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Abstract

Parton Distribution Functions (PDFs) are key tools in high-energy particle physics, essential
for making predictions in Quantum Chromodynamics (QCD). The NNPDF collaboration has
developed a method to determine PDFs using neural networks (NNs) and a Monte Carlo
approach that generates an ensemble of equally probable replicas. The average of these
replicas is known as the central replica.

While NNs are very successful at fitting the data, understanding the reasoning behind a
particular trend in the PDFs is often difficult. This thesis aims to address this challenge by
introducing explainable Al into the NNPDF framework.

In particular, we want to investigate the reasons behind the behaviour of the replicas of the
gluon PDF. What happens is that replicas with best agreement with the data are distinctly
separated from the ones with the worst agreement with the data: the first have a higher peak
and a lower tail, while the second have a lower peak and higher tail. It was also found that
the central replica is not the one with best agreement with the data. We want to understand
why the replicas with the best agreement to the data prefer a higher peak and why this trend
is not reflected by the central replica.

We analyzed datasets with the strongest correlations and anti-correlations between y? and
the peak height, finding that datasets favoring a higher peak contain more data points. By
excluding these groups in separate fits, we confirmed that the peak’s height and its correlation
with total x? are influenced by the excluded datasets, as expected.

In conclusion, the outlier replicas are driven by datasets that favor a higher peak. These
replicas fit some data better and others worse, but their overall better agreement with the

data is solely because the group of better-fitted datasets is larger.
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Chapter 1

Introduction

We know since the Hofstadter experiments, in the 1950s, that the proton, unlike the electron,
is not an elementary particle [2]. The concept of quarks arrived later, in 1964, postulated by
Gell-Mann, more as a mathematical concept than as a physical prediction. By considering
each hadron as made up of three quarks and each meson made up of two, it was possible
to explain the zoo of new particles that were being discovered. A quark was a new kind of
particle with fractional electric charge, baryon number, and spin—%.

In 1967, deep inelastic scattering (DIS) experiments at SLAC revealed that the proton-
electron (p-e) scattering behaved like elastic scattering at high transferred momentum @Q? [3].
This discovery, through the study of structure functions, led to the formulation of the parton
model and consolidated the idea of quarks and, consequently, of parton distribution functions
(PDFs).

PDF's are essential tools in high-energy particle physics, providing a framework for under-
standing the internal structure of protons and neutrons in terms of their constituent quarks
and gluons. Accurate knowledge of PDF's is crucial for making predictions in quantum chro-
modynamics (QCD) processes and interpreting experimental results from particle colliders
such as the Large Hadron Collider (LHC). A precise understanding of PDFs was essential for
the discovery of the Higgs boson in 2012 and remains critical for uncovering new physics at the
LHC. Indeed, uncertainties in PDF's remain one of the primary sources of error in numerous
LHC processes.

In Figure 1.1, we show a notorious (though now outdated) depiction of the proton PDFs.

In recent years, the NNPDF collaboration has developed and validated a method for the de-
termination of PDFs which adopt neural networks (NNs). This method significantly improves
the quality of the fit, removing the risk of biases. Furthermore, the NNPDF methodology uses
a Monte Carlo sampling approach, where a large number of replicas are produced, and central
values and uncertainties can be easily extract from the fit. This allows to have a reliable and
solid value for the PDFs uncertainty, which can be out of reach for the methods which do not
use NNs.
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Figure 1.1: PDFs at next-to-next-to leading order (NNLO), obtained with NNPDF3.0 and
evaluated at y? = 10 GeV? (on the left) and u? = 10* GeV? (on the right).

The flexibility provided by neural networks has made NNPDF a leading method for PDF
determination, particularly because of its ability to accommodate large datasets and avoid
bias from specific functional forms. However, with flexibility comes opacity: while NNs can
fit the data extremely well, understanding the reasoning behind a particular fit or trend in
the PDFs is often difficult. This lack of interpretability poses challenges when unexpected
results arise.

This thesis aims to address this challenge by introducing explainable Al into the NNPDF
framework. Explainable AT has emerged as a set of techniques aimed at making AT models
more transparent and interpretable. The goal is to provide users with explanations for the
decisions made by Al models.

In the context of PDF determination, explainability can help clarify why certain repli-
cas behave as they do, revealing how different datasets contribute to the final outcome. In
particular, we want to answer these questions for the gluon PDF.

The way in which the replicas of the gluon PDF's are distributed was firstly brought up in
Ref.[32], where the authors noticed that the central replica of the fit does not coincide with
the replicas with lowest y2. In particular, the replicas with the best x? result to have a higher
peak than the central replica. This, as later pointed out in Ref.[33], is not a worrying factor,
since the best fit to the data is not necessarily the one with lowest x2. However, questions
about why the replicas with lowest y? prefer a higher gluon peak remain.

To answer these questions, we will investigate the correlation between the height of the



gluon peak and the y? values on various datasets. This will allow to better understand
which datasets drive specific trends in the replicas. This approach not only paves the way for
more transparent PDF fits but also helps identify inconsistencies between different datasets,

ultimately improving the reliability of future PDF determinations.

Structure of the Thesis
This thesis is structured as follows:

e Chapter 2: We review the theoretical background of PDF determination, with a focus

on QCD and the experimental processes that provide the data used in the fits.

e Chapter 3: We discuss the methodology used in NNPDF4.0, focusing on how neural
networks are used to parametrize the PDFs. This chapter also introduces the concept

of k-fold cross-validation, used for hyperparameter optimization.

e Chapter 4: This chapter provides an overview of the datasets used in NNPDF4.0,
detailing the different experimental sources, the different processes that contribute and
the kinematic coverage they provide. We also list the complete set of datasets in Table

4.1, to which we will refer throughout the thesis.

e Chapter 5: We present the results of this thesis. We attempt to make the NNPDF
fits more interpretable, highlighting which datasets drive specific trends in the PDF
replicas. We perform fits excluding the highlighted datasets to better understand their

impact.

e Chapter 6: We summarize the findings of the thesis, highlighting the most important

results.






Chapter 2

Quantum Chromodynamics and

Parton Distribution Functions

2.1 Quantum Cromodynamics (QCD)

QCD is a quantum field theory which describes the dynamics of the strong interaction in the
Standard Model (SM). It is based on the local and non-abelian group SU(3), where the group
gauge symmetry is associated with the conservation of the color current.

The strong interaction is mediated by gluons, which are massless, analogously to the
photon, but, unlike the photon, they are not neutral. The number of gluons is equal to the
dimension of the group adjoint representation, so we have a total number of 8 gluons. In fact,
for a SU(N) groups, the dimension of the adjoint is N2 — 1, so, given that we have three colors
N, = 3, the dimension is 8 [5].

We can represent each gluon with a basis vector of the adjoint representation; a commonly
used basis are the Gell-Mann matrices A, which are eight 3x3 traceless Hermitian matrices.

Alternatively, one could also choose the matrices t* = A\ /2, which satisfy the algebra:
[14,15] = i fABCLC, (2.1)

where fABC are the structure constants.

The interaction among gluons can be found in the QCD classical Lagrangian:

ny
_ 1
L= 3 Wi Dy — iy ¥E — P (2.2)
=1

where the second term describe the interactions of massless spin-1 gluons, with A = 1,...,8

being the color index in the adjoint representation and u, v Lorentz indexes. F:‘V is the field



strength tensor, obtained as:
F, = 0uA) — 0,4 — g fABCABAC, (2.3)

with A,“j‘ being the gluon field and g5 the coupling, which is a free parameter of the theory. The
last term, which is a consequence of QCD being a non-abelian theory, results in interactions
between three and four gluons.

The first term of Eq.2.2 describes the evolution and interaction of spin—% quark fields ¥¢
of mass m;, where 7 runs over the ny different flavors, while the indexes a, b refer to the color
of the quark field. ~, are the usual gamma matrices, while D, is the covariant derivative,

which, in order to rescue the local U(1) symmetry of the Lagrangian, is imposed to be:
Dy = 0, +igs (A, (2.4)

where the term added to the usual derivative describes a quark-gluon interaction.

As said, the coupling constant gs, often referred to as ag = g2/4n, is a free parameter of
the theory. However, its value is not fixed, but rather depends on, or runs with, the squared
momentum transfer, Q?: )

2
as(Q7) = m» (2.5)
where 3y is a constant which depends on the symmetry group, p? is the energy scale and A
corresponds to the scale at which the coupling becomes infinite, also called Landau pole. In
particular, if we are only considering the light quarks, By = (33 — 2ny)/(127).

The value of «; increase at low energies/large distances (”soft physics”, as ~ 1) and
decreases at high energy/small distances ("hard physics”, as ~ 0.1), as we can see in figure
2.1. This means that, as two quarks try to part, o, increases, making the creation of a new
quark-antiquark pair more energetically convenient than having free quarks.

QCD calculations are only possible at high energy, when «; is sufficiently small and per-
turbation theory is applicable. This limit is also referred to as asymptotic freedom.

On the other hand, a comprehensive understanding of the low-energy behavior of the

theory is still lacking.

2.2 The coupling constant o

The coupling function ay sets the strength of the interactions involving quarks and gluons
in QCD. Its determination is crucial, in fact, uncertainties in the value of as(Q?) contribute
significantly to the total theoretical uncertainty in the physics probed at the LHC.

In order to explain equation 2.5, we can consider a cross section o (s, 12, as), which depends

on the invariant mass s, a renormalizing scale ;2 and the coupling as. The constant oy has
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Figure 2.1: The perturbative coupling as(Q?) computed at different orders in 3; and for two
different values of A. The coefficients f3; are computed in the MS. This figure is from ref.[1].

to be redefined to absorb the dependence on the renormalization scale p2, so we will now call
it as(p?). The cross section is then o (s, u?, as(u?)).

It is important to stress that physical predictions, such as the total cross section o, can
not depend on the renormalization scale p?. This conduct us to the renormalization group

equation:

d s 0 s dag(p?) 0 ( s )
2 2 2 200 2
W——s0(—,as(pu :0=—50<,a3u )—l—u : ol| —=,as(u 2.6
e (Mz (7)) 257 \ 2 (1) o2 90 \ 22 () ) (2.6)
looking at the right side, this gives us the important operator relation:

d 9 d

= 2.

We now define the beta function B(as(p?)) = MQM(;T(’ZLZ), which can be written as

Blas(i?®)) = —boais (k)" + brag(u®)™ 1 + . (2.8)



From equation 2.7 we can rewrite S(ag) = ﬁa r(s), where ag is the running coupling con-

stant with boundary condition ag(u?) = as(u?). We can then solve the differential equation:

s ag(s)
/ dlns :/ dag (2.9)
u? ar(p?) Blar)
taking B(ag) = —bpa%, the solution is:
In > L ! (2.10)

12 boa(s)  a(u?)

which leads us to: )
ag(p®)
14 boag(p?) In o

ag(s) = (2.11)

This beta function is a property of the theory, with by independent on the chosen renor-
malization scheme, while the other coefficients depend, in general, on the scheme. In QCD
by > 0, hence we have the asymptotic freedom at large s and the growth of g at small s. We
can go as far as defining a value A, at which the running constant goes to infinity. This is
defined as:

1+ bog(p2) In % =0 (2.12)

With this definition, we obtain equation 2.5:

1

e 2.1
bo ln% (2.13)

gr(s)

2.3 Deep Inelastic Scattering

Deep inelastic scattering (DIS) is one of the cornerstone in PDFs determination. As we saw
in the introduction, it was also the first indication of hadron internal structure.

DIS consist in lepton-hadron scattering, where the lepton is highly energetic and can be
both charged or neutral. An example of DIS is shown in Figure 2.2. The interaction takes
place by means of the interchange of a boson. If the boson is a photon v* or a Z boson, the
process is called neutral DIS. If the boson is a W+, the process is called charged DIS.

It is convenient to define the following invariant quantities:

Q* P

2:_2 Pp—
Q" =-q°, xbj_QP-q’ Yy k-

()

(2.14)

)

where we labelled P the momentum of the incoming hadron, ¢ is the momentum of the
exchanged gauge boson and k the momentum of the incoming lepton. Q2 is the virtuality of
the gauge boson and y is the inelasticity. The invariant x;; is known as Bjorken variable and

it is equal to the fraction of the hardon momentum taken by the parton in the parton model.

10



Figure 2.2: Representation of a neutral DIS process with the exchange of a virtual photon *.

In QCD, this holds only at leading order (LO).

We call p = &P the momentum of the incoming parton, where P is the total hadron mo-
mentum. We want to prove the equivalence between x;; and the fraction of hadron momentum
x in the parton model.

We will start computing the cross section at tree level of the interaction between a proton
and a photon. But first, we recall that a cross section is the integration of the differential

cross section do over the solid angle df):

do
o= /deQ, (2.15)

where the differential cross section is obtained as:

1

do = flux

|IM|?dd. (2.16)
The matrix element M is calculated through Feynman diagrams, while the flux factor and
the phase space invariant d®, when we have a 2 — 1 scattering with in-coming momentum

p4 and pp and out-coming momentum pg, are:

fluz = 4/ (pa - pi)? — mim3, (2.17)

d*pc

a2k (2.18)

d® = (27)*0*(pa + pB — PC)

When computing the tree level cross section of a proton-photon process, we have to take

11



into account all the possible sub-processes occurring between the photon and each of the

quarks, so the cross section will be:
! 2 d /
00 = /dﬂ/ dx ZQi fi(z) E&O(’Y*% — ¢, T), (2.19)
0 i

where @; is the charge of the quark of flavour ¢, f;(z) gives the probability of having a quarks
of flavour ¢ carrying a momentum zP, where P is the proton total momentum and x is the
fraction of hadron momentum. Lastly, 6o(v*¢; — ¢}, x) is the cross section of the subprocess
involving the quark of flavour 7. This step is also known as factorization.

This cross section is obtained by integrating the differential cross section of Equation 2.20.
Using the properties of the Dirac delta function, it can be shown (though we omit the detailed

steps here) that the phase space invariant can be expressed as:

3.,/
en)t | Méé‘(ﬂ—w—q):%é(k@), (2.20)

where p’ is the four-momentum of the outgoing quark and ¢ is the momentum of the photon.

Now, knowing that:
2 2 _ 2 _ 2
p = (@P+q)"=22P-q+q =2zP -q—Q°, (2.21)

and therefore, using the Dirac ¢ properties we can write the differential cross section as:

doo _ 2m o 1
dQ ~ flux = °2P.q

d(x — xp5), (2.22)

where z; = Q?/2P - q, as defined above. This shows the equivalence between x and Tp; in
the parton model.

Substituting this in Equation 2.19, we obtain (with an integrating over x):

2r M2 2 M2
= [dQ 0N "y, 21-«':/ Q0 F(ay, 2.2
o0 /d flux Q2 - ‘l’b] QZ f(‘l‘) d flux Q2 (‘Lbj)v ( 3)
where we have introduced the structure function:
F(z) =) 2;Q} filw). (2.24)

The final outcome is that, measuring the differential cross section of a proton-electron
scattering, we obtain important information about the structure function F(z), and thus the
quark PDFs f;(x).

12



2.3.1 Parton Evolution

We now want to take into consideration the first order correction of the cross section that
we have just found. This means considering the emission of a real gluon. The corresponding

Feynman diagrams are shown in Figure 2.3.

q q Kk

P p
Figure 2.3: QCD corrections to tree-level DIS.

These diagrams carry a divergence when the gluon is emitted parallel to the quark. In the
right diagram of Figure 2.3, this divergence turns out to be harmless, since it can be cancelled
by a similar divergence caused by the final-state quark self-energy corrections. So, as long as
we are inclusive on the final state, this divergence is not problematic.

The situation is different in the case of a gluon emitted by the incoming quark. This
divergence can not be cancelled by other corrections and it has to be treated in a different
way. This problem requires that the PDFs f;(x) acquire a dependence on the scale. In this
way, the divergence can be reabsorbed in the PDFs, and physical observables, such as the
cross section o, can be calculated with finite results.

This requires the introduction of a scale p?. Since the value of u? is arbitrary, the total

cross section o(x, @?), should not depend on it. So, we impose:

do

= 2.2
dlog 2 0 (2.25)

Since the scale dependency has to cancel between f;(z) and o, and o is calculated with
the PDFs f;(x), Equation 2.25 leads us to the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi) equation:
df (x ,u2) « /1 dz Tpj
2 ) s 7,2
pe—=e 2 = 2 — P, ( ,u), 2.26

du? 27 J, =z a(2) fi z ( )

where P, is the so-called Aterelli-Parisi splitting function for the ¢ — ¢ transition, while z is
the momentum fraction of the initial quark taken away by the quark after the gluon emission.

This result depends on the parton, for the splitting of a gluon into a ¢g pair, we would

13



obtain a different solution, with an extra term:

T o Ldz Tpj Lbj
DD 2 [ B R 120 + P21y (22,0)) (2.27)

dt T or

where t = log( ) and Ppg = £[2? + (1 — 2)?]. The same thing holds for the evolution of the
gluon, this tlme we also have to consider the decay of the gluon in a quark-antiquark pair and

the production of a second gluon:

dfgil::,t) _ 27r/ dz[ Pyo(2) Z fz( b t) 4+ Py(2)f, (;L’;U t)] (2.28)

z
i=q,q

These equations provide a description of the partons evolution for processes at next-to-

leading order (NLO). These equations can also be summarize in:
g 0 2
Q5 i@ Q%) ZPU(:U as(Q%) @ fi(z, Q%) (2.29)

where ® denotes the convolution:

veow= [ L (JC) (2.30)

y y
2.3.2 Solution of the evolution equations
We introduce the Mellin transform:

L dx
g™ = —z" g(x), (2.31)
0 X

with this, we can rewrite the evolution equations as linear differential equations [5]:

df(n) " n "
= A ) 1), (2.32)
dfg” = (n) ¢(n) (n)
= Qe 5 o 5, (23

where ~;; is the Mellin trasform of the splitting function F;;, which is computed order by

order in perturbation theory:

Py =a.P) +a?P) + . (2.34)

sT g

The splitting functions at LO in z-space can be found in Table 2.1.

There are ny + 1 coupled equations, however, we can reorganize these equations into the

14



Diagram Splitting Function

Pi(@) = Cr | 425~ + 30(1 - o)

(1—z)+

\[mamo“

0oooos® Pég)(l') —Cp [H—(l—x)z]

x

Pig) (2) = Tr [ + (1 = )’

T

P (@) = 204 [ 152 4+ 2(1 - @) + 15| + 0(1 — o) B

Table 2.1: Splitting functions at LO [39]. Cp, TF and Cy4 are numerical quantities associated
with the SU(3) groups and have value 4/3, 1/2 and 3, respectively.

15



following combinations (here we define them below the charm threshold):

5(z, Q)

T3($7Q2) =
Ty(z, Q%) =

nf

=5 (g + @) (@, Q2),

i=1
(’LL +u— d— CZ)(J’J,QQ),
(u +a4d+d—2(s+3))(x,Q%,

(2.35)
TQQ Z(Qz_(h TQ)

3($,Q2) = (u —u-— d—i—d)(l‘,Q );
Ve(z,Q*) = (u—u+d—d—2(s —35))(z,Q%).

We now look at valence (V(z,t)), singlet (X(x,t)) and gluon density (fy(z,t)). The evolution

equations with this redefinition become:

dv

— [ my ), (2.36)
dfén) A () il

The importance of this basis in that it maximally decouples the differential equations. In fact,
the valence V' (among with V3, Vg, T3 and Tg) is decoupled from ¥ and f,;. Only ¥ and f,
remain coupled.

With this basis, we can easily solve the differential equation for V' at LO. We take into

account the running of a; (Eq. 2.5):

v 1 (0)1/(0)] — 1 0)

~ 7 (0)y/(0) 2.39)
At 27by log( Az)[ “ 2ﬂbo[t+10g(%)][ w0 (

which we can integrate using as boundary conditions V (x2)(© (with p? >> Q?):

2

©(Q? 00 @2
R S R dt (0) 2.40
0) - Taq (2.40)
voge) V 0 2bo(t + loghy)
solving which we obtain:
(0)

N 9

log &\ > as(p?) Y #7ho
002 = /(0,2 A2 _yn),2 st 941
V@Y =V (“)<zogxi> v (“)<as(Q2)> (2.41)
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We conclude that at LO the valence quarks only evolve due to the emission of gluons. This
also tells us the dependence of the valence on Q?: since Py, <0, the valence quarks will have
less and less energy (on average) when @Q? increases. The left panel of Fig. 2.4 shows this
effect. We can notice that the peak of the distribution is in correspondence of smaller values

of z as Q% increases.
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Figure 2.4: On the left: up quark valence momentum density at different values of Q?; on the
right: gluon momentum density at different scales Q2.

To study the behaviour of ¥ and f,, it is convenient to notice that the sum of the momen-
tum of the constituents of the proton (sea quarks, valence quarks and gluons) should always

give the total momentum of the hadron, regardless of Q2. This implies:

1
/ dee |y file) + folo)| =P + [P =1 (2.42)
0 i)
and it is called the momentum sum rule. Using this property together with the fact that
d%f) = 0 in the asymptotic limit, we obtain the system:

Yid =P + 2n 755 £ =0

2.43
@ 42— 249
which we can solve with the use of Py, = Cp 11+_z22 and Py = 322 + (1 — 2)%:

1 1

Yy - _ - = (2.44)
4C ’
1+ 55 2

ORI (2.45)



where Cr = 4/3 and the number of flavors is ny = 5 (we don’t consider the top quark). The
outcome of this calculation is that gluons carry, asymptotically, around 50% of the proton
momentum.

On the right panel of Figure 2.4, we have the gluon momentum density. We can notice
that, while the valence momentum density vanishes for z — 0, f; increases at low values of

x. This comes from the fact that both Py, and Py, have a 2 dependence.
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Figure 2.5: On the left: sea up quark momentum density at different values of Q?; on the
right: momentum density distribution of different partons at Q% = 1000 GeV .

In Figure 2.5, the momentum density distribution of the sea up-quark is shown on the left
panel, along with momentum density distribution of different partons in the proton, on the
right panel. All the parton distribution are scale dependent (they depend on Q?).

From the summary plot (right panel of fig.2.5), we can deduce that (at Q? = 1000 GeV)
valence quarks and gluons carry the majority of the proton momentum, while sea quarks carry

the least momentum, which is often negligible.

2.3.3 Constraints on Proton PDF's

Before moving on to the next section, it is important to sum up the most important results
we obtained so far. In this section we want to highlight the theoretical constraints on the
proton’s PDF's, which will be very useful later.

We are not able to solve QCD and compute PDF's at present, so they need to be deduced
from data. Despite this, there are some theoretical constraints that must be satisfied.

Since the PDF's must yield the quantum numbers that characterize the proton, the integral
of the valence down-quark d,(x) should add up to 1, whereas the integral of the valence up-

quarks should be 2. These, simplifying the notation by referring to f;(z) (i = u,d,u,d...) as
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simply i(x), are called valence sum rules:

/ dx (d@,@"’)—d@,@%):/ dx dy(r) =1, (2.46)
0 0

1 1
/ dz (u(z, Q%) — u(z, Q%)) = / dz u, () = 2. (2.47)
0 0

The three valence quarks carry proton charge (+1) and baryon number (+1). We recall that
the proton is also made of light quark pairs ¢g and gluons.

The second theoretical constraint is the momentum sum rule, previously derived in eq.2.42:

1
> [ deafi@ah -t
1=4,4,9
This provides the condition that the sum of the momentum of the constituents should be
equal to the momentum of the proton.
A further requirement on the PDF's is that they should vanish as © — 1, since f(z) =0

for x > 1 is garanteed by energy momentum conservation:

filz =1,Q) =0, (2.48)

At the same time, the valence sum rules require the corresponding distributions to be inte-

grable on the entire range in x.

2.4 QCD in Hadronic Collisions

In hadronic collisions, such as proton-antiproton (pp), we may wonder whether factorization
still holds. It can be proven that, for sufficiently inclusive quantities, this is the case. So, for

hadronic collision processes, the differential cross section is given by:

do(pp— A+ X, s) = /d:cl dry Y fi(x1,Q) fi(w2, Q) do(ij — A+ X, myz95),  (2.49)

i?j
where A is the derived final state (e.g. a Higgs or Z boson), X are the other residual particles
and do(ij — A) is the differential cross section of the process involving the partons i and
J, respectively from the proton and antiproton. The invariant mass of the sub-process is
§ = x1x9s, where s is the invariant mass of the hadronic process. Lastly, the value of @, at

which f; and f; are evaluated at, is at a scale typical of the hard process they take part in.

19



proton
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Figure 2.6: Representation of a neutral current Drell-Yan process in a proton-proton collision.

2.4.1 Drell Yan and W Production

When the final state A = v*, Zy, we have a Drell Yan (DY) process, while when A = W=,
we refer to the process as W production.

These processes are crucial in high energy physics, in fact both the Z and the W* bosons
have been discovered in hadronic collisions experiments [11, 12].

We draw the Feynman diagrams of the processes:
_ I~ _ Iz
q \ q \ q
A A T< A W
q q
I~ - 1
where the first on the left is the Drell Yan process, while the other two involve respectively

the W~ and W7 boson.

As one can expect, the process mediated by the boson Z; allows to have more precise

l+

Vi

measures, since both the particles of the final state are charged and interacting; neutrinos, on
the other hand, are not measured in detectors and are only visible in terms of lost momentum.
The study of these processes is important for many reasons, such as further investigating the
structure of the proton and determining with better precision the quantities associated with
the weak interaction bosons. It is of particular interest to determine whether the observed
bosons are the one predicted by the Standard Model.

We now want to focus on the process producing W, where the Feynman rule for the

interaction vertex is:
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qi, C
with Pp, = , |Vij| is the element

of the Cabibbo-Kobayashi-Mascawa (CKM) matrix, which indicates how likely it is a change

1
2

of flavour from 4 to j'; lastly, ¢ and ¢ are the color of the quark and the anti-quark. The
presence of Py, stresses how the weak interaction is not chiral. We can also notice that this
vertex conserves the color but not the flavour. The same vertex with the boson Z, conserves
the flavour as well.

The cross section of g;q; — W results to be:

L V2 .
6(qiq; — W)= e Vi[> Gr M, 6(3 — M), (2.50)

where the delta ensures to produce an on-shell W in the final state. The same process involving
a virtual boson (W or Z) would be possible but is largely suppressed by the bosons mass,
since the propagator expression is ~ 1/(p? —m?).

Using the factorization formula, we can find the cross section of the hadronic process:
op > 2)= Y [dn [ des fio) £ o0z > W) (251)
1:7]'

In order to do so, we can introduce the two variables:

» | W

= x1%9, (2.52)

1 p%v-+pa,.> 1 <w1>
= “log [ - TEW ) = Zog [ E 2.53
72 g(ﬁév—pév 2 %\ 2 (2.53)

y is the rapidity and it’s defined relative to the beam axis z. It is commonly used as a
relativistic velocity; this is very convenient since, considering a Lorentz boost along z, the

rapidities are additive. Using eq.2.52, eq.2.51 becomes:
_ \/§ 2 2 2
olpp = Z) = Zﬂ'? |Vi;|* Gr My, | dxy | dxo fi(x1) fi(22) 6(x1228 — M) =
i.j

Zﬂ'— Vi;|> G -Mw/dl’l ) fi(x1) fj(*)

Wod ~ Veg ~ Vi ~ 1, while the other elements are ~ 0.
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where the last integral is usually called partonic luminosity and it is indicated with £;;(7).

If we approximate the quark distribution function with f;(z) ~ ﬁ, where § is a proper value

1
dr 1 x\ 1+6 1 1
= [ T (5) = s (2:54)

T

minor than 1, then:

so we obtain that the dependence on s of the cross section is:

5
1 S S
-5
ow T 08T <M§V> Og<MV2V) (2.55)

we have a logarithmic dependence on s, this reflects the fact that, when the energy of the
colliding hadrons increases, the quarks can take up a smaller fraction = from the proton
momentum and the process still happens. As is shown in fig.2.4 and 2.5, sea quarks have a
high probability to take up a small fraction of the proton momentum, while this probability

vanishes for valence quarks.

2.4.2 Hadronization and Jet Definition

As showed in figure 2.1, the strong interaction coupling constant becomes bigger when the
energy lowers, which corresponds to increasing distance between particles. It follows that,
for a free parton, is energetically convenient to hadronize, meaning combinig with a particle
from the sea. If the initial parton is, for example, a quark, it will combine with a antiquark
from a quark-antiquark pair; the remaining quark will have to combine in turn and so on.
The result is a ’jet” of hadrons and mesons. It is important to point out that a jet is not a
elementary object or a clear concept, but actually a tool defined though a algorithm. There
also are different used algorithms, and so different jets identified in the same final space.

Although there are different ways to define a jet, every algorithm needs to have certain

properties:
1. Robustness regarding infrared (IR) and collinear divergences.
2. Facility in both the experimental and theoretical implementation.
3. Non-perturbative corrections have to remain small.

The first attempt at a clustering algorithm for jet definition was formulated by Sterman and
Weinberg [30]. In this definition, different particles were part of the same jet if they were soft
(their energy had to be < €4/s) or collinear (the angle between two particles in the same jet
had to be 0;; < §). € and ¢ are the resolution parameters. Nowadays, there also are other

possible definition, for example though the kr algorithm.
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Chapter 3

Methodology

3.1 Determination of Parton Distribution Functions

We have seen that PDFs must be extracted from the data. The simplest way of doing this is
to choose a model: a fixed functional form that is fitted to the data. This, however, introduces
a problem of model dependency, which makes uncertainties particularly difficult to calculate.

In 2002, an alternative was suggested, namely to use neural networks for the determination
of PDFs [15]. This approach allows for an architecture with a high number of parameters,
accommodating virtually any functional form, as well as a method to reliably determine

uncertainties.

3.2 NNPDF Method Overview

We now introduce the methodology employed by the NNPDF collaboration to determine
PDFs. This methodology has evolved over time; therefore, we will reference only the latest
version at the time of writing this thesis, specifically NNPDF4.0.

NNPDF determines PDF's using as an unbiased modeling tool Neural Networks (NN),
as we will discuss below. Furthermore, in the NNPDF approach, artificial Monte Carlo
pseudodata replicas are generated to ensure reliable error propagation.

Each replica f) (r =1,2,..., Nrep) is equally likely, so the mean value is:

Nrep
<fr=x—2_ 17 (3.1)
TP =1
and the variance is calculated as:
1 N'rep
Var(fl= 5— > (7 < f>) (3.2)
rep 4
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Figure 3.1 shows this aspect: a total of 200 replicas of the gluon are shown (on the left

panel), as well as the correspondent central replica and variance (on the right panel).

Fit NNPDF40_nnlo_as_01180_1000: Gluon - All Replicas FigNNPDF40_nnIo_as_01180_1000: Gluon with +10 and +30 Intervals
2.

2.5

— Central
30
10

2.04

154

xg

1.0 4

0.5+

0.0 - T T T
107* 1073 1072 1071 10°

Figure 3.1: Results of the fit NNPDF40_nnlo_as_01180-1000, considering 200 replicas. On the
left panel all the replicas are plotted. On the right panel, it is plotted the central replica with
intervals corresponding to one standard deviation (1o, blue) and three standard deviations
(30, red).

3.2.1 General Structure
We now present the general structure of the NNPDF4.0 fitting framework.

FK Tables

Hyperopt

APFEL post-fit LHAPDF
evolution selection grid

Optimization

Experimental Data

Ak

Figure 3.2: Diagrammatic representation of the NNPDF fitting framework. The blue box
contains the minimization of the x? figure of merit. On the left there are the three inputs
needed to perform the fit.

A good representation of all the main steps needed to obtain a fit are shown in Figure
3.2. The fit requires three main inputs: first, theoretical calculations of physical processes,
which are encoded in precomputed tables (FK-tables); second, experimental data, as well

as fully correlated uncertainties encoded in a covariance matrix (possibly also including the-
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oretical uncertainties); third, hyperparameter settings that determine the particular fitting
methodology adopted.

In the blue box of the figure, the core of the computation is represented, which is also
showed with more details in Figure 3.3. Here, the neural network optimization algorithm,
with settings determined by the hyperoptimization, finds the best fit to data by minimizing
a figure of merit (in our case, x?). We will explain below what hyperoptimization is, for the
moment it is enough to state that it selects the best methodology.

Starting from a matrix of momentum fraction x values, the neural network is trained.
The trained NN is then used to construct unnormalized PDF's, which are then normalized
according to the constraints we will describe below. After this, we obtain the PDFs at an

input scale Q.

(=} [fj(mgp)]_{nmanm;m]{ . e 5 {
\ /‘

x® (1 —=2)P fJ(T(“))-p{»jo—» FK!, |—> O,

Tr/V1
split

Figure 3.3: Zoom on the calculation of the x? in the NNPDF fitting framework as a function
of the values of {a:n )} for the different datasets. This was previously contained in the blue
box of figure 3.2.

3.2.2 Loss Function

We assume that the experimental uncertainties are Gaussian, so a natural choice for the target

function is the x2, which we define as:

Ndata

= > (Di—Py)cov;' (D; — Py), (3.3)

ij=1

where D; are the experimental values of data-point i, P; the corresponding prediction of the
NNPDF model, and cov;; denotes the covariance between the data-points with label 4 and j.

The experimental covariance matrix is obtained as:

Niure
(COVexp)z] _ 5@; Z(uncorr) §uncorr) + (Z O_(norm) (norm) + Z (corr) (corr)) DiDj, (34)

m=1
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(uncorr)

where o, are the uncorrelated uncertainties, m runs over the Ny, multiplicative nor-
. . . . norm .
malization uncertainties, O’E m ), and [ runs over the N¢q. other correlated systematic uncer-
9
. . corr
tainties, O'( ).

il

This value is also referred to as experimental Y2, since it measures the deviation from
the actual experimental data. Although other definition of the x? can be adopted (and are
adopted in the NNPDF framework), in this thesis whenever we will enconter a x? value, we

will always refer to this definition.

3.3 Neural Network Architecture

In the NNPDF framework, NNs are used to parametrize the PDFs. The use of neural networks
allows for a flexible and unbiased parametrization, capable of fitting the data without imposing
a predetermined functional form. The methodology is designed to leverage the power of

modern deep learning techniques to produce reliable and accurate PDFs.

Convolution

xgrid, >~y
NN -
: R )
xgrid, > o X2,
17
. a Tr/V1
fitbasis ¢ r aplit
i
xgrid,, s~ o Xl
Preproc n
; Integration
xgrid; .

Figure 3.4: Schematic representation of the neural network architecture used in NNPDF4.0.

The architecture of the neural network is crucial for its performance. The NNPDF method-
ology employs a feed-forward multilayer perceptron neural network. This type of network
consists of multiple layers of nodes (neurons), where each node in a layer is connected to
every node in the subsequent layer. The network takes the input variable x and transforms it
through a series of hidden layers, each applying a non-linear activation function, eventually
producing the output PDFs.

A schematic representation is shown in figure 3.5. In the figure, the blue circles correspond
to the nodes of the graph and each row is a layer. Here, the input to each activation function
corresponds to the set of all outputs of the previous layer as represented by the edges.

At each node of each layer, an activation function is computed to obtain its output value,

taking as an input all the outputs of the precedent layer with different weights. The output
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Figure 3.5: Schematic representation of the neural network parametrization used in
NNPDF4.0.

of a node 7 of the layer [ is obtained as:
l 1) +(1—
eV =g [ S wle™ 1), (3.5)
J

)
ij
called biases; these are the free parameters of the neural network. The activation function

where g(z) is the activation function, w,; are the weights of the different nodes and b! are
g(z) can have various forms, provided it is nonlinear and monotonic.

We can notice that the first nodes of the input layer are set as « and In z: this is because
PDFs are believed to scale logarithmically at small x and linearly in the large x region [15].

The architecture can be customized with different numbers of layers, nodes per layer,
activation functions, and initialization methods. This flexibility is one of the key strengths of
the NNPDF approach.

Training the neural network involves adjusting the parameters (weights and biases) to
minimize the loss function, which measures the difference between the prediction and actual
data. In the NNPDF methodology, this is done using gradient descent algorithms such as
Adam or RMSprop, which are efficient and well-suited for handling large datasets and complex
models.

The parameters defining the model — commonly referred to as the models’ hyperparameters

— such as the number of layer and the number of nodes per layer, are themselves determined
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through a semi-automated procedure, further contributing to a solid and unbiased method.
In Figure 3.4, the architecture of NNPDF4.0 is summarized. The figure displays an inte-
gration, which has the scope of fixing the normalization factors, while ensuring the momentum
sum rules are respected. These conditions are implemented as a neural network layer which
computes the normalization coefficients for each flavour.
To ensure the physical reliability of the PDFs, certain constraints are imposed during the

training process. But first, we describe the algorithm used to stop the fitting process.

3.3.1 Stopping Algorithm

Since the NN can fit virtually any functional form, it can easily overfit the data. This means
that neural networks will learn noise (such as statistical fluctuations) in the data, rather than
the underlying law. In order to avoid overfitting, NNPDF4.0 employs a patience algorithm,
depicted in Figure 3.6.

In order to understand how this algorithm is implemented, we consider the outputs of the
neural network: PDFs fl(m&k )) of flavor ¢ at an input scale Qp. The outputs of the neural
network are convoluted with FK tables encoding the theory calculations and the evolution
from the parametrization scale to the scale of the hard process. This convolution provides the
corresponding observable O,,.

For hadronic observables, the observables predicted by the NN are obtainable as:
On = FKjju fi(z(, Qo) f;(21)). Qo) (3.6)
while for DIS observables we have:
On = FKEL fi(x{l, Qo). (3.7)

These predicted observables are the ones we compare to the corresponding experimental values
to calculate the x? (see Section 3.2.2).

As part of the algorithm we are about to introduce, these observables are randomly sep-
arated into a training and a validation set. The first is seen by the NN, while the second is
invisible and it is used as a control set. For both the sets, the corresponding training loss x?2.
and validation loss X?,al are calculated. It is important to notice that, while the experimental
x? is computed with the deviation between experimental data-points and NN predictions,
the values of 7., Xfml are computed as the deviation between pseudodata O, and the NN
predictions.

The patience algorithm is based on the look-back cross-validation stopping method [27].
The optimal length of the fit is determined by the absolute minimum of X% . €valuated over
a sufficiently large number of iterations of the minimizer. Specifically, the stopping algorithm

keeps track of the training step with the lowest Xga,lv and as soon as this value does not
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Figure 3.6: Stopping algorithm used in NNPDF. Training stops when validation performance
ceases to improve.

improve for a given number of steps (set equal to a percentage of the maximum number of
training epochs), the fit is finalized. This is known as early stopping and helps in finding a

good balance between fitting the training data and generalizing to unseen data.

3.3.2 Positivity Constraints

The PDFs must be positive for all values of  and Q? at Leading Order (LO). This is a
necessary condition since PDF's are probability distributions at LO. However, this might not
be the case at higher orders, where subtraction schemes are part of the picture and the only
strict condition is the positivity of the cross section.

This situation was previously faced allowing negative PDFs to exist, while also adding a
penalty term to the loss function for any negative values of the PDFs. However, it has now
been shown that that PDFs for individual quark flavors and the gluon in the M S factorization
scheme are non-negative [25]. For this reason, now the positivity condition on these PDF's is
imposed, along with the constraint of positivity of physical cross-sections. The constraint is
still obtained by adding a penalty factor to the loss function of the negative PDFs, but the
values of these penalty factors are chosen in such a way that the constraint is enforced with

sufficient accuracy in all cases.

3.3.3 Integrability Constraints

The PDFs must also satisfy integrability conditions, ensuring that they behave correctly at

the boundaries of the x range.
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In order to fulfil the momentum and valence sum rule, integrability for small values of x

is required. We impose respectively:
. 2 o
lim 2" fi(z, Q) = 0, (3.8)

for every value of Q% and f;, = ¢, %, and:
lim  fj,(2, Q) = 0, (3.9)
x—0

for every value of Q% and f, = V, V3, Vk.

A similar condition can also be imposed on fi, = T3,Tg, since both perturbative and
unperturbative theory arguments suggest that the first moments of these combinations are
finite. So, we extend Eq. 3.9 to fi, = T3, Tk, for every value of Q2. It has been noticed that
the condition in Eq.3.9 is always respected by the fits, while the conditions in Eq.3.8 can be
violated, and thus have to be imposed.

The first requirement to meet these condition is to constrain the range of the small-x
preprocessing exponents «; (which we will define in the next section). We supplement the
iterative determination of the exponents with the constraints oy < 2 for the singlet and gluon
and ay < 1 for the nonsinglet combinations zV', xV3, Vg, 215 and xTg. In addition to this,
a penalty factor is added to discourage replicas that violate the integrability constraint.

Finally, a post-selection criterion is also adopted to discard all the replicas that don’t
fit the imposed requirements. In order to achieve this, after the fit is done, the following

condition is imposed:

i i 1
:Bz('n)tfk <x£n)t)‘ < 57 fk - ‘/a V37 ‘/S)T31T87 (310)

s

i=1

where we choose QZZ = 5GeV? and in the evolution basis n; = 1 and xl(rb? = 1079, while in the
flavor basis n; = 3 and 11(25 =10"9,10"8,10"".

More information on these constraints can be found in reference [24].

3.4 PDF parametrization

The core problem of PDF determination is the extraction of a continuous function from a
discrete set of data. This is, strictly speaking, an ill-defined problem; however, using a proper
parametrization, it can be solved. Choosing the parametrization is very important, in fact,
a parametrization that is not complex enough introduces a bias in the results. We solve this
problem with the use of a NN parametrization, which allows us to work in the limit of an
infinite number of parameters, thus making any differentiable function reproducible, as per

the universal approximation theorem [17].
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In addition to this, it is convenient to introduce preprocessing functions A commonly used
form is:
zfi(z, Qo) = At =% (1 — )P NN (z), (3.11)

where A; is a normalization constant (determined as described above), a; and 3; control the
small-z and large-z behavior respectively, and NN;(z) is a single neural network, which gives
different outcomes depending on the parton flavor 7. The parameters «; and §; are randomly
sampled from a range that is determined in a self-consistent manner [28, 29]. Specifically,
upon making a change to the methodology or dataset, an initial fit is performed for which the

effective exponents are calculated for each distribution using:

@) () = 2BSi@)

- log = ~log(1—a) (312

In later fits, the sampling ranges for the o and 8 exponents are taken as uniform intervals,
twice the size of the 68% confidence interval of the effective exponent. This process is repeated
iteratively until the sampling range no longer changes.

The final output of the described methodology is presented in the so-called evolution basis,
defined as:

S=u+iu+d+d+s+5+2c (3.13)
V=(u—u)+(d—d)+ (s —5), (3.14)
Vs = (u—a)—(d—d), (3.15)
Ves=(u—tu+d—d)—2(s—35), (3.16)
Ty = (u+a) — (d+d), (3.17)
Ts=(u+u+d+d) —2(s+5), (3.18)
Tis = (u+d+d+d+s+35) —3(c+e), (3.19)
F=c+é (3.20)

_y (3.21)

This basis is particularly convenient since it decouples many of the evolution equations (see
Chapter 2). An alternative to this is the flavor basis f; = u,u,d, d,s,s,c,g. However, it has
been tested that the resulting PDF's remain largely unchanged upon changes to the choice of

parametrization basis [24].

3.5 Hyperoptimization

As anticipated, an important aspect in NNPDF4.0 consists in the determination of the model

hyperparameters. Hyperparameters are values that fix the architecture of the neural network,
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the training rate, and the specific SGD variant to be used. Basically, hyperoptimization selects
the methodology, just like gradient descent selects the values of weights and thresholds of the
neural net. More specifically, the automatic hyperoptimization routine uses the improved
efficiency provided by Python libraries such as TensorFlow. This enables us to test O(10%)
different hyperparameter setups by performing fits with them and ranking the setups through
a k-folds cross-validation algorithm.

In order to find the best set of parameters, we look for the combination which best gen-

eralize to unseen data, quantifying this with a proper figure of merit L.

g Generate new hyperparameter conﬁguration}

{Fit to subset of folds

@@ v ! I l |

j [ folds 1,2,3 H folds il 2 ‘ ‘ folds 1,3,4 ‘ ‘ folds 2,3.4 J

e ) 0 » ) » ][ =

Figure 3.7: Diagrammatic representation of the k-fold algorithm used for the hyperparameter
optimization.

The k-folds cross-validation algorithm does not use only a single test set, but instead
divides the full dataset into k = 4 subsets of data. These subsets are called folds. Each fold is
representative of the full dataset both in terms of kinematic range and scattering processes.
Then, k — 1 of these folds are divided into training and validation datasets that are used to
do a fit, while leaving out a k-th fold that will be used as a test set. This is repeated k times,
resulting in & fits where for each fit a different fold is used as the test set.

After performing these steps (as in Figure 3.7), we can define the loss function L:

Ell

k
1
L= X, (3.22)
i=1

where X? is the x? evaluated to the datasets in the i-th fold using the PDF obtained when
the i-th fold was left out. The optimal hyperparameter setup is the setup for which L is
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minimized.
Further details on the implementation can be found in the NNPDF documentation and
relevant literature [4, 13, 14, 15, 24].
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Chapter 4

NNPDF4.0 Datasets

4.1 Datasets Introduction

In this chapter, we review the various experiments and processes that contribute to the de-
termination of parton distribution functions (PDFs) in NNPDF4.0.

Figure 4.1 illustrates the kinematic coverage of the approximately 4000 data points used
in the fitting procedure, displayed in the Q% — = plane, where Q? id the trasferred momentum
and z is the Bjorken variable (defined in Chapter 2). The distribution of points along the
z-axis is crucial for ensuring robust PDFs. As observed, sufficient data coverage is available
only for > 10~*, which represents the current small-z boundary. The spread of points along
the Q%-axis is managed using the Altarelli-Parisi splitting functions, which allow the data to
be referenced to a common Q% value.

Different processes constrain PDFs for different parton flavors, emphasizing the impor-
tance of diversifying the experimental data sources.

Within the structure of the NNPDF code, these data points are categorized into distinct
datasets, which group data from the same process and experiment. The datasets vary in
size, errors, and their position in the  — Q? plane, yet each contributes to the overall PDF
determination. Some datasets play a more prominent role due to the higher number of data
points or smaller errors, while others are strategically important for constraining PDFs at low

x or near x ~ 1, despite having fewer points or larger uncertainties.
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Figure 4.1: Kinematic coverage used for PDF determination in NNPDF4.0, represented in the
(z,Q?) plane. z is the fraction of momentum taken by the parton, and Q2 is the transferred
momentum in the scattering [24].
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4.1.1 Deep Inelastic Scattering

Deep Inelastic Scattering (DIS) is a key source of experimental data for PDF determination,
providing abundant and precise measurements. As shown in Figure 4.1, DIS data (depicted
by light blue points and pink triangles) span a wide range along the x-axis, from z = 4 x 1075
to 2 = 0.750, and contribute approximately 3000 data points. Along the Q? axis, DIS data
are confined to the range 1.0 < Q% < 5 x 10* GeV?.

DIS processes are divided into Neutral Current (NC) and Charged Current (CC) interac-
tions, mediated by photons (v), Zy bosons, and W* bosons, respectively. Together, NC and
CC processes help determine the light quark flavors. Some jet data also originate from DIS.

The observables from DIS, such as ratios, cross-sections, and form factors, are measured in
several experiments, including NMC, SLAC, BCDMS, CHORUS, NuTeV, HERA, NOMAD,
and EMC.

4.1.2 Drell-Yan and Z/W* Production

The Drell-Yan (DY) process is another cornerstone for PDF determination, as discussed in
Chapter 2. The dataset includes approximately 300 fixed-target DY data points, represented
by blue triangles in Figure 4.1. DY data, along with DIS data, are crucial for determining
the gluon PDF from scale dependence and higher-order corrections. The transverse momen-
tum (pr) distribution in electroweak (EW) processes also provides insights into the small-x
behavior of gluons at leading order (LO).

When the parton momentum fractions, x1 and x4, are such that the energy of the partonic

subprocess § is equal to the mass of a Zy or W+ boson:
§=may8= m%,v/z, (4.1)

a resonance occurs, resulting in Z/W* production. This configuration provides an additional
500 data points from CMS and ATLAS experiments at the LHC.

The fixed-target DY data cover the region 5 x 1072 < z < 0.5, 20 < Q% < 200 GeV?,
while collider boson production data cover 107% < 2 < 1 and Q% ~ 10* GeV?2.

4.1.3 Jet Production

Jet production occurs whenever the final state is purely strong-interacting. The process can
involve either single-inclusive jet production (one jet in the final state) or di-jet production
(two jets in the final state).

Jet data are also essential for PDF determination, particularly the charm jet data from
CMS, which are used in conjunction with W production measurements to achieve next-to-
leading order (NLO) accuracy [24].

Single-inclusive and di-jet measurements are made at /s = 8 GeV and /s = 7, 8 GeV,
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respectively. In the case of the single-inclusive jet, the data cover the range 70 < p{pe b <25TeV
and | 7 |< 3.0, where p/" is the transfered momentum and 3¢ is the rapidity. For di-jet,
on the other hand, the corresponding ranges are 260 < mj; < 4.27TeV and 0.0 < y* < 3.0,
where m; is the invariant mass and y* is he absolute difference of the rapidities of the two

jets.

4.1.4 Top Pair and Single Top Production

Top pair production occurs through quark-antiquark annihilation or gluon-gluon fusion, mea-
surable at the LHC. Various processes can also lead to single top quark production. Differential
and total cross-sections for top pair production are measured at /s = 8 TeV, while single top
production is measured at /s = 7, 8, and 13 GeV. For single top production, the rapidity
ranges are |y, 7| < 3.0 and |y, 7| < 2.2 at /s = 7 and 8 TeV, respectively. Data are obtained
from both CMS and ATLAS.

4.1.5 Direct Photon Production

Isolated photon production is measured at ATLAS at /s = 8 and 13 TeV. The measurements
provide cross-sections differential in the photon transverse energy E7. across different bins of
photon pseudorapidity 7,. These data, recently added to the dataset, appear to have a mild

impact on the gluon PDF at intermediate z values.

4.1.6 Nuclear Datasets

A significant portion of the dataset (approximately 1400 points) originates from deep inelastic
or hadronic scattering on deuterium or heavy nuclear targets, such as iron, lead, or copper
nuclei (33Fe, 238Pb, $3Cu). The data are collected from experiments such as NMC, SLAC,
BCDMS, E866, E906, E605, CHORUS, and NuTeV.

Nuclear datasets introduce additional complexities due to the presence of the nuclear medium,
which modifies the PDFs compared to those of free protons and neutrons. These modifications
arise from several factors, including nuclear binding, Fermi motion, and shadowing effects at
small z, as well as anti-shadowing and EMC effects at intermediate and large = [35, 36].

In the NNPDF4.0 analysis, nuclear effects are carefully accounted for by incorporating nuclear
corrections into the theoretical predictions for processes involving nuclear targets.

Moreover, nuclear datasets provide valuable information on the flavor separation of PDF's,
particularly in the case of deuterium targets, which are sensitive to the difference between up
and down quark distributions [37]. Data from heavy nuclei, on the other hand, are crucial
for understanding the gluon distribution at small z and its evolution with @2, as nuclear

shadowing becomes significant in this region [38].
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4.2 Complete List of the Datasets

In the next table, we list all the dataset used in NNPDF4.0 [24]; we will recall these datasets

throughout the thesis using this naming convention.

In the 'Description’ column, we report labels to identify the type of process. Some labels
are self-explanatory (DIS, DY, JET, DIJET), others require a legend which is provided at the

end of the chapter.

Dataset Description N data
ATLAS_1JET 8TEV_R06_DEC JET 171
ATLAS 2JET_7TEV_R06 DIJET 90
ATLAS_ DY_2D_8TEV_LOWMASS EWK_RAP 84
ATLAS SINGLETOP_TCH_DIFF_7TEV_T_RAP_NORM HQP_YQ 3
ATLAS SINGLETOP_TCH_DIFF_7TEV_TBAR_RAP _NORM | HQP_YQ 3
ATLAS SINGLETOP_TCH_DIFF_8TEV_T_RAP_NORM HQP_YQ 3
ATLAS SINGLETOP_TCH_DIFF_8TEV_TBAR_RAP NORM | HQP_YQ 3
ATLAS SINGLETOP_TCH_R_13TEV INC 1
ATLAS SINGLETOP_TCH_R_7TTEV INC 1
ATLAS TOPDIFF DILEPT 8TEV_TTRAPNORM HQP_YQQ 5
ATLAS TTBARTOT_13TEV_FULLLUMI INC 1
ATLAS_TTB_DIFF 8TEV_LJ_.TRAPNORM HQP_YQ 5
ATLAS TTB_DIFF 8TEV_LJ TTRAPNORM HQP_YQQ 5
ATLAS_ WM_JET 8TEV_PT EWJ_PT 16
ATLAS WP_JET 8TEV_PT EWJ_PT 16
ATLAS WZ_TOT_13TEV INC 3
ATLAS ZHIGHMASS49FB EWK_MLL 13
ATLASDY2DSTEV EWK_RAP 48
ATLASLOMASSDY11EXT EWK_MLL 6
ATLASPHTI15_SF PHT 53
ATLASWZRAP11CC EWK_RAP 46
ATLASWZRAP11CF EWK_RAP 15
ATLASWZRAP36PB EWK_RAP 30
ATLASZPT8TEVMDIST EWK_PT 64
ATLASZPTS8TEVYDIST EWK PTRAP 120
ATLASTTBARTOTT7TEV INC 1
ATLASTTBARTOTSTEV INC 1
BCDMSD _dw_ite DIS_F2D 254
BCDMSP _dwsh DIS_F2P 351
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Dataset Description N data
CDFZRAP _NEW EWK_RAP 28
CHORUSNBPb_dw _ite DIS_SNB_Pb 607
CHORUSNUPb_dw_ite DIS_SNU_Pb 607
CMS_1JET 8TEV JET 239
CMS_2JET_TTEV DIJET 54
CMS_SINGLETOP_TCH_R_13TEV INC 1
CMS_SINGLETOP_TCH_R_8TEV INC 1
CMS_SINGLETOP_TCH_TOT_7TTEV INC 1
CMS_TTB_DIFF_13TEV_2016_2L_TRAP HQP_YQ 10
CMS_TTB_DIFF_13TEV_2016_LJ_TRAP HQP_YQ 11
CMSDY2D11 EWK_RAP 132
CMSWEASY840PB EWK_RAP_ASY 11
CMSWMASY47FB EWK RAP_ASY 11
CMSWMUSTEV EWK_RAP 22
CMSZDIFF12 EWK_PTRAP 50
CMSTOPDIFFSTEVTTRAPNORM HQP_YQQ 10
CMSTTBARTOTI13TEV INC 1
CMSTTBARTOTSTEV INC 1
CMSTTBARTOTT7TEV INC 1
CMSTTBARTOTSTEV INC 1
DOWMASY EWK_RAP_ASY 10
DOZRAP 40 EWK _RAP 28
DYEG605_dw_ite DYP_E605 119
DYES886P DYP_ES86P 184
DYES886R._dw_ite DYP_E886R 15
DYE906R._dw_ite DYP_E906R 6
HERACOMB_CCEM DIS_CCE 42
HERACOMB_CCEP DIS_CCP 39
HERACOMB_NCEM DIS_NCE 159
HERACOMB_NCEP460 DIS_NCP 209
HERACOMB_NCEP575 DIS_NCP 260
HERACOMB_NCEPS&20 DIS_NCP 112
HERACOMB_NCEP920 DIS_NCP 485
HERACOMB_SIGMARED_B DIS.NCE_BT 27
HERACOMB_SIGMARED_C DIS_NCP_CH 52
LHCB_-WZMU7TEV EWK_RAP 33
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Dataset Description N data
LHCB_WZMUSTEV EWK_RAP 34
LHCB_Z_13TEV_DIELECTRON EWK_RAP 17
LHCB_Z_13TEV_DIMUON EWK_RAP 18
LHCBZ940PB EWK_RAP 9
LHCBZEE2FB_40 EWK_RAP 17
NMC DIS_NCE 292
NMCPD_dw_ite DIS_F2R 260
NTVNBDMNFe_dw_ite DIS_.DM_NB 45
NTVNUDMNFe_dw_ite DIS_.DM_NU 45
SLACD _dw_ite DIS_F2D 211
SLACP_dwsh DIS_F2P 211

Table 4.1: Table containing all the datasets used in
NNPDF4.0, as well as a description of the data contained
in each dataset (the legend is in the text), as well as the

number of points of each dataset.

The labels in the column 'Description’ of Table 4.1 need to be explained. They are formed
by two abbreviations divided by an underscore.

The first part of the labels refer to the type of process: DY for Drell Yan, DIS for Deep
Inelastic Scattering, EWK for weak boson production, EWJ for W production with one jet,
PHT for photon production, INC for inclusive cross section, HQP for single top and top pair
production, JET and DIJET as described previously.

The second part of the label, when present, says which observable is measured in that
dataset. For nuclear correction datasets, the label is composed by either 'DIS’ or 'DY’,

followed by details on the target or experiment.
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Chapter 5

Results

5.1 Defining the problem

The starting point of this thesis can be effectively explained with the plot of Figure 5.1. In
this plot, we show a selection of replicas; they were obtained with NNPDF4.0 in a fit with a
total of 1000 replicas. In this plot, as in the following ones in this thesis, we fix Q? = 1.65GeV.

NNPDF40_nnlo_as_01180_1000: GLUON

2.5
central replica 1.24
2.0
1.22
1.5
oy 1.20
1.0
1.18
0.5 \
_ 1.16
0.0 “r LR LR R | LR | T T T T T Ty T T rrory
1073 104 10-3 10-2 10-1 100

Figure 5.1: Guon PDF replicas from a fit named 'NNPDF40_nnlo_as_01180-1000" of 1000
replicas. We display the five replicas with higher and lower x2, where the y? value is repre-
sented by the color of the replica. The central replica is also represented.

The figure displays the five replicas with the highest experimental x? (defined in Section
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3.2.2) values and the five with the lowest, alongside the central replica. Several important
observations can be made from this plot.

First, there is a noticeable pattern—replicas with higher x? tend to exhibit a lower peak
and a higher tail, whereas those with lower x? show a higher peak and flatter tail.

Second, the central replica (in cyan) does not align with the replicas that have the lowest
x?, but instead has a slightly lower peak and a more pronounced tail. As discussed in Chapter
3, each replica is independent and equally likely, meaning the central replica represents the
mean of all replicas. Therefore, the central replica is not necessarily expected to have the best
agreement with the data.

This issue was first highlighted in [32], where the authors exhibited PDFs with x? values
lower than that of the central replica and argued that this suggests that the central replica
might be subject to sampling biases. However, the fact that the central replica does not
correspond to the best x? is actually a positive indication—it suggests that the central replica
interpolates the data without overfitting. The distribution of x? values for the replicas forms
an approximately Gaussian shape, as shown in Figure 5.2, with the central replica located in
the tail of this distribution.

Distribution of y?: NNPDF40 nnlo_as 01180 1000

[ o=0.014
— mean
200 Il central replica
150 -
100
50 1
0 T T T _Il—‘ T
1.16 1.18 1.20 1.22 1.24

Figure 5.2: Distribution of x? values for the 1000 replicas of the fit. The mean, standard
deviation, and x? of the central replica are indicated.

It is important to note that outliers in the x? distribution, including those with the lowest
X2, are typically good fits to unlikely fluctuations in the data [33]. The absolute minimum x?

does not necessarily correspond to the best solution but may instead reflect overfitting.
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However, established that these results may be valid and free from sampling biases (as
proved by closure tests and future tests [33]), the underlying question remains: why do the
replicas with the lowest Y2 exhibit these distinct features, such as a higher peak and lower
tail? Moreover, if these replicas are fitting outliers in the data, can we identify the source of
this behavior within the datasets?

In essence, this thesis aims to explore the possibility of applying explainable Al to the
NNPDF framework, which could help in understanding these peculiarities and in identifying

the different properties of the datasets.

5.1.1 Focusing on the Gluon PDF

This thesis primarily focuses on the gluon PDF. This is because the gluon PDF displays the
most strong correlation between specific features (height of the peak) and agreement to the
data. In fact, as seen in Figures 5.4 and 5.3, repeating the analysis for sea and valence PDFs

reveals much less separation between the best and worst x? replicas.

NNPDF40 nnlo_as 01180 1000: valence
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Figure 5.3: Same as in Figure 5.1, but for the valence PDF.
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Figure 5.4: Same as in Figure 5.1, but for the sea PDF.

5.2 K-Folding

A reasonable conjecture, is that the outlier replicas do not generalize. Generalization is
optimized using k-folding, which removes data so that the fit quality to the not fitted data can
be checked. As described in Chapter 3, this has been used for hyperparameters determination.
In order to check wheather these effects follow from the k-folding used for hyperoptimization,
we use the same folds.

So, we use four folds which have a balanced dataset division both in terms of the number
of data points and their distribution across the z-axis.

As the first step, we replicate the plot shown in Figure 5.1, excluding one fold at a time,
resulting in four new fits. A few preliminary remarks are necessary before we delve into the
results: first, these fits contain approximately 200 replicas—enough to extract qualitative
information but significantly fewer than the 1000 replicas in Figure 5.1. Second, the x? values
in these plots refer to the in-sample datasets, meaning the y? is not calculated for datasets
that are part of the excluded fold.

Throughout this thesis, we will denote a fit with the name of the ezxcluded fold or datasets.
For example, a fit labeled 'fold 1’ indicates that the fit was performed excluding all datasets
belonging to fold 1.
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Figure 5.5: Same as for Figure 5.1 but excluding the fold in the fit name. We recall that
Q? =1.65GeV.
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Figure 5.6: Same as for Figure 5.1 but excluding the fold in the fit name. We recall that
Q? = 1.65GeV.
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Figure 5.7: Same as for Figure 5.1 but excluding the fold in the fit name. We recall that
Q? =1.65GeV.
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Figure 5.8: Same as for Figure 5.1 but excluding the fold in the fit name. We recall that
Q? = 1.65GeV.
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The results are shown in Figure 5.5, 5.6, 5.7 and 5.8. We can clearly notice differences
between these fits.

When fold 1 is excluded, there is a noticeable separation between the best and worst 2
replicas. However, this separation is less pronounced compared to the reference fit. Addi-
tionally, the worst x? replicas show considerable dispersion. Among the best x? replicas, one
exhibits a steep and rapid change in direction; this kind of rapid change usually suggests
overfitting.

When excluding fold 2, results show a weaker separation between the best and worst x?2
replicas, accompanied by increased dispersion among the higher x? replicas.

When fold 3 is the one out of sample, we observe a clear division similar to that in Figure
5.1, though with slightly higher y? values.

When fold 4 is left out, the division between best and worst x? replicas becomes less
distinct, and both sets of replicas are highly dispersed.

We also obtained similar plots by selecting the five replicas with the lowest x? and the five
with the highest x? from the excluded datasets. It was hypothesized that the best replicas
might exhibit increased x? values on the excluded datasets due to overfitting characteristics.
However, as shown in Figures 5.9-5.12, this does not seem to occur, except marginally when

excluding fold 1.

. k fold 1 NNPDF40 nnlo_as 01180 1000: gluon

central value

1.70

1.65
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Figure 5.9: Same as in Figure 5.1, but computing the x? on the excluded datasets.
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Figure 5.10: Same as in Figure 5.1, but computing the x? on the excluded datasets.
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Figure 5.11: Same as in Figure 5.1, but computing the x? on the excluded datasets.
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Figure 5.12: Same as in Figure 5.1, but computing the x? on the excluded datasets.

Since the plots reveal that replicas with higher x? on the excluded folds are not necessarily
those with lower 2 on the included datasets (and vice versa), we aim to compare the y? values
on the included datasets with those on the excluded datasets for each replica. To facilitate
this comparison, Figure 5.13 presents a scatter plot with four panels. Each panel displays a
scatter plot where the x? values from the included datasets are plotted on the z-axis and the
x? values from the excluded datasets on the y-axis, with each point representing a replica.

The scatter plots reveal a low correlation between the x? values on the included and
excluded datasets across all four panels. This lack of correlation indicates that replicas which
perform better on the included datasets do not necessarily perform worse on the excluded
datasets.

This further suggests that the method is robust and does not exhibit evidence of overfitting.
However, it also shows that the conjecture was not correct: the reason why we have outliers
replicas is not that they overfit the data and/or that they do not generalize.

To sum up, excluding fold 1 or fold 3 results in a clearer separation between the best
and worst x? replicas, whereas the distinction between these groups is less pronounced when
excluding fold 2 or fold 4. However, the analysis of x? values on the excluded datascts
shows no significant separation, except for a slight indication when excluding fold 1. This
additional analysis confirms the absence of correlation between included and excluded x?2

values, supporting the robustness of the method.
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5.2.1 Fold Composition

In this section, we examine the composition of the folds, which were designed to be bal-
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Figure 5.13: This figure presents four panels: in each, results from a fit obtained excluding
one of the fold are shown. Each point represents a replica, the z-axis value is the x? of the
replica on the included datasets, while the y-axis value is the x? of the replica on the excluded
fold. In each panel, the correlation between the two axis is also reported.

As said, the results suggest the absence of overfitting and thus disprove our initial conjecture.
Our next conjecture is that the replicas may be outliers within folds, thus fitting only some

data better. To investigate this, we need to know how the composition of the folds.

anced along the z-axis and to include various types of processes. The datasets included in
each fold are detailed in Tables 5.1 and 5.2. For definitions of the datasets, refer to Table



41).

Fold 1 Fold 2
ATLAS_2JET_TTEV_R06 ATLAS_SINGLETOP_TCH_DIFF 8TEV_T_RAP_NORM
ATLAS_SINGLETOP_TCH_DIFF_8TEV_T_RAP_NORM |ATLAS_-WP_JET_8TEV_PT
ATLASPHT15_SF ATLASTTBARTOT7TTEV
ATLASZPTSTEVMDIST ATLASWZRAPI11CC
CMS_SINGLETOP_TCH_TOT_TTEV ATLASZHIGHMASS49FB
CMSTTBARTOT7TEV CDFZRAP_NEW
CMSWEASY840PB CMS_TTBAR_2D_DIFF_ MTT_TRAP_NORM
DYES886P CMSTTBARTOT7TEV
HERACOMB_SIGMARED_B CMSWMASY47FB
HERACOMBCCEM DOWMASY
HERACOMBNCEP460 DYES886R._dw_ite
LHCBZEE2FB_40 HERACOMBCCEP
NMC HERACOMBNCEP575
NTVNBDMNFe_dw._ite LHCB_Z_13TEV_DIELECTRON
LHCBWZMUTTEV
NMCPD_dw_ite
NTVNUDMNFe_dw_ite
HERACOMB_SIGMARED_B

Table 5.1: Datasets in Fold 1 and Fold 2

Fold 3 Fold 4
ATLAS_SINGLETOP_TCH_DIFF_7TEV_T_RAP_- ATLAS_SINGLETOP_TCH_DIFF_7TEV_TBAR_RAP_-
NORM NORM
ATLAS_SINGLETOP_TCH_R_13TEV ATLAS_SINGLETOP_TCH_R_-TTEV
ATLAS_ WM_JET 8TEV_PT ATLASPHT15_SF
ATLASLOMASSDY11EXT ATLASWZRAP36PB
ATLASWZRAP11CF BCDMSP_dwsh
ATLASZPTS8TEVYDIST CHORUSNUPb_dw_ite
BCDMSD_dw_ite CMS_2JET_TTEV
CHORUSNBPb_dw-_ite CMS_SINGLETOP_TCH_R_8TEV
CMS_2JET_TTEV CMSDY2D11
CMS_SINGLETOP_TCH_R_13TEV CMSTOPDIFFSTEVTTRAPNORM
CMSWMUSTEV CMSZDIFF12

DOZRAP_40 DYE605_dw_ite
HERACOMBNCEPS&20 HERACOMBNCEP920
LHCB_Z_13TEV_DIMUON LHCBZ940PB

LHCBWZMUSTEV

Table 5.2: Datasets in Fold 3 and Fold 4

In Figure 5.14, we present visually the composition of the folds: each dataset is color-coded
according to the type of process it contains, with the labels described at the end of Chapter
4). The datasets are displayed on the x—axis, where the separation between different folds is
marked by a dotted line; datasets in the fifth group are not part of any fold and they are always
included in our fits. This is because these datasets were not used for the hyperoptimization,
so they are not part of the folds, but since they are now available we choose to include them.

On the y-axis, the x? value for each dataset is shown. The y? computation has been made

for each replica of the reference fit, and the x? value of each replica is represented by a point.
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We now want to investigate how the plot in Figure 5.14 changes if we exclude one of the folds.

Excluded fold: None

® DIET
8 - DIS

-

EWJ
EWK
67 HQP

:
I
INC .
JET i
PHT
4 -
!

x2(dataset)

T
0 10 20 30 40 50 60 70 80
datasets

Figure 5.14: The plot shows the value of x? computed on each dataset; the datasets are
divided by the dotted line to highlight the four folds. This is a reference fit, where no dataset
is excluded.

We repeat the plot in the four new cases and we show the results in Figure 5.15.

By comparison with Figure 5.14, we can see how the x? on each dataset changes when
that dataset is excluded.

In the first panel (where we exclude the fold 1), we can notice how, for a couple of
datasets of the first fold, the x? increases. The x? also increases for a dataset in fold 2 (the
one represented in violet, which reaches x? = 8 for some replicas), while it decreases for a
couple of top quark datasets in the ’always included’ group.

In the second panel, when the second fold it’s excluded, we have an outstanding increasing
of x? for a dataset of the second fold: 'DOWMASY” (x? goes from around 5 to around 20). The
fact that this dataset contains only 10 data-points, together with the fact that fold 2 contains
two out of three datasets regarding W asymmetry, could probably explain this increase of
error; however, this also shows that this fold may not be well balanced.

In the third panel, there aren’t significant differences with Figure 5.14, except for a slight
increase of the y? for some datasets of the third (excluded) fold.

Finally, in the forth panel, we have an increase of the x? in a couple of datasets in the
‘always included’ group, while the excluded datasets of fold 4 seem to maintain their x? value.

We will now focus on the fit obtained excluding fold 1 and fold 3, where the separation

between best and worst x? replicas is larger.
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Figure 5.15: Same as in Figure 5.14 but for each of the four fit obtained excluding one fold
at a time.

5.2.2 In-Depth Study of Fold 1 and Fold 3

In this section, we will focus on the fits done excluding respectively fold 1 and fold 3. As seen
in Figure 5.5 and 5.7, in these fits we have a neater separation between best and worst x?
replicas, which we now want to investigate.

In order to understand the reason and the source of the separation, we compute the x>
per process, per experiment and per dataset, comparing the five replicas with best total x2
with the five replicas with worst total y2.

In Figure 5.16, the values of x? for each experiment are presented, where the blue bars
represent the x? value of the five replicas with best total x2, while the red bars stand for the
worst total x? replicas. In both fits (the one obtained excluding fold 1 and the one excluding
fold 3), for most of the experiments there’s only a small x? difference between best and worst
replicas. The difference is bigger for the experiment DO, in both fits, while LHCb presents a
more significant difference only when excluding fold 1.

In Figure 5.17, we present a plot similar to the previous one, only this time we compare x>
based on the process. Once again, we don’t see big increases in the x? of the worst replicas.

For the fit done excluding fold 1, we see a bigger difference in y? for the DY processes, while
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x? on best and worst replicas of fold 1

DEUTERON  NUCLEAR  HERACOMB CDF Do ATLAS
x? on best and worst replicas of fold 3

. best
. worst
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1.5

1.0
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0
DEUTERON NMC NUCLEAR HERACOMB DYE886 CDF DO ATLAS CMS LHCb
Experiments

Figure 5.16: Comparison between x? of cach experiment between the best replicas (blue) and
the worst replicas (red). On the upper panel, we show the results when excluding fold 1, while
on the lower panel we exclude fold 3. The x? in each case is computed only on the in-sample
data-points.

this difference does not occur for fold 3. We can conclude that there is no particular process
that determines the difference between best and worst replicas, instead, the reason of this
difference may lay in the datasets. This means that the data-points which lead to outlier
replicas do not come from a process in particular and we have to go on searching them in
datasets.

We repeat the same analysis, this time looking at the x? on the datasets. The results are
presented in Figure 5.18, where we compare the x? of the best and worst replicas for each
of the datasets. The name of the datasets are not present in the plot, but they are divided
in four folds by the dotted lines, the remaining datasets on the right are always included. In
this plot, we see some significant difference in y? value for certain datasets.

In order to identify which datasets are responsible for the difference in y? between the
best and the worst replicas, we plot the difference of the x? on each dataset (this would be
the difference between red and blue line of Figure 5.14). We show only the most significant

datasets in Figure 5.19 and 5.20. In particular, we show the five datasets with highest and
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x? on best and worst replicas of fold 1
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x? on best and worst replicas of fold 3
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Figure 5.17: Comparison between x2 on the different processes between best (blue) and worst
(red) replicas. On the upper panel are presented the results when excluding fold 1, while on
the lower panel fold 3 is the excluded one. The x? in each case is computed only on the data
included in the fit.

lowest (negative) value of X2 . — X%e «- The latter group contains datasets that actually
are better interpolated by the worst x? replicas than by the best ones. The datasets which
present a positive difference, on the other hand, are the ones responsible for the difference in
the total x? of the replicas.

We can see that, in both the fits with excluded fold 1 and excluded fold 3, the dataset
'DOWMASY" is the one with the biggest difference x2,,5 — Xz Lhis is coherent with what
we saw in Figure 5.16, where we noticed that experiments from DO have the biggest effect in
x? shift. Furthermore, we have already noticed in Section 5.2.1 that this datasets has only
~ 10 data-points and it is one of the datasets with highest x2. So, it appears clear that this
dataset is very sensitive to the difference between best and worst x? replicas, and in particular
it prefers the best x? replicas, which have a higher peak and a lower tail. It is also clear that
this dataset on its own has not enough data-points to be actively moving the fit. However,
further analysis of this dataset and an understanding of why it favors the configuration of the

best x? replicas could be insightful.
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x? on best and worst replicas of fold 1
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Figure 5.18: Comparison between x? of each dataset on the best replicas (blue) and on the
worst replicas (red). On the upper panel, we have the results when excluding fold 1, while
on the lower panel we exclude fold 3. The dotted lines mimic the fold division, marking
respectively the four folds and a fifth group of datasets which are always included in the fits.
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Difference of y? between worst and best replicas: fold 1
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Figure 5.19: The plot contains the difference between x? between worst and best replicas,
computed for the most significant dataset, when excluding fold 1.

Difference of y? between worst and best replicas: fold 3
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Figure 5.20: Same as for Figure 5.19, but excluding fold 3.
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5.3 Impact of DOWMASY on the Fit

As said in the previous section, 'DOWMASY’ appears to be the dataset with the larger
difference in Y2 between best and worst-y? replicas. It is likely that some features in the
shape of the best x? replicas better represent this dataset. Looking at the Figures 5.5-5.8, we
can identify these features in the height of the peak of the gluon, position on the x-axis of the
peak and height of the tail. We will study the impact of the height of the peak on the x? on
'DOWMASY’.

We plot, in Figure 5.21, the height of the gluon peak for each one of the five best and five
worst-y? replicas, along with the x? of each replica on the dataset 'DOWMASY".

Excluded fold:1

Excluded fold:3
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Height of the gluon peak Height of the gluon peak

Figure 5.21: x? on the dataset 'DOWMASY’ in relation to the height of the gluon peak. We
represent the five best-y? replicas (in blue) and the five worst-x? replicas (in red). On the
left panel, we present the results of the fit obtained excluding fold 1, while on the right panel
we exclude fold 3.

On the left panel, where we are excluding fold 1, we can hypothesise the presence of linear
trend. On the right panel, on the other hand, there is a higher dispersion and it’s less clear
whether there is a linear trend.

To test whether there is a correlation between height of the peak of the gluon and x? on

'DOWMASY’, we will consider all the replicas and, to have a larger statistics, we consider
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the fit 'NNPDF40_nnlo_as_ 01180_1000’, which contains 1000 replicas. The results are pre-
sented in Figure 5.22, where each point represents a replica and the axis represents the x? on
DOWMASY and the height of the peak of the gluon. In this plot, the five best x? replicas
and five worst 2 replicas are marked by a star and colored in yellow and violet respectively.

All the other points are also colored according to the total x? of each replica.

NNPDF40 nnlo as 01180 1000: Height of the gluon peak - 2 on DOWMASY

° 1.30
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Figure 5.22: x? on the dataset 'DOWMASY” in relation to the height of the gluon peak, for
each of the 1000 replicas of the fit 'NNPDF40_nnlo_as_ 01180_1000’. The points are colored
according to the total y? value. The five replicas with highest and lowest value of x? are
marked by a star.

On the upper left, we show the correlations between the quantities in the plot.

The first value is the correlation between the height of the peak and the xy? on DOWMASY,
which results to be corr= —0.27. This means that the previous plot, where only the five best
and five worst x? replicas were shown (Figure 5.21), was somehow magnifying this effect,
which in actual fact is rather weak.

Let’s also briefly comment the other correlation values in the plot. The second reported
value is the correlation between the height of the peak and the total y2, so the correlation
between the horizontal axis and the color scale. This value is —0.60. This means that replicas
with a higher peak of the gluon have a lower 2. This was evident for the best and worst
replicas, but now we have confirmed it for all the replicas and we have quantified the relation
between height of the peak and goodness of the 2.

The last value in the plot quantify the correlation between the total x? and the x? on the
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DOWMASY dataset. This would be the correlation between the vertical axis and the color
scale and it results in a value of 0.40. This proves a non-negligible connection between these
quantities, as we suspected from the big difference of the x> on DOWMASY between best and
worst x2 replicas in Figure 5.19 and 5.20, but it not a strong correlation.

We now want to see how the plot of Figure 5.1 changes in a fit without DOWMASY (which
we will refer to as 'NNPDF40_nnlo_as_01180-1000_-no_D0’) and also how the correlations we
took into consideration change.

We show the results of this new fit in Figure 5.23: in this case, the separation between
best and worst x? replicas seems to be smaller compared to the reference fit. However, this
plot may be challenging to interpret at first glance because the differences compared to the
reference fit (Figure 5.1) are subtle, as we are only excluding a small dataset. Furthermore, we
need to remember that this new fit contains 100 replicas, which is significantly less than the
reference fit, and a lower number of replicas usually decreases the separation effect between

best and worst-y? replicas.
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Figure 5.23: Same as Figure 5.1, but for a fit done excluding the dataset ’'DOWMASY’.

Whether this decreased separation is a true effect or a consequence to the lower number of
replicas has to be investigated. In order to do so, we can reproduce the scatterplot of Figure
5.22 for this new fit.

The results are shown in Figure 5.24. It is clear at first glance that the points in the

plot are not correlated, in fact the correlation index between height of the peak and y? on
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DOWMASY is now only —0.08. Furthermore, the correlation between height of the peak and
total x? has lowered to —0.48 (it was —0.60 in the reference fit). This suggests that the
decreased separation between best and worst x? replicas of Figure 5.23 was a concrete effect
of excluding DOWMASY.

Lastly, the correlation between the total x? and the x? on DOWMASY has decreased
from 0.40 to 0.11, indicating that these two quantities are now essentially uncorrelated. This
change may be due to DOWMASY being poorly fitted when it is excluded (we also noticed
this in Section 5.2.1). We conclude that the fact that this correlation decreased does not

disprove that this dataset plays a role in obtaining outlier replicas.
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Figure 5.24: Same as in Figure 5.22, but for a fit done excluding DOWMASY.

5.3.1 Impact of Other Key Datasets

The plot of Figure 5.22 can be repeated for every dataset, reporting the correlation values in
each case. When doing so, two datasets in particular stand out.

The first one is named "HERACOMB_SIGMARED B’ and it is showed in Figure 5.25. As
we can see from the Figure, in this case the correlation between y? on the dataset and height
of the gluon peak is very high (corr=—0.91). This means that this dataset has a substantial
preference for a high peak gluon. Furthermore, this dataset seem to be more correlated with
the total 2 compared to DOWMASY, in fact the correlation for this dataset is 0.54, against
0.40 for DOWMASY. One of the reasons can be that this dataset has more data-points (~ 27).

The second relevant dataset is called ATLAS_SINGLETOP_TCH_DIFF_8_ TEV_T_RAP -
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NNPDF40 nnlo as 01180 1000: Height of the peak - y? on HERACOMB SIGMARED B
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Figure 5.25: x2? on the dataset 'HERACOMB_SIGMARED B’ in relation to the height of
the gluon peak, for each of the 1000 replicas of the fit 'NNPDF40_nnlo_as_01180.1000’. The
points are colored according to the total x? value. The five replicas with highest and lowest
value of x? are marked by a star.

NORM and it is showed in Figure 5.26. In this case, the dataset x? is positively correlated
to the height of the gluon peak (corr= 0.63). This means that this dataset is pushing for a
lower peak of the gluon. This effect has to be offset by other datasets (such as DOWMASY
or HERACOMB_SIGMARED _B), since we know that the final x? is negatively correlated to
the height of the gluon peak (corr= —0.60 for the reference fit).

The correlation between total x? and x? on this dataset, coherently, is negative (corr= —0.32),
this means that lower y? values for this dataset are associated with higher y? values for the
rest of the data. This suggests potential tension between this dataset and others in the global
fit.

It is important to consider that this dataset, which contains data from ATLAS for the single
t process at 8 TeV, only has four data-points.

In both cases, it is interesting to notice that, although the correlation between height of the
peak and x? on the dataset is very strong, the difference in the dataset x? value between the
replicas with highest peak and the ones with lowest peak is not large (~ 0.1 in both cases).
This subtle variation suggests that the neural network may not easily detect or prioritize
this trend, as the change in x? might be insufficient to influence the learning process in a
significant way.

We now proceed, as in the previous section, producing two new fits: one excluding the dataset
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NNPDF40_nnlo_as_01180_1000: Height of the peak - 2 on ATLAS_SINGLETOP_TCH_DIFF_8TEV_T_RAP_NORM
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Figure 5.26: Same as in Figure 5.25, but for the dataset named ’ATLAS_SINGLETOP_TCH -
DIFF 8 TEV_T_RAP_NORM’

ATLAS_SINGLETOP_TCH_DIFF_8_TEV_T_RAP_NORM and one excluding HERACOMB _-
SIGMARED_B.

We then want to replicate the plot of Figure 5.1 in these two cases. We expect that when
excluding the ATLAS dataset, the separation between best and worst x? replicas increases,
since we are excluding a dataset that prefers a gluon with a lower peak. When excluding the
HERACOMB dataset, on the other hand, we expect the separation to decrease, since we are
excluding a dataset that is better represented by a higher peak of the gluon.

We show in Figure 5.27 the five best and five worst-y? replicas in the fit obtained excluding
ATLAS SINGLETOP_TCH_DIFF_8_TEV_T_RAP_NORM, while in Figure 5.28 we present
the same plot but for a fit done excluding HERACOM_SIGMARED_B.

The plots reveal a more pronounced separation in Figure 5.28, where the excluded dataset
is HERACOMB_SIGMARED_B. Interestingly, this is contrary to our initial expectations.
However, it is important to recognize that the differences between these fits might be subtle.
This could be due to the fact that we are only excluding a small number of data points, and
the relatively limited number of replicas may not capture the full effect.

To gain a deeper understanding of these trends, we can revisit the correlation indexes
defined earlier. These values are presented in Table 5.3.

Examining the correlation between the height of the gluon peak and the total x?, we notice
that although the visual separation between the best and worst replicas appeared larger for
HERACOMB_SIGMARED_B, the actual correlation value is slightly lower in this case compared to
ATLAS_SINGLETOP_TCH_DIFF_8TEV_T_RAP_NORM (—0.57 vs. —0.59). This supports our earlier

observation.
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Figure 5.27: Same as for Figure 5.1, but for a fit containing 120 replicas and performed
excluding ATLAS_SINGLETOP_TCH_DIFF 8 TEV_T_RAP_NORM.
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Figure 5.28: Same as for Figure 5.1, but for a fit containing 120 replicas and performed
excluding HERACOM_SIGMARED _B.
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Excluded Dataset Corr(Peak, x? Dataset) | Corr(Peak, x?)
ATLAS_SINGLETOP_TCH_DIFF_8TEV_T_RAP_NORM 0.59 -0.59
HERACOMB_SIGMARED_B -0.93 -0.57

Table 5.3: Correlation values comparing fits excluding either ATLAS_SINGLETOP_TCH_DIFF_-
8TEV_T_RAP_NORM or HERACOMB_SIGMARED_B. The first column shows the correlation between
gluon peak height and y? on the excluded dataset. The second column shows the correlation
between peak height and total x2.

As for the correlation between the peak height and the x? specific to the dataset, we see
that this value remains almost unchanged after excluding HERACOMB_SIGMARED_B (—0.91 to
—0.93). Similarly, excluding the ATLAS dataset does not significantly alter this correlation
either, shifting only from 0.63 to 0.59.

Thus, we can conclude that while these two datasets do not influence the correlation
between peak height and total x? as strongly as DOWMASY, they maintain a stable correlation
between their x? and the peak height of the gluon, regardless of whether they are included or
excluded in the fit. This means that the two datasets that we have discussed are one of the

reason for outlier replicas. However, they may not be the sole responsible.

5.4 Defining Folds Based on Correlation with Gluon Peak
Height

We now apply the method developed in previous sections to group datasets based on their
correlation with the gluon peak height. Specifically, we calculate the correlation between the
gluon peak height and the x? for each dataset. The results show that many datasets exhibit
little to no correlation with the gluon height, while some show a significant positive or negative
correlation.

To identify relevant correlations, we set a threshold: correlations greater than 0.4 or less
than —0.4 are considered significant. Datasets with correlations above 0.4 form the group
labeled positive_corr, while those with correlations below —0.4 form the group negative_corr.
Tables 5.4 and 5.4 presents the datasets in each group along with their respective correlation
values. Despite these two groups contain a similar number of datasets, the number of
data-points they include is significantly different: the group megative_corr, in fact, contains
substantially more data-points.

We will now perform two new fits: one excluding the datasets in positive_corr and another

excluding those in negative_corr. These fits will be named after the group of datasets excluded.

5.4.1 Comparison between Fits: positive_corr vs negative_corr

Figures 5.29 and 5.30 show the five best and five worst x? replicas, respectively, for the fits

excluding datasets in the positive_corr and negative_corr groups. From the plots, we observe
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Figure 5.29: Same as in Figure 5.1, but for a fit containing 90 replicas and performed excluding
the datasets in positive_corr.
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Figure 5.30: Same as in Figure 5.1, but for a fit containing 90 replicas and performed excluding
the datasets in negative_corr.
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Dataset Correlation Peak
ATLASZPTS8TEVMDIST 0.45
ATLASPHT15_SF 0.44
ATLAS SINGLETOP_TCH_DIFF 8TEV_T_RAP_NORM 0.63
ATLASLOMASSDY11EXT 0.61
ATLAS SINGLETOP_TCH_DIFF_7TEV_TBAR_RAP_NORM 0.43
CMSZDIFF12 0.62

Table 5.4: Positive correlation datasets and the correlation between x? on each dataset and
height of the gluon peak.

Dataset Correlation Peak
NMC -0.56
HERACOMB_SIGMARED_B -0.91
HERACOMBNCEP575 -0.43
LHCB_Z_13TEV_DIELECTRON -0.47
ATLAS SINGLETOP_TCH_DIFF_7TEV_T_RAP_NORM -0.47
ATLAS SINGLETOP_TCH_DIFF 8TEV_TBAR_RAP_NORM -0.53
CMS_1JET 8TEV -0.50

Table 5.5: Negative correlation datasets and the correlation between x? on each dataset and
height of the gluon peak.

a greater separation in the negative_corr fit, while the replicas in positive_corr are much less
dispersed. This might seem counterintuitive, as one would expect the separation to decrease
when excluding datasets that drive a higher peak. However, it’s important to consider that
negative_corr contains a substantial amount of data. When this data is excluded, the overall
quality of the fit diminishes, leading to increased dispersion.

Furthermore, the fact that the height of the peak in Figure 5.30 is lower than in Figure
5.29 is reassuring and aligns with expectations. To reinforce this point, we can also examine
the histogram of the gluon peak height for the two fits, in Figure 5.31. The entire distribution
for the fit excluding positive_corr is shifted toward higher peak values. In the plots, the mean
peak height and the height of the central replica are marked. In both cases, the central replica
has a lower peak than the mean of the peak distribution.

We can also look at the correlation between total x? and height of the peak, which, as
we know from the previous sections, gives an important quantitative information about the
fit. This correlation value is —0.61 for the fit done excluding positive_fit, while it’s —0.54
for the fit where we exclude negative_fit. We recall that this value is —0.60 when we include
all the datasets. These values are in line with what we would expect: when excluding the
datasets that prefer a lower gluon, the anti-correlation between total x? and height of the gluon
becomes stronger, while excluding the datasets that prefer a higher peak, the anti-correlation
decrease.

Although the plots of Figure 5.29 and 5.30 seemed to contradict the initial hypothesis, the
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more reliable and objective correlation values confirm it.

We now want to focus on the y? distribution of the two fits we are analyzing. As we
pointed out, from Figure 5.29 and 5.30, it is noticeable that the x? is lower when we exclude
the datasets in negative_corr. This suggest that the latter datasets actually contain the data-
points that generate outlier replicas.

In Figure 5.32, we show the distribution of y? for the fit done excluding negative_corr (left
panel) and positive_corr (right panel). For the first, the y? ranges from 1.14 to 1.22, while
the second has x? ranging from 1.17 to 1.23. In the plots it is also showed the mean of the
x? distribution and the y? value of the central replica. Both these values are lower for the fit
named negative_corr.

We can further investigate the source of the y? difference between the two fits looking at
the x? values of each dataset. In particular, we compute the difference between x? in the fit
positive_corr and x? in the fit negative_corr, for each dataset.

We show in Figure 5.33 the ten most significant datasets. Among these, the ones displaying
a negative value of the difference are in tension with the datasets of positive_corr. Analogously,
the ones displaying a positive value of the difference, which are mainly dataset from top pair
production processes, are in tension with the datasets in megative_corr. This means that
datasets from top production, which do not contain many data-points, seem to prefer a gluon
with a lower peak.

We see that the first two datasets with lowest difference (NMC, CMS_1JET_8TEV)),
are in the group negative_corr. The third is DOWMASY. This dataset, which we previously
investigated, was found to have no significant correlation with the height of the peak. However,

the difference in its x? value indicates an overall preference for a higher gluon peak.

5.4.2 The effect of the NMC Dataset

NMC is one of the datasets in negative_corr and, as we have seen, it is significantly more in
agreement with the results of the fit positive_corr compared to the results of negative_corr.

For this dataset, which contains ~ 300 data-points, we can qualitative observe how its
data-points drive the fit.

In fact, we notice a particular feature which is present whenever we exclude the dataset
'NMC’. If we look at the fits where this dataset is not in-sample (namely, the fit done exclud-
ing fold 1 and the fit done excluding negative_corr, respectively Figure 5.5 and 5.30), they
both present replicas with a particular feature: a rapid change of slope at « ~ 0.5. This is
interestingly compatible with the x range of the dataset NMC.

This means that this dataset is particularly important for obtaining a smooth gluon PDF
around z ~ 0.5. When it is excluded, certain replicas can assume a non physical shape.
This gives a lower x? on included data but higher on excluded ones (as it happens for fold 1,

Figures 5.5 and 5.9), which indicates overfitting.
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Distribution of peak height: positive_corr
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Distribution of peak height: negative_corr
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Figure 5.31: The histogram shows the distribution of height of the gluon peak for the replicas
of the fit positive_corr (left panel) and negative_corr (right panel). In red, it’s marked the
height of the peak of the central replica. In green, the mean height of the peak. The plot also
include the standard deviation value of the distribution.
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Figure 5.32: x? distribution for the fit done excluding the datasets in negative_corr (left
panel) and excluding the ones in positive_corr (right panel). It is also reported the mean and
standard deviation of the distribution, as well as the x2 of the central replica.
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Difference of y? between positive_corr and negative_corr

ATLAS_WZ_TOT_13TEV
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NMC o
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Datasets
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Figure 5.33: Difference between the x? in the fit positive_corr and in the fit negative_corr, for
each dataset.
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5.5 Interpretation in Retrospect of K-Folding Results

Now that we have identified which datasets have an impact on the height of the gluon peak

and we have determined a numerical value to quantify the separation between best and worst

x? replicas, we can reanalyze the results of the fits presented in section 5.2.1.

First of all, we highlight which of the datasets in each fold are also contained in either positive_-

corr (colored in green) or negative_corr (in red).

Fold 1

Fold 2

ATLAS_2JET_TTEV_R06

ATLAS_SINGLETOP_TCH_DIFF_8TEV_T_RAP_NORM

ATLAS_SINGLETOP_TCH_DIFF_8TEV_T_RAP_NORM

ATLAS_ WP_JET 8TEV_PT

ATLASPHT15_SF ATLASTTBARTOT7TEV
ATLASZPTS8TEVMDIST ATLASWZRAP11CC
CMS_SINGLETOP_TCH_TOT_7TTEV ATLASZHIGHMASS49FB
CMSTTBARTOT7TEV CDFZRAP_NEW
CMSWEASY840PB CMS_TTBAR2D_DIFF_MTT_TRAP_NORM
DYES886P CMSTTBARTOT7TEV
HERACOMB_SIGMARED_B CMSWMASY47FB
HERACOMBCCEM DOWMASY
HERACOMBNCEP460 DYES886R_dw_ite
LHCBZEE2FB_40 HERACOMBCCEP
NMC HERACOMBNCEP575
NTVNBDMNFe_dw_ite LHCB_Z_13TEV_DIELECTRON
LHCBWZMU7TEV

NMCPD_dw-_ite

NTVNUDMNFe_dw_ite

HERACOMB_SIGMARED_B

Table 5.6: Datasets for Folds 1 and 2. Green cells represent positive correlation datasets, and
red cells represent negative correlation datasets.

Fold 3 Fold 4
ATLAS_SINGLETOP_TCH_DIFF_7TEV_T_RAP_- ATLAS_SINGLETOP_TCH_DIFF_7TEV_TBAR_RAP _-
NORM NORM

ATLAS_SINGLETOP_TCH_R_-13TEV

ATLAS_SINGLETOP_TCH_R_-7TTEV

ATLAS_WM_JET 8TEV_PT

ATLASPHT15_SF

ATLASLOMASSDY11EXT ATLASWZRAP36PB
ATLASWZRAP11CF BCDMSP _dwsh
ATLASZPT8TEVYDIST CHORUSNUPb_dw_ite

BCDMSD_dw_ite

CMS_2JET_7TTEV

CHORUSNBPb_dw_ite

CMS_SINGLETOP_TCH_R_8TEV

CMS_2JET_TTEV CMSDY2D11
CMS_SINGLETOP_TCH_R_13TEV CMSTOPDIFFSTEVITRAPNORM
CMSWMUSTEV CMSZDIFF12

DOZRAP_40 DYEG605_dw-_ite
HERACOMBNCEP820 HERACOMBNCEP920
LHCB_Z_13TEV_DIMUON LHCBZ940PB

LHCBWZMUSTEV

Table 5.7: Datasets in Fold 3 and Fold 4. Datasets with positive correlation are highlighted
in green, and datasets with negative correlation are highlighted in red.
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Then, we report the correlation between total y? and height of the peak for each of the
fits, the results are in Table 5.8. The values in the table confirm our initial remarks regard-
ing these fits: when excluding fold 1 and fold 3 we encounter a higher separation, while the
separation decreases excluding fold 2 or fold 4.

The correlation value of —0.61, obtained excluding fold 1, can be explained noticing that fold

Excluded Fold | Correlation (Chi2, Peak)
Fold 1 -0.61
Fold 2 -0.46
Fold 3 -0.51
Fold 4 -0.47

Table 5.8: Correlation between x? and gluon peak height for each fit.

1 contains both datasets with positive and negative correlation, which may counterbalance,
resulting in a correlation value very similar to the one of the reference fit (—0.60).

The value of —0.46, obtained excluding the second fold, can be explained by the presence
of three datasets with negative correlation in this fold, which determine a weakening of the
anti-correlation effect, similar to the situation showed in the previous section.

Fold 3 contains one dataset of positive_corr and one of negative_corr, making it rather bal-
anced. The correlation value in the table is —0.51, suggesting that the exclusion of the dataset
with negative correlation has a bigger impact than the exclusion of the positive_corr dataset.
Lastly, in fold 4 we exclude, among others, three folds with positive correlation. Unexpect-
edly, the correlation in the table results to be —0.47, when it was expected to be stronger. It

is possible that, in this situation, effects from other datasets become significant.
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Chapter 6

Conclusions

In this thesis, we addressed the challenge of introducing explainable Al into the NNPDF
framework.

In particular, we investigated the reasons behind the behavior of the replicas of the gluon
PDF. As Figure 5.1 shows, the replicas with the best agreement with the data (which have a
higher peak and lower tail), are distinctly separated from the ones with the worst agreement
with the data (which have a lower peak and higher tail), and the central replica is not the
one with the best agreement with the data.

We measured the agreement to the data with the experimental x2. Considering all the
replicas, we calculated that the correlation between the height of the peak and y? is —0.60.

To explain the fact that the lowest-x? replicas are outliers, we first hypothesized that they
were overfitting the data, if this was true, they would fit data fluctuations and not generalize
well to excluded data. However, this was proven to be false. In fact, we performed four
different fits excluding different datasets each time, and we found no evidence of an increased
x? on the excluded datasets for the replicas with the best-x?. The four groups of datasets
used in this step are called folds, and they are the same ones used for the determination of
the model’s hyperparameters, which determine the particular fitting methodology adopted.
Performing an in-depth study on the folds, we found that fold 1 and fold 3 presented more
clearly the effect we wanted to investigate, and thus we focused on those.

Looking at the fit done excluding fold 1 and the fit done excluding fold 3, we checked
whether the best replicas were fitting some processes particularly well compared to others,
and we concluded this is not the case. We repeated this check on experiments and found that
the best replicas fitted particularly well data from the DO experiment. Comparing datasets,
we found that the dataset 'DOWMASY’ was significantly more in agreement with the best
replicas compared to the worst replicas.

We hypothesized that this dataset could be the reason for the higher-peak best replicas.
To prove this, we calculated the correlation between the y2 of each replica on DOWMASY

and the height of its peak. This showed a weak correlation between the two values, equal to
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—0.27. While looking only at the best and worst replicas suggested that this dataset preferred
a higher peak, the larger picture obtained considering all the replicas disproved this idea.

We then focused on the dataset with the highest and lowest correlation between x? on the
dataset and the height of the peak. These datasets are ATLAS_SINGLETOP_TCH_DIFF -
S8TEV_T_RAP_NORM and HERACOMB_SIGMARED_B, and their correlations are 0.63 and
—0.91, respectively. We produced two new fits, excluding one of the two datasets in each fit,
and computed the correlation between total x? and height of the peak. Keeping in mind that
this value was —0.60 for the reference fit, we obtained —0.59 excluding the dataset positively
correlated and —0.57 excluding the dataset with a negative correlation. This is aligned with
what one would expect: excluding a dataset that is negatively correlated (which means that
it has a preference for a higher peak of the gluon), the correlation between total y? and height
of the peak decreases. However, the difference between the two fits is minimal, likely because
only a few data points distinguish one from the other.

To obtain a stronger difference, we defined two groups of datasets: positive_corr and
negative_corr. The first contains all the datasets with a correlation between x? on the dataset
and height of the peak higher than 0.40, while the second contains all the datasets with
a correlation value lower than —0.40. It is important to note that ’negative_corr’ contains
significantly more data points. We then performed two fits excluding one of these groups at a
time (and named the fit after the excluded group), and we showed the best and worst replicas
in each of the two cases (see Figure 5.30, 5.29).

The plots suggest that the correlation between total x? and height of the peak could be
higher for the fit ‘'negative_corr’, where we have excluded the datasets that prefer a higher peak.
If true, this would be the opposite of what we expect. However, the correlation value between
total x? and height of the peak disproves this qualitative consideration and consolidates the
formulated hypothesis. In fact, the correlation value turns out to be —0.61 when excluding
positive_corr and —0.54 when excluding negative_corr.

We conclude that the datasets in the group negative_corr are the reason for the outlier
replicas. Since this group contains more data points than the group positive_corr, the replicas
with a higher peak have an overall lower y?2, while the replicas with a lower peak have a worse
value of x? because they accommodate the preference of fewer data points. The presence of
datasets that prefer a lower peak also explains why the central replica does not coincide with
the one with the best x2.
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