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Introduction

The Standard Model (SM) is a Quantum Field Theory (QFT) that describes the elementary par-
ticles and the fundamental forces between them (strong, weak and electromagnetic). According
to the SM, the basic constituents of matter are spin 1/2 particles (fermions), that can be divided
into quarks and leptons, considering their interactions; whereas, forces are mediated by gauge
bosons, particles with integer spin. The SM is based on the following group of symmetry:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (1)

the first component is linked to the strong interaction, while the second and third ones are
linked to the electro-weak interaction. The electromagnetic interaction is described by Quantum
Electrodynamics (QED), then unified with the weak interaction in the Glashow-Salam-Weinberg
theory: according to this gauge theory, leptons and quarks interact through the weak interaction,
mediated by the Z/W± bosons, and the electromagnetic force, mediated by the photon (which is
massless). The introduction of the Higgs boson and the so-called Higgs mechanism explain how
fermions and gauge bosons can acquire mass through the spontaneous symmetry breaking (SSB)
of the gauge group SU(2)L ⊗ U(1)Y .

This thesis discusses topics in Quantum Chromodynamics (QCD), which is the theory that
describes the strong interaction: the particles that interact through this force are the quarks
(fermions) and the gluons (gauge bosons); these particles cannot be directly observed alone, but
they only exist in bound states, called hadrons. QCD is a non-abelian gauge theory, based on the
SU(3)C symmetry group. An important property of QCD is the so-called asymptotic freedom:
the coupling constant αS of the strong force becomes small for high energy, in other words the
strength of the interaction decreases as the energy of process increases; therefore, in the high-
energy region, the theory can be treated in a perturbative way, and this leads to the so-called
perturbative QCD.

Particle colliders have been and are extremely useful for the development of perturbative
QCD, as they can reach very high energies: nowadays, these machines can accelerate and collide
particle beams with a centre-of-mass energy up to the order of 10TeV. The electron-positron
annihilation and the deep inelastic scattering between a lepton and an hadron are two interesting
processes from this point of view. In this thesis we consider an electron-positron scattering
process, narrowing the focus to events with QCD final-state radiation. The analysis of hadron
production in this process permits various tests of the validity of perturbative QCD, for example
through the measure of the total cross section or the so-called event shape variables, quantities
which characterizes the “shape” of a final-state event [1]. In 1978, Giorgio Parisi introduced the
idea of a superinclusive variable [3], which is defined accepting any type of particle in the final
state; however, this idea has not been much developed respect to other event shape variables,
which are widely studied.
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In this thesis we define and study a superinclusive observable, which allows one to study the
energy flow of an event due to QCD final-state radiation. We give a theoretical prediction of
its behaviour in the collinear limit, that is the limit in which angles between radiated particles
are small: analytical calculations show that this observable follows a multifractal law, with a
multifractal dimension that depends on the so-called anomalous dimensions of the Altarelli-Parisi
splitting functions [4].

In the first chapter we will give a theoretical introduction, explaining basics of QCD, its
quantization and renormalization; in the second chapter, we will analyse QCD in the infrared
region, treating advanced topics like factoriazion, jets and IRC safety; in the third chapter we will
talk about event shape variables and their resummation, with a particular focus on the concept
of superinclusive observables; in the fourth chapter we will present the concept of multifractal.
The first four chapters treat topics already known and present in the literature; the fifth chapter
contains the analytical calculation that proves the multifractal law, while in the sixth chapter we
will comment this result. In treating QCD topics we will mainly follow the book [1].
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Chapter 1

Basics of QCD

1.1 Introduction to QCD
The fundamental quanta of QCD are quarks and gluons; hadrons are bound states of these
fundamental quanta. They can be divided into mesons, made up of a quark-antiquark pair (qq̄),
and baryons, made up of three quarks (qqq). According to SM, quarks exist in six different
flavours:

Flavour Electric charge Mass
up (u) +2/3 2MeV

down (d) −1/3 5MeV

charm (c) +2/3 1.3GeV

strange (s) −1/3 130MeV

top (t) +2/3 173GeV

bottom (b) −1/3 4.2GeV

Table 1.1: Different flavours of quark with relative masses and electric charges (in units of e).

u, d and s are called light quarks, while c, t and b heavy quarks. QCD requires the introduction
of a new quantic number, the colour: quarks can exist in three different colours (red, blue
and green). The hadrons observed have no colour charge, leading to the assumption that only
colourless bound states of quarks can exist: this is called colour confinement.

Quantization of QCD

QCD is locally invariant under the colour group SU(3)C , so it is a gauge theory. We can
parametrize an element of SU(3)C in the following way:

U(x) = exp {igθa(x)ta} , (1.1)

where ta are the generators of the su(3)C algebra, with a = 1, ..., N2
C − 1 (NC is the number of

colours). They follow the commutation rules given by the so-called structure constants fabc:[︂
ta, tb

]︂
= ifabct

c. (1.2)
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As SU(3)C is a special unitary group, the representation for the generators ta have to be provided
by hermitian and traceless matrices. For the SM, NC = 3, so a representation for the generators
ta is provided by the eight Gell-Mann matrices. The request of gauge invariance leads to the
introduction of N2

C −1 gauge fields Aa
µ(x), whose quanta are the gluons, massless spin 1 particles.

The Lagrangian of the theory is the following:

LQCD = −1

4
F a
µνF

µν
a +

Nf∑︂
f=1

ψ̄
f
i

(︂
i /D

ij −mfδ
ij
)︂
ψf
j , (1.3)

where ψf
i are the quark fields: i is the colour index, while f represent the flavour. F a

µν is the
gluon field strength tensor:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν . (1.4)

The third term shows the non abelian nature of the theory. In the Lagrangian, Dµ is the covariant
derivative:

Dij
µ = δij∂µ − igAa

µt
ij
a . (1.5)

From Eq. (1.3) it is clear that QCD is diagonal in the flavour space: interactions that mix flavours
are not allowed.

In order to perform quantization, we have to choose a gauge configuration, because we can
allow the propagation of only the physical degrees of freedom of the gluon (transverse polariza-
tions). We can impose a constraint on the gauge field maintaining the Lorentz covariance; this is
the so-called Lorentz condition:

∂µAa
µ(x) = 0. (1.6)

And then we must add a gauge-fixing term in the Lagrangian:

LGF = − 1

2ξ
(∂µAa

µ)
2, (1.7)

where ξ is a Lagrange multiplier. Gauge invariance is broken at the level of the Lagrangian, but
the physical results must be independent from both the gauge and the value of ξ. The non-abelian
nature of the theory, so the possibility of a self-interaction of the gluon, brakes gauge invariance
and unitarity of the theory; in order to avoid that, we introduce ghosts, fields that appear only
in the intermediate steps of the calculation and not in the final results, cancelling the temporal
and longitudinal degrees of freedom of the gluon:

ηa =
1√
2
(ηa1 + iηa2), (ηa1)

2 = (ηa2)
2 = 0. (1.8)

Their dynamics is described by the Fadeev-Popov Lagrangian:

LFP = ∂µη
a†Dµ

abη
b. (1.9)

From the Lagrangian given by LQCD + LGF + LFP , we can write down the Feynman rules
and the expressions of the propagators; the form of the gluon propagator depends on the gauge.
Besides the covariant gauge, another choice we could make is the physical gauge, in which we
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choose a frame, characterized by a vector n, and we identify the physical degrees of freedom from
the beginning. In this case, the gauge condition is the following:

nµAa
µ(x) = 0. (1.10)

1.2 Asymptotic freedom

1.2.1 Renormalization of QCD and the running coupling constant

In QFT, radiative corrections lead to divergences in calculations. Ultraviolet divergences are
treated with renormalization. The renormalization procedure substitutes the bare (non-physical)
parameters of the Lagrangian with new renormalized quantities, related to the physical observ-
ables; it develops into three steps:

• regularization of the diverging integrals;

• subtraction of the contributes that diverge;

• cancellation of these contributes through the redefinition of the bare parameters.

’t Hooft and Veltman showed that every Yang-Mills theory (like QCD) is renormalizable order
by order in perturbation theory: every ultraviolet divergence can be treated with the redefinition
of a finite number of parameters.

This procedure introduces an arbitrary energy scale µ, called renormalization scale: it defines
the point at which the subtractions are performed and it is a non-physical parameter. A conse-
quence of renormalization is the introduction of a running coupling constant: we can understand
this considering a dimensionless physical observable R; being Q the energy of the process, we
would say that R does not depend on Q: in fact, after providing a series expansion, R depends on
powers of Q, but, having Q the dimension of an energy and being R dimensionless, it can depend
only on Q0, so it does not depend on Q; however, this is not true in a renormalizable quantum
field theory: if we calculate R as a perturbation series of αS = g2/4π, the renormalization pro-
cedure introduces the energy scale µ, so R depends in general on the ratio Q2/µ2 (since R is
dimensionless) and also the coupling constant αS depends on the choice of µ [1]. However, R is a
physical observable, while µ is an arbitrary quantity, so R cannot depend on µ; mathematically,
the total derivative of R with respect to µ must be zero, so we obtain the renormalization group
equation (RGE):

µ2
d

dµ2
R
(︁
Q2/µ2, αS(µ

2)
)︁
≡
[︃
µ2

∂

∂µ2
+ µ2

∂αS

∂µ2
∂

∂αS

]︃
R = 0. (1.11)

In order to solve this equation, we can define the following quantities [1]:

t ≡ log
Q2

µ2
, β(αS) ≡ µ2

∂αS

∂µ2
. (1.12)

Then, Eq. (1.11) becomes [︃
− ∂

∂t
+ β(αS)

∂

∂αS

]︃
R(et, αS) = 0. (1.13)
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We can solve this partial differential equation by implicitly defining the so-called running coupling
constant αS(Q

2):

t ≡
∫︂ αS(Q

2)

αS

dx

β(x)
, where αS ≡ αS(µ

2). (1.14)

We obtain the following equations by differentiating Eq. (1.14):

∂αS(Q
2)

∂t
= β(αS(Q

2)),
∂αS(Q

2)

∂αS
=
β(αS(Q

2))

β(αS)
. (1.15)

Now, it should be clear that R(1, αS(Q
2)) is a solution of Eq. (1.11); this means that the scale

dependence in a dimensionless quantity like R enters only through the running of the coupling
constant: so, if we calculate the quantity R(1, αS) in fixed-order perturbation theory, we can
predict the variation of R with Q only by solving Eq. (1.15) [1].

1.2.2 Asymptotic freedom

We found that, after the renormalization procedure, the coupling constant depends on the energy
scale of the process. This dependence is described by the renormalization group equation (1.15).

In perturbation theory, the function β has an expansion in series:

β(αS) = −
+∞∑︂
n=2

βn−2α
n
S = −β0α2

S − β1α
3
S − β2α

4
S − ... (1.16)

The coefficients of (1.16) are obtained from the higher-order loop corrections to the bare vertices
of the theory. If we are in a small-coupling region, we can consider only the first term of the
expansion and the RGE becomes

∂

∂ logQ2
αS(Q

2) = −β0α2
S(Q

2) +O(α3
S), (1.17)

solution of which is given by the following expression:

αS(Q
2) =

αS(µ
2)

1 + β0αS(µ2) log
Q2

µ2

. (1.18)

In QED, the value of β0 is extracted from the self-energy of the photon, obtaining

βQED
0 = − 1

3π
< 0. (1.19)

A negative value of β0 means that the coupling increases as the energy increases. In QCD, this
value is extracted form the self-energy of the gluon, which is given by two diagrams: one with a
quark loop and the other with a gluon loop; the latter is a consequence of the non-abelian nature
of QCD (in fact, we have not a diagram of this type in QED). We obtain

βQCD
0 =

1

12π
(11NC − 2Nf ), βQCD

0 > 0 ⇔ Nf ≤ 16. (1.20)
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As Nf = 6, βQCD
0 is positive: so, contrary to QED, in QCD the coupling is small at high energies.

This behaviour is called asymptotic freedom and it implies that at high energies we can treat
particles as weakly interacting and perform calculations following a perturbative approach.

The one-loop expression of the running coupling constant (1.18) diverges at a certain energy
scale Λ2

QCD, that satisfies the following relation:

1 + β0αS(µ
2) log

Λ2
QCD

µ2
= 0. (1.21)

ΛQCD is called Landau pole or fundamental scale of the QCD and is given by the following
formula (at one loop):

ΛQCD = µ exp

{︃
− 1

2β0αS(µ2)

}︃
. (1.22)

Substituting this relation in Eq. 1.18, we obtain the following expression for the running coupling
constant:

αS(Q
2) =

1

β0 log
Q2

Λ2
QCD

. (1.23)

Figure 1.1: Running coupling constant of the strong interaction.

1.3 Hard scattering and perturbative QCD
Hard-scattering processes have an energy scale Q≫ mp, where mp is the mass of the proton. In
this energy region asymptotic freedom is valid, because αS(Q

2) ≪ 1, so we can consider hadrons
as made of weakly-interacting particles, called partons (quarks and gluons), and calculate cross
sections at partonic leve using a perturbative approach. However, due to the confinement, the
states predicted by the theory are the hadrons. At this point, we have two possibilities:

• if we do not have hadrons in the initial state, we can sum over all final states and obtain
the total cross section with a perturbative partonic calculation;

• if we have hadrons in the initial state, we can use a property called factorization and
calculate the total hadronic cross section as a convolution of the partonic cross section and
the so-called PDFs, which will be defined later.
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Now, we will briefly present these two possibilities with two scattering processes: the electron-
positron annihilation, which is the process we will consider to define the observable in Chapter 5,
and the deep inelastic scattering, whose study will lead us to introduce the PDFs, the Altarelli-
Parisi splitting functions and the Altarelli-Parisi evolution equation.

1.3.1 Electron-positron annihilation

In this process, an electron and a positron annihilate producing a virtual boson (a photon γ or a
Z), which decays (at lowest order) in a fermion-antifermion pair.

In this thesis we are interested in higher-order QCD corrections of this process, given by the
emission of virtual or real partons; we indicate the order of these corrections as Next-to-Leading-
Order (NLO), Next-to-Next-to-Leading-Order (NNLO) and so on; the NnLO contribution is of
order αn

S(Q
2). We can calculate the total cross section in a perturbative way and sum over all

possible final states.
In the perturbative QCD picture, particle masses smaller than ΛQCD are zero: so light quarks

are massless; however, heavy quarks masses can be neglected in the hard-scattering regime. So,
from now on, we will consider every particle massless. We will made a further assumption: we
will suppose that the energy is far below the Z peak (ΛQCD ≪ Q ≪ MZ , MZ ≃ 91.2GeV), so
that we can neglect the Z channel and take into account only the production of a virtual photon.

The Feynman diagram of the process at LO is represented in the following picture:

e−

e+

q

q̄

q1

q2

γ

p1

p2

Figure 1.2: Feynman diagram of the process at LO.

The squared modulus of the amplitude is given by the following formula [2]:

|M̄LO|2 =
8e4e2q
Q4

[(q1 · p1)(q2 · p2) + (q1 · p2)(q2 · p1)] , (1.24)

where eq is the electric charge of the quark in terms of e, the electric charge of the electron.
Summing over all kinematically accessible flavours and colours the differential cross section with
respect to the centre-of-mass scattering angle θ of the final state quark is given by the following
formula:

dσ

d cos θ
=
πα2

2Q2
NC(1 + cos2 θ)

∑︂
q

e2q , (1.25)

where α is the fine-structure constant of the QED and the sum over q has to be interpreted as a
sum over the quark flavours. Integrating over θ, we obtain the total cross section at Born level:
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σ0 =
4πα2

3Q2
NC

∑︂
q

e2q . (1.26)

At NLO, we have both real and virtual contributions to the total cross section.

e−

e+

g

q

q̄

q1

q2

γ

p1

k

p2

(a)

e−

e+

g

q

q̄

q1

q2

γ

p2

k

p1

(b)

Figure 1.3: Feynman diagrams of real gluon emissions at NLO.

e−

e+

q

q̄

q1

q2

γ

p1

k

p2

(a)

e−

e+

q

q̄

q1

q2

γ

p2

k

p1

(b)

e−

e+

q

q̄

q1

q2

γ

p2

k

p1

(c)

Figure 1.4: Feynman diagrams of virtual gluon emissions at NLO.
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The matrix element for the real gluon emission process is given by the following formula:

1

4
|M̄qq̄g|2 = 24CF e

4e2qg
2
S

(p1 · q1)2 + (p1 · q2)2 + (p2 · q1)2 + (p2 · q2)2

(q1 · q2) (p1 · k) (p2 · k)
, (1.27)

where CF = 4
3 is a constant related to the su(3) algebra, while g2S = 4παS .

In order to calculate the cross section, it is useful to introduce the following quantities:

x1 =
2Eq

Q
, x2 =

2Eq̄

Q
, (1.28)

where Eq and Eq̄ are the energies of the quark and the antiquark, respectively. Introducing the
Euler angles α, β and γ, the three-body phase space integration can be written as

dφ3 =
1

(2π)5
Q2

32
dαd cosβdγdx1dx2. (1.29)

The total cross section for the real emission is given by the following integral [1]:

σqq̄g = σ0 · 3
∑︂
q

e2q

∫︂
dx1dx2CF

αS

2π

x21 + x22
(1− x1)(1− x2)

. (1.30)

The integration region is 0 ≤ x1, x2 ≤ 1, x1+x2 ≥ 1. It is clear that the integral 1.30 is divergent
in the limits xi → 1. It can be shown that the quantities xi are related to the energy of the gluon
(E3) and the angles between the gluon and the quarks (named θ13 and θ23 respectively):

1− x1 =
x2E3

Q
(1− cos θ23) , (1.31)

1− x2 =
x1E3

Q
(1− cos θ13) . (1.32)

This means that the integral is divergent in the regions of the phase space where the gluon is
collinear with the quark or the antiquark (θi3 → 0, i = 1, 2) or where the emitted gluon is soft
(E3 → 0). However, it can be proved that these infrared divergences don’t constitute a problem:
in fact, if we regularize the integral (1.30) and consider the contributions given by the virtual
gluon emissions, the divergences cancel and the final result is finite:

σ = σ0

{︂
1 +

αS

π
+O

(︁
α2
S

)︁}︂
. (1.33)

So, it happens that IR loop-integral divergences and IR phase-space divergences cancel. The
cancellation of infrared singularities in perturbative theory is stated by the Bloch-Nordsieck (BN)
theorem for Quantum Electrodynamics alone and by the Kinoshita-Lee-Naunberg (KLN) theorem
for the whole Standard Model.

In the next chapter we will treat soft and collinear emissions in detail, introducing the Altarelli-
Parisi splitting functions, fundamental tools for the purpose of this thesis.
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1.3.2 Deep inelastic scattering

The deep inelastic scattering is the collision between a lepton and a hadron, so, contrary to the
electron-positron annihilation, it is a scattering process with hadrons in initial state.

l l

h X

k k′

γ

p pX

Figure 1.5: Feynman diagram of the deep inelastic scattering.

Where l is a lepton and X is any hadronic final state (inclusivity). In this case, we have
higher-order QCD corrections also to the initial state:

q q

g

q
pq zpq pq

(1− z)pq

Figure 1.6: Higher-order corrections to partons in initial state; pq is the momentum of a parton
inside the hadron.

In the last section we saw that higher-order corrections give rise to infrared divergences, that
cancel if we accept any possible final state; however, we cannot be inclusive on the initial state,
so divergences due to initial-state emissions have to be treated differently.

We begin by defining some variables [1]:

qµ = kµ − k′µ, (1.34)
Q2 = −q2, (1.35)
m2

h = p2, (1.36)
ν = p · q =M(E′ − E), (1.37)

x =
Q2

2ν
=

Q2

2M(E − E′)
, (1.38)

y =
q · p
k · p

= 1− E′

E
, (1.39)

where q is the momentum transfer, mh is the hadron mass and E,E′ are the energies of l, l′
respectively, in the proton rest frame.
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The scattering is said inelastic if m2
X > m2

h, deep inelastic if m2
X ≫ m2

h; we are working in
the hard-scattering regime.

We assume that l = e. As for the electron-scattering annihilation, we consider only the
exchange of a virtual photon. In order to calculate the cross section, we can divide the problem
into two levels:

• leptonic: interaction between the electron and the virtual photon;

• hadronic: interaction between the virtual photon and the hadron.

The hadronic level is treated by introducing the so-called hadronic structure functions Fi

(︁
x,Q2

)︁
(i = 1, 2), which parametrize the structure of the hadron target as “seen” by the photon [1].
Without neglecting the hadron mass, the total hadronic cross section is given by the following
formula:

d2σ

dxdy
=

8πα2mhE

Q4

[︃(︃
1 + (1− y)2

2

)︃
2xF1(x,Q

2)

+(1− y)
(︁
F2(x,Q

2)− 2xF1(x,Q
2)
)︁
− M

2E
xyF2(x,Q

2)

]︃
. (1.40)

If we consider also the coupling with the Z and W± bosons, the cross section will contain an
additional term with a third structure function F3

(︁
x,Q2

)︁
, which violates parity.

In the Bjorken limit, i.e. Q, ν → +∞ with x fixed, the structure functions obey an approxi-
mate scaling law (see Chapter 4) and are observed to depend only on x:

Fi(x,Q
2) → Fi(x). (1.41)

Bjorken scaling means that the photon scatters off point-like constituents of the hadron: in fact,
the dimensionless structure functions can depend only on the ratio Q/Q0, where 1/Q0 is a length
scale characterizing the constituents, which does not exist if they are point-like [1].

If we study the process in a frame where the hadron is moving very fast, we can say that
the photon scatters off a quark constituent of the hadron, moving parallel with it and carrying
a fraction z of its momentum, pq = zp. If we neglect the hadron mass, the total hadronic cross
section becomes

d2σ

dxdQ2
=

4πα

Q4

[︃[︁
1 + (1− y)2

]︁
F1

(︁
x,Q2

)︁
+

1− y

x

(︁
F2

(︁
x,Q2

)︁
− 2xF1

(︁
x,Q2

)︁)︁]︃
, (1.42)

Starting from the matrix element of the process e+e− → qq̄, we can obtain the matrix element
for the process e−q → e−q and the partonic cross section for the process:

dσ̂

dQ2
=

2πα2e2q
Q4

[︁
1 + (1− y)2

]︁
. (1.43)

The mass-shell constraint for the outgoing quark is

p′2q = (pq + q)2 = q2 + 2pq · q = −2p · q(x− z) = 0, (1.44)
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which means that x = z. We can write the double differential cross section for the partonic
scattering process:

d2σ̂

dxdQ2
=

4πα2

Q4

[︁
1 + (1− y)2

]︁ 1
2
e2qδ(x− z). (1.45)

If we introduce the partonic structure functions F̂ i

(︁
x,Q2

)︁
, we can write down the following

relation:

Fi,h(x,Q
2) =

∑︂
a

∫︂ 1

0
dzfa,h(z)F̂ i(x̂, Q

2), (1.46)

where x̂ = x/z and fa,h(z) is called parton density function (PDF) and indicates the probability
of finding a parton a inside the hadron h carrying a fraction z of its momentum. According to Eq.
(1.46), the DIS can be interpreted as the scattering between the virtual photon and the partons,
each with a specific probability.
By comparing Eq. (1.42) and Eq. (1.45), we can see that at LO

F̂ 2 = xe2aδ(x− z) = 2xF̂ 1, (1.47)

which leads to the following relations:{︃
F2,h(x) = x

∑︁
a e

2
afa,h(x)

2xF1,h(x) = F2(x)
(1.48)

The second result is known as Callan-Gross relation, it is a consequence of the fact that quarks are
spin-12 particles, so they cannot absorb a vector boson with longitudinal polarization. Sometimes,
instead of F1 and F2 the so-called longitudinal structure function is used:

FL(x,Q
2) =

(︃
1 +

4m2
hx

2

Q2

)︃
F2(x,Q

2)− 2xF1(x,Q
2) −→

Q2→+∞
F2(x)− 2xF1(x), (1.49)

which is identically zero in the Bjorken limit.
Higher-orders QCD corrections to the initial state introduce infrared divergences, which are

treated through the renormalization of the PDFs. The procedure is equal to the UV renormal-
ization:

• we notice that the introduced PDFs are bare quantities f (0)a,h(z);

• we reabsorb the singularities by redefining the PDFs.

The renormalization procedure introduces an arbitrary scale, called factorization scale µ2F , which
indicates the point at which the redefinition is performed. This introduces an energy-dependence
of the PDFs:

f
(0)
a,h(z) ⇒ fa,h

(︁
z, µ2F

)︁
. (1.50)

At this point, we can calculate the parton cross section in perturbative theory and convolute it
with the PDFs to obtain the hadronic cross section:
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σh(Q
2) =

∑︂
a

∫︂ 1

0
dzfa,h(z, µ

2
F )σ̂a(z, αS(Q

2), µ2F , Q
2). (1.51)

Eq. (1.51) is called factorization formula. The PDFs and the parton cross section depend on the
factorization scale µ2F , while the hadronic cross section depends only on the energy of the process
Q2.

PDFs can’t be theoretically calculated, but they have to be determined in experiments; how-
ever, their scale dependence is given by the Altarelli-Parisi evolution equation, which will be
presented in the next chapter.
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Chapter 2

QCD in the infrared region

2.1 Soft and collinear splitting
In the previous chapter we saw that matrix elements which involve massless particles may exhibit
infrared divergences in the soft and collinear limits. These divergences appear in the calculations
as large logarithms: these terms will have a crucial role in the study of the superinclusive observ-
able (Chapter 5). Soft singularities occur in correspondence of the emission or the exchange of
particles with vanishing four-momentum, in the presence of massless vector bosons (such as glu-
ons); these divergences may occur also if the matter particles are massive. Collinear divergences
are due to the splitting of particles at small angles and occur only in the presence of massless
particles [7]. In the presence of massive particles, the large logarithms are still present but not
diverging.

Starting from Eq. (1.30), we will see that in the collinear and soft limits the cross section
factorizes and the splitting are represented by universal factors, which do not depend on the
process. We have the following result for the matrix element |Mreal|2 of the process e+e− → qq̄g:

|Mreal|2 ∝
x21 + x22

(1− x1)(1− x2)
. (2.1)

With some trivial algebra, it can be shown that

x21 + x22
(1− x1)(1− x2)

=
1− (1− x3)

2

x3

(︃
1

1− x1
+

1

1− x2

)︃
− 2. (2.2)

Hence, the amplitude contains the sum of two independent soft and collinear contributions and
a finite term, which originates from the interference of the two diagrams in Fig. 1.3.

The total cross section is obtained by integrating the matrix element over the phase space,
with the constraint x1 + x2 + x3 = 2:

σqq̄g =

∫︂
dx1dx2dx3δ(x1 + x2 + x3 − 2)|Mreal|2. (2.3)

It follows that, in the soft and collinear limits, each diagram give an independent contribution
to the total cross section, which is proportional to the Born cross section. For example, the
contribution given by the emission of a real gluon from the antiquark (diagram (b) in Fig. 1.3) is

σ0
dx1dx3
1− x1

1 + (1− x3)
2

x3
= σ0

d cos θ23
1− cos θ23

dx3Pqq(x3). (2.4)
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We introduced the so-called Altarelli-Parisi splitting function:

Pqq(x3) ≡ CF
αS

2π

1 + (1− x3)
2

x3
. (2.5)

The contribution given by diagram (a) in Fig. 1.3 has the same form of Eq. (2.4), with 1 ↔ 2.
We have to sum both the contributions to obtain the total cross section; the interference of the
two diagrams is negligible. Hence, we say that a cross section factorizes in the presence of a
splitting if it is equal to the convolution of the lower order cross section and a correction that
states the probability of the splitting.

In Eq. (2.4) it is clear that the physics factorizes: this happens because the emissions of soft
and collinear gluons occur at a much longer time than the production of the quark-antiquark
pair, so the interference between these processes is negligible in this limit. This is an heuristic
explanation of the factorization.

This can be generalized. Let us assume that the final state of a process contains m+1 particles:
if the i-th is soft or is collinear to the j-th particle, the Born-level matrix element |M(tree)

m+1 |2 is
equal to the matrix element of a process with m particle |M(tree)

m |2, where the particles i and j
are substituted by an unique particle with momentum given by the sum of their momenta pi+pj ,
all multiplied by a universal function Vij .

|M(tree)
m+1 (p1, ..., pi, ..., pj , ..., pm+1)|2 ∼ |M(tree)

m (p1, ..., pi + pj , ..., pm)|2 · Vij . (2.6)

i+ j

i

j

pi + pj

pi

pj

Figure 2.1: Splitting.

Let θij be the splitting angle and z the fraction of momentum carried by the particle i: so
pi = z(pi + pj) and pj = (1− z)(pi + pj); if the splitting is collinear, the function Vij is

Vij =
1

θ2ij
Pij(z), (2.7)

where Pij(z) is the Altarelli-Parisi splitting function.
The infrared factorization is valid also for the emission of a virtual particle; if M(1-loop)

m ({pi}) is
the 1-loop amplitude, we have the following result:

M(1-loop)
m (p1, ..., pm)M(tree)∗

m (p1, ..., pm) + h.c. ∼ −|M(tree)
m (p1, ..., pm)|2

∫︂
loop

Vij . (2.8)
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2.1.1 The Altarelli-Parisi splitting functions

We introduced the Altarelli-Parisi (AP) splitting functions: these are universal functions that
state the probability of a collinear splitting with a fraction z of momentum transferred. These
functions can be calculated in perturbative QCD and don’t depend on the process we are studying.

In general, Pab(z) indicates the probability of the parton evolution b(p) → a(zp) and it has
the following structure:

Pab(z) =
(︂αS

2π

)︂
P

(0)
ab (z) +

(︂αS

2π

)︂2
P

(1)
ab (z) +

(︂αS

2π

)︂3
P

(2)
ab (z) +

(︂αS

2π

)︂4
P

(3)
ab (z) +O(α5

S). (2.9)

The function in Eq. (2.5) is the LO term of the Altarelli-Parisi function for the emission of a real
gluon carrying a fraction x3 ≡ 1− z of the initial momentum:

q

g

q
p

(1− z)p

zp
=⇒

[︂
P

(0)
qq

]︂
real

= CF
1 + z2

1− z

Figure 2.2: Real emission of a gluon from a quark and related AP function at lowest order.

It is clear that this function diverges in the limit z → 1, when the emitted gluon is soft. This
happens because we are not considering the emission of a virtual gluon, whose AP function at
LO is the following:[︂

P (0)
qq (z)

]︂
virt.

= − lim
ϵ→0

δ(1− z)

∫︂ 1

0
dz′
[︂
P (0)
qq (z′)

]︂
real

Θ(1− z′ > ϵ). (2.10)

The ϵ parameter plays the role of an infrared cut-off. Summing the real and virtual contributions,
we obtain the AP function at LO for the process q(p) → q(zp) + g((1− z)p):

P (0)
qq (z) = CF

[︃
1 + z2

(1− z)+
+

3

2
δ(1− z)

]︃
, (2.11)

where the plus distribution is defined as follows:

1

(1− z)+
= lim

ϵ→0

[︃
1

1− z
Θ(1− z > ϵ)− δ(1− z)

∫︂ 1−ϵ

0
dz′

1

1− z′

]︃
. (2.12)

Acting on a smooth function f(z), the distribution give the following result:∫︂ 1

0
dzf(z)

1

(1− z)+
= lim

ϵ→0

∫︂ 1−ϵ

0
dz
f(z)− f(1)

1− z
. (2.13)
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According to the Feynman rules of QCD, we have four possible splittings:

q → q + g : P
(0)
qq (z) = CF

[︃
1 + z2

(1− z)+
+

3

2
δ(1− z)

]︃
, (2.14)

g → g + g : P
(0)
gg (z) = 2CA

[︃
z

(1− z)+
+

1− z

z
+ z(1− z)

]︃
+
1

6
δ(1− z)(11CA − 2Nf ), (2.15)

g → q + q : P
(0)
qg (z) = TR

[︂
z2 + (1− z)2

]︂
, (2.16)

q → g + q : P
(0)
gq (z) = CF

[︃
1 + (1− z)2

z

]︃
. (2.17)

2.1.2 The Altarelli-Parisi evolution equations

We already saw that higher-order corrections to initial-state partons in deep inelastic scattering
break the Bjorken scaling and introduce a dependence of the parton densities on the energy scale:
the AP splitting functions govern this dependence through the AP evolution equations [4].

The emission of a gluon gives the following correction to the structure function (for the
complete calculation see [1]):

F̂ 2(x,Q
2) = e2qx

[︃
δ(1− x) +

αS

2π

(︃
Pqq(x) log

Q2

κ2
+ Cq(x)

)︃]︃
, (2.18)

where Cq(x) is a calculable function and κ is a collinear cut-off. So, beyond leading order, the
Bjorken scaling is broken by logarithms of Q2. The parton density is

q(x) = δ(1− x) +
α

2π

(︃
Pqq(x) log

Q2

κ2
+ Cq(x)

)︃
. (2.19)

The cut-off is necessary as the matrix element is divergent in the collinear limit and we can’t be
inclusive on the initial state, because the virtual photon can distinguish a quark from a collinear
quark-gluon pair [1]. The hadron structure function F2 is given by the convolution of the quark
structure function F̂ 2 with a bare distribution q(0), summed over quark flavours:

F2(x,Q
2) = x

∑︂
q

e2q

[︃
q(0)(x) +

αS

2π

∫︂ 1

x

dz

z
q(0)(z)

{︃
Pqq

(︂x
z

)︂
log

Q2

κ2
+ Cq

(︂x
z

)︂}︃
+ ...

]︃
. (2.20)

As done for the ultraviolet renormalization, we absorb the singularities into the bare distribution,
introducing the so-called factorization scale µ2F . This procedure redefines the PDF:

q(x, µ2F ) = q(0)(x) +
αS

2π

∫︂ 1

x

dz

z
q(0)(z)

{︃
Pqq

(︂x
z

)︂
log

µ2F
κ2

+ Cq

(︂x
z

)︂}︃
+ ... (2.21)

The structure function becomes

F2(x,Q
2) = x

∑︂
q

e2q

∫︂ 1

x

dz

z
q(z, µ2)

{︃
δ
(︂
1− x

z

)︂
+
αS

2π
Pqq

(︂x
z

)︂
log

Q2

µ2F
+ ...

}︃
. (2.22)
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Considering all the possible splitting and introducing the gluon density g, Eq. (2.21) becomes

q(x, µ2F ) = q(0)(x) +
αS

2π

∫︂ 1

x

dz

z
q(0)

{︃
Pqq

(︂x
z

)︂
log

µ2F
κ2

+ Cq

(︂x
z

)︂}︃
+
αS

2π

∫︂ 1

x

dz

z
g(0)(z)

{︃
Pqg

(︂x
z

)︂
log

µ2F
κ2

+ Cg

(︂x
z

)︂}︃
+ ..., (2.23)

The scale dependence of the PDFs is given by the Altarelli-Parisi evolution equations, which
are obtained taking the partial derivative with respect to logµ2F of Eq. (2.22):

µ2F
∂

∂µ2F
q(x, µ2F ) =

αS(µ
2
F )

2π

∫︂ 1

x

dz

z
Pqq

(︂x
z

)︂
q(x, µ2F ). (2.24)

A more complete derivation, based on the operator product expansion and renormalization
group methods [5, 6] extends the result to higher orders, introducing a dependence of the AP
functions on the running coupling constant:

µ2F
∂

∂µ2F
q(x, µ2F ) =

αS(µ
2
F )

2π

∫︂ 1

x

dz

z
Pqq

(︂x
z
, αS(µ

2
F )
)︂
q(x, µ2F ). (2.25)

However, this result is valid only for non-singles distributions, i.e. differences between quark
distributions, qNS = qi − qj . In general, the AP evolution equation is a (2Nf + 1)-dimensional
matrix equation:

µ2F
∂

∂µ2F

⎛⎝ qi(x, µ
2
F )

g(x, µ2F )

⎞⎠ =
αS(µ

2
F )

2π

∑︂
q

∫︂ 1

x

dz

z
P
(︂x
z
, αS(µ

2
F )
)︂⎛⎝ qi(x, µ

2
F )

g(x, µ2F )

⎞⎠ , (2.26)

where

P
(︂x
z
, αS(µ

2
F )
)︂
=

⎛⎝ Pqiqj

(︁
x
z , α(µ

2
F )
)︁

Pqig

(︁
x
z .αS(µ

2
F )
)︁

Pgqj

(︁
x
z , α(µ

2
F )
)︁

Pgg

(︁
x
z , α(µ

2
F )
)︁
⎞⎠ . (2.27)

The indices i and j run over quarks and antiquarks of all flavours. The fact that colour and
flavour commute has the following consequences:

P (0)
qiqj = δijP

(0)
qq , (2.28)

P (0)
gqi = P (0)

gq , (2.29)

P (0)
qig = P (0)

qg . (2.30)

Eq. (2.28) means that the emission of a gluon does not change the flavour of a quark; Eq. (2.29)
indicates that the probability of emission of a gluon is the same for all flavours, while Eq. (2.30)
states that the creation of a quark-antiquark pair from a gluon has the same probability for all
flavours; Eq. (2.29) and Eq. (2.30) are valid only in the massless limit. These relations clearly
simplify the matrix; however, they are valid only at LO.
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The interpretation of the AP functions as probabilities leads to the following sum rules:

∫︂ 1

0
dxP (0)

qq (x) = 0, (2.31)∫︂ 1

0
dxx

[︂
P (0)
qq (x) + P (0)

gq (x)
]︂

= 0, (2.32)∫︂ 1

0
dxx

[︂
2NfP

(0)
qg (x) + P (0)

gg

]︂
= 0. (2.33)

where Eq. (2.31) is the baryonic number conservation, while Eq. (2.32) and Eq. (2.33) are the
momentum conservation in the splitting of quarks and gluons respectively.

If we sum all the quark distributions we obtain the singlet distribution:

Σ(x, µ2F ) ≡
∑︂
i

[︁
qi(x, µ

2
F ) + q̄i(x, µ

2
F )
]︁
. (2.34)

The matrix for the singlet quark and the gluon is the following:

P(z) ≡

⎛⎝ Pqq(z) 2NfPqg(z)

Pgq(z) Pgg(z)

⎞⎠ . (2.35)

Using a matrix formalism, we can calculate the evolution probability of a general state, rep-
resented by a unit vector v = (a, b), which represent a singlet quark if a = 1 and b = 0, a gluon
if a = 0 and b = 1, or, in general, a superposition of the quark and gluon states if a ̸= 0, 1 and
b ̸= 0, 1. The state after the splitting is given by the action of the Altarelli-Parisi splitting matrix
Pij(z) on the initial state vector vi:

Pij(z)v
j =

⎛⎝ Pqq(z) 2NfPqg(z)

Pgq(z) Pgg(z)

⎞⎠ ·

⎛⎝ a

b

⎞⎠ =

⎛⎝ aPqq(z) + 2bNfPqg(z)

aPgq(z) + bPqq(z)

⎞⎠ . (2.36)

In Chapter 5 we will use this formalism, summing the terms of the final vector, since we will
not distinguish between quarks and gluons in the final state.

Following a different approach [4], we can provide an alternative formulation of the AP evo-
lution equations in terms of the so-called Mellin moments of the parton distributions:

Mn
a (µ

2
F ) =

∫︂ 1

0
dxxn−1fa(x, µ

2
F ), (2.37)

and the so-called anomalous dimensions of the splitting functions:

γnab(α(µ
2
F )) =

∫︂ 1

0
dxxn−1Pab(x, αS(µ

2
F )). (2.38)

For the non-singlet distribution the equation is

µ2F
∂

∂µ2F
Mn

NS(µ
2
F ) =

αS(µ
2
F )

2π
γnqq(αS(µ

2
F ))M

n
NS(µ

2
F ), (2.39)
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For the singlet quark and gluons distributions we have

µ2F
∂

∂µ2F

(︃
Mn

Σ(µ
2
F )

Mn
g (µ

2
F )

)︃
=
α(µ2F )

2π
γn(αS(µ

2
F ))

(︃
Mn

Σ(µ
2
F )

Mn
g (µ

2
F )

)︃
, (2.40)

where

γn =

(︃
γnqq 2Nfγ

n
qg

γngq γngg

)︃
. (2.41)

2.1.3 Soft emission: eikonal factorization

In the caso of a soft emission, which is a particular case of the collinear emission, the matrix
element factorizes. As done in the references [7, 8], we will show this property considering the
matrix element of the diagram (a) in Fig. 1.3 in the limit where the emitted gluon is soft (k → 0):

M
(a)
3 = gsū(p1)γ

µϵ∗µ(k)
/p1 + /k

(p1 + k) + iϵ
ta1M̃2

−→
k→0

gsū(p1)γ
µϵ∗µ(k)

/p1
2p1 · k + iϵ

ta1M̃2

= gs
pµ1
p1 · k

ϵ∗µ(k)ū(p1)t
a
1M̃2, (2.42)

where we have used anti-commutation relations of the Dirac matrices and the massless Dirac
equation /p1u(p1) = 0. M̃2 is the LO amplitude (e+e− → qq̄) without the Dirac spinor ū(p1);
ϵµ(k) is the polarization vector of the emitted gluon; ta1 is a generator of SU(3) in the fundamental
representation, it’s the colour charge associated to the emission of a gluon off a quark line. The
factor pµ1/(p1 · k) in the last line of Eq. (2.42) is called eikonal factor.
Now we can calculate the squared amplitude:

|M3|2 = |M (a)
3 +M

(b)
3 |2 −→

k→0
g2s

p1 · p2
(p1 · k)(p2 · k)

Tr
[︂
C12ū(p1)M̃2M̃

∗
2v(p2)

]︂
, (2.43)

where we have introduce the effective colour charge:

Cij = −2tai t
a
j . (2.44)

It can be shown that C12 = 2CF . Thus, in the end we obtain the following factorization:

|M3|2 −→
k→0

g2s2CF
p1 · p2

(p1 · k)(p2 · k)
|M2|2 (2.45)

= g2sJ
µ(k)Jν(k)(−gµν), (2.46)

where, in the last line, we have written the matrix element in term of the eikonal current:

Jµ(k) =
2∑︂

i=1

tan
pµn
pn · k

. (2.47)
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2.2 IRC safety
The concepts of IRC safety is crucial to study the sensitivity of theoretical predictions to soft
and collinear high-orders correction.

In perturbative QCD, we can write down the general expression of an observable:

σ = σLO + σNLO + σNNLO + ... (2.48)

The prediction at LO has the following structure:

σLO =

∫︂
dφm

⃓⃓⃓
M(tree)

m ({pi})
⃓⃓⃓2
Fm({pi}), (2.49)

where dφm is the m particles phase space and Fm({pi}) is a function that defines the observable.
At NLO we have contribution from real (first integral) and virtual (second integral) emissions:

σNLO =

∫︂
dφm+1

⃓⃓⃓
M(tree)

m+1 ({pi})
⃓⃓⃓2
Fm+1({pi})

+

∫︂
dφm

[︂
M(1-loop)

m ({pi})M(tree)∗
m ({pi}) + c.c.

]︂
Fm({pi}), (2.50)

Recalling Eqs. (2.6) and (2.8), we obtain the following result:

σNLO ∼ F.T.+
∑︂
i,j

∫︂
dφm+1

⃓⃓⃓
M(tree)

m+1 ({pi})
⃓⃓⃓2 ∫︂

loop
Vij [Fm+1(..., pi, ..., pj , ...)− Fm(..., pi + pj , ...)] ,

(2.51)
where F.T. stands for finite terms in the IR limit.

In order to guarantee the complete cancellation of infrared singularities, the observable satisfy
the property of IRC safety, defined as follows:

collinear safety : Fm+1(..., pi, ..., pj , ...) −→ Fm(..., pi + pj , ...) if pi ∥ pj
infrared safety : Fm+1(..., pi, ...) −→ Fm(..., pi−1, pi+1, ...) if pi → 0 (2.52)

So, we require that whenever a parton is split into two collinear partons or a soft parton is emitted,
the value of the observable must remain unchanged [8]. It should be clear that quantities made
out of linear sums of momenta will respect this requirement [1]. If a variable does not satisfy
this property, so it is IRC unsafe, we have to consider long-distance physics corrections, which
cannot be treated with a perturbative approach. Although from an experimental point of view
the finite resolution of detectors acts as a cut-off and ensures the absence of infrared singularities,
we require IRC safety because we would like to avoid theoretical predictions from depending on
resolutions parameters of detectors [7].

The concept of IRC safety can be generalized to every observable. An observable is said IRC
safe if its theoretical prediction is insensitive to soft and collinear emissions.
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2.3 Jets
In order to identify and study hadronic final states, we would like to use IRC safe definitions and
observables: for this purpose, the concepts of jet and jet cross section have been introduced.

Final-state partons in high-energy scattering processes will undergo successive branchings at
small angles [8], until they reach a non-perturbative energy scale and so will form hadrons. Hence,
high-energy partons will appear in the final state of a collision as a collimated bunch of hadrons:
these are called jets. As defined in [8], “jets are collimated flows of hadrons and they can be seen
as proxies to the high-energy quarks and gluons produced in a collision”.

Although in our calculation we will not identify jets, in this section we will briefly present
some basic concepts.

2.3.1 Jet algorithms

In order to identify jets, we should be able to say whether two partons belongs or not to the
same jets, i.e. whether two partors are collinear or not. Hence, we introduce a jet definition,
which gives us an objective procedure to do that. A jet definition contains a jet algorithm and
a set of parameters. In addition, a recombination scheme specifies how to obtain the kinematic
properties of the jet from its components.

The so-called Snowmass accord listed five fundamental criteria that should be satisfied by any
jet algorithm [8]. The algorithm should

• be simple to implement in an experimental analysis;

• be simple to implement in the theoretical calculation;

• be defined at any order in perturbation theory;

• yield finite cross sections at any order in perturbation theory;

• yield a cross section which is relatively insensitive to hadronisation.

Historically, the first IRC safe jet definition is the 2-jet rate definition, provided by Sterman
and Weinberg. According to their picture, a final state is classified as a two-jet-like event if all
but a fraction ϵ of the total energy is contained in a pair of cones of half-angle δ [1]. It’s clear
that the definition depends on the choice of the parameters ϵ and δ: this is a common feature of
all the jet definitions.

Clustering algorithms

A widely-used type of algorithm is the clustering algorithm, which is based on the definition of a
distance dij between two partons in the final state; starting from dij , we can define a dimensionless
distance yij = dij/Q

2 (where Q is the energy scale of the process); after that, we introduce a
dimensionless resolution parameter ycut: if yij < ycut, we recombine the partons i and j, typically
by summing their momenta pij = pi+ pj . Starting from calculating all the distances between the
final-state partons, the procedure is repeated until yij > ycut for all i, j.

The algorithm depend on the choice of definition of the distance dij . For the Jade algorithm
it is defined in the following way:

dJij ≡ 2EiEj(1− cos θij). (2.53)
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This algorithm is not insensitive to non-perturbative effects (so it does not meet the fifth point
of the Snowmass accord): in fact, if two partons are soft, the algorithm will cluster them even if
they are not collinear.

Most of the widely-used clustering algorithms belong to the family of the generalized-kT
algorithm; this is based on the definition of a inter-particles distance dij and a beam distance
diB:

dij = min(k2pT,i, k
2p
T,j)∆R

2
ij , diB = k2pT,iR

2, (2.54)

where p is a free parameter, ∆R2
ij is the geometrical distance in the rapidity-azimuthal angle

plane and R is a parameter called jet radius. Iteratively we compute all the dij and diB: if the
smallest distance is a dij , we cluster the particles i and j; instead, if the smallest distance is a
diB, object i is identified as a jet and removed from the list [8].

The value of p determines the characteristics of the algorithm. For example, the kT algorithm
correspond to p = 1 and it tends to cluster soft emitted partons. With p = 0 we obtain the Cam-
bridge/Aachen algorithm: it is insensitive to soft emissions, as the distance is purely geometrical.
The Anti-kT algorithm correspond to p = −1 and has the feature that hard partons are favoured
to cluster.

In the study of the jet substructure, several algorithms are used. Initially, jets are usually
identified using the Anti-kT algorithm and then the substructure is studied reclustering the com-
ponents of a jet with other algorithms.

Cone algorithms

Another type of algorithm is the cone algorithm, which is based on the concept of stable cone:
for a given cone centre (yc, φc) in the rapidity-azimuth plane, if we sum the four-momenta of all
the particles within a fixed radius R around the cone centre and the sum has rapidity yc and
azimuth φc, which means that the total four-momentum points in the direction of the centre of
the cone, the cone is said stable. The cone algorithm starts with a given set of seeds; using them
as candidates for cone centres, we calculate the cone contents and find a new centre based on the
sum of the four-momenta, iteratively until we found a stable cone. It is worthy to specify that
finding cones is different from finding jets, since cone can overlap; commonly, after identifying
the cones, we can identify jets by merging or splitting the cones using an appropriate split-merge
procedure.

2.3.2 Jet cross section

The total cross section calculated in Sect. 1.3.1 doesn’t give any information about the distribu-
tion of the hadrons in the final state. After providing a jet definitions, we can calculate the jet
cross section σn, which is the cross section for the production of n jets in the final state, and the
rate Rn ≡ σn/σtot. To be useful, a jet cross section calculated in perturbative QCD should be
free of soft and collinear singularities and relatively insensitive to non-perturbative corrections
[1]. The Sterman-Weinberg cross section at LO coincides with the total cross section, while at
NLO is calculated by integrating the matrix element in Eq. (1.27) over the phase space region
where Ei < ϵ

√
s and θij < δ; alternatively, we can subtract the three-jets cross section from the

total cross section:
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σ2 = σLO + σqq̄g(Ei < ϵ
√
s, θij < δ) + ... (2.55)

= σtot − σqq̄g(Ei > ϵ
√
s, θij > δ). (2.56)

The cross section in Eq. (2.56) can be calculated integrating the matrix element in the phase-space
region R obtained removing the infrared region from the whole phase space:

σqq̄g(Ei > ϵ
√
s, θij > δ) =

∫︂
R
dx1dx2

d2σqq̄g
dx1dx2

. (2.57)

The final result for the rate is the following:

R2 ≡
σ2
σtot

= 1− 4

3

αS

π

[︃
4 log δ

(︃
log 2ϵ+

3

4

)︃
− 5

2
+
π2

6

]︃
. (2.58)

In order to avoid infrared singularities, ϵ and δ should not be chosen too small.
In general, small values of the resolution parameters facilitate the identification of a large

number of jets in the final states, as it can be seen in the following plot, provided by the OPAL
collaboration:

Figure 2.3: Rates of n-jet events (2 ≤ n ≤ 5) for different values of the resolution parameter ycut,
as measured at the Z0 resonance at LEP [9].
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Chapter 3

Event shape variables and
superinclusive obervables

3.1 Event shape variables
A useful approach to study the characteristics of a hadronic final state is to use the so-called
event shape variables [1]. These quantities characterize the ”shape” of an event, describing the
distribution of hadrons in final states. After defining the variable X, we can give a theoretical
prediction of the distribution dσ/dX and compare it with experimental measurements.

An example of a broadly-used event shape variable is the thrust T :

Tm = max
|n|=1

∑︁m
i=1 |pi · n|∑︁m
i=1 |pi|

(3.1)

where pi are the final-state parton (or hadron) momenta and n is an arbitrary unit vector. The
thrust is a variable that maximizes the longitudinal momentum of an event, it takes values in the
interval (1/2, 1); T = 1/2 and T = 1 are two limit values:

• T =
1

2
: we have a spherical event, where all the particles are distributed isotropically;

• T = 1: we have a pencil-like event, with two back-to-back particles (or jets).

In the previous chapter we introduced the concept of IRC safety; this can be generalized to the
event shape variables: a variable is infrared safe if it is insensitive to soft and collinear emissions.
The thrust is an infrared safe variable. It is clear that it satisfies soft safety: in fact, if pi → 0,
then Tm+1 → Tm. For two collinear partons with momenta pi = zp and pj = (1 − z)p, in the
numerator of Eq. (3.1) we have

|pi · n|+ |pj · n| = (z + 1− z) |p · n| = |(pi + pj) · n| , (3.2)

whereas in the denominator

|pi|+ |pj | = (z + 1− z) |p| = |pi + pj | , (3.3)

so T is collinear safe.
Using Eq. (2.50), with Fm = δ(T − Tm), we can calculate the thrust distribution. At NLO

the result is
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1

σ

dσ

dT
= CF

αS

2π

[︃
2(3T 2 − 3T + 2)

T (1− T )
log

(︃
2T − 1

1− T

)︃
− 3(3T − 2)(2− T )

1− T

]︃
. (3.4)

The distribution diverges as T → 1; however, IRC safety permits us to integrate it in the interval
1/2 ≤ T ≤ 1 in order to obtain the total cross section.

It is interesting to compute the expectation value ⟨1− T ⟩ with respect to the c.o.m. energy√
s; we note that it decreases as the energy increases, which means that ⟨T ⟩ → 1 as

√
s → +∞:

in fact, if the energy is large, αS → 0, so the thrust reaches the value it would have in absence of
higher-order correction, which is 1, because in the final state we have only the quark-antiquark
pair. In this way, it should be clear that we can provide a determination of αS by measuring the
distance of T from 1. According to this result, it can be shown that

1

σ

dσ

dT
−→ δ(1− T ) if

√
s→ +∞. (3.5)

Another example of an event shape is the spherocity, defined in the following way:

Sm =

(︃
4

π

)︃2

min
n

(︃∑︁m
i=1 |pi × n|∑︁m

i=1 |pi|

)︃2

. (3.6)

A widely-used event shape variable, which is similar to the observable we will define in Chapter
5, is the energy-energy correlation function (EEC). This quantity is a dimensionless angular
distribution, defined in the following way:

1

σ

dΣ

d cosχ
=

∑︂
i ̸=j

∫︂
d3pi
Ei

d3pj
Ej

(︃
2EiEj

s

)︃
EiEj

d6σ

d3pid3pj
δ(cos θij − cosχ)

+
∑︂
i

∫︂
d3pi
Ei

(︃
E2

i

s

)︃
Ei
d3σ

d3pi
δ(1− cosχ), (3.7)

where E1E2d
6σ/d3p1d

3p2 is the two-hadron inclusive cross section and θij is the angle between
particles i and j. The first sum is over all distinct pairs of final-state partons (or hadrons), while
the second is a self-correlation, which guarantees the validity of the following sum rule:∫︂ 1

−1
d cosχ

1

σ

dΣ

d cosχ
= 1. (3.8)

The EEC measures the correlation of the energy flow in an event [1]. It is peaked at χ = 0 and
χ = π for a pencil-like event and it becomes flatter for a more isotropic event. It can be shown
that the EEC is IRC safe.

3.1.1 Inclusive and superinclusive observables

We have already mentioned the concept of inclusivity while treating electron-positron annihila-
tion. High-energy scattering processes produce a large multiplicity of particles and we could be
interested in a particular final state, for example we could require the presence of a jet: we are
inclusive if we accept any possible final state which includes the particle we are interested in.
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Thus, an example of an inclusive observable is the 1-jet inclusive cross section, which measures
the cross section for the production of one jet and any other particle.

In Chapter 1 we saw that the total hadronic cross section in electron-positron annihilation is
free of soft and collinear singularities, as we sum over all possible final states. In 1978, before
the introduction of the concept of IRC safety, G. Parisi generalized the idea of the total hadronic
cross section introducing the concept of superinclusivity [3]: a superinclusive observable is defined
accepting any possible final state, with no restrictions; hence, the definition of such a variable is
based on a property of the final state and not on the type of particles. A superinclusive variable
is free of soft and collinear singularities and can be calculated in perturbative theory at partonic
level.

The example proposed by Parisi in [3] is the following 3× 3 matrix:

θij =
∑︂
k

p
(k)
i p

(k)
j⃓⃓

p(k)
⃓⃓ , (3.9)

where i, j = 1, 2, 3 and p
(k)
i are the spatial components of the k-th particle in the centre-of-mass

frame.
From Eq. (3.9) we can define the superinclusive cross section dσ/dθij , which can be written

also in terms of the normalized eigenvalues λ1, λ2, λ3 of the matrix:

d3σ

dλ1dλ2dλ3
= σ(λ)δ(λ1 + λ2 + λ3 − 1). (3.10)

From the eigenvalues of the matrix, we can define the C and D parameters:

C = 3(λ1λ2 + λ2λ3 + λ1λ3), D = 27λ1λ2λ3. (3.11)

This parameters are linked to the geometry of the final state, because the eigenvalues of the
observable have a geometrical meaning: if only one of them is not zero, the final state consist of
two jets and all the momenta are collinear; if only one eigenvalue is equal to zero, there are at
least three jets and all the momenta belong to the same plane; if all the eigenvalues are equal to
1/3, the momenta distribution is completely spherical.

The C-parameter can be rewritten in terms of the final-state momenta:

C =
3

2

∑︁
i,j

[︂
|pi| |pj | − (pi · pj)

2 / |pi| |pj |
]︂

(
∑︁

i |pi|)2
. (3.12)

3.1.2 Parton-hadron duality and the observable R

In the hard scattering regime non-perturbative hadronization effects can be neglected, this leads
to the notion of parton-hadron duality: an observable has this property if experimental hadronic
measurements are compatible with theoretical partonic calculations.

An example of a superinclusive observable for which the parton-hadron duality is valid is
the ratio R of the total hadronic cross section to the muon pair production cross section in
electron-positron annihilation [1]:

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

(3.13)
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This is a superinclusive observable because we accept any possible QCD final state. It can be
calculated in perturbative QCD at partonic level; at LO the prediction is obtained computing the
quark-antiquark pair production cross section and summing over quarks flavours and colours:

RLO =

∑︁
q σ(e

+e− → qq̄)

σ(e+e− → µ+µ−)
= 3

∑︂
q

e2q . (3.14)

Using Eq. (1.33), we can include higher-order QCD corrections, obtaining the following result:

R = 3
∑︂
q

e2q

{︂
1 +

αS

π
+O(α2

S)
}︂
. (3.15)

Looking at the plot in Fig. 3.1, we can observe the parton-hadron duality of this observable.
The theoretical prediction is compatible with the experimental data in the region

√
s > 1, where

the perturbative approach is a valid; the discrepancies are due to the presence of resonances in the
experimental data, which represent excited states of hadrons; for high energies, these resonances
form a continuum, so the compatibility with the theoretical prediction increases.

Figure 3.1: World data on the total cross section σ and the ratio R in electron-positron annihila-
tion [10]; the broken lines represent the prediction given by the naive quark model approximation,
while the solid curve represent the 3-loop perturbative QCD prediction.
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3.2 Resummation of event shape variables
In this section we will give a brief introduction on the resummation formalism, following references
[1] and [12].

We can begin by considering the perturbative prediction of the thrust distribution, which has
the following form:

1

σ

dσ

dT
= αS(µ

2)A1(T ) + α2
S(µ

2)A2(T,Q
2/µ2) + α3

S(µ
2)A3(T,Q

2/µ2) + ... (3.16)

where A1(T ) is given by Eq. (3.4).
The series expansion of a prediction is formally valid if αS(µ

2) ≪ 1; however, if the coefficients
of the expansion are large, the prediction could lack reliability. For the thrust, as T → 1, i.e.
the final state reaches the 2-jet configuration, the coefficients become large, containing large
logarithms:

An(T ) ∼
T→1

log2n−1(1− T )

1− T
. (3.17)

This means that the prediction is reliable only if αS(µ
2) log2(1−T ) ≪ 1. A way to obtain a reliable

prediction is to resum these large logarithms to all orders. For convenience, the resummation is
performed considering the integrated distribution:

f(τ) =

∫︂ 1

1−τ
dT

1

σ

dσ

dT
, (3.18)

where τ = 1 − T . We say that the quantity exponentiates if for small values of τ it has the
following form

f(τ) = C(αS) exp

{︃
G

(︃
αS , log

1

τ

)︃}︃
+D(αS , τ), (3.19)

where, defining L ≡ log(1/τ),

C(αS) = 1 +

+∞∑︂
n=1

Cn

(︂αS

2π

)︂n
, (3.20)

G(αS , L) =
+∞∑︂
n=1

n+1∑︂
m=1

Gnm

(︂αS

2π

)︂n
Lm

≡ Lg1(αSL) + g2(αSL) + αSg3(αSL) + ... (3.21)
D(αS , τ) −→

τ→0
0. (3.22)

We refer to terms αn
SL

n+1 as Leading Logarithms (LL), terms αn
SL

n as Next-to-Leading Loga-
rithms (NLL), and so on. The function g1 resums all LL terms, g2 all NLL terms, while g3 and
the next functions of the expansion contain the so-called subdominant logarithmic corrections
αn
SL

m, with 0 < m < n.
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Knowing g1(αSL) and g2(αSL) in the region where αSL ∼ 1, provided that the subdominant
contributions have a good behaviour in this region, permits us to obtain a reliable prediction of
log τ in the region where αSL ∼ 1, which is less limiting than the condition αSL

2 ≪ 1.
We can say that every observable which is a solution of a RGE exponentiates. The exponen-

tiation of an event shape is a consequence of the large logarithms arising from a large scale ratio
in the calculation of the matrix elements in the infrared regions; however, the phase space may
spoil this property. For the function f(τ) we can write

f(τ) =
1

σ

∑︂
n

∫︂
dφn |Mn|2 Fn({pi} ; τ). (3.23)

We have to show that each term of the sum factorize in the limit τ → 0, eventually after
performing a suitable integral transformation; if the terms of the sum form an exponential series,
we can say that the event shape exponentiates.

It can be shown that the thrust exponentiates; however, not all the event shape have this
property. In general, an integrate distribution R(v)

R(v) =
1

σ

∫︂ v

0
dv′

dσ

dv′
, (3.24)

where v → 0, has the following perturbative expansion:

R(v) = 1 +

+∞∑︂
n=1

(︂αS

2π

)︂2(︄ 2n∑︂
m=1

Rnm logm
1

v
+O(v)

)︄
. (3.25)

In this case, reminding that L ≡ log(1/v), we refer to terms αn
SL

2n as LL, terms αn
SL

2n−1 as NLL
and so on. The resummation is convergent up to values for which L ∼ α

−1/2
S : beyond this limit,

formally subleading terms can become as important as the leading terms. At this limit, a NnLL
resummation neglects terms of accuracy α(n+1)/2

S .
If the observable exponentiates, we can write

R(v) = exp

{︄
+∞∑︂
n=1

(︂αS

2π

)︂n(︄n+1∑︂
m=0

Gnm logm
1

v
+O(v)

)︄}︄
(3.26)

where the coefficients Gnm have the form of Eq. (3.21). It should be specified that we can rewrite
every pertubative series in an exponential form: what distinguishes between an observable which
exponentiates from a one which does not is the form of the coefficients Gnm.

Finally, it is worth spending some words about the matching between the fixed-order and
resummed predictions. Resummed preditions are valid only in the limit of small v, while fixed-
order calculations are performed in the whole phase space, but fail in a particular limit. Sometimes
it could be useful to consider both these contributions; however, some terms are counted by
both resummed and fixed-order calculations, so it is important to subtract the so-called double-
counting terms. The matched prediction is

Rmatched(v) = Rfixed-order(v) +Rresummed(v)−Rdouble-counting(v). (3.27)

In the following plot, taken from [12], it is shown the difference between a fixed-order and a
resummed predictions for the thrust.
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Figure 3.2: Comparison between fixed-order (LO, NLO) and resummed (NLL) predictions for
the thrust distribution in electron-positron annihilation at Q = MZ . The resummed prediction
has been matched, so it contains LO and NLO contributions.

34



Chapter 4

Multifractals and renormalization in
QFT

In this chapter we will give a brief introduction to the concept of multifractal. We will present
the concept of a scaling law, a fractal system and its generalization to a multifractal system.
Although these are concepts studied mainly in statistical physics, we will see that they have some
application in QFT and QCD. We will see that a renormalizable quantum field theory has a
multifractal behaviour.

4.1 Multifractals
We start by presenting the concept of multifractal: before doing this we will define a scaling law
and a fractal system. The dissertation provided in this section is simple, having only the aim of
introducing some basic concepts. Statistical physics literature is filled with works on these topics,
but this goes beyond the aim of this thesis.

4.1.1 Scaling laws

A fundamental concept which is necessary to understand fractals and multifractals is the concept
of scaling law. In general, a scaling law is a functional relation between two physical variables
that depend on each other. A basic example is a power law:

f(x) = xa, (4.1)

where x is the independent variable, called scaling variable, and a ∈ R. Typically, we take a
length scale as scaling variable: a trivial example of a scaling power law is the dependence of the
Coulomb force on the distance r:

F (r) ∝ r−2. (4.2)

Physics is filled with scaling laws. In general, scaling laws can be more complicated than
power laws; as we will see, fractals and multifractals are described by scaling laws.
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4.1.2 Fractals

Conceptually, a fractal system is a system that repeats itself at every scale: this property is called
self-similarity and it can be exact, approximate or statistical.

After hundreds of studies about fractals, in 1975 the mathematician Benoit Mandelbrot coined
the word “fractal” and gave a mathematical definition supplied with computer-constructed visu-
alizations, such as the so-called Mandelbrot set.

Figure 4.1: Visualization of a Mandelbrot set.

Mandelbrot describes a fractal as “a rough or fragmented geometric shape that can be split into
parts, each of which is (at least approximately) a reduced size of the whole” [14]. A mathematical
definition is provided introducing the concept of fractal dimension [15]: this measures how the
detail in the fractal change with a change of the scale at which we are looking the system. The
fractal dimension is greater than the topological dimension of the space. We consider a bounded
set X in a d-dimensional space: X is self-similar if it is the union of Nr copies of itself, each of
which is similar to X if scaled down by a factor r; the fractal dimension DF is defined as follows:

DF ≡ logNr

log 1
r

. (4.3)

In other words, we can imagine to divide the fractal space into hypercubes of side length r: if
N(r) is the number of hypercubes occupied by the points which form the fractal, we have that

DF = − lim
r→0

logN(r)

log r
. (4.4)

Hence, fractals are described by a power scaling law, in which the power is minus the fractal
dimension:

N(r) ∝ r−DF . (4.5)

Fractals appear in a variety of physical applications. For example, chaotic dynamical systems
may exhibit a fractal behaviour.

36



4.1.3 Multifractals

A multifractal is the generalization of a fractal, which have a more than one fractal dimension or
scaling rule. We can say that a fractal with a non-constant fractal dimension is a multifractal. In
order to give a quantitative definition of a multifractal, we consider its application to dynamical
systems following reference [16].

We consider a time series of points Xi ≡ X(i∆t) of a dynamical system, where ∆t is the time
interval and i = 1, 2, ..., N :

dX

dt
= f(X), X ∈ Rd. (4.6)

We define a local density by counting the fraction of points contained in a hypersphere of radius
r and centre Xi:

ni(r) =
∑︂
i ̸=j

Θ(r − |Xi −Xj |)
N − 1

, (4.7)

where Θ is the Heaviside function. Through a space average we calculate the moments of this
local density:

⟨ni(r)q⟩ = lim
N→+∞

N∑︂
i=1

ni(r)
q

N
, (4.8)

and define a series of exponents φ(q) by the scaling law

lim
r→0

⟨ni(r)q⟩ ∝ rφ(q). (4.9)

In a fractal, n(λr) has the same statistical properties of n(r)λDF , which implies that φ(q) =
DF q. We have a multifractal if

φ(q) ̸= DF q. (4.10)

This idea can be generalized to a measure on a general d-dimensional space.
To sum up, while a fractal is a system that repeats itself at every scale, a multifractal is a

system that, if looked at a different scale, repeats itself with some changes in its parameters.

4.2 Multifractal interpretation of the renormalization
In the first chapter we saw that higher-order corrections give rise to ultraviolet divergences, which
are treated with the renormalization procedure. We saw that the renormalization of QCD requires
a redefinition of the coupling constant: the consequence of this procedure is the introduction of
a dependence of the coupling constant on an energy scale, called renormalization scale. This
can be generalized to every renormalizable quantum field theory and to every parameter of the
Lagrangian (masses, coupling constants, fields, etc.). Renormalizing a theory, we redefine the
bare non-physical parameters of the Lagrangian at a certain energy scale. This means that we
are looking at the system at a certain energy scale and we can wonder how the system changes
if we observe it at a different scale.
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Following chapter 12 of the reference [2], we illustrate this idea in the simple example of φ4
theory, with a massless scalar field φ and a coupling constant λ. We start by introducing the
bare Green’s functions, defined as follows:

G
(n)
0 (x1, ..., xn) = ⟨0|T {φ0(x1)φ0(x2)...φ0(xn)}|0⟩ , (4.11)

where T is the time-ordered product and φ0 is the bare field. The Green’s functions in Eq.
(4.11) are functions of the bare coupling constant λ0 and the UV cut-off Λ. After performing the
renormalization, we remove the cut-off dependence, we substitute the bare coupling λ0 with the
renormalized coupling λ and rescale the fields introducing the field strength renormalization Z:

φ(x) = Z−1/2φ0(x). (4.12)

The renormalized Green’s functions G(n)(x1, ..., xn) depend on the renormalization scale µ and
are numerically equal to the bare functions, up to a rescaling by powers of Z:

G(n)(x1, ..., xn) = Z−n/2G
(n)
0 (x1, ..., xn). (4.13)

We can redefine the renormalized Green’s functions at a different scale µ′, with a new renor-
malized coupling constant λ′ and a new rescaling factor Z ′. We consider an infinitesimal shift of
the renormalization scale:

µ → µ+ δµ, (4.14)
λ → λ+ δλ, (4.15)
φ → (1 + δη)φ. (4.16)

This has the following effect on the renormalized Green’s functions:

G(n) → (1 + nδη)G(n). (4.17)

Thinking about G(n) as a function of M and λ, we can write

dG(n) =
∂G(n)

∂M
δM +

∂G(n)

∂λ
δλ = nδηG(n). (4.18)

It is useful to define the following dimensionless parameters:

β ≡ M

δM
δλ, γ ≡ − M

δM
δη. (4.19)

Making these substitution in Eq. (4.18) and multiplying by M/δM , we obtain the following
equation: [︃

µ
∂

∂µ
+ β

∂

∂λ
+ nγ

]︃
G(n)(x1, ..., xn;µ, λ) = 0. (4.20)

The parameters β and γ are the same for every n and cannot depend on the xi. Being G(n)

renormalized, β and γ cannot depend on the cut-off, so, by dimensional analysis, we can conclude
that they cannot depend on µ; hence, they are functions only of the dimensionless quantity
λ. Therefore, we can say that any Green’s function in massless φ4 theory follows the so-called
Callan-Symanzik equation:
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[︃
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγ(λ)

]︃
G(n)(x1, ..., xn;µ, λ) = 0. (4.21)

This result can be generalized to other renormalizable massless theory with dimensionless
couplings. β(λ) and γ(λ) are two universal function: β has already been introduced in Chapter
1 and it is related to the coupling constant; whereas, γ(λ) is called anomalous dimension and it
is related to the operator we are rescaling (in this case the field).

We can conclude that, for a renormalizable theory, a shift in the renormalization scale leads
to a shift in the coupling constant and in the other parameters of the Lagrangian. This means
that, if we look at the system at a different energy scale, the system repeats itself with some
changes in its parameters: remembering the definition given in the previous section, we can say
that this is a multifractal behaviour.

4.2.1 Multifractals in QCD

Fractals and multifractals are a large field of interest in physics. Moreover, they have some
applications in particle physics.

Some works about fractal and multifractal structures in multiparticle production are already
available in literature. For example, the authors of [17] studied the multifractal dimensions in
QCD cascades for high-energy particle production in small rapidity or angular intervals. A more
recent work is [18], in which the authors present a series of fractal jet observables. However, in
these and other works the common approach is to identify jets in the final state; our approach will
be different: in the next chapter, we will calculate the multifractal dimension of a superinclusive
observable at partonic level, without identifying jets.
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Chapter 5

A superinclusive observable with a
multifractal dimension

In this chapter we will define a superinclusive observable and we will study its behaviour in
the collinear limit, through an analytical calculation at the Leading Log order. This chapter
constitutes the original work of this thesis.

5.1 Definition of the observable
We consider an electron-positron scattering process e+e−, and, as done in Sect. 1.3.1, we make
a calculation at LO in QED and consider the decay γ → qq̄ with QCD higher-order corrections;
we neglect the Z channel. The observable is defined as the final-state energy deposited in a cone
with angular radius θ:

E(θ, b) ≡

(︄∑︂
i

Ei(θ)

)︄b

, (5.1)

where Ei(θ) is the energy of the i-th particle revealed in the cone and b is a real parameter. This
observable is superinclusive, since its definition is based on a property and not on the type of the
final-state particles: we accept any possible final state.

5.1.1 Direction of the cone

Our aim is to find the behaviour of this variable in the limit where θ → 0. We should start by
specifying the direction of the axis of the cone; we can explore different possibilities.

Direction of the LO quark-antiquark line

We can define the direction of the cone as the line of the quark-antiquark decay of the process at
LO. This definition is particularly useful for analytical calculations, because the splitting angle of
a parton emitted by the quark (or the antiquark) coincides with the angle between the parton and
the cone axis; however, this has no sense experimentally, as we cannot identify the LO direction
in an experiment.
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Direction identified by the thrust axis

The thrust is a variable that identifies the direction which maximizes the longitudinal momentum
of the final state. This direction can be determined in an experiment, but the calculations involved
are not trivial.

Arbitrary direction

Another possibility is to choose an arbitrary direction in space as the direction of the cone axis.
This has an experimental significance and the calculations can be simplified by a suitable choice
of the frame of reference and the collinear approximation: in fact, we will see that in this limit
we can approximate the direction of the cone with the direction of the LO quark-antiquark line
in the phase-space regions which give a non-zero contribute to the observable.

Therefore, this is a good choice to study the scaling law of the observable. For convenience,
we choose the frame of reference so that the z axis coincides with the axis of the cone: in this
frame, a particle is inside the cone if and only if its polar angle is less than θ. Moreover, without
loss of generality, we can set the azimuthal angle of the collision axis equal to zero; hence, in this
frame the following four-vectors represents the initial-state four-momenta q1 and q2:

q1 = (E,−E sin θ0, 0,−E cos θ0), (5.2)
q2 = (E,E sin θ0, 0, E cos θ0), (5.3)

where we defined E ≡ Q
2 ≡

√
s
2 ,

√
s being the centre-of-mass energy.

5.1.2 Formula of the observable for a n-particle final state

We can express the observable as a weighted cross section. We use the Heaviside function in
order to say if a particle is inside or outside the cone: if it is outside, the function is equal to zero
and it gives no contribution. For a general n-particle final state, we can write down the following
formula:

En(θ, b) =
1

2sσ0

∫︂
dφn|M̄n|2

(︄
n∑︂

i=1

EiΘ(cos θi − cos θ)

)︄b

, (5.4)

where dφn is the n-particle phase space and |Mn
¯ |2 is the squared modulus of the n−particle final

state amplitude (averaged over the polarizations); Ei and θi are the energy and the polar angle of
the i-th particle respectively; 2sσ0 is a normalization factor, with σ0 being the total cross section
at Born level1. Finally, we define the following quantity, which will be useful in the calculations:

Fn(Ei, θi; θ, b) ≡

(︄
n∑︂

i=1

EiΘ(cos θi − cos θ)

)︄b

(5.5)

1Actually, a proper normalization would require the total cross section, but we approximate it using the Born-
level one to make the calculations easier.
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5.2 Fixed-order calculations
We will start by performing fixed-order calculations considering only leading logarithmic terms;
then, we will sum the all-order contributions to obtain the LL result.

Fixed-order calculations can be performed by using Eq. (5.4); however, the integral could
not be exactly calculable: in fact, if we consider the complete matrix element, we can compute
the integral only at LO. Calculations are simpler in the soft and collinear limits, thanks to the
factorization. As θ goes to zero, we are considering the collinear limit; we can also consider the
soft limit, but we will see that the leading contributions to the variables are given by collinear
partons and the collinear approximation is valid also if the emitted parton is soft.

5.2.1 LO calculation

At LO, we have the creations of a qq̄ pair, with momenta p1 and p2 respectively:

p1 = (E1, E1 sin θ1 cosϕ1, E1 sin θ1 sinϕ1, E1 cos θ1), (5.6)
p2 = (E2, E2 sin θ2 cosϕ2, E2 sin θ2 sinϕ2, E2 cos θ2). (5.7)

The conservation of the total four-momentum implies that

p1 = (E,E sin θ1 cosϕ1, E sin θ1 sinϕ1, E cos θ1), (5.8)
p2 = (E,−E sin θ1 cosϕ1,−E sin θ1 sinϕ1,−E cos θ1). (5.9)

Inserting the expressions (5.2), (5.3) (5.8) and (5.9) into Eq. (1.24), we obtain the following result
for the squared modulus of the amplitude at LO:

|M̄LO|2 =
8e4e2q
(2E)4

[︁
E4(1 + sin θ0 sin θ1 cosϕ1 + cos θ0 cos θ1)

2

+ E4(1− sin θ0 sin θ1 cosϕ1 − cos θ0 cos θ1)
2
]︁

=
8e4e2qE

4

16E4

[︁
2 + 2 sin2 θ0 sin

2 θ1 cos
2 ϕ1 + 2 cos2 θ0 cos

2 θ1

+4 sin θ0 sin θ1 cosϕ1 cos θ0 cos θ1]

= e4e2q
(︁
1 + sin2 θ0 sin

2 θ1 cos
2 ϕ1 + cos2 θ0 cos

2 θ1

+ 2 sin θ0 cos θ0 sin θ1 cos θ1 cosϕ1) . (5.10)

We can write down the expressions of the 2-particle phase space and of the quantity F2:

dφ2 = dΩ1
1

16π2
|p1|
Q

=
1

32π2
d cos θ1dϕ1, (5.11)

F2(E1, E2, θ1, θ2; θ, b) = [E1Θ(cos θ1 − cos θ) + E2Θ(cos θ2 − cos θ)]b

= [EΘ(cos θ1 − cos θ) + EΘ(− cos θ1 − cos θ)]b . (5.12)
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The total cross section at Born level is given by eq. (1.26). Now, we can perform the computation
of the observable at leading order, summing over all kinematically accessible flavours and all
colours:

ELO(θ, b) =
3

8πα2Nc
∑︁

q e
2
q

Nce
4
∑︁

q e
2
q

32π2

∫︂ 1

−1
d cos θ1

∫︂ 2π

0
dϕ1(1 + sin2 θ0 sin

2 θ1 cos
2 ϕ1 +

+cos2 θ0 cos
2 θ1 + 2 sin θ0 cos θ0 sin θ1 cos θ1 cosϕ1)F2(E, θ1; θ, b)

=
3

8πα2

16π2α2

32π2
π

∫︂ 1

−1
d cos θ1(2 + sin2 θ1 sin

2 θ0 + 2 cos2 θ1 cos
2 θ0) [EΘ(cos θ1 − cos θ)+

+EΘ(− cos θ1 − cos θ)]b

=
3

16
Eb

(︃∫︂ 1

cos θ
d cos θ1(2 + sin2 θ1 sin

2 θ0 + 2 cos2 θ1 cos
2 θ0)+

+

∫︂ − cos θ

−1
d cos θ1(2 + sin2 θ1 sin

2 θ0 + 2 cos2 θ1 cos
2 θ0)

)︃
(5.13)

We focus on the first integral in Eq. (5.13) and compute it using the mean value theorem for
integrals, considering that θ ≪ 1:

I1 ≡ 3

16
Eb

∫︂ 1

cos θ
d cos θ1(2 + sin2 θ1 sin

2 θ0 + 2 cos2 θ1 cos
2 θ0)

=
3

16
Eb

∫︂ θ

0
dθ1 sin θ1(2 + sin2 θ1 sin

2 θ0 + 2 cos2 θ1 cos
2 θ0)

=
3

16
Ebθ sin

θ

2
(2 + sin2 θ0 sin

2 θ

2
+ 2 cos2 θ0 cos

2 θ

2
) +O(θ3)

=
3

16
Ebθ2(1 + cos2 θ0) +O(θ3). (5.14)

The second integral in Eq. (5.13) is equal to the first: it can be seen by operating the
substitution θ → π − θ; the final result is the following:

ELO(θ, b) =
3

8
Ebθ2(1 + cos2 θ0) ≡ C(θ0, b, E)θ2, (5.15)

where we have introduced the constant C(θ0, b, E), which does not depend on θ, but only on fixed
parameteres of the system:

C(θ0, b, E) ≡ 3

8
Eb(1 + cos2 θ0). (5.16)

5.2.2 NLO calculation

At NLO we have the emission of a real or virtual gluon. We begin by considering the real emission:
the partonic final state is qq̄g (see Fig. 1.3); using the notation of Section 1.3.1, we can write the
expression of the observable at NLO:
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ENLO(θ, q) =
1

2sσ0

∫︂
dφ3|M̄0|2 (E1Θ(cos θ1 − cos θ) + E2Θ(cos θ2 − cos θ)

+E3Θ(cos θ3 − cos θ))b , (5.17)

where we have approximated the total cross section at NLO with the Born level total cross section.
In the collinear limit the interference between the two diagrams is suppressed and we can

factorize the amplitude introducing the AP splitting functions:∫︂
dφ3|M̄NLO|2 =

∫︂
dφ2|M̄LO|2

αS

2π

∫︂
dk2T
k2T

∫︂
dzP (0)

qq (z), (5.18)

where kT is the transverse momentum of the gluon. From now on, we will refer to P
(0)
ab (z) as

Pab(z), because we will consider only the LO term of the AP functions. We start by considering
the contribution given by the diagram (a), where the gluon is emitted by the quark; in the
collinear approximation p1 and p2 have the same expression they have at LO.

E
(a)
NLO(θ, b) =

αS

2π

1

2sσ0

∫︂
dφ2|M̄LO|2

∫︂
dk2T
k2T

∫︂
dzPqq(z) [zEΘ(cos θ1 − cos θ)+

+ EΘ(− cos θ1 − cos θ) + (1− z)EΘ(cos θ3 − cos θ)]b . (5.19)

It’s useful to split the integration domain into two regions, we can do that using the property of
the Heaviside function:

E
(a)
NLO(θ, b) =

αS

2π

∫︂
0≤θ1≤θ

dφ2
|M̄LO|2

2sσ0
Eb

∫︂
dθ213
θ213

∫︂
dzPqq(z) [z + (1− z)Θ(cos θ3 − cos θ)]b +

+
αS

2π

∫︂
π−θ≤θ1≤π

dφ2
|M̄LO|2

2sσ0
Eb

∫︂
dθ213
θ213

∫︂
dzPqq(z). (5.20)

If π−θ ≤ θ1 ≤ π, only the antiquark is revealed in the cone: considering also the virtual emission,
this term gives no contribution, because of Eq. (2.31). As θ ≪ 1, we can use the approximation
θ13 ≈ θ3:

E
(a)
NLO(θ, b) =

αS

2π

∫︂
0≤θ1≤θ

dφ2
|M̄LO|2

2sσ0
Eb

∫︂ θ2

0

dθ23
θ23

∫︂
dzPqq(z) +

+
αS

2π

∫︂
0≤θ1≤θ

dφ2
|M̄LO|2

2sσ0
Eb

∫︂ θ2m

θ2

dθ23
θ23

∫︂
dzPqq(z)z

b, (5.21)

where we have defined the angle θm > θ as a superior limit of the collinear approximation. As
before, the term containing the first momentum of Pqq(z) vanishes.
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E
(a)
NLO(θ, b) =

αS

2π

∫︂
0≤θ1≤θ

dφ2
|M̄LO|2

2sσ0
Eb

∫︂ θ2m

θ2

dθ23
θ23

∫︂
dzPqq(z)z

b

=
αS

2π

1

2
ELO(θ, b)2 log

θm
θ

∫︂
dzPqq(z)z

b

= ”not log” − αS

2π
ELO(θ, b)

(︃∫︂
dzPqq(z)z

b

)︃
log θ (5.22)

The contribution given by the diagram (b), E(b)
NLO(θ, b), is equal to the one just computed:

E
(b)
NLO(θ, b) =

αS

2π

1

2sσ0

∫︂
dφ2|M̄LO|2

∫︂
dk2T
k2T

∫︂
dzPqq(z)[EΘ(cos θ1 − cos θ) +

+zEΘ(− cos θ1 − cos θ) + (1− z)EΘ(cos θ3 − cos θ)]b

= E
(a)
NLO(θ, b). (5.23)

Hence, the result is

ENLO(θ, b) = “not log” − αS

π
ELO(θ, b)

(︃∫︂
dzPqq(z)z

b

)︃
log θ

= “not log” − αS

π
C(θ0, b, E)θ2γb+1

qq log θ, (5.24)

where “not log” stands for non-logarithmic terms and γqq is the Mellin moment of the AP function
Pqq(z)). Considering also the splitting q → g + q with its AP function Pgq(z), the final result at
NLO is the following:

ENLO(θ, b) = −αS

π
C(θ0, b, E)θ2

(︂
γb+1
qq + γb+1

gq

)︂
log θ, (5.25)

which can be written also in a matrix form:

ENLO(θ, b) = −αS

π
C(θ0, b, E)θ2 log θ

2∑︂
i=1

⎡⎣⎛⎝ γb+1
qq 2Nfγ

b+1
qg

γb+1
gq γb+1

gg

⎞⎠ ·

⎛⎝ 1

0

⎞⎠⎤⎦
i

= −αS

π
C(θ0, b, E)θ2 log θ

2∑︂
i=1

γb+1
ij vj , (5.26)

where γ is the matrix whose elements are the Mellin moments of the AP functions, defined in
Eq. (2.41, and vi ≡ (1, 0) is the vector representing the initial state of the splitting process
which contains one singlet quark and zero gluons. Being superinclusive, we consider the singlet
distribution as we sum over all quarks and antiquarks flavours and sum the component of the
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final-state vector because we do not distinguish between quarks and gluons (the sum over j is
understood).

In the generalization to the splitting q → g + q, which leads to Eq. (5.25) we do not need
the first Mellin moment of Pgq to be zero (indeed, it is not): if both the quark and the gluon are
inside the cone, in fact, the splitting q → g+q can be seen as q → q+g in a different region of the
phase space, as confirmed by the relation Pqq(z) = Pqg(1− z); hence, this term has already been
taken into consideration, and its contribution to the observable vanishes since the first Mellin
moment of Pqq is zero, as previously shown.

The final result at NLO order has a logarithmic dependence on the scale variable θ, which
multiplies the quadratic term obtained at LO. It is worth noticing that the non-vanishing con-
tributions are given by regions of the phase space where the the gluon is emitted outside the
cone.

5.2.3 NNLO calculation

Now we calculate the expression of the variable with two collinear emissions. Firstly, we consider
only the case of two gluon emissions, then we will generalize to all possible splittings. θ3 and
θ4 are the emission angles respect to the quark direction, while z3 and z4 are the fraction of
momentum transferred in the splitting processes. The Feynman diagrams are the following:

e−

e+

g

g

q

q̄

q1

q2

γ

p1

k3

k4

p2

(a)

e−

e+

g

g

q̄

q

q1

q2

γ

p2

k3

k4

p1

(b)

e−

e+

g

q

g

q̄

q1

q2

γ

p1

k3

p2

k4

(c)

+ (3 ↔ 4)

Figure 5.1: Real emission Feynman diagrams of the process at NNLO.
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We start by computing the contribution given by diagram (a):

E
(a)
NNLO(θ, b) =

1

2sσ0

∫︂
dφ2|M̄LO|2

α2
S

4π2

∫︂
dk23T
k23T

∫︂
dk24T
k24T

∫︂
dz3Pqq(z3)

∫︂
dz4Pqq(z4)

· [z3z4EΘ(cos θ1 − cos θ) + EΘ(− cos θ1 − cos θ)

+ (1− z3)EΘ(cos θ3 − cos θ) + z3(1− z4)EΘ(cos θ4 − cos θ)]b . (5.27)

It can be shown that the leading contribution is given by the region where 0 ≤ θ4 ≤ θ3:

E
(a)
NNLO(θ, b) =

∫︂
0≤θ1≤θ

dφ2
|M̄LO|2

2sσ0
Eb α

2
S

4π2

∫︂ θ2m

0

dθ23
θ2

∫︂ θ23

0

dθ24
θ24

∫︂
dz3Pqq(z3)

∫︂
dz4Pqq(z4)[z3z4

+(1− z3)Θ(cos θ3 − cos θ) + z3(1− z4)Θ(cos θ4 − cos θ)]b

+

∫︂
π−θ≤θ1≤π

dφ2
|M̄LO|2

2sσ0
Eb α

2
S

4π2

∫︂ θ2m

0

dθ23
θ2

∫︂ θ23

0

dθ24
θ24

∫︂
dz3Pqq(z3)

∫︂
dz4Pqq(z4),

(5.28)

As before, the region π − θ ≤ θ1 ≤ π gives no contribution:

E
(a)
NNLO(θ, b) =

α2
S

4π2
1

2
ELO(θ, b)

∫︂ θ2

0

dθ23
θ2

∫︂ θ23

0

dθ24
θ24

∫︂
dz3Pqq(z3)

∫︂
dz4Pqq(z4)

·[z3z4 + (1− z3) + z3(1− z4)]
b

+
α2
S

4π2
1

2
ELO(θ, b)

∫︂ θ2m

θ2

dθ23
θ2

∫︂ θ2

0

dθ24
θ24

∫︂
dz3Pqq(z3)

∫︂
dz4Pqq(z4)

·[z3z4 + z3(1− z4)]
b

+
α2
S

4π2
1

2
ELO(θ, b)

∫︂ θ2m

θ2

dθ23
θ2

∫︂ θ23

θ2

dθ24
θ24

∫︂
dz3Pqq(z3)

∫︂
dz4Pqq(z4)[z3z4]

b.

(5.29)

Only the last integral survives, since

z3z4 + (1− z3) + z3(1− z4) = 1, z3z4 + z3(1− z4) = z3. (5.30)

The phase-space integral gives the following result:

∫︂ θ2m

θ2

dθ23
θ2

∫︂ θ23

θ2

dθ24
θ24

=

∫︂ θ2m

θ2

(︁
log θ23 − log θ2

)︁2
=

1

2

(︁
log θ2m − log θ2

)︁2
=

1

2
log θ2 +O(log θ) (5.31)
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Therefore, we can notice that the only region of the phase space that gives a non-vanishing
contribution is the one where both the gluons are emitted outside the cone. The result has
a quadratic dependence on the logarithm of θ, diagram (b) gives the same contribution, while
diagram (c) gives a lower-order logarithmic term. The result is the following:

ENNLO(θ, b) = 2
α2
S

4π2
1

2
ELO(θ, b)

1

2

(︁
log θ2m − log θ2

)︁2 ∫︂
dz3Pqq(z3)z

b
3

∫︂
dz4Pqq(z4)z

b
4 +O(log θ)

=
1

2

α2
S

4π2
ELO(θ, b)4 log

2 θ
(︂
γb+1
qq

)︂2
+O(log θ)

=
1

2

(︂
−αS

π

)︂2
C(θ0, b, E)θ2 log2 θ

(︂
γb+1
qq

)︂2
+O(log θ). (5.32)

Now, we can consider all possible splittings:

q

g

q

g

p z3p z3z4p

(1− z3)p z3(1− z4)p

=⇒ Pqg(z4)Pgq(z3),

q

q

q

q̄

p z3p z3z4p

(1− z3)p z3(1− z4)p

=⇒ Pqg(z4)Pgq(z3),

q

g

g

q

p z3p z3z4p

(1− z3)p z3(1− z4)p

=⇒ Pgq(z4)Pqq(z3),

q

q

g

g

p z3p z3z4p

(1− z3)p z3(1− z4)p

=⇒ Pgg(z4)Pgq(z3).

Figure 5.2: Possible splittings and related Altarelli-Parisi functions for the process at NLO.

We obtain the following expression:

ENNLO(θ, b) =
1

2

(︂
−αS

π

)︂2
C(θ0, b, E)θ2 log2 θ

[︃(︂
γb+1
qq

)︂2
+ 2Nfγ

b+1
qg γb+1

gq

+ γb+1
gq γb+1

qq + γb+1
gg γb+1

gq

]︂
+O(log θ), (5.33)
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which can be written in a matrix form:

ENNLO(θ, b) =
1

2

(︂
−αS

π

)︂2
C(θ0, b, E)θ2 log2 θ

2∑︂
i=1

γb+1
ij γb+1

jk vk +O(log θ)

=
1

2

(︂
−αS

π

)︂2
C(θ0, b, E)θ2 log2 θ

2∑︂
i=1

[︃(︂
γb+1

)︂2]︃
ij

vj +O(log θ) (5.34)

in fact

⎛⎝ γb+1
qq 2Nfγ

b+1
qg

γb+1
gq γb+1

gg

⎞⎠ ·

⎛⎝ γb+1
qq 2Nfγ

b+1
qg

γb+1
gq γb+1

gg

⎞⎠ ·

⎛⎝ 1

0

⎞⎠ =

⎛⎝ γb+1
qq 2Nfγ

b+1
qg

γb+1
gq γb+1

gg

⎞⎠ ·

⎛⎝ γb+1
qq

γb+1
gq

⎞⎠ =

=

⎛⎝ (︁
γb+1
qq

)︁2
+ 2Nfγ

b+1
qg γb+1

gq

γb+1
gq γb+1

qq + γb+1
gg γb+1

gq

⎞⎠
⇒

2∑︂
i=1

[︃(︂
γb+1

)︂2]︃
ij

vj =
(︂
γb+1
qq

)︂2
+ 2Nfγ

b+1
qg γb+1

gq + γb+1
gq γb+1

qq + γb+1
gg γb+1

gq (5.35)

and we obtain the expression of Eq. (5.33).

5.2.4 NnLO calculation

We can generalize these results to the case of n emissions. We begin by considering the emission
of n gluons, with angles θ3, θ4, ..., θn+3; the Leading Log term is given by the diagram in which
all the gluons come from the same quark line, multiplied by 2 because at LO we have two quarks
line; the phase-space region which gives a non-vanishing contribute is the one where all the gluons
are outside the cone.

ENnLO(θ, b) = 2
(︂αS

2π

)︂n 1

2
ELO(θ, b)In

∫︂
dz3Pqq(z3)

∫︂
dz4Pqq(z4)...

∫︂
dzn+3Pqq(zn+3)[z3z4...zn+3]

b,

(5.36)

where In is the following angular integral, whose the result is the generalization of the one obtained
for n = 2:

In =

∫︂ θ2m

θ2

dθ23
θ23

∫︂ θ23

θ2

dθ24
θ24

· ... ·
∫︂ θ2n+2

θ2

dθ2n+3

θ2n+3

=
1

n!
(log θ2m − log θ2)n

=
(−1)n

n!
logn θ2 +O(logn−1 θ) =

(−1)n

n!
2n logn θ +O(logn−1 θ). (5.37)
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So

ENnLO(θ, b) =
(︂αS

2π

)︂n
ELO(θ, b)

(−1)n

n!
2n logn θ

(︃∫︂
dzP (z)zb

)︃n

+O(logn−1 θ)

=
1

n!

(︂
−αS

π

)︂n
C(θ0, b, E)θ2 logn θ

(︂
γb+1
qq

)︂n
+O(logn−1 θ). (5.38)

Generalizing to any possible splitting the result is the following:

ENnLO(θ, b) =
1

n!

(︂
−αS

π

)︂n
C(θ0, b, E)θ2 logn θ

2∑︂
i=1

[︂(︂
γb+1

)︂n]︂
ij
vj +O(logn−1 θ). (5.39)

We can prove the validity of Eq. (5.39) by induction. The inductive hypothesis is that the formula
is valid at order n − 1: at this order, the diagrams which give Leading Log contributes are the
ones with n− 1 emissions from the same quark line, which can end with a quark or a gluon; if it
ends with a quark, the n-th emission could be q → qg (Pqq(z)) or q → gq (Pgq(z)); instead, if the
line ends with a gluon, the n-th emission could be g → gg (Pgg(z)) or g → qq̄ (Pqg(z)). In order
to calculate the amplitude, we should distinguish these cases and multiply by the related AP
functions, which mathematically means multiplying the splitting matrix by the state vector after
n− 1 emissions, which is equal to

[︂(︁
γb+1

)︁n−1
]︂
ij
vj for the inductive hypothesis: thus, it is clear

that the state vector after n emissions is equal to
[︁(︁
γb+1

)︁n]︁
ij
vj . Calculating the prediction of the

observable, we don’t distinguish between different final states, so we should sum the components
of the vector.

5.3 Resummation of LL terms
After computing fixed-order calculations, we notice that the result can be resummed, obtaining
the Leading-Log prediction:

ELL(θ, b) =
+∞∑︂
n=0

1

n!

(︂
−αS

π

)︂n
C(θ0, b, E)θ2 logn θ

2∑︂
i=1

[︂(︂
γb+1

)︂n]︂
ij
vj

= C(θ0, b, E)θ2
2∑︂

i=1

[︄
+∞∑︂
n=0

1

n!

(︂
−αS

π
log θ

)︂n (︂
γb+1

)︂n]︄
ij

vj

= C(θ0, b, E)θ2
2∑︂

i=1

[︂
e−αS/π log θ

(︁
γb+1

)︁]︂
ij
vj

= C(θ0, b, E)θ2
2∑︂

i=1

[︂
θ−αS/π

(︁
γb+1

)︁]︂
ij
vj

≡ C(θ0, b, E)

2∑︂
i=1

[︂
θφ(b)

]︂
ij
vj . (5.40)
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Being θ the scale variable, the observable follows a scaling law similar to Eq. (4.9). Hence, we
obtain a multifractal law with dimension φ(b), given by the following expression:

φij(b) ≡ 2δij −
αS

π

(︂
γb+1

)︂
ij

(5.41)

5.4 Running coupling constant
The result is different if we consider the running coupling: in particular, the angular integral
changes, while the factors containing the moments of the AP functions remain the same. For n
emissions we have

En(θ, b) = 2 ·
(︃

1

2π

)︃n 1

2
ELO(θ, b)Ĩn

2∑︂
i=1

[︂(︂
γb+1

)︂n]︂
ij
vj , (5.42)

where

Ĩn =

∫︂ θ2m

θ2

dθ23
θ23
αS(θ

2
3E

2)

∫︂ θ23

θ2

dθ24
θ24
αS(θ

2
4E

2) · ... ·
∫︂ θ2n+2

θ2

dθ2n+3

θ2n+3

αS(θ
2
n+3E

2). (5.43)

Using Eq. (1.18) and Eq. (1.23), we can express the running coupling constant at the energy θE:

αS(θ
2E2) =

αS(µ
2)

1 + β0αS(µ2) log
θ2E2

µ2

=
1

β0 log
θ2E2

Λ2

(5.44)

where µ is the renormalization scale and Λ ≡ ΛQCD. We start by calculating Ĩn:

∫︂ θ2n+2

θ2

dθ2n+3

θ2n+3

αS(θ
2
n+3E

2) =
1

β0

∫︂ θ2n+2

θ2

dθ2n+3

θ2n+3

1

log
θ2n+3E

2

Λ2

=
1

β0

[︃
log

(︃
log

θ2n+2E
2

Λ2

)︃
− log

(︃
log

θ2E2

Λ2

)︃]︃
,

(5.45)

∫︂ θ2n+1

θ2
αS(θ

2
n+2E

2)

∫︂ θ2n+2

θ2

dθ2n+3

θ2n+3

αS(θ
2
n+3E

2) =
1

β20

∫︂ θ2n+1

θ2

dθ2n+2

θ2n+2

1

log
θ2n+2E

2

Λ2

[︃
log

(︃
log

θ2n+2E
2

Λ2

)︃

− log

(︃
θ2E2

Λ2

)︃]︃
=

1

2

1

β20

[︃
log

(︃
log

θ2n+1E
2

Λ2

)︃
− log

(︃
log

θ2E2

Λ2

)︃]︃2
.

(5.46)

After n steps we obtain
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Ĩn =
1

n!

1

βn0

⎡⎣log
⎛⎝1 + β0αS(µ

2) log θ2mE2

µ2

β0αS(µ2)

⎞⎠− log

(︄
1 + β0αS(µ

2) log θ2E2

µ2

β0αS(µ2)

)︄⎤⎦n

=
1

n!

(−1)n

βn0
logn

(︄
1 + 2β0αS(µ

2) log θE
µ

1 + 2β0αS(µ2) log
θmE
µ

)︄

=
1

n!

(−1)n

βn0
logn

(︃
1 + 2β0αS(µ

2) log
θE

µ

)︃
+O (NLL) . (5.47)

So Eq. (5.42) becomes

En(θ, b) =
1

n!

(︃
− 1

2πβ0

)︃n

C(θ0, b, E)θ2 logn
(︃
1 + 2β0αS(µ

2) log
θE

µ

)︃ 2∑︂
i=1

[︂(︂
γb+1

)︂n]︂
ij
vj . (5.48)

It should be specified that in this case θ can’t be arbitrary small, but it has to be greater than a
limit value, which depends on the Landau pole of QCD:

θ >
µ

E
exp

(︃
− 1

2β0αS(µ2)

)︃
=

Λ

E
. (5.49)

Now, we can resum the LL terms:

ELL(θ, b) =

+∞∑︂
n=0

1

n!

(︃
− 1

2πβ0

)︃n

C(θ0, b, E)θ2 logn
(︃
1 + 2β0αS(µ

2) log
θE

µ

)︃ 2∑︂
i=1

[︂(︂
γb+1

)︂n]︂
ij
vj

= C(θ0, b, E)θ2
2∑︂

i=1

[︄
+∞∑︂
n=0

1

n!

(︃
− 1

2πβ0
log

(︃
1 + 2β0αS(µ

2) log
θE

µ

)︃)︃n (︂
γb+1

)︂n]︄
ij

vj

= C(θ0, b, E)θ2
2∑︂

i=1

[︃
exp

{︃
− 1

2πβ0
log

(︃
1 + 2β0αS(µ

2) log
θE

µ

)︃(︂
γb+1

)︂}︃]︃
ij

vj

= C(θ0, b, E)θ2
2∑︂

i=1

[︄(︃
1 + 2β0αS(µ

2) log
θE

µ

)︃−1/(2πβ0)
(︁
γb+1

)︁]︄
ij

vj . (5.50)

With the running coupling constant, the scaling law is different: we have a function of log θ
instead of θ playing the role of the scaling variable and also the multifractal dimension is different:
it does not contain αS , but the information about the coupling enters through β0.
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Chapter 6

Interpretation of the results and
conclusions

After performing a LL calculation, we proved that the superinclusive observable follows a multi-
fractal law. Now, we present some considerations:

• the scaling law is a direct consequence of the presence of collinear logarithms;

• the non-vanishing contributes to the observable come from particles emitted outside the
cone;

• the multifractal dimension contains the anomalous dimension of the Altarelli-Parisi splitting
functions;

• although with different law, the multifractal behaviour is still present if we consider the
running coupling constant;

• we performed a partonic calculation without identifying jets in the final state.

We can say that this law may represent an expression of the multifractal nature of QCD.
It is important to remember that we verified the multifractal law only with a LL calcu-

lation. This result could be improved generalizing the calculation at NnLL and studying the
parton-hadron duality of this observable, eventually comparing the prediction with Monte-Carlo
simulations.

The authors of [13] made a similar calculation at partonic level for conformal theories, at all
orders. Most recent works focus on correlators inside jets, finding power laws similar to the one
obtained in this thesis. However, as we said before, EEC are widely-used variables: the innovative
approach of the work in this thesis is the fact that we considered a general final state without
identifying jets.

If we demonstrate that the parton-hadron duality is valid for this observable, we could use
it in order to obtain a measure of the running coupling constant: in fact, the observable can
be measured experimentally, measuring the energy of the particles inside the cone, and, if the
parton-hadron duality is valid, we can compare this measurement with the theoretical prediction
and measure the running coupling constant, as the prediction will depend on αS . An advantage
of this method is that this measurement will not require the use of PDFs.
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