 2.9: Same as Fig. 2.8 but at NNLO.
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the average (correlated) PDF uncertainty on data points to the experimental uncertainty,
making it a sensitive indicator of fit quality. All estimators match at NNLO (considering
the statistical uncertainty on the χ2 with the given number of data points is around
0.02), explicitly showing the equivalence between the two sets of replicas. At NLO, all
estimators are also very close, with differences falling within the statistical uncertainty
of the χ2.

PDFs distances are shown in Fig. 2.7, where the distances (as defined in Ref. [120])
between the central values and uncertainties are compared using two sets of replicas at
Q = 100 GeV. When considering a set of 100 replicas, a distance of d ∼ 1 indicates sta-
tistical similarity, while d ∼ 10 signifies one-sigma deviations. At NNLO, distances are
typically around 1, indicating that both replica sets are derived from the same under-
lying distribution. In contrast, at NLO, distances tend to be somewhat larger, approx-
imately at the half-sigma level for most PDFs and occasionally reaching 1σ in specific
instances, primarily due to differences in the FONLL implementation [117]. The actual
PDFs themselves are displayed in Figs. 2.8-2.9, corresponding to NLO and NNLO, re-
spectively. The comprehensive agreement observed between the two pairs of NNLO
replica sets, alongside the minor discrepancies at NLO, is clearly evident.

From now on in this thesis, whenever we will refer to the NNPDF4.0 PDFs set, we
will refer to the fit using the new theory baseline. Moreover, these PDFs sets are made
available as a set of 100 Monte Carlo replicas both at NLO and at NNLO on the NNPDF
collaboration website at the link

https://nnpdf.mi.infn.it/nnpdf4-0-qed/ ,

and are called

NNPDF40 nlo as 01180 qcd ,
NNPDF40 nnlo as 01180 qcd .

https://nnpdf.mi.infn.it/nnpdf4-0-qed/
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A Tale of Light and Shadow





CHAPTER 3

Including QED corrections

“May it be a light to you in dark places, when all other lights go out.”
– Galadriel, The Lord of the Rings: The Two Towers

In Chap. 2 we discussed the fitting framework used in the NNPDF4.0 PDFs deter-
mination. As we already mentioned, this is a pure QCD NNLO fit. It means that QED
effects are neglected and the QCD ones are treated at NNLO. Therefore, splitting func-
tions, partonic cross sections and coefficient functions do not include corrections in the
electromagnetic coupling αem. Moreover, the photon content of the proton, i.e. the pho-
ton PDF, is neglected and for this reason we don’t include the photon initiated (PI) pro-
cesses (processes in which the initial state parton is a photon) in the computation of
hadronic observables. In this chapter we will describe how these kind of contributions
are included in a PDFs fit and in particular how we included them in the NNPDF4.0
fitting framework.

Early efforts to create PDF sets that included QED effects used models for the pho-
ton PDF at the starting evolution scale [121, 122]. The first determination of QED PDFs
driven by data, based on the NNPDF2.3 methodology [123, 124], produced a photon
PDF with very large uncertainties. The fact that trying to determine a photon PDF
from data results in large uncertainties was further confirmed in recent studies using
the xFitter methodology [125], that used fixed functional forms to fit PDFs from data
and analyzed high-mass ATLAS Drell-Yan distributions [72]. In 2016, a significant ad-
vancement in determining QED PDFs was made in Refs. [126,127] (with related findings
in Refs. [128, 129]). These studies demonstrated that the photon PDF could be calcu-
lated perturbatively in QED, provided the proton structure functions at all scales are
given, ranging from the elastic (Q2 → 0) to the deep-inelastic (Q2 → ∞) regimes. Since
then, this method, known as LuxQED, has become the foundation for all QED PDFs
sets [130–134].

QED corrections enter a PDFs fit in different ways. First of all, given that we are
allowing the quarks inside the proton to split into a quark-photon pair, we have to take
into account also a photon PDF and therefore we have to consider PI contributions in
the computation of theory predictions. Obviously, PI contributions will be suppressed
with respect to the others since the photon PDF is much smaller than the quarks and
gluon PDFs and since these partonic cross sections will be proportional to some power
of αem. The photon PDF affects the momentum sum rule, Eq. (1.44), subtracting part
of the proton’s momentum from the sum of all the other PDFs. The second way QED
corrections affect a PDFs fit is through DGLAP evolution. Indeed, in Eq. (1.65) we wrote
the splitting functions as an expansion in powers of as. However, they admit corrections

49
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also in αem. For this reason, the photon mixes with the other PDFs through DGLAP
evolution. This leads to a modification of the diagonalization of the DGLAP equation
discussed in Sec. 1.6.

Even if the the inclusion of a photon PDF in a PDFs fits, weakly affects the quark and
gluon PDFs, its impact is not always negligible with respect to the current size of the un-
certainties. For example, the photon usually carries a fraction of the proton momentum
that is roughly two orders of magnitude smaller than that of the gluon. Consequently,
the resulting reduction in the gluon momentum fraction is relevant at the percent level.
Hence, it is comparable to the present uncertainty in the gluon PDF. Moreover, we will
show in this section that there are processes in which in some kinematical ranges (like
the large rapidity region in Higgs production) the QED effects have a non negligible
impact, resulting in a contribution of the order of 5%. Therefore, precise calculations of
LHC processes that incorporate electroweak effects necessitate a consistent global QED
PDFs determination.

In this chapter we will describe the way QED corrections are added to the NNPDF4.0
fitting framework. From now on a PDFs fit that includes QED corrections will be referred
to as QED fit, while a fit that doesn’t involve them will be called QCD fit. This chapter
is organized as follows: in Sec. 3.1 we will briefly summarize the LuxQED approach, on
which the photon PDF determination of this work is based, and we will describe how
it was interfaced to the NNPDF4.0 fitting methodology; in Sec. 3.2 we will explain how
the DGLAP equations, see Sec. 1.6, are modified by the inclusion of QED effects and
how to solve them in this different case; in Sec. 3.3 we will describe the benchmarks we
performed in order to check that our implementation of mixed QCD⊗QED DGLAP evo-
lution is correct; in Sec. 3.4 we will present the results of the QED fit, comparing it with
NNPDF4.0 and with the most recent QED PDFs determinations; in the end, in Sec. 3.5
we will study the impact of including QED corrections to PDFs to phenomenological
processes of interest for the LHC.

3.1 Photon PDF

The photon PDF is somehow special: indeed it is not fitted like the other PDFs, but it
is obtained with the LuxQED approach in which it is linked to the other PDFs through
a perturbative calculation. In this section we are going to briefly describe the LuxQED
approach that is adopted also in our QED PDFs determination.

In the original LuxQED papers [126,127] the authors showed that the existing electron-
proton scattering data contains all the necessary information to precisely determine the
photon PDF. Typically, ep scattering is viewed as a process where a photon emitted by
the electron probes the proton’s structure. However, it can equally be considered as an
electron probing the photon field produced by the proton itself. Consequently, the ep
scattering cross section is intrinsically linked to the photon PDF. This is shown explicitly
considering, instead of DIS, the fictitious process l + p→ L+X , where l and L are neu-
tral leptons, with the first one being massless and the second one being massive. Then,
they observe that there are two ways to estimate the heavy-lepton production cross sec-
tion: the first one uses the standard proton structure functions, F2 and FL, while the
second one utilizes the proton PDFs, with the dominant contribution coming from the
photon PDF. By equating these two computations, one can determine fγ . This leads to
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the so-called LuxQED formula, that reads

xfγ(x, µ2) =
1

2παem(µ2)

∫ 1

x

dz

z

{∫ µ2

1−z

x2m2
p

1−z

dQ2

Q2
α2
em(Q2)

[
−z2FL

(x
z
,Q2

)

+

(
zPγq(z) +

2x2m2
p

Q2

)
F2

(x
z
,Q2

)]
− α2

em(µ2)z2FL

(x
z
,Q2

)}
,

(3.1)

where mp is the mass of the proton and Pγq is the photon-quark splitting function.
Eq. (1.40) holds in the MS scheme and neglects terms of order O(αsαem) and O(α2

em).
Being the DIS structure functions computed through the PDFs according to Eq. (1.40),
Eq. (3.1) is linking the photon PDF to all the other PDFs. However, a remark is needed:
Eq. (3.1) doesn’t give a way to compute the photon PDF starting from quarks and gluon
PDFs. Indeed, the PDFs that appear inside the computation of F2 and FL are implicitly
QED dependent since they depend on the DGLAP evolution, that in presence of QED
corrections evolve mixing with the photon, and they are obtained in a QED fit in which
the effects of the photon PDF are taken into account. For this reasons, Eq. (3.1) must be
seen as a constraint that the fitting algorithm must satisfy through all the steps of the
PDFs determination, like the sum rules, rather than as a way of computing the photon
PDF.

Now that we have introduced the LuxQED formula, we can explain how it is actually
computed. We have seen that the LuxQED formula depends on DIS structure functions.
First of all we observe that there are two kind of contributions, the elastic and the in-
elastic electron-proton scattering, and the total will be given by the sum of the two, i.e.

Fa = F (inel)
a + F (el)

a . (3.2)

The elastic scattering is the one in which an electron scatters off a proton without enough
energy to resolve its internal structure. Then, in this case we still have the proton in the
final state and the structure functions will be proportional to δ(1 − z). In this case their
expression reads

F
(el)
2 (x,Q2) =

G2
E(Q2) +G2

M (Q2)τ

1 + τ
δ(1− x) , (3.3)

F
(el)
L (x,Q2) =

G2
E(Q2)

τ
δ(1− x) , (3.4)

where τ = Q2/(4m2
p) andGE andGM are called electric and magnetic Sachs form factors

of the proton [135]. ForGE andGM it is usually used the dipole approximation, in which
they read

GE(Q2) =
1

(
1 + Q2

m2
dip

)2 , (3.5)

GM (Q2) = µpGE(Q2) , (3.6)

with m2
dip = 0.71 GeV2 and µp ' 2.793. Instead, the inelastic contribution is the one

in which the electron has enough energy to break the internal structure of the proton
and the structure functions are computed within the parton model with the formula in
Eq. (1.40). However, observing Eq. (3.1) it is clear that the Q2 integration extends down
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Figure 3.1: Division of the integration region of Eq. (3.1) into subregions in which a different
way to compute the structure functions is used: in the resonance region (blue) they are computed
from the fit of the CLAS collaboration; in the continuum region 1 (orange) they are computed
from the GD11-P fit by HERMES collaboration; in the continuum region 2 they are computed in
perturbation theory with Eq. (1.40).

to very small scales, where the perturbative computation of the DIS structure functions
is no longer reliable. For this reason, at very low scale the DIS structure functions are
fitted from experimental data. In this analysis, the LuxQED formula is computed with
the public code FiatLux [130], in which the inelastic structure functions are computed
from two separate integration regions that are divided by W 2 = m2

p +Q2(1− z)/z:

• In the resonance region, defined as W 2 ≤ 3.5 GeV2, the structure functions are
computed from the fit of the CLAS collaboration [136], using also the parameteri-
zation of Ref. [137] in order to asses the uncertainty of it.

• The continuum region, defined as W 2 ≥ 3.5 GeV2, is itself divided into two subre-
gions according to Q2. For Q2 ≤ 9 GeV2, the structure functions are given by the
GD11-P fit by HERMES collaboration [138, 139]. For Q2 ≥ 9 GeV2, the structure
functions are computed in perturbation theory with Eq. (1.40).

Fig. 3.1 shows the division of the integration space into the different regions.
Now we are ready to see how the constraint of Eq. (3.1) is implemented. Indeed,

one option would be to compute at every stage of the fit the photon PDF, for every
point of the x grid, through the LuxQED formula. However, since it involves a double
integration, that is computationally very heavy to perform, this approach would slow
down the fit in a way that it would become impossible to perform in a reasonable amount
of time. Therefore, according to the procedure developed for the NNPDF3.1QED [130]
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Figure 3.2: Integration region (gray) of the LuxQED formula, Eq. (3.1), for x = 0.01 and for differ-
ent values of Qγ , i.e. Qγ = 1.65 GeV, 10 Gev, 100 GeV and 500 GeV.

PDFs determination, the constraint of Eq. (3.1) is implemented in an iterative way. The
algorithm that is used to perform a QED fit is the following: first of all we start from
a previous pure QCD fit, that in our case is NNPDF4.0. Then, we use such QCD PDFs
to compute the structure functions needed to compute the photon PDF with Eq. (3.1).
At the end of this step we have obtained fγ(Q2

0). Once we have the photon PDF at
fitting scale Q0 we perform the QED fit in which the photon is kept constant, and the
quark and gluon PDFs are fitted. The photon enters in the fit in three possible ways.
First, it modifies the momentum sum rule of Eq. (1.44), that in presence of a photon PDF
becomes ∫ 1

0

dz
(
zΣ(z,Q2

0) + zg(z,Q2
0) + zγ(z,Q2

0)
)

= 1 . (3.7)

It means that the photon is subtracting momentum from the sum of the other PDFs.
Second, the photon modifies the DGLAP evolution of the PDFs. Indeed, in Sec. 3.2 we
will see that it evolves coupled with quarks and gluons. Last, the presence of a photon
PDF enables the PI partonic processes, i.e. diagrams in which we have a photon as initial
particle. However, in this analysis we did not include PI contributions. The reason is that
in the NNPDF4.0 PDFs determination, the dataset has been chosen in such a way that the
PI contributions are negligible in the theory predictions for those data points. Moreover,
defining the QED corrections for the DIS structure functions is not straightforward and
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therefore also in that case the predictions include only diagrams that do not involve PI
processes. Once that we have fitted the quark and gluon PDFs in presence of the photon
that we have generated, we have a first QED fit. At this point the procedure is iterated:
the QED fit that we have performed is used to recompute the DIS structure functions
that are used in the LuxQED formula, Eq. (3.1). In this way a second photon is obtained
and it is used to perform a second QED fit. This procedure is iterated until convergence
is achieved: the QED fit is considered converged when the photon obtained at a certain
step is compatible with the previous one within the uncertainties. It is observed that two
iterations are enough to achieve convergence.

Now we can discuss about the generation of the photon PDF with Eq. (3.1), given
a certain PDFs set. One possibility is to apply the LuxQED formula using Qγ = Q0,
where we call Qγ the scale at which the formula is applied. However, the integration
region of Eq. (3.1) strongly depends on the choice of Qγ . Indeed, in Fig. 3.2 (up-left) we
can observe that with this choice of Qγ the resulting photon is entirely determined by
the structure functions fitted from data. This is not an ideal situation since we are much
more confident in the structure functions obtained from the convolution of coefficient
functions and PDFs than in the ones fitted from experimental data. Increasing the value
of Qγ to 10 GeV (up-right plot) we can observe that the integration region extends to the
zone in which the structure functions are computed through PDFs, but the contribution
coming from the experimental fits is still dominant. If we instead look at the lower plots
of Fig. 3.2, where we used Qγ = 100 GeV and 500 GeV, we can observe that, despite the
fact that the integration on the regions in which the structure functions are fitted from
data is still present, now the part of the integral in which the structure functions are com-
puted through the PDFs is larger. In Fig. 3.3 it is shown the photon PDF obtained with
the LuxQED formula, split in the different contributions, for the values of Qγ that we
discussed in Fig. 3.2. In particular, the photon PDF is obtained through the sum of three
contributions: the elastic part (red), obtained computing the structure functions from
Eqs. (3.3-3.4), the inelastic non perturbative part (blue), where the structure functions
are fitted from data and the inelastic perturbative part (green), in which the structure
functions are computed from PDFs. Observe that the blue contribution of Fig. 3.3 is the
union of the blue and orange integration regions of Fig. 3.1. It is clear that when we
compute the photon at Qγ = 100 GeV or at Qγ = 500 GeV, the inelastic perturbative
part is the dominant contribution, being roughly one order of magnitude larger than the
others. This is relevant since, as highlighted in Ref. [131], only the inelastic part of the
photon PDF evolves with DGLAP equations coupled with the other quarks. The elas-
tic component of the photon instead, evolves decoupled from all the other PDF with an
evolution equation that reads

µ2 d

dµ2
γ(el) = Pγγ ⊗ γ(el) + δγ , (3.8)

where, see Ref. [131],

δγ(x, µ2) =

αem(µ2)

2π

1

x

[(
xPγq(x) +

2x2m2
p

µ2

)
G2
E(µ2) +G2

M (µ2)τ

1 + τ
− x2G

2
E(µ2)

τ

]
.

(3.9)

However, since when we compute the photon at large scale we have that the elastic part
is smaller than the inelastic, except for very large x values where the photon PDF is
small, we neglected the fact that the first one evolves with a different equation, and we
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Figure 3.3: Breakdown of the photon PDF γ(x,Q2
γ) into the contributions originating from various

components of the proton structure functions Fi(x,Q2) that determine it according to the LuxQED
formula in Eq. (3.1). The results are shown as a function of x for four different scale choices of Qγ :
Qγ = 1.65 GeV (top left), 10 GeV (top right), 100 GeV (bottom left), and 500 GeV (bottom right).

evolved the total PDF with DGLAP equations. In the end, Eq. (3.1) is neglecting higher
twist corrections. Therefore, applying it at a high scale minimizes such unknown cor-
rections. For all these reasons, in the NNPDF4.0QED fit the photon has been generated
at Qγ = 100 GeV, according to the suggestion made by the authors of the LuxQED
approach [127], and then evolved back to the fitting scale Q0 using backward DGLAP
evolution. In this way we have the photon at fitting scale to be used in the fit. It nec-
essary to observe that the fit is not directly performed at the scale at which the photon
is generated since the fitting algorithm performs in a better way if the fitting scale is
chosen to be small, see App. C for further details. Fig. 3.4 shows schematically what we
discussed so far, i.e. how a QED fit is performed.

In order to conclude this section we will discuss the uncertainties of the photon PDF.
We already discussed that the LuxQED formula depends on the proton structure func-
tions, that are in turn determined from different contributions: the elastic part, the reso-
nance component, the low Q continuum region and the high Q continuum region. Only
the last one is computed from the PDFs. Therefore, the Nrep Monte Carlo replicas of
the photon will account only for the uncertainty of the high Q continuum region, that
comes from the Monte Carlo replicas of the PDFs set we used to compute the photon.
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Figure 3.4: Flowchart illustrating the NNPDF4.0QED fitting strategy. In the final iteration, after the
procedure has converged, the additional LUXqed17 contributions are incorporated into γ(x,Q2),
as described in this section.

In order to correctly estimate the uncertainties of the photon PDF, we have to include
other sources of error. The following sources of uncertainty are taken into account [127]:
the uncertainty of the elastic contribution that comes from the A1 world proton form
factor fits [140]; the uncertainty given by replacing the A1 world polarized fit just with
the unpolarized data; the parametrization of the structure functions in the resonance re-
gion [136–138]; the parametrization of RL/T [139, 141, 142], which is the ratio between
longitudinal and transverse structure functions; the scale Q2

match where we switch from
low-Q2 to high-Q2 inelastic structure functions; a twist-4 modification of the structure
function FL [143, 144]; and in the end, an estimation of the missing higher-order correc-
tions in the computation of the structure functions at high Q2. According to the method-
ology developed for NNPDF3.1QED, these additional uncertainties are introduced in
the last iteration of the fitting procedure: when we compute the photon of the final QED
fit, for each replica of the nsys = 7 additional uncertainties of the LUXqed17 [127] fit are
included as statistical fluctuations of the photon computed with the LuxQED formula at
the scale Qγ . It means that the final photon replicas at Qγ will be given by

γ̃(k)(x,Q2
γ) = γ(k)(x,Q2

γ) +

nsys∑

j=1

δγ
(lux)
j (x,Q2

γ) · N (0, 1) , k = 1, . . . , Nrep , (3.10)

where γ(k)(x,Q2
γ) is the photon computed from the LuxQED formula, N (0, 1) is an uni-
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variate Gaussian random number and δγ
(lux)
j is the normalized eigenvector for the j-th

systematic uncertainty in the LUXqed17 PDFs set. In practice, δγ(lux)
j (x,Q2

γ) is obtained
diagonalizing the covariance matrix for the extra LUXqed17 uncertainties, defined on the
x grid of the fit, using a method that is similar to the one of Refs. [145,146]. This method
is completely equivalent to using the Hessian eigenvectors of the PDFs set LUXqed17.
The photon PDF γ̃(k)(x,Q2

γ) is what is used in the last iteration of the fit.

3.2 DGLAP evolution

In this section we will describe how the QED corrections affect the DGLAP evolution
equations. Indeed, in presence of QED effects, and therefore in presence of a photon
PDF, DGLAP equations are written as

µ2 d

dµ2
fi(x, µ

2) =
∑

j=q,q̄,g,γ

∫ 1

x

dz

z
Pij

(x
z
, as(µ

2), aem(µ2)
)
fj(z, µ

2) , i = q, q̄, g, γ ,

(3.11)
where we defined aem accordingly to as, Eq. (1.64), as

aem =
αem
4π

. (3.12)

Observe that in Eq. (3.11) the splitting functions have acquired a dependence on the
electromagnetic coupling and we added the photon PDF that mixes with the quark and
gluon PDFs. The splitting functions satisfy the double expansion in the two couplings,
i.e.

Pij(z, as, aem) =

∞∑

n,m=0
(n,m)6=(0,0)

ans a
m
emP

(n,m)
ij (z) (3.13)

= asP
(1,0)
ij (z) + a2

sP
(2,0)
ij (z) + a3

sP
(3,0)
ij (z)

+ aemP
(0,1)
ij (z) + asaemP

(1,1)
ij (z) + a2

emP
(0,2)
ij (z) + . . . .

(3.14)

Observe that we used a different notation for the pure QCD splitting functions with
respect to the one used in Chap. 1. In fact now we are specifying the absolute order in the
couplings and not the relative one. It means that P (n,0)

ij ≡ P (n−1)
ij . The only known QED

corrections to splitting functions are the ones ofO(aem),O(asaem) andO(a2
em) [147,148].

Regarding the pure QCD splitting functions instead, as we already discussed, they are
exactly known up to NNLO in the strong coupling (that corresponds toO(a3

s) since they
start at O(as)). In this work we used all and only the terms that are fully known. It
means that we included the pure QCD splitting functions up to NNLO, i.e. the terms
P

(1,0)
ij , P (2,0)

ij and P
(3,0)
ij , plus the QED corrections that are currently known, i.e. P (0,1)

ij ,

P
(1,1)
ij and P (0,2)

ij .
When we add QED corrections to DGLAP equations, we have also to take into ac-

count QED corrections to the running of the couplings as and aem. Indeed, they satisfy
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coupled RGEs that read

µ2 d

dµ2
as(µ

2) = β
QCD

(as, aem) = −a2
s

(
β(2,0)

QCD
+ asβ

(3,0)
QCD

+ aemβ
(2,1)
QCD

+ a2
sβ

(4,0)
QCD

+ . . .
)
,

(3.15)

µ2 d

dµ2
aem(µ2) = β

QED
(as, aem) = −a2

em

(
β(0,2)

QED
+ aemβ

(0,3)
QED

+ asβ
(1,2)
QED

+ a2
emβ

(0,4)
QED

+ . . .
)
.

(3.16)

Observe that with respect to Eq. (1.24), Eqs. (3.15-3.16) are written in terms of as and not
in terms of αs. This choice will only affect the definition of the beta function coefficients,
that will change by factors of 4π. Eqs. (3.15-3.16) form two coupled non linear differ-
ential equations, that must be solved simultaneously. In order to be consistent with the
terms that we included in the splitting functions, in this analysis we used the QCD beta
function up to NNLO in QCD, i.e. the terms β(2,0)

QCD
, β(3,0)

QCD
and β(4,0)

QCD
, the QED beta func-

tions up to NLO in QED, i.e. β(0,2)
QED

and β(0,3)
QED

, and the two leading mixed corrections, i.e.
β(2,1)

QCD
and β(1,2)

QED
.

3.2.1 Evolution basis

Now we are ready to show how the DGLAP equations in presence of QED corrections
are solved. First of all, we need to maximally decouple the system, in a way analogous
to the way we maximally decoupled the pure QCD case in Sec. 1.6. However, now
the flavor symmetry is broken by the different charges of the different kind of quarks.
Therefore, we have to define the up-like and down-like singlet and valence distributions
as

Σu =

nu∑

k=1

u+
k , Σd =

nd∑

k=1

d+
k , (3.17)

Vu =

nu∑

k=1

u−k , Vd =

nd∑

k=1

d−k , (3.18)

where nu and nd are respectively the numbers of active up-like and down-like quarks
and nu + nd = nf . From Eqs. (3.17-3.18) we construct the singlet and valence sums and
differences:

Σ = Σu + Σd , Σ∆ =
nd
nu

Σu − Σd , (3.19)

V = Vu + Vd , V∆ =
nd
nu
Vu − Vd , (3.20)

Moreover, we construct the up-like and down-like non-singlet combinations as

Tu3 = u+ − c+ , T d3 = d+ − s+ , (3.21)

V u3 = u− − c− , V d3 = d− − s− , (3.22)

Tu8 = u+ + c+ − 2t+ , T d8 = d+ + s+ − 2b+ , (3.23)

V u8 = u− + c− − 2t− , V d8 = d− + s− − 2b− . (3.24)
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Then, we split the splitting functions as

Pij(x, as, aem) = Pij(x, as) + P̃ij(x, as, aem) , (3.25)

where Pij contains only the pure QCD terms, while P̃ij contains both the pure QED ones
and the mixed QCD⊗QED terms. With these definitions it is straightforward to write the
form of the DGLAP equations in this basis. Indeed, the non-singlet distributions evolve
according to

µ2 d

dµ2
T
u/d
3/8 =

(
P+ + P̃+

u/d

)
⊗ Tu/d3/8 , (3.26)

µ2 d

dµ2
V
u/d
3/8 =

(
P− + P̃−u/d

)
⊗ V u/d3/8 . (3.27)

The valence sum and difference distributions satisfy the coupled equation

µ2 d

dµ2

(
V
V∆

)
=

(
PV + 〈P̃−q 〉 νuP̃

−
∆q

νdP̃
−
∆q P− + {P̃−q }

)
⊗
(
V
V∆

)
, (3.28)

where we defined νu/d =
nu/d
nf

and

〈P̃±q 〉 = νuP̃
±
u + νdP̃

±
d , {P̃±q } = νdP̃

±
u + νuP̃

±
d , P̃±∆q = P̃±u − P̃±d . (3.29)

In the end we have a four dimensional system for the singlets sum and difference, the
gluon and the photon distribution that read

µ2 d

dµ2




g
γ
Σ

Σ∆


 = P⊗




g
γ
Σ

Σ∆


 , (3.30)

where

P =




Pgg + P̃gg P̃gγ Pgq + 〈P̃gq〉 νuP̃g∆q
P̃γg P̃γγ 〈P̃γq〉 νuP̃γ∆q

2nf (Pqg + 〈P̃qg〉) 2nf 〈P̃qγ〉 Pqq + 〈P̃+
q 〉+ 〈e2

q〉2P̃ps νuP̃
+
∆q + νue

2
∆q〈e2

q〉P̃ps

2nfνdP̃∆qg 2nfνdP̃∆qγ νdP̃
+
∆q + νde

2
∆q〈e2

q〉P̃ps P+ + {P̃+
q }+ νuνd(e

2
∆q)

2P̃ps


 ,

where P̃ps is defined from P̃ ps
qq′ = e2

qe
2
q′ P̃ps [148], and the combinations 〈P̃gq〉, 〈P̃qg〉, P̃g∆q ,

P̃∆qg , 〈P̃γq〉, 〈P̃qγ〉, P̃γ∆q , and P̃∆qγ are constructed analogously to the ones defined in
Eq. (3.29).

3.2.2 Matching and rotation at heavy quarks thresholds

Let us now see how the matching described in Sec. 1.9 applies to the new basis. For
the g, Σ and V distributions the matching is identical to the one given in Eq. (1.159) and
Eqs. (1.164-1.165). From Eqs. (1.162-1.163) it follows that all the non-singlet combinations
defined in Eqs. (3.21-3.24) are matched diagonally, i.e.

(
T
u/d
3/8

)[nf+1]

= Ans
qq

(
T
u/d
3/8

)[nf ]

, (3.31)
(
V
u/d
3/8

)[nf+1]

= Ans
qq

(
V
u/d
3/8

)[nf ]

. (3.32)
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Also the singlet and valence differences, i.e. Σ∆ and V∆, are matched diagonally. For
V∆ it is a direct consequence of Eq. (1.163), while for Σ∆ it is due to the fact that the
off-diagonal terms exactly cancel, thanks to its definition. Therefore, we have that

Σ
[nf+1]
∆ = Ans

qqΣ
[nf ]
∆ , (3.33)

V
[nf+1]
∆ = Ans

qqV
[nf ]
∆ . (3.34)

We remark that in this work we did not consider QED corrections to the matching con-
ditions since they are not currently known and they are a very small correction.

In this basis, when we cross an heavy quark threshold, the basis rotation we have
to perform is more complicated than the one in the pure QCD case. For the singlet and
valence distributions, being identical in the two cases, the basis rotation is performed in
the same way of Eqs. (1.170-1.171). For the singlet and valence differences, the situation
is more complicated. Let’s see the singlet since for the valence the rotation is identical.
We want to write Σ∆(nf+1) as a combination of Σ(nf ), Σ∆(nf ) and h+. First of all, from
the definition of Σ∆ in Eq. (3.19) we have that

Σ∆(nf+1) =
nd(nf + 1)

nu(nf + 1)
Σu(nf ) − Σd(nf ) + r23(nf )h+ . (3.35)

with

r23(nf ) =

{
nd(nf+1)
nu(nf+1) if h is up-like
−1 if h is down-like

. (3.36)

From Eq. (3.19) it’s easy to obtain Σu and Σd as a function of Σ and Σ∆, i.e.

Σu =
nu
nf

(Σ + Σ∆) , (3.37)

Σd =
nd
nf

Σ− nu
nf

Σ∆ . (3.38)

Inserting Eqs. (3.37-3.38) into Eq. (3.35) we obtain

Σ∆(nf+1) = r21(nf )Σ(nf ) + r22(nf )Σ∆(nf ) + r23(nf )h+ . (3.39)

with

r21(nf ) =
nd(nf + 1)

nu(nf + 1)
nu(nf )− nd(nf ) , (3.40)

r22(nf ) =
nf + 1

nu(nf + 1)

nu(nf )

nf
. (3.41)

The rotation to be applied to V∆ is identical and reads

V∆(nf+1) = r21(nf )V(nf ) + r22(nf )V∆(nf ) + r23(nf )h− . (3.42)

In the end, we have to find the rotation for the non-singlet components. Being

Tu3 = u+ − c+ = Σu(nf ) − h+ , for nf = 3 , (3.43)

T d8 = d+ + s+ − 2b+ = Σd(nf ) − 2h+ , for nf = 4 , (3.44)

Tu8 = u+ + c+ − 2t+ = Σu(nf ) − 2h+ , for nf = 5 , (3.45)
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and using Eqs. (3.37-3.38) to express Σu and Σd as a function of Σ and Σ∆, we can write
Tj , i.e. the new non-singlet combination that is switched on in the nf + 1 scheme, as a
function of Σ(nf ), Σ∆(nf ) and h+

Tj = r31(nf )Σ(nf ) + r32(nf )Σ∆(nf ) + r33(nf )h+ , (3.46)

with

r31(nf ) =

{
nu(nf )
nf

, if h is up-like (nf=3,5)
nd(nf )
nf

, if h is down-like (nf=4)
, (3.47)

r32(nf ) =

{
nu(nf )
nf

, if h is up-like (nf=3,5)

−nu(nf )
nf

, if h is down-like (nf=4)
, (3.48)

r33(nf ) =

{
−1 , if h is c (nf=3)
−2 , if h is b, t (nf=4,5)

. (3.49)

For the Vj components the same relations hold and we get

Vj = r31(nf )V(nf ) + r32(nf )V∆(nf ) + r33(nf )h− , (3.50)

In conclusion, we have found that the basis rotation is performed as



Σ(nf+1)

Σ∆(nf+1)

Tj


 =




1 0 1
r21(nf ) r22(nf ) r23(nf )
r31(nf ) r32(nf ) r33(nf )






Σ(nf )

Σ∆(nf )

h+


 , (3.51)



V(nf+1)

V∆(nf+1)

Vj


 =




1 0 1
r21(nf ) r22(nf ) r23(nf )
r31(nf ) r32(nf ) r33(nf )





V(nf )

V∆(nf )

h−


 , (3.52)

3.2.3 Solving the system

Now we are ready to describe the solution to Eqs. (3.26-3.28) and Eq. (3.30). First of all,
we pass into N -space, so that the equations become

µ2 d

dµ2
T̃
u/d
3/8 = −

(
γ+ + γ̃+

u/d

)
T̃
u/d
3/8 , (3.53)

µ2 d

dµ2
Ṽ
u/d
3/8 = −

(
γ− + γ̃−u/d

)
Ṽ
u/d
3/8 , (3.54)

for the non-singlet distributions, and

µ2 d

dµ2
~fV = −γV · ~fV , (3.55)

µ2 d

dµ2
~fS = −γS · ~fS , (3.56)

for the valence and singlet sectors. Let us start from the diagonal terms. In this case,
rewriting Eqs. (3.53-3.56) in terms of as would be counterproductive since we should
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solve aem(as) = aem
(
µ2(as)

)
, that is possible (even if only numerically) but not conve-

nient. Therefore, in this case the differential equation is solved in terms of µ2 and reads

d

d logµ2
fi = −γns

(
as(µ

2), aem(µ2)
)
fi , (3.57)

where fi = {T̃u3 , T̃ d3 , T̃u8 , T̃ d8 , Ṽ u3 , Ṽ d3 , Ṽ u8 , Ṽ d8 } and γns = {γ+ + γ̃+
u , γ

+ + γ̃+
d , γ

−+ γ̃−u , γ
−+

γ̃−d }. The solution of this equation is obtained exponentiating the integral of the non-
singlet anomalous dimension. However, due to the presence of two running couplings,
solving such integral analytically is impossible. In order to overcome this obstacle, we
observe that if we neglect the running of aem, the solution of Eq. (3.57) can be computed
exactly as

fi(µ
2) = Ens

(
µ2 ← µ2

0

)
fi(µ

2
0) , (3.58)

with

Ens

(
µ2 ← µ2

0

)
= exp

[
−
∫ log µ2

log µ2
0

γns

(
as(µ

′2), aem
)
d logµ′2

]

= exp

[
−
∫ log µ2

log µ2
0

(
aemγ

(0,1)
ns + a2

emγ
(0,2)
ns + as(µ

′2)γ(1,0)
ns + as(µ

′2)aemγ
(1,1)
ns

+ a2
s(µ
′2)γ(2,0)

ns + a3
s(µ
′2)γ(3,0)

ns

)
d logµ′2

]

= exp

[
−
∫ log µ2

log µ2
0

γ
QED

ns d logµ′2 +

∫ as

a0
s

a′sγ
′(1,0)
ns + a′2s γ

(2,0)
ns + a′3s γ

(3,0)
ns

a′2s β
′(2,0)
QCD + a′3s β

(3,0)
QCD + a′4s β

(4,0)
QCD

da′s

]
.

(3.59)

where we defined

γ
QED

ns = aemγ
(0,1)
ns + a2

emγ
(0,2)
ns , (3.60)

γ′(1,0)
ns = γ(1,0)

ns + aemγ
(1,1)
ns , (3.61)

β′(2,0)
QCD

= β(2,0)
QCD

+ aemβ
(2,1)
QCD

. (3.62)

Therefore, if aem does not run, we have that

Ens

(
µ2 ← µ2

0

)
=

exp

[
γ

QED

ns log
µ2

0

µ2

]
exp
[
γ′(1,0)

ns j(0,2)(as, a
0
s) + γ(2,0)

ns j(1,2)(as, a
0
s) + γ(3,0)

ns j(2,2)(as, a
0
s)
]
,

(3.63)

Observe that the functions j(k,2) are the ones defined in Eqs. (1.116-1.118), with the re-
placement β0 → β′(2,0)

QCD
.

Eq. (3.63) has been derived in the case in which aem is fixed. However, even if the
running of aem gives just a small correction, it cannot be totally neglected. Let us see how
we included the dependence on µ2 of aem. In order to do it, we split the µ2 integration
range in intervals logarithmically spaced and in each of them we keep aem fixed, so that
in each interval we can apply Eq. (3.63). In practice, we are approximating aem(µ2) with
a step function. Being the running of aem(µ2) very moderate with respect to the one of
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the strong coupling, the error associated to this approximation is completely negligible.
With this approximation, the solution of the non-singlet sector is

Ens

(
µ2 ← µ2

0

)
=

0∏

k=n

Ens

(
µ2
k+1 ← µ2

k

)
, (3.64)

where µ2
n+1 = µ2 and the values of the couplings used to computeEns

(
µ2
k+1 ← µ2

k

)
from

Eq. (3.63) are given by the substitution

as → ak+1
s = as(µ

2
k+1) , (3.65)

a0
s → aks = as(µ

2
k) , (3.66)

aem → a
k+ 1

2
em = aem

(
µ2
k+1 + µ2

k

2

)
. (3.67)

Now we can discuss how we solved the two coupled systems of Eqs. (3.55-3.56). The
equation we want to solve is

d

d logµ2
~f = −γ

(
as(µ

2), aem(µ2)
)
· ~f , (3.68)

with ~f = {~fV, ~fS} and γ = {γV,γS}. The solution of Eq. (3.68) is given by

~f(µ2) = E
(
µ2 ← µ2

0

)
· ~f(µ2

0) , (3.69)

with

E
(
µ2 ← µ2

0

)
= P exp

[
−
∫ log µ2

log µ2
0

γ
(
as(µ

′2), aem(µ′2)
)
d logµ′2

]
, (3.70)

In this case, due to the presence of two running couplings, constructing a fully analytical
expanded solution is impossible, see App. A for more details. A numerical approach can
be used to construct a truncated solution, beginning with the exact path-ordered solution
given in Eqs. (3.69-3.70) and then performing a numerical expansion. However, this
method requires approximating higher-order derivatives using finite differences [110],
which can result in numerical instabilities. For these reasons, we opted for the exact
solution described in Sec. 1.6. Also in this case the µ2 interval has been divided into sub-
intervals that are logarithmically spaced so that using a discretized path-ordering as we
did in Sec. 1.6, we obtain

E
(
µ2 ← µ2

0

)
=

0∏

k=n

E
(
µ2
k+1 ← µ2

k

)
, (3.71)

where µ2
n+1 = µ2 and

E
(
µ2
k+1 ← µ2

k

)
= exp

[
−γ

(
a
k+ 1

2
s , a

k+ 1
2

em

)
∆ logµ2

k

]
, (3.72)

with

a
k+ 1

2
s = as

(
µ2
k + µ2

k+1

2

)
, (3.73)

∆ logµ2
k = logµ2

k+1 − logµ2
k . (3.74)
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Regarding the solution of the two coupled RGEs for the couplings, Eqs. (3.15-3.16),
due to the presence of two running couplings, it is not possible to find an expanded so-
lution like it happened in the pure QCD case. For this reason, the only possible solution
is the numerical one also for solving the running of the couplings.

3.3 Benchmarking the solution

3.3.1 EKO vs APFEL

The solution described in Sec. 3.2 has been implemented in the public code EKO [149] and
it has been benchmarked with the QED evolution implemented in the APFEL code [110].
The latter, is the code used in the NNPDF3.1QED PDFs determination. It uses a differ-
ent approach to solve DGLAP equations: it solves Eq. (3.11) directly in the x space and
therefore it doesn’t need to pass into Mellin space and to compute the inverse Mellin
transform. The comparisons between the two solutions has been performed by taking
a starting PDFs set, that in our case was NNPDF3.1QED, that has been evolved from
µ0 = 1.65 GeV up to µ0 = 100 GeV with the two codes. Observe that the choice of the
starting PDFs set is influential for the sake of the comparison. Indeed, we want to assess
that the two codes evolve a given initial condition to the same result, no matter what the
initial condition is. Fig. 3.5 shows the comparison in percentage distance between the
result of APFEL QED exact solution and three different curves. First of all there is the
comparison with APFEL truncated solution (green dot-dashed line). Then, there is the
comparison with EKO using the same settings for the aem running of APFEL (red dashed
line): indeed, in APFEL the running of the electromagnetic coupling is pure LO since it
neglects both the pure QED NLO term β((0,3))

QED
and the first QCD correction of the QED

RGE, i.e. β((1,2))
QED

. Moreover, in APFEL also the first QED correction to the QCD RGE,
β((2,1))

QCD
, is not considered. Therefore, in this case the two RGE can be solved indepen-

dently. In the end, there is the comparison with EKO in which these terms have been
included (blue line), using the setting that are referred as NNPDF4.0QED settings. We
can observe that the distance between the results produced by the two codes with the
same solution method is around 10−2% for all PDFs in a wide range of x value, with the
exception of those at very large x, where the PDFs are very small so in that case we are
comparing numbers that are very close to zero. When comparing exact and truncated
solution the differences increase but remain at the permille level, with the exception of
very small x values, in which it reaches the percent level. Also in the case in which EKO
and APFEL use their own settings for the running of aem, the distances are still very
small, with the exception of the photon PDF. This is a consequence of the fact that the
quarks and gluon PDFs are not very sensible to the NLO corrections in the running of
aem while for the photon it is a non negligible effect. Moreover, it has been observed that
the quarks and gluon PDFs are much more sensible to the inclusion or not of the QED
correction to the QCD beta function, than to the running of aem. This was expected since
the running of those PDFs is not very affected by QED effects [150], but they are sensible
to the running of the strong coupling. This benchmark validates the correctness of the
implementation of QCD⊗QED evolution in EKO since it yields results that are identical,
up to numerical precision and methodological differences, to the ones given by APFEL
that uses a completely independent implementation based on a different solution strat-
egy. Observe that between µ0 and µ there is the bottom threshold. So this check also
assures that the implementation of the matching conditions applied to our evolution
base is correct.
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Figure 3.5: Percentage difference between pairs of PDFs at Q = 100 GeV, resulting from evolving
the NNPDF3.1QED PDFs from Q0 = 1.65 GeV using various QED⊗QCD evolution implemen-
tations. The comparisons are shown from top to bottom for the gluon, up, down, and charm
PDFs (left), and for the photon, anti-up, anti-down, and anti-charm PDFs (right). The three curves
compare: APFEL exact vs. truncated evolution (green, dot-dashed); APFEL vs. EKO exact, using
default settings for coupling evolution in each case (blue, solid); and APFEL vs. EKO exact, both
with APFEL settings for coupling evolution (red, dashed). Observe that the y-axis uses a logarith-
mic scale, and the y-axis range for the gluon plot differs from that of the other PDFs.
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Figure 3.6: Comparison of the NNPDF3.1QED PDFs atQa = 100 GeV with the results obtained by
evolving these PDFs fromQa toQb = 1.65 GeV and then back toQa. The figures display, from top
to bottom, the gluon, up and down quarks (left), and the photon, anti-up, and anti-down quarks
(right). Each set includes both the pairs of PDFs and their percentage relative difference.

3.3.2 Invertibility of exact solution

As a further benchmark of the implementation of the QCD⊗QED evolution in EKO we
checked the invertibility of the exact solution. Indeed, the evolution operator E must
satisfy

E
(
µ2 ← µ2

0

)
E
(
µ2

0 ← µ2
)

= 1 . (3.75)

This is not completely true for the truncated solution since in that case Eq. (3.75) is true
only up to higher orders (with respect to the ones used in the splitting functions). There-
fore, deviations from from Eq. (3.75) decrease as we go up with the perturbative orders
of the splitting functions. This check has been performed by taking a PDFs set, that was
again NNPDF3.1QED even if also this check is not dependent on the choice of the initial
condition, that has been evolved from µ = 100 GeV to µ0 = 1.65 GeV and then back
again to µ. Observe that also in this case the threshold of the bottom is crossed. Since
this time it is crossed also in the backward evolution, with this check we are benchmark-
ing the implementation of the inverse matching. Indeed, it can be done exactly only in
Mellin space since it is the inverse of a matrix, while in x space it can be done only in an
expanded way, being it the kernel of a convolution. Fig. 3.6 shows the results of the com-
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parison. We can observe that the difference between the starting and the final PDFs is at
the level of few permille, with the exception of the large x region where also in this case
the PDFs are very small. Hence, we conclude that the QCD⊗QED backward evolution
implemented in EKO has a permille accuracy.

3.3.3 QED evolution in the theory predictions

The last check that we performed for testing the QCD⊗QED evolution implemented in
EKO, has been the comparisons of the theory predictions for the different datasets used
in the fit with and without QED corrections in the evolution. In these predictions the
QED effects entered only in the evolutions of the PDFs. It means that we didn’t consider
PI processes. The reason was that at this stage we only wanted to test the QED effects in
the evolution factors. Moreover, as we already mentioned, in this analysis we didn’t in-
clude PI processes in the PDFs determination. The predictions have been obtained using
Eqs. (2.1-2.2) by convoluting the partonic processes, the evolution factor and the PDFs
at the fitting scale. The numerical results have been computed through FKTables using
Eqs. (2.8-2.9). In this test the PDFs at the fitting scale were NNPDF3.1QED (however also
in this case the choice of the initial condition was influential since we are benchmarking
the solution method that does not depend on the initial condition).

Fig. 3.7 shows the percent distances between the theory predictions of some repre-
sentative datasets, among the ones used in the fit and listed in Tabs.2.1-2.5, with and
without QED effects in the evolution of the PDFs. The first (red plus) is the distance
between pure QCD evolution using the truncated solution (that is the one used in the
NNPDF4.0 analysis) and the mixed QCD⊗QED evolution (that therefore is using the
exact solution). The second (blue cross) is the same comparison but in the pure QCD
evolution it is used the exact solution. What we can observe is that the distance between
pure QCD evolution and QCD⊗QED evolution is at the level of permille for most of the
data points, with some exceptions in which the difference becomes of the order of per-
cent. Moreover, we can see that, as we expected, the QCD⊗QED exact solution provides
results that are closer to the pure QCD exact solution than to the truncated one. The
other datasets that are used in the fit but not in this plot show a similar behavior. In the
end we conclude that the QED effects give a small correction to the PDFs evolution, and
as a consequence it gives a small correction to the hadronic observables.

3.4 Results of the QED fit

Now we are ready to show the results of the NNPDF4.0QED fit. It has been obtained
implementing the LuxQED methodology, described in Sec. 3.1, into the NNPDF4.0 fit-
ting framework, described in Chap. 2. All the settings of the fit (the hyperparameters of
the neural network, the theoretical constants etc.) have been chosen identical to the ones
used in NNPDF4.0. As we already discussed, the only difference is the method used to
solve the DGLAP equations, that is the exact one for the QED fit and the truncated one
for NNPDF4.0. As we did in the NNPDF4.0 analysis we performed both the NLO fit and
the NNLO one, where NLO and NNLO are referred to the strong coupling perturbative
order, while for the QED coupling we always included all the splitting kernels that are
currently known, i.e. the ones described in Sec. 3.2.

Tab. 3.1 compares the statistical estimators of the NLO and NNLO QED fits with the
corresponding QCD fits, i.e. NNPDF4.0 at NLO and NNLO respectively. We can see that
all values, and in particular the χ2 are almost identical in the two cases. Some differences
are visible at NLO but they are related to the differences between exact and truncated
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Figure 3.7: Comparison between the theory predictions obtained using QCD⊗QED DGLAP evo-
lution and pure QCD evolution. For the latter, both the exact (blue crosses) and the truncated (red
pluses) methods are displayed. The results are shown as a percent difference with respect to the
QCD⊗QED evolution. All the data points for some representative data sets that are used in the fit
are displayed in the plots. The datasets are among the ones listed in Tabs.2.1-2.5.
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NNPDF4.0 NLO NNPDF4.0 NNLO
QCD×QED QCD QCD×QED QCD

χ2 1.31 1.26 1.17 1.17
〈Etr〉rep 2.47±0.07 2.41±0.06 2.27±0.06 2.28±0.05
〈Eval〉rep 2.66±0.11 2.57±0.10 2.39±0.10 2.37±0.11
〈χ2〉rep 1.337±0.016 1.286±0.017 1.192±0.014 1.195±0.015

Table 3.1: Statistical estimators for NNPDF4.0QED at NLO and NNLO are compared to those for
NNPDF4.0 in pure QCD. The table, from top to bottom, includes: the total χ2, the average training
and validation figures of merit 〈Etr〉rep and 〈Eval〉rep across replicas, the average χ2 over replicas
〈χ2〉rep.

solutions for the DGLAP equations. A discussion on the differences introduced by the
change of solution of DGLAP equation is presented in App. B. Therefore, we conclude
that the inclusion of QED effects does not affect the quality of the fit (as we expected,
being such effects small).

Figs. 3.8-3.9 show the comparisons between NNPDF4.0 and NNPDF4.0QED for the
quarks and gluon PDFs both at fitting scale and at 100 GeV. The comparison are shown
both for NNPDF4.0 (that uses the truncated solution for DGLAP equations) and for a
variant of that determination that uses the exact solution, as the NNPDF4.0QED fit does.
We can observe that at fitting scale the QED PDFs are compatible within the uncertainty
band with the pure QCD ones. Indeed, since the photon affects the fit only through
DGLAP evolution and changing the momentum sum rules, we expect the quark and
gluon PDFs to be almost unchanged, being the photon PDF very small. Instead, at 100
GeV the differences between NNPDF4.0 and NNPDF4.0QED increase due to evolution
effects that are moderate but non negligible. The PDF that is most affected by QED evo-
lution is the gluon in which the differences can reach up to 1σ level. That difference is
also related to the different type of solution used in the two fits. Indeed, in the compar-
ison between NNPDF4.0QED and the version of NNPDF4.0 in which the exact solution
is used, the difference between the two gluons is reduced, especially at small x.

Regarding the photon PDF, Fig. 3.10 shows the comparison between NNPDF4.0QED
and the most recent QED fits, i.e. NNPDF3.1QED [130], MSHT20QED [132] and CT18QED
[133]. We can observe that the photons from the different PDFs sets agree at the percent
level. This is a consequence of the fact that, even though these sets exhibits large differ-
ences in the quarks and gluon PDFs, the photon PDF is determined with the LuxQED
formula in all of these QED fits, that in turn depends on the proton structure functions
that are well described by all of these PDFs sets, since they are constrained by experimen-
tal data both at large and at low scales. Regarding the comparison with NNPDF3.1QED,
the two results agree beyond the percent level. The main differences between the pho-
tons of the two analyses comes from the differences between the two types of solutions
used in the two fits, i.e. truncated and exact. It means that the differences between the
two photons are due to higher order corrections. The residual difference in the two pho-
tons are due to the change in the quark and gluon PDFs of the two sets. The comparison
with MSHT20QED and CT18QED shows larger differences. This is mainly due to the fact
that the methodologies are slightly different between the different sets (for example in
MSHT20QED the photon is generated at fitting scale) and that the quark and gluon PDFs
used to compute the LuxQED formula show some differences between the different sets.
The uncertainties of the photons from the different PDFs sets are also compatible, since
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Figure 3.8: Comparison between NNPDF4.0 and NNPDF4.0QED (left) and comparison between a
variation of NNPDF4.0 that uses the exact solution and NNPDF4.0QED (right). The PDFs for the
gluon and for the quarks up, down and strange are shown as a ratio to NNPDF4.0QED. Results
are displayed at fitting scale.
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Figure 3.9: Comparison between NNPDF4.0 and NNPDF4.0QED (left) and comparison between a
variation of NNPDF4.0 that uses the exact solution and NNPDF4.0QED (right). The PDFs for the
gluon and for the quarks up, down and strange are shown as a ratio to NNPDF4.0QED. Results
are displayed at 100 GeV.
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Figure 3.10: Left: Comparison between the photons of the NNPDF4.0QED and NNPDF3.1QED
determinations as a ratio plot to the central value of NNPDF4.0QED at the scale Qγ = 100 GeV.
Right: same as left but comparing with MSHT20QED and CT18QED.

they are completely dominated by the theoretical uncertainties of the LuxQED approach,
which have been discussed in Sec. 3.1. In our QED fit, the uncertainty on the photon are
estimated in the way presented in Sec. 3.1, that follows Ref. [127]. Also the MSHT20QED
determination follows this reference, with extra higher-twist corrections coming from
the the choice of the low scale for Qγ . Indeed, it shows very similar uncertainties to
the ones of NNPDF4.0QED. CT18QED instead, adopts a different determination of the
elastic contribution, resulting in larger uncertainties.

In Fig. 3.11, the central values of the photon PDFs from various sets are compared at
different scales. Uncertainties are omitted to keep the plot clear. It’s important to observe
that differences in the different photons at the various scales shown in the figure are also
due to different methods used to solve the QCD⊗QED evolution equations. Specifically,
the NNPDF3.1QED set uses a numerical implementation of the truncated solution (refer
to App. B). Despite these differences in the way DGLAP equations are solved, these
differences are primarily caused by the interaction with the quark and gluon PDFs. The
increase in differences at lower scales supports this assumption. Despite this, all photon
PDFs show an agreement within approximately 3% for all x & 10−3, even at the lowest
scale of Q = 1.65 GeV. In Fig. 3.11, we also present the central photon PDF obtained
of a variant of the the NNPDF4.0QED determination, obtained with the photon PDF
computed at a scale of Qγ = 10 GeV, instead of the default Qγ = 100 GeV. When a
lower Qγ is chosen, the upper limit of integration in Q2 of Eq. (3.1) is correspondingly
reduced. As explained in Sec. 3.1, this leads to a significant contribution to the LuxQED
formula from the low-scale region, where the structure function is derived from a fit to
the data, makingO(mp/Q) corrections to the LuxQED formula potentially relevant. The
observed shift in the central photon PDF when using this lower scale, compared to the
default, is at most of the order of the uncertainty of the photon PDF. This indicates that
the uncertainty in the LuxQED procedure is accurately estimated.

As we already discussed, the photon’s impact in the fit is in the DGLAP evolution
and in the modification of the momentum sum rule, i.e. Eq. (3.7). We asses the size of the
latter by computing the momentum fraction carried by a given PDF fi as

M
[
fi
(
Q2
)]

=

∫ 1

0

dz zfi
(
z,Q2

)
. (3.76)
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Figure 3.11: Variation with scale of the central photon PDF in the NNPDF4.0QED, NNPDF3.1QED,
MSHT20QED and CT18QED PDF sets, for the scales Q =1.65, 10, 100, 5000 GeV. It is also
shown a variation of the NNPDF4.0QED determination in which the photon PDF is computed
at Qγ = 10 GeV (marked as NNPDF4.0QED*). The plots are shown as ratio plots with respect to
NNPDF4.0QED.
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1σ uncertainties. Right: The same for the momentum fraction carried by the gluon PDF in
NNPDF4.0QED and NNPDF4.0 (pure QCD).
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In Fig. 3.12, the momentum fractions carried by the photon and gluon PDFs in the
NNPDF4.0QED set are displayed as a function of scale, shown in percentages. The pho-
ton momentum fraction is compared with that of the NNPDF3.1QED set, while the gluon
momentum fraction is compared with that of the NNPDF4.0 (pure QCD) set. The photon
momentum fraction in both the NNPDF3.1QED and NNPDF4.0QED sets is nearly iden-
tical: the photon accounts for approximately 0.2% of the proton’s momentum at a low
scale (around Q ∼ 1 GeV), and this fraction increases logarithmically with Q, reaching
about 0.6% at the multi-TeV scale. The inclusion of the photon reduces the momentum
fraction carried by the gluon by a similar amount, as it can be observed in the right part
of the figure.

3.5 Impact on LHC phenomenology

In this section we will study the phenomenological impact of the NNPDF4.0QED PDFs
set. Initially, we will compare parton luminosities with those calculated using other QED
PDF sets. Next, we will evaluate the influence of QED corrections on specific processes
by comparing calculations that incorporate PI contributions to those that only consider
the pure QCD ones, and by directly comparing the results obtained from NNPDF4.0QED
and NNPDF4.0 (pure QCD) PDFs.

3.5.1 Luminosities

The impact of including a photon PDF on parton luminosities, defined as

Lij
(
mX ,

√
s
)

=
1

s

∫ 1

τ

dz

z
fi
(
z,m2

X

)
fj

(τ
z
,m2

X

)
, (3.77)

with τ = m2
X/s and

√
s is the center of mass energy, is both direct, due to PI par-

tonic channels, and indirect, as the presence of the photon affects other PDFs, primarily
through the reduction of the gluon PDF to maintain the momentum sum rule, as de-
scribed in Sec. 3.1. Fig. 3.13 compares the PI channels for NNPDF4.0QED NNLO with
those from NNPDF3.1QED (top) and MSHT20QED and CT18QED (bottom). There is a
high level of agreement, which aligns with the similarities observed between the respec-
tive photon PDFs in Fig. 3.10.

Fig. 3.14 displays the luminosities for all other parton channels, comparing the set
NNPDF4.0QED with both the previous QED set, NNPDF3.1QED, and the pure QCD
NNPDF4.0. As discussed in this chapter, the inclusion of the photon has a moderate
impact on the other PDFs. Thus, the comparison between the two QED sets resembles
the comparison between the pure QCD NNPDF4.0 and NNPDF3.1, shown in Fig. 9.1
of Ref. [4], where it was demonstrated that NNPDF4.0 is backward compatible with
NNPDF3.1, agreeing within uncertainties. The QED corrections mainly affect the gluon-
gluon channel, causing a suppression of a few percent around the mX ∼ 100 GeV re-
gion due to momentum transfer to the photon. Fig. 3.15 shows the comparison with
MSHT20QED and CT18QED: when comparing to other PDF sets, differences in quark
and gluon PDFs, which are more significant than differences in the photon PDF, domi-
nate the comparison, making it similar to the pure QCD luminosity comparison in Figure
9.3 of Ref. [4].
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Figure 3.13: The photon-induced contributions to the luminosity at the LHC with a center-of-mass
energy of

√
s = 14 TeV are shown as a function of the invariant mass mX . These are compared for

NNPDF4.0QED NNLO against its NNPDF3.1QED version (top), and also against MSHT20QED
and CT18QED, with all comparisons presented as ratios relative to NNPDF4.0QED.

3.5.2 Physics processes

We now examine the impact of the photon PDF on several relevant processes for the
physics at the LHC: Drell–Yan production (both neutral and charged-current), Higgs
production via gluon-gluon fusion, vector boson fusion, and associated production with
weak bosons, diboson production, and top-quark pair production, all at the LHC with a
center-of-mass energy of

√
s = 14 TeV. Theory predictions for these processes have been

calculated using the PineAPPL interface to the automated QCD and EW calculations
provided by mg5 aMC@NLO. As we already discussed, the PineAPPL program generates
interpolation grids, accurate to NLO in both strong and electroweak couplings, that are
independent of PDFs, facilitating the variation of input PDF sets with the same grid used
for all considered PDFs. Since we aim to compare differences between PDF sets rather
than conduct precision phenomenology, we exclude NNLO QCD corrections and the
uncertainty band presented here is only due to PDFs uncertainties. For a detailed list of
parameters and cuts used in the grid calculations, refer to Sec. 9 of Ref. [4].

For all processes, we present predictions in the figures below using a standardized
format. The top panels display the absolute distributions, while the bottom panels show
the ratio to the central value obtained using NNPDF4.0QED PDFs, including PI chan-
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Figure 3.14: Comparison of parton luminosities in the NNPDF4.0QED and the NNPDF4.0 (pure
QCD) sets is presented as a ratio to the former for the LHC with

√
s = 14 TeV. From left to right and

from top to bottom, The gluon-gluon, gluon-quark, quark-anti-quark, quark-quark luminosities
are displayed.

nels, which we refer to as NNPDF4.0QED. The left plots compare NNPDF4.0QED with
NNPDF4.0QED without PI channels, NNPDF4.0 pure QCD, and NNPDF3.1QED. The
right plots compare NNPDF4.0QED with MSHT20QED and CT18QED. The left plots
help assess the overall magnitude of the QED corrections by comparing QED and pure
QCD results, i.e. NNPDF4.0 and NNPDF4.0QED, determine the size of the PI contribu-
tions by comparing predictions with and without PI channels, and evaluate the impact
of changes in the quark and gluon PDFs due to QED effects by comparing NNPDF4.0
with NNPDF4.0QED with PI channels turned off.

In Fig. 3.16, we present the results for inclusive Drell-Yan production in both the
neutral-current and charged-current channels. For the neutral current, we provide the
invariant mass distribution of the dilepton pair, while for the charged current, we dis-
play the rapidity distribution of the lepton. Fig. 3.17 contains the predictions for the
Higgs rapidity distribution for gluon fusion, associated production with a W+ boson,
and vector boson fusion. Lastly, Fig. 3.18 illustrates predictions for weak-boson pair pro-
duction (W+W− and W+Z) as a function of the dilepton transverse momentum, as well
as for top-quark pair production based on the invariant mass of the top quark pair.

For charged-current Drell-Yan processes, the QED corrections have virtually no im-
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Figure 3.15: As Fig. 3.14 but comparing with MSHT20 [132] and CT18qed [134].

pact. In all other scenarios we consider, the QED correction effects fall into one of two cat-
egories. Either the inclusion of QED effects leads to an enhancement of the cross-section,
which only occurs when the PI contribution is included, while the NNPDF4.0QED re-
sult without the PI contribution remains very close to the pure QCD result. Alternatively,
there is a suppression of the cross-section, with the NNPDF4.0QED results being nearly
identical whether the PI contribution is included or not. The former situation can be
attributed to a significant positive PI contribution, whereas the latter can be explained
by the reduction in gluon luminosity due to the transfer of momentum fraction from the
gluon to the photon, as illustrated in Fig. 3.14.

The first scenario (where enhancement occurs due to the PI contribution) is seen in
neutral-current dilepton production. In this case, the enhancement increases with in-
variant mass, reaching up to 5% at the TeV scale. It’s important to note that the PI
contribution to the dilepton final state can also occur through leading-order t- and u-
channel diagrams. The absence of QED enhancement at the Z peak suggests that this
non-resonant contribution is the main component of the PI contribution. A similar pat-
tern is observed in W+W− and ZW+ production, where the enhancement grows with
pT , reaching 5% for W+W− and 2% for ZW+ at TeV scale for transverse momenta. Ad-
ditionally, enhancement is seen in associated Higgs production with W+ and in vector
boson fusion. For associated Higgs production, the enhancement is most significant at
forward rapidity, peaking at 4%, and decreases to 2% at the highest rapidity of yH = 2.5.
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Figure 3.16: Predictions for inclusive Drell–Yan production at the LHC with a center-of-mass en-
ergy of

√
s = 14 TeV computed at NLO accuracy in both QCD and electroweak couplings. The

uncertainties shown are exclusively PDFs uncertainties. From top to bottom, the figures display:
dilepton production mediated by a γ∗/Z boson as a function of the dilepton invariant mass m`¯̀;
W+ production as a function of the antilepton pseudo-rapidity ηl̄; W

− production as a function
of the antilepton pseudo-rapidity ηl̄. For each process, the absolute distributions are shown in the
top panels, and the ratio to the central value obtained with NNPDF4.0QED PDFs, including PI
channels, is shown in the bottom panels. The left panels compare the full NNPDF4.0QED results
with NNPDF4.0 (QCD only), NNPDF3.1QED, and NNPDF4.0QED without PI channels. The right
panels compare NNPDF4.0QED with MSHT20QED [132] and CT18QED [134].



Including QED corrections 79

10

15

dσ dy
H
[p

b]

pp→ H + X

0.0 0.5 1.0 1.5 2.0 2.5
yH

1.00

1.02

1.04

R
at
io

to
N
N
PD

F4
.0
Q
ED

NNPDF4.0QED NNPDF4.0QED γ(x) = 0 NNPDF3.1QED NNPDF4.0

10

15

dσ dy
H
[p

b]

pp→ H + X

0.0 0.5 1.0 1.5 2.0 2.5
yH

0.95

1.00

1.05

R
at
io

to
N
N
PD

F4
.0
Q
ED

NNPDF4.0QED MSHT20qed CT18qed

0.020

0.025

0.030

dσ dy
H
[p

b]

pp→ HW+ → H¯̀ν` + X

0.0 0.5 1.0 1.5 2.0 2.5
yH

0.96

0.98

1.00

R
at
io

to
N
N
PD

F4
.0
Q
ED

NNPDF4.0QED NNPDF4.0QED γ(x) = 0 NNPDF3.1QED NNPDF4.0

0.020

0.025

0.030

dσ dy
H
[p

b]

pp→ HW+ → H¯̀ν` + X

0.0 0.5 1.0 1.5 2.0 2.5
yH

0.950

0.975

1.000

R
at
io

to
N
N
PD

F4
.0
Q
ED

NNPDF4.0QED MSHT20qed CT18qed

0.4

0.6

0.8

dσ dy
H
[p

b]

pp→ Hjj + X

0.0 0.5 1.0 1.5 2.0 2.5
yH

0.96

0.98

1.00

R
at
io

to
N
N
PD

F4
.0
Q
ED

NNPDF4.0QED NNPDF4.0QED γ(x) = 0 NNPDF3.1QED NNPDF4.0

0.4

0.6

0.8

dσ dy
H
[p

b]

pp→ Hjj + X

0.0 0.5 1.0 1.5 2.0 2.5
yH

0.94

0.96

0.98

1.00

R
at
io

to
N
N
PD

F4
.0
Q
ED

NNPDF4.0QED MSHT20qed CT18qed

Figure 3.17: Same as Fig. 3.16 but it shows the rapidity distribution of the Higgs produced in
gluon-gluon fusion (top panel), in association with a W+ boson (middle panel), and through
vector-boson fusion (bottom panel).

In vector boson fusion, the enhancement is modest, around 1%, and remains nearly con-
stant with a slight decrease as rapidity increases.

The second scenario (suppression that is independent of the PI contribution) occurs
in processes driven by gluon fusion. This effect is evident in Higgs production via gluon
fusion, where suppression slightly depends on rapidity, ranging from 2% at central ra-
pidity to about 1% at the highest rapidity. A similar but more moderate effect is observed
in top pair production, with a suppression of around 1%, which remains largely inde-
pendent of the invariant mass of the top pair.
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Figure 3.18: Same as Fig. 3.16 but it shows the transverse momentum distribution of dileptons
from weak boson pair production (W+W− and W+Z) and the invariant mass distribution for
top-quark pair production. No acceptance cuts have been applied to the decay products of the W ,
Z bosons, or the top quark.

When comparing results obtained using different QED PDFs sets, i.e. NNPDF3.1QED,
MSHT20QED, or CT18QED, the observed differences are likely due to variations in the
quark and gluon PDFs, considering the similarity of the photon PDFs across these sets.
In fact, these comparisons closely resemble those in Section 9.3 of Ref. [4], where the
same processes were analyzed under pure QCD conditions.

In conclusion, we determined that incorporating QED corrections is crucial for achiev-
ing percent-level precision in phenomenological studies, even when PI contributions are
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minimal, such as in Higgs production via gluon fusion. Ignoring the indirect effects
of including the photon PDF leads to an overestimation of the peak cross-section (and
consequently the total cross-section) by approximately 2%. This introduces a bias in the
prediction comparable to the PDF uncertainty, which is not accounted for in the uncer-
tainty estimation.





CHAPTER 4

Combining QED with MHOU and N3LO

“Avengers...Assemble!”
– Captain America, Avengers: Endgame

In Chap. 3 we described how the QED effects are included in a PDFs fit. In this
chapter we will describe how they are combined with the inclusion of MHOU [7], and
with the inclusion af approximate N3LO corrections [8]. In order to do it, we will first
describe how these effects are accounted for in a pure QCD PDFs fit, and then how they
are combined with the QED effects.

This chapter is organized as follows: in Sec. 4.1 we will describe how MHOU are
included in a PDFs fit and we will briefly present the NNPDF4.0MHOU PDFs determi-
nation; in Sec. 4.2 we will show how we included at N3LO the contributions that are
known and how we estimated the ones that are still missing and the we will present the
aN3LO NNPDF4.0 PDFs; in the end, in Sec. 4.3, we will describe how the MHOU and
the aN3LO effects are combined with the QED corrections in a PDFs fit, we will present
the resulting PDFs and we briefly assess the impact on the phenomenology.

4.1 MHOU

As we already mentioned, PDFs uncertainties, as the ones in standard PDF sets such as
NNPDF4.0 [4], CT18 [55], MSHT20 [56], or ABMP16 [54], generally do not account for
theoretical uncertainties. These are uncertainties that impact the theoretical predictions
that are compared to the data during the process of determining PDFs from experimental
measurements. The only exceptions are the parametric uncertainty associated with the
value of the strong coupling constant αs, which has been routinely included since the
early days of LHC physics [151], and nuclear uncertainties affecting, for example, DIS
data on nuclear targets (such as neutrino DIS data), which are included in the NNPDF4.0
PDF determination [152, 153].

Theoretical uncertainties can arise from various sources, including both parametric
uncertainties (such as the values of heavy quark masses) and non-parametric uncertain-
ties (such as the nuclear corrections that mentioned earlier). In particular, theory un-
certainties related to missing higher-order terms in QCD computations are important
because they impact all predictions. The standard perturbative accuracy for QCD com-
putations is currently at NNLO, with N3LO corrections known only in a few cases [154].
At NNLO, MHOUs are typically on the order of a few percent or more. For precision
observables at the LHC used in PDF determination, such as gauge boson or top-pair pro-
duction, these uncertainties can be comparable to experimental systematic uncertainties

83
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and often exceed the experimental statistical uncertainties. Given that both experimental
measurement uncertainties and theoretical prediction uncertainties are equally signifi-
cant in the figure of merit used for PDF determination [155], it is important to include
both types of uncertainties when they are of similar magnitude.

The aim of this section is to describe how to incorporate MHOUs into the NNPDF4.0
NLO and NNLO parton distribution sets using the methods outlined in Refs. [156, 157].
As a result, we will present the versions of the NNPDF4.0 global PDFs determination
that now include the impact of MHOUs in the PDFs determination process. Refs. [156,
157] demonstrated that incorporating MHOUs into the PDF determination affects cen-
tral values and enhances perturbative convergence. Therefore, parton distributions that
include MHOUs in the PDFs uncertainty should now be considered the standard ap-
proach.

The inclusion of MHOUs into a PDFs fit is achieved by supplementing theoreti-
cal predictions with a covariance matrix that reflects their expected correlated varia-
tions when higher-order corrections are included. This estimation is conducted through
scale variation. A comprehensive explanation of this methodology can be found in
Refs. [156, 157]. In this section we will review the primary elements of the procedure,
particularly focusing on its implementation in the EKO code [149], which is an integral
part of the new NNPDF theory pipeline [114] employed in this work, and that we dis-
cussed in Sec. 2.3. We start by outlining the definition of perturbative expansions for
various quantities. We then review the estimation of MHOUs on hard cross-sections and
anomalous dimensions through scale variation. Finally, we summarize the construction
of the MHOU covariance matrix.

4.1.1 Perturbative expansion and factorization

Theoretical predictions at hadron colliders rely on two quantities calculated perturba-
tively: the partonic cross-sections (or coefficient functions in the case of DIS data), and
the splitting functions (or equivalently the anomalous dimensions in Mellin space) which
govern the scale dependence of the PDF. Both quantities can be represented as series in
the strong coupling as(Q

2), which itself is determined perturbatively through the so-
lution to Eq. (1.24), based on the strong coupling value at a reference scale, typically
as(M

2
Z). The MHOU in these predictions arises from truncating these perturbative ex-

pansions at a certain order.
In a VFNS, as discussed in Sec. 1.8, another MHOU arises from truncating the pertur-

bative expansion of the matching conditions that connect PDFs across different schemes
with a certain number of active flavors. These uncertainties are particularly significant
when dealing with PDFs below the charm threshold, such as when determining the in-
trinsic charm PDF [29, 30]. However, for precision LHC phenomenology, predictions
are typically made in a nf = 5 scheme. Moreover, PDFs are derived by comparing
predictions to data, most of which are also computed in the nf = 5 scheme. As a re-
sult, matching uncertainties mainly impact the small amount of data below the bottom
threshold (no data below the charm threshold is used), and this influence is minimal due
to the small MHOU at the bottom threshold. Consequently, the MHOU associated with
the matching conditions are minor and will be neglected in this discussion.

We therefore concentrate on MHOUs affecting the hard cross-sections and anoma-
lous dimensions. To estimate these MHOUs through scale variation, we generate differ-
ent expressions for any given perturbative result at a specified accuracy. These expres-
sions vary by the sub-leading terms produced when the evaluation scale of the strong
coupling is changed. Beginning with the DIS coefficient functions, we construct a scale-
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varied NkLO coefficient function. In this section we will adopt a relative counting for
the perturbative orders of the coefficient functions, instead of the absolute one used in
this thesis, see Eq. (1.43). With this notation the coefficient function’s expansion takes
the form

Ca,i
(
as(Q

2)
)

= ams (Q2)

k∑

n=0

(
as(Q

2)
)n
C

(n)
a,i , (4.1)

where we used that the coefficient function for a given process can start at O(ams ). For
example, for the massive coefficient function of the gluon we have m = 1 while for the
one of the quark m = 2.

The scale varied coefficient function is constructed as

C̄a,i(as(µ
2), ρr) = ams (µ2)

k∑

n=0

(
as(µ

2)
)n
C̄

(n)
a,i (ρr) , (4.2)

with ρr = µ2
r/Q

2, by requiring that

C̄a,i(as(ρrQ
2), ρr) = Ca,i(as(Q

2)) [1 +O(as)] , (4.3)

which fixes C̄(n)
a,i (ρr) in terms of C(n)

a,i . The explicit expressions of the scale varied coeffi-
cient functions are given by

C̄
(0)
a,i (ρ) = C

(0)
a,i , (4.4)

C̄
(1)
a,i (ρ) = C

(1)
a,i +mC

(0)
a,i β0 ln ρ , (4.5)

C̄
(2)
a,i (ρ) = C

(2)
a,i +

m(m+ 1)

2
C

(0)
a,i (β0)

2
ln2 ρ+

(
(m+ 1)C

(1)
a,i β0 +mC

(0)
a,i β1

)
ln ρ , (4.6)

C̄
(3)
a,i (ρ) = C

(3)
a,i +

m(m+ 1)(m+ 2)

6
C

(0)
a,i (β0)

3
ln3 ρ

+

(
(m+ 1)(m+ 2)

2
C

(1)
a,i (β0)

2
+
m(2m+ 3)

2
C

(0)
a,i β0β1

)
ln2 ρ

+
(

(m+ 2)C
(2)
a,i β0 + (m+ 1)C

(1)
a,i β1 +mC

(0)
a,i β2

)
ln ρ . (4.7)

At any given order, Ca,i and C̄a,i differ by sub-leading terms. This difference serves as an
estimate of the missing higher orders and can be used to construct an MHOU covariance
matrix, as it will be discussed in the following of this section. This method of estimating
MHOUs on partonic cross-sections is referred to as renormalization scale variation.

With an analogous procedure we can obtain an estimation of the MHOU of the
anomalous dimensions. Indeed, we construct a scale-varied anomalous dimension as

γ̄ij(as(µ
2), ρf ) = as(µ

2)

k∑

n=0

(
as(µ

2)
)n
γ̄

(n)
ij (ρf ) , (4.8)

with ρf = µ2
f/Q

2, by requiring that

γ̄ij(as(ρfQ
2), ρf ) = γij(as(Q

2)) [1 +O(as)] , (4.9)

that fixes γ̄(n)
ij (ρf ) in terms of γ(n)

ij . The explicit expressions are those obtained from

Eqs. (4.4-4.7) setting m = 1. Similarly, the sub-leading difference between γ(n)
ij and γ̄

(n)
ij
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can be used to estimate the MHOU on anomalous dimensions. This uncertainty subse-
quently translates into an MHOU on the PDF fi(Q2) when it is expressed in terms of the
PDFs at the parametrization scale as

fi
(
Q2
)

= P exp

(
−
∫ Q2

Q2
0

dµ2

µ2
γ(as(µ

2))

)

ij

fj
(
Q2

0

)
= Eij

(
Q2 ← Q2

0

)
fj
(
Q2

0

)
, (4.10)

where the product is a standard product in N space while it is a convolution in x space.
This method of estimating the MHOU on the scale dependence of the PDF is referred to
as factorization scale variation.

By substituting the scale-varied anomalous dimension γ̄ij(α(µ2), ρf ) into the expres-
sion for the PDF in Eqs. (4.10), it can be demonstrated [157] that factorization scale
variation can also be performed directly at the PDFs level. This is done by defining a
scale-varied PDF f̄i(Q2, ρf ), where its scale dependence is determined by a scale-varied
evolution operator Ēij(Q2 ← µ2

0, ρf ):

f̄i(Q
2, ρf ) = Ēij(Q

2 ← µ2
0, ρf )fj(µ

2
0) , (4.11)

and the scale-varied evolution operator Ē differs by sub-leading terms from the original
one:

Ēij(Q
2 ← µ2

0, ρf ) = Eij(Q
2 ← µ2

0) [1 +O(as)] . (4.12)

Then, the scale-varied evolution operator can be constructed as

Ēij(Q
2 ← µ2

0, ρf ) = Kil

(
as(ρfQ

2), ρf
)
Elj(ρfQ

2 ← µ2
0) , (4.13)

where at NkLL (i.e. with the anomalous dimension computed at NkLO) the additional
evolution kernel Kij(as(ρfQ

2), ρf ) reads

Kij

(
as(ρfQ

2), ρf
)

=

k∑

n=0

(
as(ρfQ

2)
)n
K

(n)
ij (ρf ) . (4.14)

Substituting this expansion into Eq. (4.12) determines all the coefficients K(j)
ij (ρf ) in

terms of γ(j)
ij . Their specific expressions up to N3LO read

K
(0)
ij (ρ) = δij , (4.15)

K
(1)
ij (ρ) = γ

(0)
ij ln ρ , (4.16)

K
(2)
ij (ρ) =

1

2
γ

(0)
il

(
β0δlj + γ

(0)
lj

)
ln2 ρ+ γ

(1)
ij ln ρ , (4.17)

K
(3)
ij (ρ) =

1

6
γ

(0)
il

(
2 (β0)

2
δlj + 3β0γ

(0)
lj + γ

(0)
lm γ

(0)
mj

)
ln3 ρ

+
1

2

(
β1γ

(0)
ij + 2β0γ

(1)
ij + γ

(0)
il γ

(1)
lj + γ

(1)
il γ

(0)
lj

)
ln2 ρ+ γ

(2)
ij ln ρ . (4.18)

Eqs. (4.12-4.13) imply that the scale-varied evolution kernel in Eq. (4.12) evolves from
µ2

0 to ρfQ2, and then from ρfQ
2 back to Q2, with the latter evolution expanded to fixed

NkLO.
The two approaches for performing factorization scale variation, either on anoma-

lous dimensions as in Eqs. (4.8-4.9) or on PDFs as Eqs. (4.11-4.12) are equivalent. When
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applied at NkLO, both methods produce the same sub-leading Nk+1LO terms, although
the higher-order terms may differ, namely

f̄i(Q
2, ρf )− fi(Q2) =

P exp

(
−
∫ µ2

µ2
0

dµ′2

µ′2

[
γ̄
(
as(ρfµ

′2), ρf

)
− γ

(
as(µ

′2)
)])

ij

fj(µ
2
0) [1 +O(as)] ,

(4.19)

These two methods of performing factorization scale variation by adjusting the scale
of the anomalous dimension or by altering the scale of the PDFs are referred to as scheme
A and scheme B, respectively, in Ref. [157]. There is a third method, called scheme C
in the same reference, which involves using the scale-varied PDF from Eqs. (4.11-4.13),
specifically

f̄i(Q
2, ρf ) = Kil(as(ρfQ

2), ρf )Elh(ρfQ
2 ← µ2

0)fh(µ2
0) , (4.20)

in the factorized expression, Eq. (1.42), but incorporating K(as(ρfQ
2), ρf ) into the co-

efficient function instead of the PDF. This effectively evaluates the PDF at a different
scale, using a modified coefficient function. Indeed, inserting Eq. (4.20) into Eq. (1.42)
the expression for the hadronic observable after factorization scale variation is

Fa(Q2) = Ca,i(Q
2)f̄i(Q

2, ρf )

= Ca,i(Q
2)Kil(as(ρfQ

2), ρf )Elh(ρfQ
2 ← µ2

0)fh(µ2
0) (4.21)

= ¯̄Ca,i(Q
2, ρf )fi(ρfQ

2) [1 +O(as)] , (4.22)

where we defined

¯̄Ca,i(Q
2, ρf ) = Ca,j(Q

2)K ′ji(as(Q
2), ρf ) = ams (Q2)

k∑

n=0

(
as(Q

2)
)n ¯̄C

(j)
a,i (ρf ) , (4.23)

and K ′ij is in turn computed by re-expressing Kij(ρfQ
2, ρf ) as a series in as(Q2), i.e.

K ′ij(as(Q
2), ρf ) =

k∑

n=0

(
as(Q

2)
)n
K
′(n)
ij (ρf ) , (4.24)

with the requirement

Kij(as(ρfQ
2), ρf ) = K ′ij(as(Q

2), ρf ) [1 +O(as)] . (4.25)

In the end we get

K
′(0)
ij (ρ) = δij , (4.26)

K
′(1)
ij (ρ) = γ

(0)
ij ln ρ , (4.27)
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1

2
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lj
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which, substituted in Eq. (4.23) leads to

¯̄C
(0)
a,i (ρ) = C

(0)
a,i , (4.30)

¯̄C
(1)
a,i (ρ) = C

(1)
a,i + γ

(0)
ij C

(0)
a,j ln ρ , (4.31)

¯̄C
(2)
a,i (ρ) = C

(2)
a,i +

1

2
γ

(0)
il

(
−β0δlj + γ

(0)
lj

)
C

(0)
a,j ln2 ρ+

(
γ

(0)
ij C

(1)
a,j + γ

(1)
ij C

(0)
a,j

)
ln ρ , (4.32)

¯̄C
(3)
a,i (ρ) = C

(3)
a,i +

1

6
γ

(0)
il

(
2 (β0)

2
δlj − 3β0γ

(0)
lj + γ

(0)
lm γ

(0)
mj

)
C

(0)
a,j ln3 ρ

+
1

2

(
−β1γ

(0)
ij − 2β0γ

(1)
ij + γ

(0)
il γ

(1)
lj + γ

(1)
il γ

(0)
lj

)
C

(0)
a,j ln2 ρ

+
1

2
γ

(0)
il

(
−β0δlj + γ

(0)
lj

)
C

(1)
a,j ln2 ρ

+
(
γ

(0)
ij C

(2)
a,j + γ

(1)
ij C

(1)
a,j + γ

(2)
ij C

(0)
a,j

)
ln ρ . (4.33)

In standard practice, factorization scale variation is typically done using scheme C,
as this method does not require altering the PDFs, which are generally obtained from an
external source. However, within the context of determining PDFs, factorization scale
variation using scheme B, as defined in Eq. (4.11), is simpler because it only involves
modifying the evolution operator used for PDF evolution. This is the approach we will
use for factorization scale variation in this section.

4.1.2 Construction of the covariance matrix

The MHOU arising from the perturbative truncation of partonic cross-sections and the
scale dependence of PDFs are estimated using renormalization scale variation, Eqs. (4.2-
4.3), and factorization scale variation using scheme B from Ref. [157], Eq. (4.11) and
Eq. (4.14). These uncertainties are incorporated via an MHOU covariance matrix, which
is constructed as follows [156, 157].

First, we define the shift in the theoretical prediction for the i-th data point due to
renormalization and factorization scale variation. It reads

∆i(ρf , ρr) ≡ Ti(ρf , ρr)− Ti(0, 0) , (4.34)

where Ti(ρf , ρr) is the prediction for the i-th data point with the renormalization and
factorization scales varied by factors ρr and ρf , respectively.

Next, we select a correlation pattern for scale variation as follows [156, 157]:

• factorization scale variation is correlated across all data points because the scale
dependence of PDFs is universal.

• renormalization scale variation is correlated for data points within the same cate-
gory, such as the same observable (e.g., fully inclusive DIS cross-sections) or differ-
ent observables within the same process (e.g., Z transverse momentum and rapid-
ity distributions).

This approach necessitates categorizing processes. For example, we treat charged-current
and neutral-current DIS as distinct processes.

These choices are based on the assumptions that factorization and renormalization
scale variations adequately capture the MHOU for anomalous dimensions and partonic
cross-sections, respectively, and that missing higher-order terms are similar in nature
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and magnitude across all processes within a given category. Other assumptions are pos-
sible; for instance, one might decorrelate the renormalization scale variation for differ-
ent partonic sub-channels within the same process or introduce an additional variation
in the process scale on top of the renormalization and factorization scale variations dis-
cussed above (see Section 4.3 of Ref. [157] for a more detailed discussion).

Then, we define an MHOU covariance matrix, with the matrix element between two
data points i and j given by:

Sij = nm
∑

Vm

∆i(ρf , ρri)∆j(ρf , ρrj ) , (4.35)

where the sum runs over the space Vm of the m included scale variations. The factoriza-
tion scale ρf is always varied in a correlated manner, while the renormalization scales ρri
and ρrj are varied in a correlated way (ρri = ρrj ) if data points i and j belong to the same
category, but are varied independently if they belong to different categories. The term
nm is a normalization factor. Calculating this normalization factor is complex because
it must account for the mismatch in the dimension of the scale variation space when
two data points are in the same category (resulting in one correlated set of renormal-
ization scale variations) versus when they are not (resulting in two independent sets of
variations). These normalization factors were computed for various choices of the scale
variation space Vm and for different values of m in Ref. [157], which provides detailed
explanations.

As in Refs. [156, 157], we consider scale variations by a factor of 2, so:

κf = ln ρf = ± ln 4 , κr = ln ρr = ± ln 4 . (4.36)

In Ref. [157], various choices for the space of allowed variations were considered. These
included the 9-point prescription, where κr and κf can take any of the values (0,± ln 4),
resulting inm = 8 (eight variations around the central value); and the commonly used 7-
point prescription, withm = 6, derived from the former by excluding the two outermost
variations (κr = + ln 4, κf = − ln 4 and κr = − ln 4, κf = + ln 4). It can be shown [7]
that both the 7-point and 9-point prescriptions exhibit similar behavior, consistent with
the findings of Ref. [157]. Other prescriptions, with a more limited set of independent
scale variations, were shown in Ref. [157] to perform less effectively, and we will not
consider them further. The explicit expressions for the MHOU covariance matrix using
the 7-point and 9-point prescriptions are provided in Eqs. (4.18-4.19) and Eq. (4.15) of
Ref. [157], respectively.

The assumptions regarding the correlation patterns of renormalization and factor-
ization scale variations, the process categorization, the scale variation range, and the
specific choice of variation points are somewhat arbitrary. This is unavoidable because
MHOU is an estimate of the probability distribution for the size of an unknown quantity
that has a single true value, making it intrinsically Bayesian. The only way to validate
this type of estimate is by comparing its performance to cases where the true value is
known, as it has been done in Ref. [7].

4.1.3 Results

We now focus on the primary results of this section: the NNPDF4.0 NLO and NNLO
PDFs sets with MHOUs. These sets are obtained by repeating the NNPDF4.0 PDF de-
terminations, but this time including an MHOU covariance matrix determined using a
7-point prescription, as discussed previously in this section. The dataset used is identical
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Dataset Ndat
NLO NNLO

C + S(nucl) C + S(nucl) + S(7pt) C + S(nucl) C + S(nucl) + S(7pt)

DIS NC 2100 1.30 1.22 1.23 1.20

DIS CC 989 0.92 0.87 0.90 0.90

DY NC 736 2.01 1.71 1.20 1.15

DY CC 157 1.48 1.42 1.48 1.37

Top pairs 64 2.08 1.24 1.21 1.43

Single-inclusive jets 356 0.84 0.82 0.96 0.81

Dijets 144 1.52 1.84 2.04 1.71

Prompt photons 53 0.59 0.49 0.75 0.67

Single top 17 0.36 0.35 0.36 0.38

Total 4616 1.34 1.23 1.17 1.13

Table 4.1: The number of data points and the χ2 per data point for the NLO and NNLO NNPDF4.0
PDF sets without and with MHOUs.

to that for the NNPDF4.0 NNLO PDFs [4]. As mentioned in Ref. [7], we use the same
dataset for both NLO and NNLO, whereas in Ref. [4] a slightly different dataset was
used for NLO. Therefore, we compare four PDF sets here: NLO and NNLO, with and
without MHOUs, all based on the same underlying data.

In Tab. 4.1 we present the number of data points and the χ2 per data point for the
NLO and NNLO NNPDF4.0 PDF determinations, both before and after incorporating
MHOUs. Without MHOUs, the covariance matrix is defined as in Ref. [4], consisting
of the experimental covariance matrix C and a theory covariance matrix S(nucl), which
accounts for missing nuclear corrections as detailed in Refs. [152, 153], with its effects
discussed in Sec. 8.6 of Ref. [4]. When MHOUs are included, the covariance matrix also
incorporates the contribution described in Eq. (4.35) and discussed in previously, which
we refer to as S(7pt).

Note that the MHOU contribution is either excluded or included in both the defini-
tion of the χ2 used by the NNPDF algorithm (i.e. for pseudodata generation and in the
training and validation loss functions) and in the covariance matrix used to calculate
the values provided in Tab. 4.1. Additionally, the experimental covariance matrix used
to compute the values in Tab. 4.1 differs from the one used in the NNPDF algorithm.
The latter applies the t0 method [158] to handle multiplicative uncertainties and avoid
the d’Agostini bias, while the former is simply the published experimental covariance
matrix.

Tab. 4.1 shows that including the MHOU covariance matrix results in a reduction of
the total χ2 for both NLO and NNLO fits, with a more significant decrease observed at
NLO. Despite this inclusion, the NLO χ2 remains slightly higher than the NNLO χ2.
We have confirmed that this is caused by a small number of highly precise data points
(excluded by the NLO cuts in Ref. [4]), where NNLO corrections are significantly under-
estimated by scale variation. However, for most data points and process categories, the
MHOU covariance matrix adequately accounts for the discrepancy between data and
theoretical predictions at NLO due to missing NNLO terms.

In Fig. 4.1 it is shown the comparison between the individual PDFs at NLO and
NNLO, with and without MHOUs, at Q = 100 GeV. The displayed distributions include
the gluon, singlet and non-singlet (V , V3, V8, T3, T8, T15) PDFs, defined in Eq. (1.73) and
Eqs. (1.80-1.89), all normalized to the NNLO PDFs with MHOUs. The associated one-
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Figure 4.1: The NLO and NNLO PDFs, both with and without MHOUs, at Q = 100 GeV. The
gluon, singlet, valence (V , V3, V8), and triplet (T3, T8, T15) PDFs are displayed. All curves are
normalized to the NNLO PDFs with MHOUs. The bands represent the 1σ uncertainty.
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Figure 4.2: Relative 1σ uncertainties for the PDFs shown in Fig. 4.1. All uncertainties are normal-
ized to the corresponding central NNLO PDFs with MHOUs.
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sigma uncertainties are illustrated in Fig. 4.2. The inclusion of MHOUs generally causes
only a moderate shift in the central values at NNLO; however, at NLO, the shift is notable
for the gluon and singlet PDFs, though relatively modest for other PDF combinations.

Observing Fig. 4.2, it is evident that, on average, the PDFs uncertainty at NNLO re-
mains largely unaffected by the inclusion of MHOUs in the data region, i.e. for x & 10−4

(see Fig. 2.6). However, in the singlet sector, the uncertainty increases at small x, notably
for the gluon, where the increase is evident up to x ∼ 0.1. At NLO, the uncertainty
generally decreases in the non-singlet sector, whereas it rises across all x values in the
singlet sector, with the gluon showing a particularly significant increase. This is in line
with the fact that at NLO, the MHOU from scale variation does not fully explain the shift
from NLO to NNLO for some datasets. The somewhat unexpected observation that the
PDF uncertainty does not necessarily increase, and may even decrease, when adding an
additional uncertainty source to the χ2 was previously noted in Refs. [152, 153]. This
result shows the improved data compatibility achieved by incorporating the MHOU.

The impact of incorporating MHOUs on PDFs uncertainties varies with both x and
the specific PDF, so a comprehensive quantitative assessment requires evaluating the
PDFs uncertainty on physics predictions. This can be achieved using the φ estimator,
introduced in Ref. [119], defined by:

φχ2 =
√
〈χ2〉 − χ2, (4.37)

where 〈χ2〉 represents the average χ2 (per data point) computed for each individual
replica and then averaged over all replicas, while χ2 is the value listed in Tab. 4.1 and
is obtained using the best-fit PDF, which is the average over replicas. For a single data
point, φ is simply the ratio of the PDFs uncertainty to the data uncertainty. For multiple
uncorrelated data points, φ is the square root of the average ratio of PDF variance to
data variance. For correlated data points, it is this ratio calculated using the eigenvec-
tors of the experimental covariance matrix, averaging the ratios of the diagonal elements
of the theory covariance matrix to the eigenvalues of the experimental covariance ma-
trix. Thus, φ measures the PDFs uncertainty relative to the experimental uncertainties,
providing an estimate of the data consistency. A φ value less than 1 indicates that, on
average, the uncertainties in the predictions are smaller than those of the original data,
suggesting successful combination of consistent data by the underlying theory (refer to
Sec. 6 of Ref. [157] for further discussion).

Tab. 4.2 presents the φ values both before and after incorporating MHOUs at NLO
and NNLO. It is evident that the inclusion of MHOUs either leaves φ unchanged or
leads to a decrease. The reduction is notably more pronounced for processes that involve
non-singlet combinations, such as charged-current Drell-Yan, aligning with the patterns
observed in the PDFs uncertainties shown in Fig. 4.2. Overall, the decrease is more
pronounced at NNLO compared to NLO.

The decrease in φ indicates that incorporating MHOUs generally reduces the PDFs
uncertainties for physical predictions within the data region. However, it’s notable that
this reduction, while evident at NLO for some PDF combinations, is not always reflected
at NNLO in the PDF plots of Figs. 4.1-4.2, where an increase in uncertainty, particularly
in the singlet sector, is observed. It is important to note that the uncertainties shown in
Figs. 4.1-4.2 represent diagonal uncertainties, which combine both correlated and uncor-
related uncertainties in quadrature. In contrast, the calculation of physical observables
involves integrating over different values of the momentum fraction, which introduces
correlations between these values. These correlations are accounted for in the φ indica-
tor. In fact, MHOUs tend to be highly correlated because they generally have a smooth
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Dataset
NLO NNLO

C + S(nucl) C + S(nucl) + S(7pt) C + S(nucl) C + S(nucl) + S(7pt)

DIS NC 0.14 0.13 0.15 0.13

DIS CC 0.12 0.12 0.12 0.12

DY NC 0.19 0.17 0.18 0.17

DY CC 0.37 0.30 0.35 0.32

Top pairs 0.19 0.16 0.17 0.17

Single-inclusive jets 0.13 0.12 0.13 0.13

Dijets 0.10 0.09 0.11 0.10

Prompt photon 0.06 0.06 0.06 0.06

Single top 0.04 0.04 0.04 0.04

Total 0.16 0.15 0.17 0.15

Table 4.2: The φ estimator of Eq. (4.37) for the PDFs at NLO and NNLO with and without
MHOUs..

impact, affecting kinematically close data points similarly. Correlated uncertainties are
always smaller than or equal to uncorrelated uncertainties. Therefore, the different be-
haviors of diagonal PDF uncertainties and φ suggest that the correlation of MHOUs
contributes to their impact on PDFs being highly correlated. It should also be noted that
the φ indicator does not provide information on uncertainty behavior in extrapolation
regions. Consequently, when making predictions outside the current dataset’s kinematic
range, PDF uncertainties may increase despite the inclusion of MHOUs.

It is interesting to compare the behavior of the φ indicator shown in Tab. 4.2 with
that discussed in Ref. [157] (at NLO only), specifically in Section 6 (Tab. 6 and Tab. 8).
Notably, the φ value before the inclusion of MHOU in that reference was more than
twice as high as it is here. This difference is due to the uncertainties in the NNPDF4.0
PDFs set discussed here being significantly smaller than those in the previously avail-
able NNPDF3.1 PDF set. This reduction in uncertainties is attributed to methodological
improvements, even with the same underlying dataset, as extensively discussed in Sec-
tion 8.2 (see Figure 46) of Ref. [4]. For NNPDF4.0 NNLO, φ = 0.16 (Tab. 31 of Ref. [4]),
while for NNPDF3.1 NNLO, φ = 0.36 (Tab. 8 of Ref. [157]).

Furthermore, Ref. [157] noted that adding a MHOU term to the covariance matrix
used in the fit would theoretically increase the uncertainty of the result. For a single data
point, this increase would be the quadrature sum of the MHOU term and the experi-
mental uncertainty. For multiple correlated measurements, this can be expressed as an
expected increase in the φ indicator based on the experimental and MHOU covariance
matrices (see Eq.(6.5) of Ref. [157]). It was observed that while the φ value did increase
with the inclusion of MHOUs, the increase was less than expected, suggesting that the
data became more compatible when MHOUs were included.

Here, the inclusion of MHOUs actually reduces the value of φ, despite the lower
initial value of φ with the NNPDF4.0 methodology. This indicates a more significant im-
provement in data compatibility. This improvement is partly due to the shift in emphasis
from DIS data in NNPDF3.1 to hadron collider data in NNPDF4.0 (see Sections 7.2.4 and
7.2.5 of Ref. [4]). Since higher-order corrections have a greater impact on hadronic pro-
cesses than on DIS, the influence of MHOUs is correspondingly greater. Additionally,
with the NNPDF4.0 methodology, uncertainties are smaller for the same data uncertain-
ties, which amplifies the effect of tension between data from different processes due to
MHO corrections and enhances the impact of improved compatibility upon inclusion of
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MHOUs. Thus, the evidence suggests that data compatibility is significantly increased
by including PDF uncertainties, particularly at NNLO.

A priori, PDF sets with and without MHOUs are not necessarily expected to be com-
patible within uncertainties, since the latter do not account for an existing source of
uncertainty. In practice, they agree in the non-singlet sector, where MHOUs are at most
comparable to the PDF uncertainty before including MHOUs. However, in the singlet
sector, where NNLO corrections can be very large, they generally do not agree.

Including MHOUs generally shifts the NLO PDFs closer to the NNLO PDFs, thereby
enhancing perturbative convergence, with the exception of the gluon. For the singlet sec-
tor, while the NLO PDFs move towards the NNLO PDFs with the inclusion of MHOUs,
the NNLO result remains outside the NLO uncertainty band, especially at small x. This
indicates that there are substantial NNLO corrections to the NLO result in the singlet
sector that MHOUs determined by scale variation underestimate. At small x, this can be
attributed to unresummed small-x logarithms [159], which increase with perturbative
order and are not accounted for by scale variation.

The overall conclusion is that including MHOUs estimated through scale variation
enhances data compatibility. This inclusion causes a moderate shift in PDF central values
and reduces PDF uncertainties on physics predictions in the data region, as evidenced by
a lower φ indicator. At NNLO, diagonal PDF uncertainties remain mostly unchanged,
but at NLO, they are reduced in the non-singlet sector and generally increase for the
gluon at both NLO and NNLO. At NLO, including MHOUs accounts for the effect of
MHO terms on fit quality while having a moderate impact on PDF uncertainties and
central values in the non-singlet sector. In the singlet sector, it has a more significant
impact on central values and increases uncertainties, though it does not fully account
for the largest missing NNLO corrections. In the small-x extrapolation region, PDF un-
certainties generally increase with the inclusion of MHOUs at both NLO and NNLO.

A more in-depth examination of perturbative stability and the impact of including
MHOUs will be covered in the next section, which extends the PDF determination and
the results presented here to N3LO.

4.2 N3LO

Calculations of hard-scattering cross-sections at N3LO have been available for massless
DIS for a long time [160–163]. More recently, N3LO calculations have become available
for a large set of hadron collider processes. These include inclusive Higgs production via
gluon-fusion [164,165], bottom-fusion [166], in association with vector bosons [154], and
via vector-boson-fusion [167], as well as Higgs pair production [168], inclusive Drell-Yan
production [169,170], differential Higgs production [171–175], and differential Drell-Yan
distributions [176, 177]. For a comprehensive overview, see Ref. [178].

To achieve predictions for hadronic observables with this level of accuracy, it is essen-
tial to pair these partonic cross-sections with PDFs determined at the same perturbative
order. These PDFs must be derived by comparing theoretical predictions calculated to
the same precision with experimental data. The primary challenge in this process is
the absence of complete expressions for the N3LO splitting functions, which dictate the
scale dependence of the PDFs. Currently, only partial information is available on these
functions [179–189]. This information includes a set of integerN -Mellin moments, terms
proportional to nkf with k ≥ 1, and limits at large and small x. By including these par-
tial results, it is possible to make an approximate determination of the N3LO splitting
functions [188, 190], similar to the successful approach used for NNLO [191].
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Currently, a global PDF determination at N3LO must rely on partial information: ap-
proximate knowledge of splitting functions and complete partonic cross-sections only
for a limited range of processes. A preliminary effort to address this was recently un-
dertaken in Ref. [190]. In this work, the lacking theoretical details for N3LO calculations
were modeled using a set of nuisance parameters, which were then determined along-
side the PDFs through a fit to experimental data.

In our analysis, we employ a somewhat different strategy. Specifically, we use a the-
ory covariance matrix formalism to address the absence of certain perturbative informa-
tion. Ref. [152] shows that nuclear uncertainties can be incorporated via a theory covari-
ance matrix. In Sec. 4.1 we have described the construction of such a matrix to account
for MHOU, which are estimated through variations in renormalization and factorization
scales. In this section, we apply the same formalism to create a theory covariance matrix
for incomplete higher-order uncertainties (IHOUs). These IHOUs are related to the in-
complete knowledge of N3LO theory, particularly concerning the splitting functions and
the massive DIS coefficient functions. With these theory covariance matrices in hand, we
can determine PDFs at an “approximate N3LO” level (aN3LO). This determination in-
cludes contributions from both the incomplete knowledge of N3LO splitting functions
and massive coefficient functions (IHOUs), as well as missing N3LO corrections to the
partonic cross-sections for hadronic processes (MHOUs).

We will present the aN3LO NNPDF4.0 PDF determination, which will be added to
the existing LO, NLO, and NNLO sets [4], as well as the more recent NNPDF4.0MHOU
PDFs [7] that include MHOUs in the PDF uncertainty. Unlike the methodology used in
the MSHT20 study [190], our approach incorporates newer exact results [186–189] that
enhance the stability of the N3LO splitting function parametrization. Our construction
is carried out within the open-source NNPDF framework [192]. Specifically, our aN3LO
evolution is integrated into EKO [149], while the N3LO DIS coefficient functions are im-
plemented in the Adani code [193,194] and interfaced to YADISM [115] for the construc-
tion of the FONLL general-mass scheme. By determining PDFs from a unified global
dataset and using the same methodology across four consecutive perturbative orders,
we can now evaluate perturbative stability more precisely and provide a more accurate
estimation of uncertainties.

4.2.1 Approximate N3LO evolution

We will start with the development and application of aN3LO evolution. First, we out-
line our approach to approximating the N3LO evolution equations, explaining how this
approximation is used to derive aN3LO anomalous dimensions and splitting functions,
and how we assess the uncertainty in this approximation. Next, we describe our imple-
mentation of aN3LO evolution and analyze how this affects the perturbative evolution of
PDFs showing the results obtained evolving a given initial condition with and without
the aN3LO corrections.

As we have seen in Eqs. (1.99-1.102) the maximally decoupled DGLAP equations
in Mellin space depend on seven independent anomalous dimensions, which rule the
evolution of three PDFs sectors that are decoupled from each other. Such sectors are:

• The non-singlet combinations, Eqs. (1.80-1.89), depending on γ±.

• The valence distribution, Eq. (1.73), depending on γV = γ− + γS .

• The singlet sector, composed by gluon and singlet distribution defined in Eq. (1.73),
depending on γgg , γqg , γgq and γqq = γ+ + γps.
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Each of the seven independent anomalous dimensions satisfy a perturbative expansion
in as. Our aim is to find approximate expressions at N3LO for the seven anomalous
dimensions that we need.

The information that can be utilized to achieve this goal comes from three different
sources:

1. full analytic knowledge of contributions to the anomalous dimensions propor-
tional to the highest powers of the number of flavors nf ;

2. large-x and small-x resummations provide all-order information on terms that are
logarithmically enhanced by powers of ln(1− x) and lnx, respectively;

3. analytic knowledge of a finite set of integer moments.

To construct an approximation based on this information, we first separate the analyti-
cally known terms (1-2). Next, we expand the remainder using a set of basis functions
and use the known moments to determine the expansion coefficients. Finally, we vary
the set of basis functions to estimate the uncertainties.

Schematically, we proceed in the following way:

1. We include all terms in the expansion

γ
(3)
ij (N) = γ

(3,0)
ij (N) + nfγ

(3,1)
ij (N) + n2

fγ
(3,2)
ij (N) + n3

fγ
(3,3)
ij (N) , (4.38)

of the anomalous dimension in powers of nf that are fully or partially known an-
alytically. We call such terms γ(3)

ij,nf
(N).

2. We incorporate all terms from large-x and small-x resummation up to the highest
known logarithmic accuracy, including all known sub-leading power corrections
in both limits. These terms are denoted as γ(3)

ij,N→∞(N) and γ(3)
ij,N→0(N), as well as

γ
(3)
ij,N→1(N). Any potential double counting arising from the overlap of these terms

with γ(3)
ij,nf

(N) is eliminated.

3. We write the approximate anomalous dimension matrix element γ(3)
ij (N) as the

sum of the exactly known terms and a leftover γ̃(3)
ij (N) according to

γ
(3)
ij (N) = γ

(3)
ij,nf

(N) + γ
(3)
ij,N→∞(N) + γ

(3)
ij,N→0(N) + γ

(3)
ij,N→1(N) + γ̃

(3)
ij (N) . (4.39)

We write γ̃(3)
ij (N) as a linear combination of a set of nij interpolating functions

Gij` (N) (kept fixed, see Ref. [8] for the explicit form that has been chosen) and
Hij
` (N) (to be varied)

γ̃
(3)
ij (N) =

nij−nH∑

`=1

bij` G
ij
` (N) +

nH∑

`=1

bijnij−2+`H
ij
` (N) , (4.40)

with nij equal to the number of exactly known Mellin moments of γ(3)
ij (N). We fix

the coefficients bij` by equating the values of γ(3)
ij (N) to the known moments of the

given splitting functions.
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4. In the singlet sector, we set nH = 2 and make Ñij different selections for the two
functions Hij

1 (N) and Hij
2 (N) from a list of distinct basis functions. This results in

Ñij expressions for the remainder γ̃(3)
ij (N) and, consequently, for the N3LO anoma-

lous dimension matrix element γ(3)
ij (N) through Eq. (4.39). These expressions are

used to construct the approximate anomalous dimension matrix and its associated
uncertainty. The functions Hij

` (N) have been chosen in order to reproduce the sin-
gularity structure of the anomalous dimensions in N space. Instead, the number
of varying Hij (therefore, the value of Ñij) is chosen to be larger when less exact
information is known. See Ref. [8] for a more detailed discussion.

5. In the non-singlet sector we set nH = 0, meaning that we use a single approxima-
tion and disregard its uncertainty. The reason of this choice is that its uncertainty
is very small with respect to the one of the singlet sector [8].

4.2.2 The approximate anomalous dimensions and their uncertainty

The procedure outlined so far yields an ensemble of Ñij different approximations to the
N3LO anomalous dimension, represented as γ(3),(k)

ij (N) for k = 1, . . . , Ñij . Our best
estimate for the approximate anomalous dimension is then the average of these approx-
imations

γ
(3)
ij (N) =

1

Ñij

Ñij∑

k=1

γ
(3),(k)
ij (N) . (4.41)

We account for the uncertainty in the approximation, and the resulting uncertainty
in N3LO theory predictions, using the general formalism for theory uncertainties de-
veloped in Refs. [152, 156, 157]. Specifically, we treat the uncertainty in each anomalous
dimension matrix element due to its incomplete knowledge as a source of theoretical
prediction uncertainty, independent of other uncertainty sources, and we disregard po-
tential correlations between the incomplete knowledge of individual anomalous dimen-
sions γ(3)

ij . This IHOU for N3LO terms is managed similarly to the MHOU.
Specifically, we determine the shift in the theory prediction for the m-th data point

when the central anomalous dimension matrix element γ(3)
ij (N), given by Eq. (4.41), is

replaced by each of the γ(3),(k)
ij (N) instances, treating each instance as an independent

nuisance parameter:
∆m(ij, k) = Tm(ij, k)− T̄m , (4.42)

where T̄m is the prediction for them-th data point using the best estimate from Eq. (4.41)
for the full anomalous dimension matrix, and Tm(ij, k) is the prediction obtained when
the ij matrix element of the best estimate is replaced with the k-th instance γ(3),(k)

ij (N).
We then construct the covariance matrix for theory predictions for individual data

points due to the IHOU on the ij N3LO matrix element as the covariance of the shifts
∆m(ij, k) across all Ñij instances:

cov(ij)
mn =

1

Ñij − 1

Ñij∑

k=1

∆m(ij, k)∆n(ij, k) . (4.43)

We note that we do not assign an IHOU to the non-singlet anomalous dimensions and
assume, conservatively, that there is no correlation between the different singlet anoma-
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lous dimension matrix elements. Thus, the total contribution to the theory covariance
matrix due to IHOU can be written as:

covIHOU
mn = cov(gg)

mn + cov(gq)
mn + cov(qg)

mn + cov(qq)
mn . (4.44)

The mean square uncertainty on the anomalous dimension matrix element is then
determined by treating it as a pseudo-observable, calculated as the variance

(σij(N))
2

=
1

Ñij − 1

Ñij∑

k=1

(
γ

(3), (k)
ij (N)− γ(3)

ij (N)
)2

. (4.45)

For all the details of the construction of the non-singlet and singlet anomalous di-
mensions through the procedure outlined in this section see Ref. [8], where the explicit
form of all the ingredients is written down.

4.2.3 Results: aN3LO evolution

The aN3LO anomalous dimensions discussed in the previous sections have been inte-
grated into the Mellin-space open-source evolution code EKO [149]. This code is part of
the new pipeline [114] adopted by NNPDF for producing theoretical predictions used
in PDF determination. The parameterization is formulated using a basis of Mellin space
functions that are efficient to evaluate numerically. To achieve full aN3LO accuracy, in
addition to the anomalous dimensions, the four-loop running of the strong coupling con-
stant αs(Q) and the N3LO matching conditions, which govern the transitions between
schemes with different numbers of active quark flavors, have also been implemented.

The N3LO matching conditions were initially presented in Ref. [195] and later com-
puted analytically in Refs. [196–205]. However, the a(3)

Hg entry of the matching condition
matrix remains unknown 1. This unknown entry is currently parameterized using the
first five known moments [195] and the LLx contribution, as described in Ref. [207].
These matching conditions have also been implemented in EKO, allowing for an assess-
ment of the impact of including aN3LO terms on perturbative evolution.

In Fig. 4.3, we compare the evolution of a fixed set of PDFs from Q0 = 1.65 GeV
to Q = 100 GeV at NLO, NNLO, and aN3LO. Using the NNPDF4.0NNLO PDF set as
input, the results are normalized to the aN3LO evolution. The comparisons are made
for all combinations that evolve differently, as discussed at the beginning of this section,
specifically the singlet, gluon, total valence, and non-singlet ± combinations. The x axis
is on a logarithmic scale for the singlet sector and on a linear scale for the valence and
non-singlet combinations. The relative uncertainty for the gluon and singlet is shown in
Fig. 4.4, with MHOU and IHOU separately displayed at N3LO.

In all cases, the perturbative expansion seems to converge uniformly, showing min-
imal differences between NNLO and aN3LO, except at very small x . 10−3. Here, the
singlet evolution is less pronounced at aN3LO compared to NNLO. This dip in gluon-
driven small-x evolution affects the behavior of all quark and gluon PDFs in this region.
Notably, this behavior is an all-order effect that remains consistent even after small-x
resummation. In fact, the total theory uncertainty at aN3LO is at the sub-percent level
for all x & 10−3. Therefore, not only has the MHOU become negligible, but the impact
of IHOU on PDF evolution is also only significant at very small x.

1The terms recently computed in Ref. [206] are not yet included and will be addressed in future updates.
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Figure 4.3: Comparison obtained evolving from Q0 = 1.65 GeV to Q = 100 GeV at NLO, NNLO,
and aN3LO, using NNPDF4.0 NNLO as the fixed starting PDF. The results are presented as ratios
to the aN3LO (arranged from left to right and from top to bottom) for the gluon, singlet Σ, and
the quark eigenstates V , V3, and T3 in perturbative evolution. The total theory uncertainty is
displayed in all cases, including the MHOU at NLO and NNLO, and the combined uncertainty of
MHOU and IHOU at aN3LO.

4.2.4 N3LO partonic cross sections

Determining PDFs at N3LO not only requires the splitting functions but also hard cross-
sections at the same perturbative order. Exact N3LO massless DIS coefficient functions
have been known for several years [160–163, 208, 209]. However, for massive coeffi-
cient functions, only various approximations are currently available [193, 194, 207]. For
hadronic processes, N3LO results are available for inclusive Drell-Yan production, in-
cluding both the total cross-section [154,169,170] and distributions for rapidity [176] and
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Figure 4.4: Relative uncertainty of the gluon and singlet PDFs (shown in Fig. 4.3). The MHOU is
shown in all cases, and at aN3LO the IHOU is also shown.

transverse momentum [177], though these results have not been made publicly available.
We will now explain the implementation of these corrections. First, we review the

available results on DIS coefficient functions and outline the key features of the approxi-
mations used for massive coefficient functions [193, 194]. Then, we address the N3LO
corrections for hadronic processes and explore various approaches for incorporating
these corrections into PDF determination.

N3LO corrections to massive DIS structure functions

The coefficient functions, assuming all quarks are massless, were computed at N3LO
in [160,161] for neutral-current charged-lepton scattering, with independent verification
conducted recently in [209]. The analogous results for charged-current scattering can be
found in [162, 163, 208]. The massive coefficient functions have been computed exactly
up to NNLO for photon [210, 211], Z [212, 213], and W [214] exchange (for transitions
from massless to massive states only). At N3LO, however, only partial results are avail-
able [194, 207, 215, 216], or in the limit where Q2 � m2

h [195, 196, 198, 199, 201, 217].
We employ an approximation for the N3LO term C

(3)
i,k (x, αs,m

2
h/Q

2) in the massive
coefficient functions for photon-induced DIS, disregarding the axial-vector coupling of
the Z boson and treating heavy quarks in the massless approximation for W boson ex-
change. This approximation, which is based on partial results, was initially introduced
in Ref. [207] and revisited more recently in Ref. [193]. These references use the same
exact results but differ in how they combine and interpolate them. Here, we follow the
approach of Ref. [193], and also refer to Ref. [194] for additional details. Exact results
are derived from threshold resummation and high-energy resummation, which are then
combined with the asymptotic large-Q2 limit. This ensures that the approximate massive
coefficient function matches the exact massless result as Q2/m2

h → ∞. In the methodol-
ogy of Refs. [193, 194], the massive coefficient functions are expressed as

C
(3)
i,k (x,m2

h/Q
2) = C

(3),thr
i,k (x,m2

h/Q
2)f1(x) + C

(3),asy
i,k (x,m2

h/Q
2)f2(x) , (4.46)

whereC(3),thr
i,k andC(3),asy

i,k represent the contributions from different resummation meth-
ods, and f1(x) and f2(x) are appropriate matching functions.

For massive quarks, the threshold limit is defined as x → xmax, where xmax =

Q2

4m2
h+Q2 , or equivalently, β → 0, with β ≡

√
1− 4m2

h

s and s = Q2 1−x
x representing the
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center-of-mass energy of the partonic cross-section. In this limit, the coefficient function
includes logarithmically enhanced terms of the form αns lnm β, where m ≤ 2n, due to
soft gluon emissions, as predicted by threshold resummation [218]. Additionally, there
are contributions of the form αns β

−m lnl β, with m ≤ n, resulting from Coulomb ex-
change between the heavy quark and anti-quark, which can also be resummed using
non-relativistic QCD methods [219]. At N3LO, all these contributions are known and can
be extracted from existing resummed results [207]; they are incorporated into C(3),thr

i,k .
In the high-energy limit, the coefficient function includes logarithmically enhanced

terms of the form αns lnm x where m ≤ n − 2. These terms can be determined at all or-
ders through small-x resummation at the leading logarithmic (LL) level [216], allowing
for the extraction of the N3LO expansion [207]. This result can be further refined [193,
194] by incorporating a specific class of next-to-leading logarithmic (NLL) terms related
to NLL perturbative evolution and the running of the coupling. In the approach de-
scribed in Refs. [193,194], the high-energy contributions are combined intoC(3),asy

i,k along
with the asymptotic Q2 � m2

h limit of the coefficient function within the decoupling
scheme [195, 196, 198, 199, 201, 217], while subtracting overlapping terms. This ensures
that in the Q2 � m2

h limit, the structure function computed from C
(3),asy
i,k , when com-

bined with decoupling-scheme PDFs, matches the structure function obtained when the
heavy quark mass is neglected and the heavy quark is treated as a massless parton. How-
ever, the asymptotic limit can only be determined approximately, as the term a

(3,0)
Qg in the

A
(3)
Qg matching conditions was still unknown at the time the aN3LO NNPDF4.0 PDFs set

was released. For this reason, we used an approximate result [207].
The interpolating functions used to combine the two contributions in Eq. (4.46) are

designed to meet the following criteria:

f1(x) −−−→
x→0

0, f1(x) −−−−−→
x→xmax

1 ,

f2(x) −−−→
x→0

1, f1(x) −−−−−→
x→xmax

0 ,
(4.47)

These conditions ensure that the threshold contribution disappears in the small-x limit,
and vice versa. This setup guarantees that the approximation in Eq. (4.46) remains reli-
able across a broad kinematic range in the (x,Q2) plane: C(3),asy

i,k accurately represents
the massless limit for large Q2 values and across all x, including the small-x limit, while
C

(3),thr
i,k captures the threshold limit, with x approaching xmax. The uncertainty of the

approximate coefficient function can be assessed by varying the functional forms of the
interpolating functions and the components that are not fully known. This includes the
NLL small-x resummation and the matching functions involved in the asymptotic high
Q2 limit. This uncertainty diminishes as x→ xmax, where the exact known limit is recov-
ered (with a fixed choice for the unknown constant β-independent terms), and increases
in the intermediate η region. The interpolating functions and their uncertainties are opti-
mized using the same approach at NNLO, where the full result is known. For a detailed
discussion of this construction, refer to Ref. [193].

In order to obtain the best configuration for the parameters used in the f1/2 func-
tions, the approximation has been developed at NNLO, where the exact result is known.
In this way we have found the parameters that best reproduced the exact result. After
obtaining an approximation that described in an exhaustive way the known NNLO co-
efficient functions, Eq. (4.46) has been applied to the N3LO, with no modifications for
the interpolating functions f1/2.
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Figure 4.5: A comparison is made between the exact NNLO massive gluon-initiated coefficient
function xC

(2)
2,g(η) and the approximation given by Eq. (4.46). This comparison is plotted as a

function of η, defined by Eq. (4.48), for fixed values of Q2. Results are presented for two different
Q2 values: one near the threshold atQ2 = 2m2

h (left) and another at higher scales withQ2 = 16m2
h

(right). The uncertainty in the approximate result is derived from variations in the interpolating
functions f1(x) and f2(x) used in Eq. (4.46).

This approximation at NNLO is illustrated in Fig. 4.5, where it is compared to the
exact result for the massive gluon-initiated coefficient function xC(2)

2,g (η), expressed using
the variable

η =
Q2(1− x)

4m2
hx

− 1 . (4.48)

The comparison is presented for two different Q2/m2
h ratios, one near the threshold and

another at higher energy scales. It’s important to note that as η → 0, this corresponds
to x → xmax (the threshold limit), while η → ∞ corresponds either to Q2/m2

h → ∞
for a fixed x (the asymptotic limit) or to x → 0 for a fixed Q2 (the high-energy limit).
In this comparison, the uncertainty band is generated by varying only the interpolating
functions.

The results obtained for the gluon and quark singlet coefficient functions at N3LO
are shown in Fig. 4.6, where they are compared with the approximation from Ref. [207],
each accompanied by their respective uncertainty estimates. There is a strong agreement
between the different approximations, particularly for the dominant gluon coefficient
function. The approximations align well in the asymptotic limits as η → 0 and η → ∞,
and across most of the η range. However, they show some differences in the asymptotic
large η region at fixed Q2, which corresponds to the small-x limit at fixed Q2. These
discrepancies can be attributed to the inclusion of a specific class of NLL terms in the
procedure used by Ref. [193, 194].

The uncertainty associated with the approximation can be incorporated as an addi-
tional IHOU alongside the one of the splitting functions, by adding a new component to
the theory covariance matrix. Specifically, we define

covCmn =
1

2
(∆m(+)∆n(+) + ∆m(−)∆n(−)) . (4.49)

Here, ∆m(±) represents the change in the prediction for the m-th DIS data point when
substituting the central approximation of the massive coefficient function with the up-
per or lower bounds of the uncertainty range provided in Ref. [193] and illustrated as an
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Figure 4.6: The approximate N3LO massive gluon (on the left) and quark singlet (on the right)
coefficient functions are plotted as a function of η for a fixed Q2 = 2m2

h. Our results, based on
the approximation from Ref. [193], are compared with those from the approximation provided by
Ref. [207] (KLMV).

uncertainty band in Fig. 4.6. Unlike in Eq. (4.44), we divide by the number of indepen-
dent variations without subtracting one, because the central value is not an average of
the variations and is thus considered independent. This additional contribution, given
by Eq. (4.49), is then included in the IHOU covariance matrix as an extra term on the
right-hand side of Eq. (4.44).

The effect of this additional component on the IHOU is evaluated in Fig. 4.7, which
displays the square root of the diagonal elements of the covariance matrix for all DIS
data points in our dataset. This comparison shows the IHOU both before and after in-
corporating to Eq. (4.44) the extra term from Eq. (4.49) related to the IHOU of the massive
coefficient function. It is evident that the influence of IHOUs due to perturbative evo-
lution is generally minimal, consistent with the findings discussed in this section and
depicted in Fig. 4.3. IHOUs related to splitting functions are only significant at small
x, but since the available small-x data are at relatively low scales with short evolution
lengths, their impact is limited. On the other hand, IHOUs affecting massive coefficient
functions are more notable for data involving tagged bottom and charm structure func-
tions. However, for other structure function data, the impact is moderate and mainly
significant near the heavy quark production thresholds.

4.2.5 N3LO corrections to hadronic processes

N3LO corrections to the total cross-section for inclusive neutral-current (NC) and charged-
current (CC) Drell-Yan production [169,170] are provided in the n3loxs public code [154].
These corrections are available both for on-shellW and Z bosons and as a function of the
dilepton invariant mass m``. Differential distributions for leptonic observables in these
processes have also been calculated [176, 177], but they are not publicly accessible. Cur-
rently, no N3LO calculations are available for other processes covered in the NNPDF4.0
dataset.

The ratio of the NC total cross-section calculated at successive perturbative orders is
displayed in Fig. 4.8. This ratio is evaluated using a fixed set of PDFs: NNPDF4.0 NNLO
for comparing NNLO to NLO results, and NNPDF4.0 aN3LO for comparing N3LO to
NNLO results. The results are presented in the high-mass region as a function of m``,
with binning matching that of the ATLAS 7 TeV measurement [62]. The perturbative



Combining QED with MHOU and N3LO 105

DIS 
NC

DIS 
CC

0.0

0.1

0.2

0.3

0.4

0.5

S ii |D
i|

Experimental uncertanties
Anom. Dim. only IHOU
Total IHOU

Figure 4.7: The square root of the diagonal elements of the IHOU covariance matrix for the DIS
datasets, normalized to the experimental central value Di, is presented. The IHOU values are
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Figure 4.8: The ratio of the total neutral-current (NC) Drell-Yan cross-section is plotted as a func-
tion of the NNLO/NLO and N3LO/NNLO calculations for the inclusive NC Drell-Yan cross-
section, binned by the invariant mass of the dilepton pair, m``. These ratios are computed using
the n3loxs code and are integrated over all other kinematic variables. The m`` binning matches
that of the ATLAS 7 TeV high-mass Drell-Yan measurement [62]. The same PDF set, NNPDF4.0
NNLO (for NNLO/NLO) and aN3LO (for N3LO/NNLO), is used for both the numerator and de-
nominator. The vertical bands indicate the MHOU on theK-factors, derived from scale variations.

convergence is evident, with the N3LO/NNLO ratio being closer to unity and exhibit-
ing less variation compared to the NNLO/NLO ratio. While NNLO corrections vary be-
tween +0.5% and +4%, the N3LO corrections are reduced to between−1.2% and +0.5%.

Total cross-section data are derived by extrapolating from measurements taken within
a specific fiducial region. For NC Drell-Yan production in the central rapidity region
and for dilepton invariant masses near the Z-peak, the N3LO/NNLO cross-section ratio
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Dataset Ref. ndat Kin1 Kin2 [GeV] C-factor N3LO/NNLO

ATLAS high-mass
DY 7 TeV

[62] 13 |η`| ≤ 2.1 116 ≤ m`` ≤ 1500 dσ
dm``

ATLAS Z 7 TeV
(L = 35 pb−1)

[63] 8 |η`, yZ | ≤ 3.2 Q = mZ
dσ
dm``

(66 < m`` < 150)

ATLAS Z 7 TeV
(L = 4.6 fb−1) CC

[64] 24 |η`, yZ | ≤ 2.5, 3.6 Q = mZ
dσ
dm``

(46 < m`` < 116)

ATLAS σtot
W,Z 13

TeV
[77] 3 — Q = mW ,mZ σ

Table 4.3: The LHC NC DY production datasets in the NNPDF4.0 framework for which an N3LO
K-factor has been incorporated in a variant of the standard aN3LO PDF determination are listed
here. For each dataset, we provide the published references, the number of data points, and the
relevant kinematic variables.

shows only a minor dependence on the dilepton rapidity y`` [176, 177]. However, it is
uncertain whether this holds true for off-peak or extremely high or low rapidities. As
a result, the inclusion of N3LO corrections for hadronic processes is not fully reliable at
this time. Therefore, these corrections are not incorporated into our primary analysis but
are considered in a specialized variant to evaluate their impact.

The datasets for which N3LO corrections have been applied in this variant are de-
tailed in Tab. 4.3. This includes the high-mass NC cross-section, the Z rapidity distribu-
tion in the central region for on-shellZ-production, and the totalW andZ cross-sections.
For each of these processes, the N3LO cross-section is calculated by multiplying the
NNLO result by a K-factor derived using a fixed underlying PDF set, specifically the
aN3LO NNPDF4.0 PDF set, which will be discussed later. For the rapidity distribution,
we use the same fixed K-factor as applied to the total cross-section. We exclude off-
shell or double-differential rapidity distributions (such as those from CMS), off-forward
rapidity distributions (such as those from LHCb), and low-mass total cross-sections, as
the assumption of a constant K-factor or simple fiducial extrapolation is less reliable for
these cases. The datasets are identified as in Tab. 2.4 of Ref. [4] 2.

Although we are currently unable to reliably calculate N3LO corrections for the exist-
ing LHC measurements, we aim to incorporate the complete NNPDF4.0 dataset into our
aN3LO PDF determination. To achieve this, we apply an additional uncertainty to all
data where N3LO corrections are not included. This uncertainty is similar to the MHOU
used in the NNPDF4.0MHOU determination described in Sec. 4.1.

Thus, when N3LO corrections to the hard cross-section are not included, the theoret-
ical prediction is obtained by combining aN3LO evolution with NNLO cross-sections.
This prediction is then enhanced with a theory covariance matrix, calculated by varying
the renormalization scale µR using a three-point method as outlined in Refs. [156, 157]:

covNNLO
mn =

1

2
(∆m(+)∆n(+) + ∆m(−)∆n(−)) , (4.50)

This is similar to Eq. (4.49), but here, ∆m(±) represents the change in the prediction for
the m-th data point when the coefficient functions are modified by varying the renor-

2Note that the number of data points for rapidity distributions differs here because we only consider Z
distributions.
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Figure 4.9: Similar to Fig. 4.7, this figure compares the IHOU from Eq. (4.44) with the MHOU from
Eq. (4.50), which accounts for the missing N3LO correction to the matrix element. The results are
presented for all hadronic datasets in the NNPDF4.0 collection: specifically, Drell-Yan (top), as
well as top pair, single top, single-inclusive jet, prompt photon, and dijet production (bottom).

malization scale up or down, as described in Ref. [157] and implemented in Ref. [7],
Eq. (2.9). The resulting MHOU covariance matrix is then added to the IHOU covariance
matrix as an additional term of the theory covariance matrix. Therefore, putting together
Eq. (4.44), Eq. (4.49) and Eq. (4.50), we find

covIHOU
mn = cov(gg)

mn + cov(gq)
mn + cov(qg)

mn + cov(qq)
mn + covC

mn + covNNLO
mn . (4.51)

The effect of this hadronic uncertainty is illustrated in Fig. 4.9, where we present, for
all hadronic datasets, the square root of the diagonal entries of the MHOU covariance
matrix in Eq. (4.50). This is compared with the IHOU covariance matrix Eq. (4.44) and the
experimental uncertainties, all normalized to the central theory prediction. The MHOU
is typically greater than the IHOU, suggesting that the impact of missing N3LO terms in
the hard cross-sections is more significant than the IHOU uncertainty related to N3LO
perturbative evolution. Experimental uncertainties are generally even larger.

In addition to the NNPDF4.0 aN3LO baseline PDF set derived in this manner, we
will also create an NNPDF4.0 MHOU aN3LO set, following the approach used for the
NLO and NNLO MHOU sets recently described in Sec. 4.1, see also Ref. [7]. This set will
incorporate MHOUs for both perturbative evolution and hard matrix elements, using
the methods outlined in Refs. [156, 157]. We will determine the theory covariance ma-
trix by performing combined correlated variations of renormalization and factorization
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scales with a 7-point prescription, as detailed in Ref. [7]. Specifically, scale variations
will be conducted at the perturbative order at which the expressions are computed,
namely, aN3LO for anomalous dimensions and DIS coefficient functions, and NNLO
for hadronic processes. This approach inherently produces larger scale variations and
appropriately reduces the weight of processes lacking N3LO corrections. The ability to
include processes with different perturbative orders in a single PDF determination high-
lights the benefit of incorporating MHOUs, as noted in Refs. [220, 221].

4.2.6 NNPDF4.0 at aN3LO

We now introduce the aN3LO NNPDF4.0 PDF sets. These have been developed us-
ing the dataset and methodology outlined in Ref. [4], which was employed for the LO,
NLO, and NNLO NNPDF4.0 sets presented in that work, but now extended to aN3LO.
The aN3LO results are derived using the approximate N3LO contributions that we have
discussed in this section, i.e. the splitting functions, the exact massless and approximate
massive N3LO coefficient functions and NNLO hadronic cross-sections with an added
uncertainty. Moreover, similarly to the NNPDF4.0QED and the NNPDF4.0MHOU PDFs
determinations, this work used the new theory pipeline described in Sec. 2.3 and more
in detail in Ref. [114].

Alongside the standard NNPDF4.0 aN3LO PDF set, we also introduce a variant that
incorporates MHOUs for all theoretical predictions involved in the PDF determination.
This variant is produced using the same approach described in Sec. 4.1 that is used to
develop the NNPDF4.0MHOU PDFs set [7]. To evaluate perturbative convergence and
the effects of MHOUs, we will also provide an NNPDF4.0MHOU NLO PDF set, con-
structed with the same methodology and dataset as the default NNPDF4.0 NLO PDF set
(distinct from the NNPDF4.0 NNLO dataset).

Tab. 4.4 present the number of data points and the χ2 per data point for the NLO,
NNLO, and aN3LO NNPDF4.0 fits, both with and without MHOUs. It organizes the
datasets based on the process classification outlined in Ref. [7]. Additionally, Fig. 4.10
illustrates the total χ2 per data point as a function of perturbative order.

The NLO and NNLO results without MHOUs are derived from the NLO and NNLO
NNPDF4.0 PDF sets. For the NNLO results with MHOUs, the NNPDF4.0MHOU NNLO
set from Ref. [7] is used. The NNPDF4.0MHOU NLO set, introduced here for the first
time, applies the same methodology as the NNPDF4.0MHOU NNLO set [7], but uses the
dataset from the NNPDF4.0 NLO [4]. Therefore, while the datasets with and without
MHOUs remain consistent, the NLO and NNLO datasets differ according to Ref. [4].
The N3LO dataset is the same of the NNLO dataset. In all instances, the theoretical
predictions used for computing the χ2 are generated with the updated theory pipeline.
The covariance matrix is calculated as outlined in Sec. 4.1. The N3LO predictions are
based on the aN3LO PDF sets, which utilize the same datasets and kinematic cuts as
the NNPDF4.0 NNLO PDF sets, and incorporate theoretical predictions discussed in
this section. These predictions are further enhanced with an IHOU covariance matrix
as described in detail, and a MHOU for hadronic processes where N3LO hard cross-
sections are not available, as mentioned previously.

Tab. 4.4 and Fig. 4.10 reveal that the fit quality improves as the perturbative order
increases, even when MHOUs are not included. This trend continues from NNLO to
N3LO, even though N3LO corrections are only partially implemented, with hadronic
matrix elements still computed at NNLO. This indicates that the inclusion of N3LO cor-
rections to evolution and DIS coefficient functions has a significant effect on fit quality,
aligning with the anticipated improvement associated with adding an additional per-
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NLO NNLO aN3LO

Dataset Ndat no MHOU MHOU Ndat no MHOU MHOU Ndat no MHOU MHOU

DIS NC 1980 1.30 1.22 2100 1.22 1.20 2100 1.22 1.20

DIS CC 988 0.92 0.87 989 0.90 0.90 989 0.91 0.92

DY NC 667 1.49 1.32 736 1.20 1.15 736 1.17 1.16

DY CC 193 1.31 1.27 157 1.45 1.37 157 1.37 1.36

Top pairs 64 1.90 1.24 64 1.27 1.43 64 1.23 1.41

Single-
inclusive
jets

356 0.86 0.82 356 0.94 0.81 356 0.84 0.83

Dijets 144 1.55 1.81 144 2.01 1.71 144 1.78 1.67

Prompt pho-
tons

53 0.58 0.47 53 0.76 0.67 53 0.72 0.68

Single top 17 0.35 0.34 17 0.36 0.38 17 0.35 0.36

Total 4462 1.24 1.16 4616 1.17 1.13 4616 1.15 1.14

Table 4.4: The tables show the count of data points and the χ2 per data point for the NLO, NNLO,
and aN3LO NNPDF4.0 fits, both with and without MHOUs. The datasets are organized according
to the process classification method employed in Ref. [7].

NLO NNLO aN3LO
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2 to
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N

d
at
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NNPDF4.0 no MHOU

NNPDF4.0 MHOU

Figure 4.10: The total χ2 per data point for the NNPDF4.0 fits at NLO, NNLO, and aN3LO, both
with and without MHOUs.

turbative order, similar to the enhancement observed when progressing from NLO to
NNLO.

On the other hand, when MHOUs are included, the fit quality becomes indepen-
dent of the perturbative order within uncertainties (noting that, with Ndat = 4462,
σχ2 = 0.03). This indicates that the MHOU covariance matrix estimated through scale
variation is accurately capturing the observed shifts between perturbative orders, re-
flecting the true MHOU. If this is correct, it also implies that at aN3LO, the missing
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Figure 4.11: The NLO, NNLO, and aN3LO NNPDF4.0 PDFs at Q = 100 GeV are shown. We
present the up, anti-up, down, anti-down, strange, anti-strange, charm, and gluon PDFs, all nor-
malized to the aN3LO result. The error bands represent one sigma PDF uncertainties and do not
include MHOUs on the theoretical predictions used in the fit.
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Figure 4.12: This figure is similar to Fig. 4.11, but it depicts the NNPDF4.0MHOU PDF sets. The
error bands represent one sigma PDF uncertainties, including MHOUs on the theoretical predic-
tions used in the fit.
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N3LO corrections to hadronic processes are effectively accounted for by the correspond-
ing MHOU, which is consistently included. Additionally, at aN3LO, the fit quality re-
mains consistent within uncertainties regardless of whether MHOUs are included. This
strongly suggests that the inclusion of higher-order terms in perturbative evolution and
DIS coefficient functions would not yield further improvements, meaning that with cur-
rent experimental uncertainties, methodology, and dataset, the perturbative expansion
has likely converged.

Let’s now analyze the NNPDF4.0 aN3LO parton distribution functions (PDFs). The
NLO, NNLO, and aN3LO NNPDF4.0 PDFs, both with and without MHOUs, are com-
pared in Figs. 4.11-4.12, respectively. These figures display the up, anti-up, down, anti-
down, strange, anti-strange, charm, and gluon PDFs at Q = 100GeV, normalized to the
aN3LO results, as a function of x on both logarithmic and linear scales. The error bands
represent one sigma PDF uncertainties, which include MHOUs for the MHOU sets and
exclude them for the non-MHOU sets. The same PDF sets, with and without MHOUs,
were used to compute the χ2 values presented in Tab. 4.4.

The strong perturbative convergence observed in the fit quality is also evident in the
PDFs. Notably, the NNLO PDFs are either very similar to or nearly indistinguishable
from their aN3LO counterparts. Including MHOUs enhances the alignment between
NNLO and aN3LO PDFs, bringing them almost into perfect agreement. This indicates
that the NNLO PDFs become more precise with the inclusion of MHOUs, and the aN3LO
PDFs have effectively converged, as previously discussed. However, there are some
exceptions to this stability. The charm and gluon PDFs show significant changes due
to aN3LO corrections. For the charm PDF, these corrections increase the central value
by approximately 4% around x ∼ 0.05, while for the gluon PDF, there is a reduction
of about 2-3% around x ∼ 0.005. Additionally, the inclusion of MHOUs results in an
increase in PDF uncertainties by about 1-2% for both the charm and gluon PDFs. This
adjustment makes the NNLO and aN3LO charm PDFs with MHOUs consistent within
uncertainties, and the NNLO and aN3LO gluon PDFs with MHOUs nearly consistent.

Overall, these findings indicate that aN3LO corrections are typically minimal, with
the notable exception of the gluon PDF. At the aN3LO level, the perturbative expansion
has nearly reached convergence, as evidenced by the close agreement between NNLO
and aN3LO PDFs, particularly when MHOUs are included. Additionally, MHOUs gen-
erally enhance the precision of PDFs, although their effect at aN3LO is quite limited. The
implications of these results for phenomenology discussed in detail in Ref. [8].

4.3 Combination

In the past two sections, we discussed two theoretical developments to PDFs determi-
nation: including MHOU and approximate N3LO corrections. Moreover, we discussed
the combination of the two effects. In this section we will discuss the combination of
these two effects with the inclusion of QED corrections, that we described in detail in
Chap. 3. Indeed, considering that the three theoretical advancements mentioned ear-
lier contribute independently to improving the accuracy of the extraction of the PDFs,
it makes sense to integrate them into a unified global PDF determination, following the
approach recently undertaken by the MSHT group [190, 222].

Taking advantage of the adaptability offered by the new NNPDF theory pipeline, we
introduce for the first time variants of the NNPDF4.0 global analysis that integrate these
three theoretical improvements in different combinations. Specifically, we have devel-
oped a version of NNPDF4.0QED NNLO incorporating MHOUs, as well as two versions
of NNPDF4.0 at approximate N3LO with QED corrections, one with MHOUs and one
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without. It’s important to note that, as discussed in Sec. 4.2, our aN3LO fits consistently
apply 3-point MHOUs to the hard-scattering cross-sections of hadronic processes to ac-
count for the absent N3LO contributions.

First of all we will asses the impact of the QED effects on the fit including MHOU.
Then we will discuss inclusion of QED corrections to the N3LO fit. In this case we will
study both the case in which no MHOU is included in the fit, but also the case in which
a MHOU is considered. In the end we will compare the photon obtained in these three
QED fits with the NNPDF4.0QED fit, to asses how much these new effects impact the
photon PDF obtained with the LuxQED method.

4.3.1 MHOU+QED

In order to produce the NNPDF4.0QED+MHOU fit it has been used the methodology
adopted for the QED fit described in Chap. 3, using the MHOU theory covariance matrix
described in Sec. 4.1. However, a remark is now needed. In order to perform such fit, it
has been used the theory covariance matrix used in the pure QCD PDFs determination
with MHOU, i.e. the one used for the NNPDF4.0MHOU fit. This leads to two small
inconsistencies. The first one is that such theory covariance matrix has been computed
using a pure QCD theory. However, as we already mentioned, the NNPDF4.0 dataset
has been chosen in such a way that QED corrections to the theory predictions of the data
points are completely negligible. Therefore, the error we are introducing in this way is
very small. The second inconsistency is related to the fact that the theory covariance
matrix used in the NNPDF4.0MHOU PDFs extraction uses the truncated solution of the
DGLAP equations. Instead, in the combination of QED and MHOU, we use the exact
solution, for the reasons that we are explained in Chap. 3. However, also in this case we
have seen that the differences between the two solutions are mostly at the permille level
at NNLO, with some data points that can reach at most the percent differences.

Fig. 4.13 shows the comparison for the quarks and gluon PDFs between the pure
QCD fit that includes MHOU and its QED variant. The PDFs are shown at the scale
Q = 100 GeV. We can observe that adding QED corrections to the MHOU PDFs fit gives
a very small correction to the quark PDFs. The gluon shows a larger difference at large x
values, but this can be explained with the fact that we are comparing two fits that use two
different solution method for the DGLAP equations, as it happened in the comparison
between NNPDF4.0 and NNPDF4.0QED. Moreover, we can observe that the difference
between truncated and exact solutions (that is mostly visible in the gluon) are smaller
with respect to Fig. 3.9. This is because of the fact that the inclusion of MHOU improves
the perturbative convergence of the series.

We conclude that adding QED effects to the PDFs fit that include MHOU gives a
small correction to the quarks and to the gluon since the photon PDF is very small com-
pared to the other distributions. This is exactly what we found in Sec. 3.4: adding the
QED corrections to a pure QCD fit doesn’t affect much the quarks and gluon PDFs be-
cause of the moderate size of the photon PDF.

4.3.2 aN3LO+QED

Now we will consider the combination of the approximate N3LO and QED effects and
its impact to the NNPDF4.0 methodology. As we already mentioned, in this case we will
consider two cases. In the first one we will not include MHOU in the fit. It means that we
will include a theory covariance matrix that is given only by the IHOU and by the 3-point
MHOU of the hadronic predictions whose N3LO correction is still missing, as explained
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Figure 4.13: Comparison for quarks and gluon PDFs between the MHOU fits with and without
QED effects, as a ratio plot with respect to the second. The uncertainty band corresponds to the 1σ
confidence level. The PDFs are plotted at the scale Q = 100 GeV.
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Figure 4.14: Comparison for quarks and gluon PDFs between the N3LO fits with and without
QED effects, as a ratio plot with respect to the second. The uncertainty band corresponds to the 1σ
confidence level. The PDFs are plotted at the scale Q = 100 GeV.
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Figure 4.15: Comparison for quarks and gluon PDFs between the N3LO fits including MHOU
with and without QED effects, as a ratio plot with respect to the second. The uncertainty band
corresponds to the 1σ confidence level. The PDFs are plotted at the scale Q = 100 GeV.
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Figure 4.16: Comparisons of the photon PDFs obtained in the different cases. QED compared with
QED+MHOU at NNLO (up left) and at N3LO (up right), QED at NNLO compared with QED at
N3LO without MHOU (down left) and with MHOU (down right). The plots are shown as ratio
plots and the PDFs are plotted at 100 GeV. The uncertainty band corresponds to the 1σ confidence
level.

in Sec. 4.2. This fit will be addressed as the QED+N3LO fit. In the second case instead, we
will include also the 7-point MHOU in the N3LO fit. It means that the theory covariance
matrix will include also a contribution given by the MHOU estimated from the 7-point
scale variations of all the theory predictions. As in the previous case, both the IHOU
and the MHOU covariance matrices, will be the ones used in the aN3LO NNPDF4.0 fit,
that is a pure QCD fit that uses the truncated solution for the DGLAP equations. Also in
this case, this leads to an inconsistency whose effect is completely negligible since QED
effects on theory predictions are very small and the difference between truncated and
exact solution at N3LO is even smaller than the one at NNLO.

Figs. 4.14-4.15 show the comparison between the N3LO fits with and without QED
effects, first in the case in which MHOU are not considered and then in the case in which
they are considered. The quarks and gluon PDFs are shown at the scale Q = 100 GeV.
We can observe good agreement between the pure QCD fits and their QED version. The
only exception, also in this case, is given by the gluon PDF at x values 10−2 . x . 10−1.
Again, this is explained with the fact that we are comparing two fits that use two dif-
ferent solution methods for DGLAP evolution. However, if we compare the NNLO re-
sults with the N3LO one without MHOU, i.e. we compare Fig. 3.9 with Fig. 4.14, we can
see that the difference between exact and truncated solution is smaller at N3LO than at
NNLO, as we expected since we said that the two solutions are equivalent up to higher
orders corrections and therefore it decreases as we go up with the perturbative expan-
sion. Also in this case we can observe that in the case in which MHOU is considered, the
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Figure 4.17: The perturbative convergence of Higgs production through gluon fusion and in as-
sociation with Z bosons, as well as W production at the LHC with a center-of-mass energy of√
s = 13.6 TeV, is analyzed. For the N3LO calculations, we also present predictions using the QED

variants of the NNPDF4.0 and MSHT20 aN3LO sets.

differences between exact and truncated solutions decrease since the inclusion of MHOU
improves the perturbative convergence. We conclude that, also in the case of the aN3LO
PDFs determination, the QED effects give a small correction to the pure QCD fit, because
of the small impact of the photon PDF.

We also compare the photons obtained in the four different cases, i.e. in the QED,
QED+MHOU, QED+N3LO and QED+N3LO+MHOU fits. In the two upper plots of
Fig. 4.16 we can asses the impact of the MHOU to the photon PDF both at NNLO (left)
and at N3LO (right). We can observe that it gives a very small correction that is at per-
mille level for almost all values of x with the exception of x ' 10−5 where the difference
can reach the percent level both at NNLO and at N3LO. This difference is mostly given
by the change in the shape of the quark and gluon PDFs when we include MHOU, that
is propagated into the photon PDF through the LuxQED formula, Eq. (3.1). In the two
lower plots of Fig. 4.16 we can asses the impact of the inclusion of approximate N3LO
corrections. In this case the differences are larger with respect to the previous case. In-
deed, for x ' 10−5 the photons have a difference of about 1.5% both with and without
MHOU. The reason is twofold: first of all the quarks and gluon PDFs used in the con-
struction of the photon PDF at N3LO are slightly different with respect to the ones at
NNLO; then the DIS coefficient functions at N3LO are modified by the presence of the
approximate N3LO terms that we discussed in Sec. 4.2. So, the overall effect is the one
shown in the lower plots of Fig. 4.16. Despite this difference at small x, the two com-
parisons show that for x & 10−2 the photon PDF at N3LO agrees with the one at NNLO
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within the uncertainty band, both with and without MHOU.
In conclusion, we can asses the impact of the combination of aN3LO and QED correc-

tions on the LHC phenomenology. Fig. 4.17 shows the perturbative convergence of the
inclusive cross-section of three representative processes of the LHC physics at

√
s = 13.6

TeV. We present Higgs production through gluon fusion, associated production with
Z bosons, and W+ production at NLO, NLO, and N3LO accuracy levels. For the N3LO
computations, we also provide predictions using the QED variants of the NNPDF4.0 and
MSHT20 aN3LO sets [222]. This comparison reveals that incorporating QED corrections
into the aN3LO sets results in a similar qualitative effect in both determinations, specifi-
cally, a moderate decrease in the central cross-section values, which remains comfortably
within the theoretical uncertainty range.
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CHAPTER 5

Applications to Monte Carlo event generators

“Yeah man, they call gambling a disease, but it’s the only disease where you can win
a bunch of money.”

– Norm McDonald

In this chapter we will describe how the implementation of the new theory pipeline,
described in Sec. 2.3 and the implementation of QED corrections in the NNPDF4.0 fitting
framework, described in Sec. 3, were applied for the construction of a PDFs set suitable
for the use of Monte Carlo (MC) event generators. Indeed, MC event generators require
PDFs to satisfy additional constraints than standard PDFs sets. Such constrains include
PDFs positivity down to a very low scale as Q ∼ 1 GeV, smooth extrapolation in the
small x and large x regions, and numerically stable results also in extreme regions of the
phase space for all PDFs.

MC event generators [223–226] give a complete description of the final state in par-
ticle collisions, and therefore are an essential ingredient for the interpretation of particle
physics experiments. The most used event generators for LHC physics are Pythia8 [227,
228], HERWIG7 [229, 230], SHERPA [231, 232], POWHEG [233], mg5 aMC@NLO [234], and
more recently PanScales [235–238].

In an MC event generator, PDFs [239, 240] are used not only for calculating hadronic
cross-sections through their convolution with partonic matrix elements, but also for ini-
tiating backward parton showers in the initial state and for inputting into models of non-
perturbative phenomena [241], such as the underlying event (UE), multiple parton in-
teractions (MPI), and associated soft QCD processes. For these latter applications, PDFs
must respect some additional requirements beyond those of standard PDFs. Specifically,
their use in initial-state showers necessitates that they remain non-negative down to the
perturbative cutoff at Q ' 1 GeV. Additionally, their implementation in modeling the
UE, MPI, and other low-energy QCD phenomena requires a very smooth extrapolation
to very small x and very low Q2 values, with a gluon PDF that increases rapidly in the
small x region. To avoid numerical issues during Monte Carlo integration and sampling,
PDFs must be numerically stable even in extreme regions of phase space that might be
irrelevant to phenomenology. Lastly, to align with standard parton showers, the charm
PDF must be generated perturbatively (i.e., without an intrinsic component). Moreover,
for accommodating electroweak corrections, it should be possible to include a photon
PDF γ(x,Q2) and allow for QED splittings in perturbative evolution.

Several groups [242–246] have developed variations of their LO PDF sets specifically
designed for use in MC event generators. For example, the NNPDF2.3QED LO PDFs in-
troduced in [123,124,247] were integrated into Pythia8 and served as one of the inputs
for its widely-used Monash tune [248], which is utilized in modeling non-perturbative
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QCD physics. Beyond leading order, BFKL-resummed versions of the NNPDF3.1 PDF
set, which incorporate constraints on the small-x gluon based on D-meson production
data from LHCb as discussed in [130,159,249], also meet the aforementioned criteria and
are available in Pythia8 as a separate PDF set.

In this chapter, we introduce variants of NNPDF4.0 [4, 192] at LO, and for the first
time, at NLO and NNLO, specifically designed for use in modern MC event generators.
The primary aim of these NNPDF4.0MC sets is to meet the previously discussed require-
ments while also offering the most accurate representation of the NNPDF4.0 dataset,
especially at NLO and NNLO.

5.1 Methodology

Unless otherwise stated, we use the same experimental data, theoretical calculations,
and methodology as in the recent MHOU, QED, and aN3LO variants of NNPDF4.0 [6–8].
Specifically, we utilize the new NNPDF theory pipeline [114], that we already discussed
in this thesis. The same input values for the Standard Model parameters are applied,
particularly αs(M2

Z) = 0.118 for the LO, NLO, and NNLO fits. We provide only a central
PDF, rather than a set of PDF replicas to quantify uncertainty, because with additional
constraints, uncertainties might become unreliable, and they are not essential for appli-
cations in MC event generators.

5.1.1 Positivity and perturbative charm

The positivity of MC PDFs is crucial for both initial-state showering and the modeling of
soft QCD phenomena. At LO, PDFs correspond directly to physical cross-sections and
are thus positive-definite. However, this is not necessarily the case at NLO and higher
orders, where PDFs become scheme-dependent and can be negative in certain regions of
phase space. While PDFs in the commonly used MS scheme generally remain positive at
NLO and beyond, this holds true primarily in the perturbative region, i.e., at sufficiently
high scales [32, 250, 251]. As a result, PDF positivity might not be maintained when
extrapolating to low Q values.

In the baseline NNPDF4.0 analysis, PDF positivity is enforced at the initial parametriza-
tion scale (Q0 = 1.65 GeV) for LO, and at a higher scale, Q2

pos = 5 GeV2, for NLO and be-
yond, in accordance with the approach outlined in [32, 251]. Additionally, the positivity
of certain physical observables is ensured at Q2

pos. Consequently, within the NNPDF4.0
framework, NLO and NNLO PDFs may be negative at low Q2 values, provided they
evolve to become positive atQ2 ≥ Q2

pos. Although this may occur in phase space regions
lacking direct experimental constraints or where the fixed-order leading-twist approxi-
mation is not valid, positivity remains a necessary condition for MC generators.

We begin with the perturbative charm variant of NNPDF4.0, where charm is deter-
mined by perturbative matching conditions at the matching scale µc = mc. We then
enforce the positivity of g(x,Q0) and Σ(x,Q0) at Q0 = 1 GeV by squaring the outputs
of the corresponding neural networks. This ensures that the gluon and quark singlet
PDFs are positive at Q0 = 1 GeV, and consequently remain positive for Q > Q0, due
to their growth at small x driven by perturbative QCD evolution as the scale increases.
Positivity for individual quark and anti-quark PDFs is imposed at Q2

pos = 5 GeV2, as
in the default approach. This is sufficient to ensure positivity down to Q0, both at large
x, where perturbative evolution is moderate even at low scales, and at small x, where
non-singlet PDFs vanish. This strategy results in positive-definite PDFs across the entire
(x,Q2) range relevant to MC generators at LO and NLO.
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At NNLO, the perturbative matching conditions result in a charm PDF that is nega-
tive at small x . 10−2 when Q = mc, although it becomes positive across all x values
once Q2 & 5 GeV2. Therefore, at NNLO, it is not possible to meet both the require-
ment for charm to be positive and for it to be determined by perturbative matching at
µc = mc. As we will discuss in Sect. 5.2, enforcing the positivity of the gluon at small x
at low scales is not favored by the data, and doing so leads to a slight decline in the fit
quality.

5.1.2 Extrapolation in x and Q2

General-purpose MC event generators must deliver reliable results across the widest
possible range of phase space. This demands input PDFs that exhibit smooth behavior
across a broad Q range, from around Q ' 1 GeV (for initial-state showers and non-
perturbative QCD modeling) up to Q ∼ 100 TeV (important for future particle colliders
and astroparticle physics applications), and from x ' 10−9 (relevant for forward particle
production) to large x values near the elastic limit at x = 1 (critical for high-mass new
physics searches). Since these regions often fall outside the scope of available data, a
reliable extrapolation procedure is essential.

While the extrapolation of PDFs inQ2 is determined by perturbative QCD evolution,
extrapolation in x relies on certain assumptions. In the NNPDF4.0 approach, the extrap-
olation to small and large x regions is guided by the output of a preprocessed neural
network, which is influenced by both the neural network itself and the preprocessing
function. However, extrapolation to low Q2 and large x values can lead to numerical
instabilities, both inherent and due to their representation as LHAPDF grids. Specifically,
the behavior at low Q2 is driven by evolution from higher scales, which can amplify
small differences in the initial conditions because of the increasing value of αs(Q2). At
large x, PDFs become very small, making them particularly susceptible to numerical in-
stabilities. These issues are connected, as even minor numerical differences on the order
of O(10−5) in solving the evolution equations can significantly distort PDFs in the large
x region where they nearly vanish. Although these instabilities are generally harmless
for phenomenological applications, they can cause numerical problems when PDFs are
used in MC generators.

To mitigate these instabilities and ensure that the MC PDFs remain smooth and well-
behaved across the entire range, the NNPDF4.0MC PDFs are provided as an LHAPDF
grid with a denser coverage in x specifically for the range x ∈ [0.7, 0.95]. For x & 0.95,
where PDFs become negligible, any residual fluctuations can be safely set to zero. More-
over, a dedicated Gaussian filter is used to average out instabilities that are within the
accuracy limits of the LHAPDF interpolation. To avoid issues with backward evolution,
PDFs are parametrized at Q0 = 1 GeV, eliminating the need for backward evolution. As
a result, we provide LHAPDF grids that offer interpolated values for all x ∈ [10−9, 1] and
Q ∈ [1, 106] GeV.

5.1.3 QED evolution and the photon PDF

As demonstrated in [6, 126, 130, 132, 252] and related searches, incorporating a photon
PDF along with quark and gluon PDFs has a modest impact, primarily reducing the
gluon momentum fraction by up to about 0.5% in favor of the photon. For our analysis,
we use the photon PDF γ(x,Q2) at Q = 1 GeV from the NNPDF4.0QED NNLO PDF
set [6]. This photon PDF is included as a boundary condition in the QCD⊗QED evolu-
tion of the LO, NLO, and NNLO NNPDF4.0MC PDFs, and we enforce a momentum sum
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ID Ref. evolution (Q0) Positivity (Qpos) Charm

NNPDF23 lo as 0130 qed [247] QCDLO⊗QEDLO TRN (1 GeV) g, qi, q̄i > 0 (1 GeV) pert.

NNPDF40 lo as 01180 [4] QCDLO TRN (1.65 GeV) g, qi, q̄i > 0 (1.65 GeV) fitted

NNPDF40 lo pch as 01180 [4] QCDLO TRN (1.65 GeV) g, qi, q̄i > 0 (1 GeV) pert.

NNPDF40MC lo as 01180 t.w. QCDLO TRN (1.0 GeV) g, qi, q̄i > 0 (1 GeV) pert.

NNPDF40MC lo as 01180 qed t.w. QCDLO⊗QEDLO EXA (1.0 GeV) g, qi, q̄i > 0 (1 GeV) pert.

NNPDF40 nlo as 01180 [4] QCDNLO TRN (1.65 GeV) g, qi, q̄i > 0 (
√

5 GeV) fitted

NNPDF40 nlo pch as 01180 [4] QCDNLO TRN (1 GeV) g, qi, q̄i > 0 (
√

5 GeV) pert.

NNPDF40MC nlo as 01180 t.w. QCDNLO TRN (1 GeV)
g,Σ > 0 (1 GeV)

pert.
qi, q̄i > 0 (

√
5 GeV)

NNPDF40 nlo as 01180 qed [6] QCDNLO⊗QEDNLO EXA (1.65 GeV) g, qi, q̄i > 0 (
√

5 GeV) fitted

NNPDF40MC nlo as 01180 qed t.w. QCDNLO⊗QEDNLO EXA (1 GeV)
g,Σ > 0 (1 GeV)

pert.
qi, q̄i > 0 (

√
5 GeV)

NNPDF40 nnlo as 01180 [4] QCDNNLO TRN (1.65 GeV) g, qi, q̄i > 0 (
√

5 GeV) fitted

NNPDF40 nnlo pch as 01180 [4] QCDNNLO TRN (1 GeV) g, qi, q̄i > 0 (
√

5 GeV) pert.

NNPDF40MC nnlo as 01180 t.w. QCDNNLO TRN (1 GeV)
g,Σ > 0 (1 GeV)

pert.
qi, q̄i > 0 (

√
5 GeV)

NNPDF40 nnlo as 01180 qed [6] QCDNNLO⊗QEDNLO EXA (1.65 GeV) g, qi, q̄i > 0 (
√

5 GeV) fitted

NNPDF40MC nnlo as 01180 qed t.w. QCDNNLO⊗QEDNLO EXA (1 GeV)
g,Σ > 0 (1 GeV)

pert.
qi, q̄i > 0 (

√
5 GeV)

Table 5.1: The NNPDF4.0MC PDFs presented in this work (t.w.) and their baseline counterparts.

rule that now also accounts for the photon contribution. We employ the exact-iterated
solution of the QCD⊗QED evolution equations, as implemented in EKO [149] and de-
scribed in Chap. 3.2, which provides further details. For pure QCD evolution, we use
the truncated solution, following Ref. [4], ensuring that each PDF set presented here is
based on the same form of the evolution equations solution as their default versions.

5.1.4 NNPDF4.0MC overview

Tab. 5.1 provides a summary of the settings used for the NNPDF4.0MC PDFs compared
to their baseline counterparts. It includes details such as the LHAPDF naming ID, pub-
lication reference, PDF parametrization scale, the method used for solving the evolution
equations, the positivity scale and the treatment of the charm PDF (whether data-driven
or determined by perturbative matching). In this table, qi and q̄i represent the PDFs
for light quarks (up, down, and strange) and anti-quarks, respectively, noting that, as
per [32, 251], the positivity of the charm PDF is not enforced.
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Dataset by process

NLO NNLO

ndat

QCD QCD⊗QED
ndat

QCD QCD⊗QED

BL MC BL MC BL MC BL MC

DIS NC 1953 1.35 1.37 1.38 1.54 2110 1.22 1.30 1.22 1.29

DIS CC 988 0.91 0.92 0.94 0.95 989 0.90 0.89 0.90 0.89

DY NC 669 1.58 1.84 1.67 2.04 736 1.20 1.30 1.22 1.33

DY CC 197 1.38 1.56 1.40 1.61 157 1.45 1.55 1.47 1.57

Top pairs 66 2.40 2.14 2.51 2.47 64 1.27 1.16 1.31 1.27

Single-inclusive jets 356 0.82 0.88 0.83 0.93 356 0.94 1.01 0.93 1.00

Dijets 144 1.51 1.55 1.56 1.62 144 2.01 2.01 1.94 1.93

Photon 53 0.57 0.60 0.64 0.74 53 0.76 0.67 0.74 0.68

Single top 17 0.36 0.36 0.38 0.36 17 0.37 0.38 0.39 0.40

Total 4443 1.28 1.30 1.30 1.44 4626 1.16 1.22 1.17 1.22

Table 5.2: The number of data points and the χ2 per data point for the NLO
and NNLO baseline NNPDF4.0 fits (BL), compared to their NNPDF4.0MC counterparts
(MC), with the same process categorisation as in Ref. [7]. The χ2 values are pro-
vided for the QCD-only (NNPDF40(MC) <order> as 01180) and for the QCD⊗QED
(NNPDF40(MC) <order> as 01180 qed) fits of Tab. 5.1.

5.2 The NNPDF4.0MC PDFs

In this section we will compare the NNPDF4.0MC PDFs set to its baseline NNPDF4.0
and to the NNPDF2.3QED LO PDFs used for the Monash tune [248] of Pythia8. Here
we only show some representative results; an extensive set of comparisons can be found
online in the NNPDF website.1

Tab. 5.2 summarizes the fit quality for the NLO and NNLO PDF sets detailed in
Tab. 5.1, presenting the number of data points and the χ2 per data point. LO χ2 values
are not included, as the fit quality at LO is generally poor and the specific χ2 value is not
very meaningful. For pure QCD PDFs, we observe that at NLO (NNLO), the χ2 per data
point for the baseline fit increases from 1.28 (1.16) to 1.30 (1.22), corresponding to about
1σ (3σ) in terms of the statistical variance of the χ2 distribution with ndat = 4443 (4626)
data points. Thus, the imposition of MC PDF conditions has no statistically significant
effect at NLO, but at NNLO, it leads to a slight degradation in fit quality. This is because
the rapid increase of the gluon at small x with increasing scale can result in a negative
gluon at scales Q2 . few GeV2 [251], making it challenging to ensure a positive gluon
at low scales. For the QCD⊗QED sets, a similar pattern is observed at NNLO. However,
at NLO, there is a more noticeable decline in fit quality. This is due to the fact that the
sub-leading terms included in the exact solution of the evolution equations result in a
faster perturbative evolution compared to the truncated solution, particularly when the
anomalous dimension is large, making more evident the issue of maintaining positive
gluons at low scales. Consequently, the difference in fit quality between the pure QCD
and QCD⊗QED cases at NLO reflects the impact of missing NNLO corrections.

Fig. 5.1 compares the MC and baseline LO and NLO PDFs by displaying the gluon,

1https://data.nnpdf.science/vp-public/NNPDF40MC_comparisons/

https://data.nnpdf.science/vp-public/NNPDF40MC_comparisons/
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Figure 5.1: The NNPDF4.0MC LO and NLO PDFs for the gluon, up quark, and anti-down quark
(from left to right) are compared to the NNPDF2.3LO and NNPDF4.0 NLO PDFs across three
different scales: Q = 1 GeV, 2 GeV, and 1 TeV (from top to bottom). Only the central values are
displayed in the region covered by LHAPDF.

up quark, and anti-down quark PDFs at Q = 1 GeV, 2 GeV, and 1 TeV. It is important to
note that the small-x behavior of all quark and anti-quark PDFs is similar and primarily
influenced by the singlet quark distribution. The figure shows the entire x range covered
by the NNPDF4.0MC PDFs via the LHAPDF interpolation, which spans from 10−9 to 1.
The NNPDF2.3LO set, in contrast, was only available for x ≥ 10−7, with PDFs being
held constant at x = 10−7 for smaller values. Beyond this difference, a key distinction
between the NNPDF2.3 and NNPDF4.0 LO sets is that the NNPDF4.0MC set exhibits
a qualitatively similar rise in the small-x gluon at both LO and NLO, which helps in
tuning soft QCD models within MC event generators. The primary difference between
the MC and default NLO PDFs is related to the small-x positivity of the gluon at low
scales. As the scale Q increases, the differences between the various PDF sets become
less pronounced due to perturbative evolution.

To illustrate the smoothness of the NNPDF4.0MC sets in the large-x extrapolation
region, Fig. 5.2 shows the NLO and NNLO NNPDF4.0MC PDFs for x = 0.85 as a func-
tion of scale, alongside the central values of their baseline counterparts. The Q range
displayed encompasses the entire interpolation range provided in the LHAPDF grids. All
the PDFs presented demonstrate a satisfactory degree of smoothness.

To thoroughly evaluate the differences between the MC sets and their baseline coun-
terparts, Fig. 5.3 shows the ratio of the NNPDF4.0MC NLO PDFs to the baseline PDFs,
including the 68% confidence level uncertainties for the latter. For comparison, the
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Figure 5.2: The NNPDF4.0MC NLO and NNLO PDFs for the gluon, up quark, anti-up quark, anti-
down quark, strange quark, and total charm (arranged from left to right and from top to bottom)
are compared to their baseline counterparts as a function of scale for a fixed large x = 0.85. The
Q range displayed, from 1 to 106 GeV, represents the entire interpolation range available in the
LHAPDF grids that we provide.

NNPDF4.0 NLO set with perturbative charm, as detailed in Tab. 5.1, is also presented.
In the region where x & 10−3, which encompasses most of the experimental data, the
quark MC PDFs generally fall within the uncertainty band of the baseline PDFs. How-
ever, larger discrepancies, attributable to the requirement for low-scale positivity, are
observed in the gluon PDF, particularly at small x . 10−2. These differences extend to
the other PDFs at small x, resulting in a more pronounced small-x rise in the extrapola-
tion region x . 10−3 compared to the baseline.

The findings in Fig. 5.3 suggest that the additional model assumptions used in the
MC PDFs do not significantly alter the baseline PDFs within the 1σ uncertainty range
in most of the data region. This indicates that when the cross-sections are calculated
with the NNPDF4.0MC sets, they should generally align with those derived from the
baseline PDFs. Specifically, Fig. 5.3 shows that for many PDFs, particularly sea quark
PDFs, a substantial portion of the difference between the MC and default PDFs can be
attributed to the inclusion of perturbative charm.

5.3 Impact on LHC physics

In this section we will briefly asses the phenomenological impact of the NNPDF4.0MC
PDFs set and we will study the similarities and the differences between the MC PDFs
and their baseline counterparts shown in Figs. 5.1–5.3.

First, 5.4 presents the gluon-gluon, quark-anti-quark, and quark-quark parton lumi-
nosities at the LHC with a center-of-mass energy of

√
s = 13.6 TeV, as a function of

the invariant mass of the final state, mX . These luminosities are calculated using the
same PDFs shown in Fig. 5.3 and are compared as ratios to the NNPDF4.0 baseline. The
luminosities are integrated across the full rapidity range, making them primarily influ-
enced by the PDF behavior in the central rapidity region, where x1 ∼ x2 ∼ mX/

√
s.

For 50 GeV . mX . 1 TeV, which corresponds to a medium-small x range, differences
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Figure 5.3: The NLO NNPDF4.0MC PDFs for the gluon, up quark, down quark, anti-up quark,
strange quark, and charm (arranged from left to right and top to bottom) at Q = 100 GeV are
presented as ratios to their baseline counterparts. The displayed uncertainty represents the 68%
confidence level for the baseline. Additionally, the baseline variant with perturbative charm is
included for comparison.
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Figure 5.4: The gluon-gluon, quark-anti-quark, and quark-quark parton luminosities at the LHC
with a center-of-mass energy of

√
s = 13.6 TeV are plotted as a function of the invariant mass

mX . These luminosities are computed using the same PDFs shown in Fig. 5.3 and are displayed
as ratios relative to the NNPDF4.0 baseline.

between the MC PDFs and the baseline are generally modest and are mainly noticeable
for the gluon. Specifically, the gluon-gluon luminosity shows a reduction of about 2%
with the MC PDFs compared to the baseline for 100 GeV . mX . 3 TeV. Otherwise,
variations between the NNPDF4.0 NLO PDFs and their MC counterparts are around 1%
and become more pronounced, though still within uncertainties, for mX . 100 GeV due
to the more pronounced small x rise in the MC PDFs.

We then examine representative inclusive hard cross-sections, specifically Higgs and
gauge boson production at the LHC with

√
s = 13.6TeV. These calculations are per-

formed using the ggHiggs [253], n3loxs [154], and proVBFH [167, 254] codes. In
Fig. 5.5, we compare NLO and NNLO results (both for the PDFs and the matrix ele-
ments) obtained with the MC sets against their baseline counterparts. For the baseline
sets, we also include aN3LO results using the settings from Ref. [8]. The uncertainty
shown for the MC sets reflects only the missing higher-order contributions in the matrix
element, assessed using the standard 7-point scale variation. For the baseline sets, the
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Figure 5.5: The inclusive NLO and NNLO cross-sections for Higgs production via gluon fusion,
in association with a Z boson, and through vector boson fusion (top), as well as for on-shell and
high-mass W production and on-shell Z production at the LHC with

√
s = 13.6 TeV (bottom),

are compared between the NNPDF4.0MC PDFs and the baseline. Additionally, the aN3LO result
is shown for the baseline NNPDF4.0. The uncertainty displayed reflects scale variation using the
7-point prescription for the MC PDFs, and for the baseline sets, it also includes PDF uncertainty,
combined in quadrature.

uncertainty also includes the PDF uncertainty, combined in quadrature. The moderate
differences observed align with those seen in the parton luminosities.

Next, we examine processes sensitive to soft physics, focusing on LHC differen-
tial distributions at leading order, generated using Pythia8 and analyzed with the
Rivet toolkit [255]. PDF uncertainties are not considered, and only central values ob-
tained with NNPDF2.3LO, NNPDF4.0 NLO, and NNPDF4.0MC NLO PDFs are pre-
sented. We first look at the normalized transverse momentum distribution of the Z
boson, reconstructed from bare dilepton events (electrons or muons), which is influ-
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Figure 5.6: The normalized Z boson transverse momentum (pT ) distribution at LO, calculated
using Pythia8 and Rivet, with NNPDF2.3LO, NNPDF4.0 NLO, and NNPDF4.0MC NLO PDFs.
The predictions are compared to ATLAS [256] data at

√
s = 7 TeV, using bare electron (left) or

muon (right) pairs. Error bars on the data reflect both statistical and systematic uncertainties. The
figure displays the absolute distribution (top) as well as the ratio of the theoretical prediction to
the data (bottom).

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

d
σ

/d
p4` T

[f
b]

p4`
⊥ in the rapidity region 1.0 < |y4`| < 1.5 at

√
s = 13 TeV

ATLAS Data (2020)
NNPDF23 LO
NNPDF40MC NLO
NNPDF40 NLO

0 50 100 150 200 250 300 350

p4`
T

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

M
C

/D
at

a

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

101

d
σ

/d
p T

[f
b/

G
eV

]

plead. jet
⊥ in the mass region 115 < m4` < 130 GeV at

√
s = 13 TeV

ATLAS Data (2020)
NNPDF23 LO
NNPDF40MC NLO
NNPDF40 NLO

0 50 100 150 200 250 300 350
leading jet pT [GeV]

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

M
C

/D
at

a

Figure 5.7: Same as Fig. 5.6, this figure presents the fiducial cross-section for Higgs production
at
√
s = 13TeV in the H → ZZ? → 4`(` = e, µ) decay channel. It shows the four-lepton pT

distribution for 1.0 < |y4`| < 1.5 (left) and the pT of the leading jet in events with at least one jet
in the invariant mass range 115 < m4` < 130 GeV (right), compared with ATLAS data [257].

enced by both soft and hard QCD effects. In Fig. 5.6, the Pythia8 LO predictions for
1GeV ≤ p⊥(``) ≤ 300 GeV are compared with 7 TeV ATLAS data from Ref. [256]. The
low and high p⊥ regions probe soft and hard QCD radiation, respectively. For these
normalized distributions, higher-order QCD corrections partially cancel out. The differ-
ences between PDF sets are minimal, and all sets show good agreement with the data,
except at very low p⊥ in the electron channel.

Next, we examine the fiducial cross-sections for Higgs production in theH → ZZ? →
4`(` = e, µ) decay channel. In Fig. 5.7, we compare predictions with ATLAS data col-
lected at

√
s = 13 TeV with an integrated luminosity of L = 139 fb−1 [257]. The results

cover the transverse momentum distribution of the four hardest leptons in the event, p4`
T ,
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Figure 5.8: Same as Fig. 5.6, but for the energy flow in dijet (left) and minimum-bias events with√
s = 7 TeV and 3.2 ≤ η ≤ 4.9 compared to CMS data [258].
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Figure 5.9: Similar to Fig. 5.8, this figure displays the charged-hadron transverse momentum (left)
and pseudorapidity (right) distributions in proton-proton collisions at

√
s = 7 TeV, compared to

the CMS data from [259].

within the rapidity range 1.0 < |y4`| < 1.5, and the transverse momentum of the leading
jet in the invariant mass range 115 < m4` < 130GeV. Differences between the various
PDF sets are minimal, and the predictions show good agreement with the data.

We then examine the energy flow, defined as

dE

dη
=

1

|ηmax − ηmin|

(
1

Ninel

npart∑

i=1

Eiθ(ηi > ηmin)θ(ηi < ηmax)

)
, (5.1)

where η represents the midpoint of the rapidity interval [ηmin, ηmax], Ninel is the number
of inelastic pp collisions, and npart is the number of stable particles in the event with
energy Ei. The energy flow in dijet events and minimum-bias events at

√
s = 7 TeV

in the forward region 3.2 ≤ η ≤ 4.9 is shown in Fig. 5.8, compared with the CMS data
from [258]. For the dijet sample, a pjet

⊥ > 20 GeV cut is applied. Simulations based
on NNPDF2.3LO show good agreement with the data for both dijet and minimum-bias
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events, whereas simulations using NNPDF4.0 NLO sets (both MC and baseline) tend
to underestimate the experimental measurements, indicating a possible need for a dedi-
cated tune of soft QCD physics.

Finally, in Fig. 5.9, we present the charged-hadron multiplicity distribution, differ-
entiated by pseudorapidity and transverse momentum, d2Nch/dηdp⊥. This is shown as
a function of p⊥ at a fixed rapidity of |η|= 0.3 and as a function of η integrated over
the entire p⊥ range. The predictions are compared to CMS measurements from [259],
focusing on events with p⊥ ≤ 2 GeV and |η|< 2.5 to emphasize sensitivity to non per-
turbative QCD dynamics. As with the energy flow results, the NNPDF2.3LO set offers
the best match to the experimental data, while the NNPDF4.0 sets tend to underestimate
the CMS measurements. Both the energy flow in FFig. 5.8 and the charged-hadron dif-
ferential distributions in Fig. 5.9 are sensitive to non-perturbative QCD processes, high-
lighting the need for a dedicated tune of soft QCD to achieve accurate descriptions. The
Monash 2013 tune of Pythia8 used in these simulations is based on NNPDF2.3LO,
which explains the good agreement observed with this set.



Summary and Conclusions

“There is no real ending. It’s just the place where you stop the story.”

– Frank Herbert

In this thesis we have presented different studies whose main focus was the inclu-
sion of new theoretical effects in the NNPDF4.0 fitting framework, that is the newest
release of PDFs from the NNPDF collaboration. Such studies regarded the inclusion of
QED effects, MHOU and N3LO corrections in a PDFs fit. The aim was a more precise
extraction of the PDFs from experimental data, in order to have a better accuracy in the
computation of high energy physics theoretical predictions.

In Chap. 1 we briefly presented the theoretical underground of this work, i.e. the
theory describing strong interactions, we defined the PDFs, we showed how the DGLAP
evolution equations are derived and how they are solved and in the end we showed how
to deal with massive quarks.

In Chap. 2 we described the NNPDF4.0 fitting methodology, on which the work pre-
sented in this thesis is based. In particular, we described how the PDFs are parametrized
at the initial scale, how the fit is performed, which constraints are imposed on the PDFs,
how the experimental uncertainties are included in the fit and we briefly described the
dataset used in the analysis.

In Chap. 3 we described how the QED corrections are included into a PDFs fit and
how they have been implemented in the NNPDF code. We have presented a novel de-
termination of QED PDFs using the NNPDF4.0 set of parton distributions, building on
the approach previously employed for generating the NNPDF3.1QED PDFs [130]. This
approach utilizes the LuxQED method [126, 127] to calculate the photon PDF. Our find-
ings align with earlier searches, showing that while QED effects have a modest but non-
negligible influence primarily on the gluon PDF, photon-initiated contributions are espe-
cially significant in high-mass processes like neutral-current Drell–Yan production. This
determination of PDFs was achieved using a new NNPDF pipeline designed for gen-
erating theoretical predictions [114]. Due to the integration of QED evolution into this
pipeline, particularly through the use of the EKO evolution code [149], the generation
of QED variants of NNPDF determinations is now largely automated and will become
standard in future releases. Indeed, there is generally no justification for excluding the
photon PDF, even if its impact is minor, nor for ignoring its effect on the momentum
fraction carried by the gluon.

The NNPDF4.0QED PDFs sets have been released through the LHAPDF6 [33] inter-
face:

135
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http://lhapdf.hepforge.org/ .

These sets are provided as collections of Nrep = 100 Monte Carlo replicas. In particular,
we publish the NLO and NNLO global fits, constructed with the configurations outlined
in Secs. 3.1-3.2, and labeled as:

NNPDF40 nlo as 01180 qed
NNPDF40 nnlo as 01180 qed

These sets are also available on the NNPDF collaboration website:

https://nnpdf.mi.infn.it/nnpdf4-0-qed/ .

They should be viewed as the QED PDFs version of the previously published NNPDF4.0
QCD-only PDF sets [4].

An important progression for QED PDFs is the full integration of electroweak cor-
rections in the theoretical predictions used for PDF determination. This allows for an
expansion of both the processes and the kinematic ranges that can be utilized in PDF
determination, which are currently limited by the requirement to keep electroweak cor-
rections minimal. This is particularly significant as electroweak effects become more
influential in regions of phase space sensitive to large-x PDFs, which are crucial for
searches for new physics [260, 261]. The availability of the PineAPPL interface to au-
tomated Monte Carlo generators, such as mg5 aMC@NLO, within the new pipeline [114],
will greatly facilitate this development. These advancements will contribute to achiev-
ing PDF determination with percent-level or even sub-percent-level accuracy.

In Chap. 4 we presented both the inclusion of MHOU and N3LO corrections into a
PDFs fit and then we described how they have been combined with the QED corrections.
We have introduced NLO and NNLO parton distribution sets where the PDF uncertainty
included not only the uncertainties from the data and the analysis methodology used to
derive the PDFs from the data, but also the uncertainty due to the perturbative trunca-
tion of the computations that generate the theoretical predictions compared to the data,
i.e. the MHOU. We adopted the approach developed in Refs. [156, 157], which was used
to construct the first NLO PDF sets incorporating MHOUs. This methodology can now
be extended to determine MHOUs up to N3LO, thanks to the availability of the EKO
evolution code [149], and the integration of the NNPDF code [192] with both EKO and
flexible tools for computing physical processes (such as the YADISM module [115] for
DIS) through the new theory pipeline. The MHOUs on PDFs discussed in this paper
should be regarded as an additional component of the overall PDF uncertainty. They
represent the uncertainty in the theoretical predictions used for PDF determination and
are therefore comparable to the experimental uncertainty in the data itself. These uncer-
tainties are independent of the separate MHOU associated with the hard cross-section of
the processes being predicted. Thus, to determine the total uncertainty on predictions,
one must combine the PDF uncertainty, now including the MHOU component, with
the MHOU uncertainty on the hard cross-section calculation. This hard cross-section
uncertainty is typically estimated as the envelope of a 7-point scale variation (see, for ex-
ample, Ref. [262]). Alternatively, MHOUs on the hard cross-section can be incorporated
by constructing a theory covariance matrix for the cross-section. This approach has the
advantage of accounting for the correlation between the theory uncertainty in the pro-
cess used for PDF determination and that in the hard cross-section, which may become
important if the experimental uncertainties are small and the process being predicted
was also used in PDF determination [263, 264]. This can be achieved by determining
the cross-correlation of MHO and PDF uncertainties between the predicted process and

http://lhapdf.hepforge.org/
https://nnpdf.mi.infn.it/nnpdf4-0-qed/
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those used for PDF determination [265]. In this context, it is worth noting that an alterna-
tive approach for incorporating MHOUs into predictions (one that accounts for MHOUs
on PDFs and their full correlation with MHOUs on the hard cross-sections) is to include
scale variation directly in the Monte Carlo sampling [264]. A comparative analysis of this
method with the one used in this thesis, as well as with other approaches to scale varia-
tion (such as different methods for constructing the theory covariance matrix discussed
in Sec. 4.1), will be reserved for future research.

The NNPDF4.0MHOU NNLO PDFs set is made publicly available via the LHAPDF6
interface,

http://lhapdf.hepforge.org/ .

It is published as a set of Nrep = 100 Monte Carlo replicas, and it is called

NNPDF40 nnlo as 01180 mhou

It must be considered a more precise version of the already published NNPDF4.0 NNLO
PDF set [4]. This PDF set is also made available via the NNPDF collaboration website

https://nnpdf.mi.infn.it/nnpdf4-0-mhou/ .

Moreover, we have introduced the first aN3LO PDF sets within the NNPDF frame-
work by developing a complete set of approximate N3LO splitting functions, utilizing
available partial results and known limits, along with approximate massive DIS coeffi-
cient functions. We summarized the newly released PDF sets, highlight the key find-
ings regarding their characteristics, and outline our plans for future developments. The
NNPDF4.0 aN3LO PDF sets are now accessible through the LHAPDF6 interface:

http://lhapdf.hepforge.org/ .

Specifically, we provide an aN3LO NNPDF4.0 set:

NNPDF40 an3lo as 01180

This set complements the LO, NLO, and NNLO sets from Ref. [4]. We are also releasing
NLO and aN3LO NNPDF4.0MHOU sets:

NNPDF40 nlo as 01180 mhou
NNPDF40 an3lo as 01180 mhou

These sets expand upon the NNLO NNPDF4.0MHOU PDF set that we discussed before.
They incorporate the MHOU on the processes used for PDF determination into the PDF
uncertainty, while otherwise remaining consistent with the default sets, allowing for
direct comparison. All these sets are also available on the NNPDF Collaboration website,

https://nnpdf.mi.infn.it/nnpdf4-0-n3lo/ .

We have conducted an initial evaluation of these PDF sets by comparing them with their
NLO and NNLO counterparts, both with and without MHOUs. Our key findings are as
follows:

• All PDFs show good perturbative convergence, with differences decreasing as the
perturbative order increases. The aN3LO results consistently align with the NNLO
within the uncertainties.

http://lhapdf.hepforge.org/
https://nnpdf.mi.infn.it/nnpdf4-0-mhou/
http://lhapdf.hepforge.org/
https://nnpdf.mi.infn.it/nnpdf4-0-n3lo/
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• For quark PDFs, the difference between NNLO and aN3LO results is minimal,
indicating that, given the current data and methodology, the influence of higher-
order corrections is negligible.

• For the gluon PDF, a more noticeable shift is observed between NNLO and aN3LO,
highlighting the importance of including aN3LO for precision phenomenology.

• Including MHOUs enhances perturbative convergence, primarily by shifting cen-
tral values at each order closer to the higher-order result, with this adjustment
diminishing as the perturbative order increases.

• With the inclusion of MHOUs, the fit quality becomes nearly independent of the
perturbative order, and PDF uncertainties generally decrease (or remain stable)
due to improved data compatibility.

• The effect of MHOUs at aN3LO is negligible for quarks but more significant for the
gluon PDF.

Overall, these findings emphasize the importance of incorporating aN3LO corrections
and MHOUs for achieving sub-percent accuracy in precision phenomenology.

In the end we have shown how to combine MHOU and N3LO effects with QED
corrections. The PDFs sets are available through the LHAPDF6 interface and are labeled
as

NNPDF40 nnlo as 01180 qed mhou
NNPDF40 an3lo as 01180 qed mhou

The differences between the PDFs sets with and without QED effects are minimal, as we
found comparing NNPDF4.0QED with NNPDF4.0, confirming that overall, QED effects
are a percent correction on a QED fit. Moreover, the different photons agree beyond
percent accuracy for x & 10−3, while at very small x may differ by few percent.

In Chap. 5 we showed how the implementation of the new theory pipeline and of
QED corrections has been applied for the construction of Monte Carlo PDFs, i.e. PDFs
sets used for Monte Carlo event generators. The NNPDF4.0MC PDFs introduced in
this work meet the requirements of event generators not only at LO but also at NLO
and NNLO accuracy. The NLO and NNLO sets offer a robust description of the global
dataset while minimizing differences compared to baseline sets, ensuring their reliabil-
ity for calculating hard cross-sections at the LHC and other facilities. This allows the
combination of the precision and accuracy of global PDF sets at NLO and NNLO with
the usability of these PDFs in generators for initial-state radiation and modeling of soft
QCD processes. To ensure agreement with data for non-perturbative processes like the
underlying event, pileup, and low-pT radiation, the soft QCD models specific to each
event generator will need to be tuned using these new NNPDF4.0MC PDFs, especially
considering their behavior in low-x physics, which is a key component of tuning mod-
els. Dedicated tunes will be necessary for the NNPDF4.0MC PDF sets to be instrumental
in the development of a new generation of Monte Carlo codes with higher perturbative
accuracy. To this end, we plan to collaborate with event generator developers to inte-
grate NNPDF4.0MC into their frameworks and produce dedicated tunes for soft QCD
physics, enabling the comprehensive simulation of LHC processes, from soft to perturba-
tive regions, within a single physics model. The NNPDF4.0 MC sets are made available
through the LHAPDF6 interface, and the different fits are labeled as presented in Tab. 5.1,
and the NNPDF Collaboration website.



https://nnpdf.mi.infn.it/nnpdf4-0-mc/ .

Regarding the future developments of the NNPDF methodology, given that there
is no reason to neglect QED, MHOU and N3LO effects, they will be included by de-
fault in the NNPDF fits. The advancements made in various aspects of the NNPDF
analysis framework, as discussed in this thesis, will be included in NNPDF4.1, an up-
dated global fit scheduled for release in 2025. This new release will incorporate QED
effects, MHOUs, and aN3LO corrections, and will feature a substantially larger dataset,
including high-precision LHC measurements from the entire Run II luminosity. By ex-
tending the PineAPPL grids to NNLO fixed-order calculations, NNPDF4.1 will pro-
vide a global PDF determination without relying on the QCD K-factor approximation
at NNLO. Additionally, the update will benefit from methodological enhancements, in-
cluding advanced hyperparameter optimization techniques based on estimators derived
from the complete PDF probability distributions. The implementation of NNPDF4.1
on GPU architectures will also significantly reduce computational overhead, facilitating
more efficient and innovative PDF studies.

https://nnpdf.mi.infn.it/nnpdf4-0-mc/




APPENDIX A

Attempts to construct a truncated solution of DGLAP
equations in presence of two running couplings

In this appendix we will describe the attempts to construct a truncated solution for
mixed QED⊗QCD DGLAP equations and the reason why this is not possible in an
analytical way. In fact, as we already mentioned, a truncated solution is still possible
adopting numerical techniques, like the so-called “epsilon trick”, as it has been done for
NNPDF3.1QED [130]. However, such approach exhibits numerical instability and for
this reason we chose not to adopt it.

As we discussed in Sec. 1.6, perturbative solutions of equations of the form

µ2 d

dµ2
fi = −

(
asγ

(1,0)
ij + a2

sγ
(2,0)
ij + . . .

)
fj , (A.1)

are based on the observation that at LO it can be solved exactly, with the solution being
the one given in Eq. (1.123). Observe that we are using the convention of Eq. (3.13) for
the anomalous dimensions. In order to find an expanded solution at NLO we can write
the ansatz

fi = f
LO,i + asfNLO,i , (A.2)

and impose that it is solution of the equation

d

dt
fi = −

(
asγ

(1,0)
ij + a2

sγ
(2,0)
ij

)
fj . (A.3)

Inserting Eq. (A.2) into Eq. (A.3) we obtain

d

dt
f

NLO,i = −as
(
δijβ

(2,0)
QCD
− γ(1,0)

ij

)
f

NLO,j − asγ(2,0)
ij f

LO,j +O(a2
s) , (A.4)

with t = logµ2. Considering the matrixR that diagonalizes γ(1,0)
ij , i.e.

γ
(1,0)
D = Rγ(1,0)R−1 , (A.5)

and defining

f ′
NLO,i = RijfNLO,j , (A.6)

γ′(2,0) = Rγ(2,0)R−1 , (A.7)

fD
LO,i = RijfLO,j = Rij

(
eγ

(1,0)L
)
jk
R−1
kl Rlmf0,m =

(
eγ

(1,0)
D L

)
ij
f ′0,j , (A.8)
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with L = log
(
as
a0
s

)
/β(2,0)

QCD
, we can write that

d

dt
f ′

NLO,i = −as
(
δijβ

(2,0)
QCD
− γ(1,0)

D,ij

)
f ′

NLO,j − asγ
′(2,0)
ij fD

LO,j +O(a2
s) . (A.9)

It means that with a basis rotation we have decoupled the components of f ′
NLO

, so that
Eq. (A.9) can be solved. Observe that this approach works since the rotation matrix R
does not depend on t, i.e. on µ, but only on the Mellin space variable N . This solution is
equivalent to the one presented in Sec. 1.6.

In the case in which we consider QED corrections to the anomalous dimensions,
Eq. (A.1) reads

µ2 d

dµ2
fi = −

(
asγ
′(1,0)
ij + γQED

ij + a2
sγ

(2,0)
ij + . . .

)
fj , (A.10)

with γQED and γ′(1,0)
ij defined as in Eqs. (3.60-3.61). For simplicity we are neglecting the

running of aem. If now we consider the LO solution as the one given in Eq. (1.123), i.e. we
treat the QED corrections as NLO corrections, and we make the same ansatz of Eq. (A.2)
we obtain
d

dt
f

NLO,i = −as
(
δijβ

′(2,0)
QCD

− γ′(1,0)
ij

)
f

NLO,j − asγ(2,0)
ij f

LO,j − γQED
ij f

NLO,j +O(a2
s) , (A.11)

with β′(2,0)
QCD

defined according to Eq. (3.62). It is clear now that performing the rotation
in Eq. (A.6) doesn’t decouple the components of fNLO because of the non commutativity
of γ(1,0)

ij and γQED
ij . This argument shows that it is not possible to apply the standard

truncated solution to the mixed QCD⊗QED evolution because of the presence of two
couplings. In the case in which we consider the running of aem the situation is even more
complicated. In order to solve this problem we may try to include the QED corrections
into the LO expression and to treat the two couplings independently trying an expansion
in both as and aem. However, in this case we would have that the LO term is given by

fLO(Q2) = P exp

(
−
∫ Q2

Q2
0

dµ2

µ2

(
as(µ

2)γ(1,0) + aem(µ2)γ(0,1)
))

f(Q2
0) , (A.12)

that does not admit an analytic solution because of the non commutativity of γ(1,0) and
γ(0,1).

The failure of the standard truncated solution in the QCD⊗QED case can be observed
when we try to apply the method described in Sec. 1.6 in presence of QED corrections.
First of all we will consider the case of fixed aem. In this case Eq. (1.124) becomes

d

das
~f =

(
RQED

a2
s

+
R(0)

as
+R(1) +O(as)

)
· ~f , (A.13)

with

RQED =
γQED

β
′(2,0)
QCD

, (A.14)

R(0) =
γ(0)

β
′(2,0)
QCD

− b1RQED , (A.15)

R(1) =
R(1)

β
′(2,0)
QCD

+ (b21 − b2)RQED , (A.16)
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and similarly for the higher orders. The presence of the term proportional to O(a−2
s ) is

what breaks the ansatz in Eq. (1.127): indeed, when we insert that ansatz in the DGLAP
equation, it does not generate a term ofO(a−2

s ) to be compared with the one in Eq. (A.13).
For this reason the truncated solution described in Sec. 1.6 fails when applied to the
QCD⊗QED case. Also in this case if we consider the running of aem the situation is even
more complicated since we have to insert the LO QED term inside the definition of LO
solution, resulting in Eq. (A.12), that cannot be solved in an analytical way.





APPENDIX B

NNPDF4.0 truncated vs exact solution

In this appendix we will quantify the impact of the choice of solution of the DGLAP
equations on the NNPDF4.0 PDFs determination. Indeed, in Sec. 1.6 we have seen that
there are two possible kind of solutions to PDFs evolution equations, i.e. truncated and
exact. Both of them are approximate solution and therefore they will not provide results
that are numerically identical. However, the two solutions provide results that are the
same up to higher orders. It means that the differences between the two solutions de-
crease as we increase the perturbative order. Hence, we expect that the two solutions
provide results that at NNLO are much more in agreement with respect to NLO. To this
goal we have performed a pure QCD PDFs fit both at NLO and at NNLO using the exact
solution in DGLAP evolution, instead of the truncated one that is used for NNPDF4.0.
For the computation of the theory predictions using the two different evolutions we have
used the new theory pipeline described in Sec. 2.3.

The statistical indicators comparing the fits using respectively truncated and exact
solution are compared in Tab. B.1 both at NLO and at NNLO. We can observe that at
NLO the exact solution slightly deteriorates all the parameters of the fit, while at NNLO
they are almost unchanged. Indeed, as we already discussed, the differences between the
two solutions become smaller as we increase the perturbative accuracy of the splitting
functions.

In Figs. B.1-B.4 there are the comparisons between the different PDFs sets, both at
NLO and at NNLO and both at fitting scale and at 100 GeV. It is evident that the PDFs

NLO QCD NNLO QCD

Truncated solution Exact solution Truncated solution Exact solution

χ2 1.26 1.30 1.17 1.17

〈Etr〉rep 2.41 ± 0.06 2.46 ± 0.07 2.28 ± 0.05 2.26 ± 0.06

〈Eval〉rep 2.57 ± 0.10 2.62 ± 0.11 2.37 ± 0.11 2.34 ± 0.10〈
χ2

〉
rep

1.29 ± 0.02 1.34 ± 0.02 1.20 ± 0.02 1.19 ± 0.01

〈TL〉rep 12900 ± 2000 12600 ± 2000 12400 ± 2600 12100 ± 2500

φ 0.156 ± 0.006 0.164 ± 0.005 0.153 ± 0.005 0.147 ± 0.005

Table B.1: Comparison of statistical indicators for a set of 100 NNPDF4.0 NNLO PDF replicas
generated with the new theory pipeline and the published NNPDF4.0 NNLO 100 replica set.
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Figure B.1: Comparison between the NNPDF4.0 determinations at NLO using respectively the
truncated (default) and the exact solutions to DGLAP equations. Gluon and up, anti-up, down,
anti-down and strange quarks are shown at fitting scale as a ratio to the central value of the trun-
cated solution.

are statistically indistinguishable at fitting scale, with slightly larger differences at NLO,
as we expected. At 100 GeV instead, the NLO fits start to differ because of the two
different solution methods, while the NNLO fits are almost identical for x ≥ 10−3. At
smaller x values, the two NNLO fits begin to differ at the half-sigma level, with the
maximum differences reaching the one-sigma level for the gluon.

This aligns with the fact that the exact and truncated solutions differ due to higher-
order perturbative corrections, which exceed the NNLO precision of the calculation. It
is well established that at small x, perturbative convergence deteriorates because high-
energy logarithms require resummation for accurate PDF determination [159]. The qual-
itative behavior of the PDFs depicted in Fig. B.4 supports this explanation: the exact
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Figure B.2: Comparison between the NNPDF4.0 determinations at NLO using respectively the
truncated (default) and the exact solutions to DGLAP equations. Gluon and up, anti-up, down,
anti-down and strange quarks are shown at 100 GeV as a ratio to the central value of the truncated
solution.

solution exponentiates a set of sub-leading small-x logarithms, while the truncated so-
lution linearizes them. Consequently, in the small-x region, where data is lacking, these
contributions cause a more pronounced increase in the gluon, subsequently affecting the
quark-anti-quark sea.

In the end, we conclude that, at least at NNLO, the PDFs fits do not strongly depend
on the method for solving the DGLAP equations in the most of x range, with some
differences that arise due to evolution at small values of x. At NLO instead there is still
some discrepancy between the two evolution strategies that are visible at fitting scale
but mostly at larger scales because of the evolution.
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Figure B.3: Comparison between the NNPDF4.0 determinations at NNLO using respectively the
truncated (default) and the exact solutions to DGLAP equations. Gluon and up, anti-up, down,
anti-down and strange quarks are shown at fitting scale as a ratio to the central value of the trun-
cated solution.
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Figure B.4: Comparison between the NNPDF4.0 determinations at NNLO using respectively the
truncated (default) and the exact solutions to DGLAP equations. Gluon and up, anti-up, down,
anti-down and strange quarks are shown at 100 GeV as a ratio to the central value of the truncated
solution.





APPENDIX C

Dependence of the PDFs on the fitting scale

In Sec. 2.1 we have shown that in order to extract the PDFs from experimental data, we
need to parametrize them at an initial scale Q0, see Eqs. (2.1-2.2) and Eq. (2.3), since the
PDFs at higher (or lower) scales can be obtained through DGLAP evolution. The choice
of the fitting scale Q0 is somehow arbitrary and PDFs determinations done with differ-
ent values of Q0 should be compatible within the uncertainties. However, some choices
are better than others. First of all, we observe that the differences in PDFs extracted at
different scales are given by higher orders terms. Therefore, as we vary Q0 a change in
the values of the PDFs will be observed, and it will increase for values ofQ0 that are very
far apart. Then, we know that DGLAP evolution shrinks the PDFs, in the sense that if we
evolve initial conditions that are very distant, the percent difference of the evolved PDFs
will decrease. It means that if we perform a fit at a high scale, our fitting algorithm will
have to choose the best configuration between curves that are very close to each other.
This will result in a worse performing fitting algorithm that may take more time to con-
verge (or not converge at all). Last, in Chap. 2 we have said that the hyperparameters
of the NNPDF4.0 fitting algorithm have been selected through a procedure called hy-
peroptimization. Such optimization has been performed setting Q0 to its default value
of Q0 = 1.65 GeV. Therefore, varying Q0 we may need to re-hyperoptimize since the
shapes of the PDFs will change due to DGLAP evolution. Moreover, if we move Q0

below the mass of the charm or above the mass of the bottom the shapes of the PDFs
will also be modified by the matching conditions, see Sec. 1.8, and we may expect that
the hyperoptimization performed on the default NNPDF4.0 does not apply on the new
PDFs shape. For these reasons we expect that as we vary Q0 the PDFs will start differing
but still being compatible within the uncertainties, while at a certain point the algorithm
will break down giving results that are not compatible anymore with the default setting
of Q0.

As a first step we started varying Q0 between mc = 1.51 GeV and mb = 4.92 GeV
in order to check that the results are stable within a given flavor number scheme (in
this case nf = 4). Figs.C.1-C.5 show the comparison between the fit performed with
the default value of the fitting scale, i.e. Q0 = 1.65, and fits performed with Q0 =
1.52, 2, 3, 4, 4.9 GeV. We can observe that for the values of Q0 that are closer to 1.65 GeV,
i.e. Q0 = 1.52, 2 GeV, the results are totally compatible with the default fit, with the dif-
ferences below the percent level. As we increase the fitting scale, the differences with
respect to the default fit increase, especially at small x. This is related to what we dis-
cussed earlier: different choices of the fitting scale should yield the same result up to
higher orders differences and, being the PDFs band narrower at larger scales due to the
evolution, the fitting code has more difficulties in finding the best configuration for the

151



152

10 4 10 3 10 2 10 1

x

0.985

0.990

0.995

1.000

1.005

1.010

1.015
Ra

tio
 to

 Q
0=

1.
65

 G
eV

u at 100 GeV
Q0=1.65 GeV
Q0=1.52 GeV

10 4 10 3 10 2 10 1

x

0.98

0.99

1.00

1.01

1.02

Ra
tio

 to
 Q

0=
1.

65
 G

eV

d at 100 GeV
Q0=1.65 GeV
Q0=1.52 GeV

10 4 10 3 10 2 10 1

x

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

Ra
tio

 to
 Q

0=
1.

65
 G

eV

s at 100 GeV
Q0=1.65 GeV
Q0=1.52 GeV

10 4 10 3 10 2 10 1

x

0.9925

0.9950

0.9975

1.0000

1.0025

1.0050

1.0075

1.0100

Ra
tio

 to
 Q

0=
1.

65
 G

eV

g at 100 GeV
Q0=1.65 GeV
Q0=1.52 GeV

Figure C.1: Comparison between the up, down, strange and gluon PDFs fitted at Q0 = 1.52 GeV
(orange) and the defaultQ0 = 1.65 (green). The PDFs are shown atQ = 100 GeV and the plots are
given as ratio plots with respect to the default value of Q0, i.e. Q0 = 1.65. The uncertainty band
corresponds to the 1σ uncertainties.
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Figure C.2: As Fig. C.1 but for Q0 = 2 GeV.



Dependence of the PDFs on the fitting scale 153

10 4 10 3 10 2 10 1

x

0.985

0.990

0.995

1.000

1.005

1.010

1.015

Ra
tio

 to
 Q

0=
1.

65
 G

eV

u at 100 GeV
Q0=1.65 GeV
Q0=3.0 GeV

10 4 10 3 10 2 10 1

x

0.98

0.99

1.00

1.01

1.02

1.03

Ra
tio

 to
 Q

0=
1.

65
 G

eV

d at 100 GeV
Q0=1.65 GeV
Q0=3.0 GeV

10 4 10 3 10 2 10 1

x

0.90

0.95

1.00

1.05

1.10

Ra
tio

 to
 Q

0=
1.

65
 G

eV

s at 100 GeV
Q0=1.65 GeV
Q0=3.0 GeV

10 4 10 3 10 2 10 1

x

0.990

0.995

1.000

1.005

1.010

Ra
tio

 to
 Q

0=
1.

65
 G

eV

g at 100 GeV
Q0=1.65 GeV
Q0=3.0 GeV

Figure C.3: As Fig. C.1 but for Q0 = 3 GeV.
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Figure C.4: As Fig. C.1 but for Q0 = 4 GeV.
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Figure C.5: As Fig. C.1 but for Q0 = 4.90 GeV.

Q0 χ2 〈Etr〉rep 〈Eval〉rep

〈
χ2
〉

rep
〈TL〉rep φ

1.65 GeV (default) 1.171 2.28 2.37 1.20 12400 0.153

1.52 GeV 1.171 2.29 2.39 1.20 12300 0.155
2.0 GeV 1.170 2.26 2.35 1.19 12300 0.152
3.0 GeV 1.168 2.26 2.35 1.19 12800 0.150
4.0 GeV 1.170 2.26 2.35 1.19 12900 0.148
4.9 GeV 1.174 2.26 2.35 1.20 12600 0.148

Table C.1: Comparison of statistical indicators for a set of 100 NNPDF4.0 NNLO PDFs replicas
generated with the default choice of Q0 and with Q0 = 1.52, 2, 3, 4, 4.9 GeV.

PDFs to agree with experimental data. Moreover, the larger differences are observed in
the small x region, where there are no data. Therefore, there is no experimental value to
constrain the PDFs in that region.

If we study the fit quality of the different fits in Tab. C.1 we can observe that the sta-
tistical indicators are almost unchanged for the different fits. The χ2 shows a very small
worsening as we increase Q0. This is related to the fact that, as we already discussed,
at large Q0 the fitting algorithm has more difficulties in finding the best configuration in
the PDFs space. This behavior is observer also in the training lengths: at large Q0 the
fit takes slightly longer to converge. However, these differences with the default fit are
minimal despite a larger differences in the PDFs. This is due to the fact that the PDFs
change mainly in regions in which there are no data to constrain them. In the end, we
conclude that varying Q0 between the mass of the charm and the mass of the bottom,
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Figure C.6: Comparison between the fits obtained above (Q0 = 1.52 GeV, green) and below
(Q0 = 1.50 GeV, orange) the charm threshold. The PDFs are plotted at 100 GeV and the plots
are displayed as ratio plots with respect to the fit with Q0 = 1.52 GeV.

Q0 χ2 〈Etr〉rep 〈Eval〉rep

〈
χ2
〉

rep
〈TL〉rep φ

1.50 GeV 1.166 2.26 2.34 1.19 13300 0.158
1.52 GeV 1.171 2.29 2.39 1.20 12300 0.155

4.90 GeV 1.174 2.26 2.35 1.20 12600 0.148
4.93 GeV 1.173 2.27 2.35 1.20 12900 0.150

Table C.2: Comparison of statistical indicators for a set of 100 NNPDF4.0 NNLO PDFs replicas
generated with the fitting scale below and above the charm and bottom thresholds.

yields results that are fully compatible with the default choice of NNPDF4.0, with some
differences that arise mainly in region where there are no data to constrain the PDFs.

The next thing we want to check is if crossing the charm or bottom threshold gives
further problems to the fitting algorithm. Indeed, we expect that applying the matching
conditions slightly changes the shape of the PDFs below and above the thresholds. This
may result in problems for the fit since, as we said in Chap. 2, the fitting algorithm has
been optimized on the PDFs at Q0 = 1.65 GeV. Therefore, if applying the matching
conditions, modifies such shapes in a considerable way, we may need to hyperoptimize
again the hyperparameters of the neural network, to be able to have the same efficiency
in the fitting procedure.

Figs. C.6-C.7 show the comparisons of the fits performed with the fitting scale below
and and above the charm and bottom thresholds, respectively. The values of Q0 that
have been adopted are Q0 = 1.50 GeV and Q0 = 4.93 GeV (we remind that mc = 1.51
GeV and mb = 4.92 GeV). In the case of the charm threshold we can observe very good
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Figure C.7: Comparison between the fits obtained above (Q0 = 4.93 GeV, orange) and below
(Q0 = 4.90 GeV, green) the bottom threshold. The PDFs are plotted at 100 GeV and the plots are
displayed as ratio plots with respect to the fit with Q0 = 4.90 GeV.

agreement in the PDFs, with the differences that are at the sub-percent level in all the x
range, with the exception of the very small x values, where they reach the percent level.
Observe that in Fig. C.6 we showed the charm PDF instead of the strange, as we where
doing in the other plots of this appendix, in order to show that the charm PDF is not
affected by performing the fit below mc. Indeed, the differences in the two charms are
below the percent level. Since, in this case, what we are fitting is exactly the intrinsic
charm component, and not the sum of intrinsic and perturbative parts, as it happens
performing the fit above mc, we conclude that the fitting algorithm is able to correctly
fit the charm in the two configurations. For the bottom threshold, the agreement is even
better since it can be observed that the PDFs bands are completely overlapped. The
slightly larger discrepancies observed in the case of the charm can be explained with the
fact that at those scales, the value of the strong coupling isn’t completely in a perturbative
regime and therefore it results in larger uncertainties.

Tab. C.2 compares the statistical indicators of these fits with the ones immediately
above (or below) the heavy quark thresholds. We can observe that all the values are
compatible with the fits done in the nf = 4 scheme. It is interesting to observe that the
χ2 of the fit done below the charm threshold is decreased of a considerable amount (but
still being compatible with the one of the fit at Q0 = 1.52 GeV).

We conclude that performing the PDFs fits for values of Q0 that are in a different
flavor number scheme with respect to the default one does not affect the quality of the
fit and does not change the shapes of the PDFs. Therefore, applying the matching condi-
tions to the PDFs doesn’t change their shape in a considerable way, such that the fitting
algorithm has to be re-hyperoptimized in order to perform well and fit the PDFs.

After concluding that applying the matching conditions does not worsen the quality
of the fit, and therefore that the main difference comes from the choice of the value of
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Figure C.8: As Fig. C.1 but for Q0 = 10 GeV.

Q0 χ2 〈Etr〉rep 〈Eval〉rep

〈
χ2
〉

rep
〈TL〉rep φ

1.65 GeV (default) 1.171 2.28 2.37 1.20 12400 0.153

10 GeV 1.972 2.85 2.97 2.0 13100 0.151

Table C.3: Comparison of statistical indicators for a set of 100 NNPDF4.0 NNLO PDFs replicas
generated with the default choice of Q0 and with Q0 = 10 GeV.

Q0 (and not from the nf scheme in which it is), we can perform a last check increasing
again Q0 and see if the fitting algorithm breaks down. For this reason we performed a
last fit with Q0 = 10 GeV. Fig. C.8 shows the comparison between the PDFs obtained
in this case with the default choice of Q0. We can observe larger differences in all the
x range for almost all the PDFs. As we explained previously, this is both because of
differences coming from higher orders and for the difficulties that the fitting code has
to fit the optimal configuration at a high scale. Tab. C.3 shows the statistical parameters
of the fit at Q0 = 10 GeV and compares them with the ones at Q0 = 1.65 GeV. We can
observe a large worsening of all the parameters but in particular of the χ2. We conclude
that the fitting algorithm is not able anymore to efficiently perform the fit at such an
high scale. Therefore, the optimal choice of the fitting scale for the PDFs is choosing Q0

at small scales, close to the charm threshold (both above or below).
With this study we conclude that, investigating the PDFs dependence on the choice

of the parametrization scale Q0, we have found that keeping it at low values is the most
optimal choice since the fit is performed efficiently, with a small value of the χ2. Cross-
ing heavy quarks thresholds does not worsen the quality of the fit since fit performed



158

slightly above or below a certain threshold provide results that are completely compat-
ible within the uncertainties. However, increasing the value of Q0 too much breaks the
algorithm since the fit cannot be performed efficiently any longer and provides results
that do not describe experimental data as good as fits done at a lower scale.
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