Deep-Inelastic Scattering and Collinear Physics

Second European School on the Physics of the EIC and Related Topics

Emanuele R. Nocera Università degli Studi di Torino and INFN, Torino

23-24 June 2025

Table of contents

Lecture 1. What is Deep-Inelastic Scattering and what are Parton Distributions?

- DIS as a laboratory of QCD
- what are PDFs and why are they interesting?
- how can we determine PDFs?
- which data constrain which PDFs and how?

Lecture 2. Data, theoretical and methodological accuracy in PDF determination

- which data constrains which PDFs?
- higher-order corrections and theory uncertainties
- heavy flavour schemes and intrinsic charm
- the photon PDF and electroweak corrections
- parametrisation, optimisation, uncertainty representation
- validation of uncertainites and benchmarks

DISCLAIMER

These lectures contain a personal selection of topics and are certainly not exhaustive

Bibliography

- Textbooks on perturbative QCD and DIS
 - ▶ J. Campbell, J. Huston, F. Krauss, The Black Book of QCD, Oxford (2018)
 - ▶ J.C. Collins, Foundations of perturbative QCD, Cambridge (2011)
 - ▶ R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics, Cambridge (1996)
 - ▶ R. Devenish, A. Cooper-Sarkar, Deep-Inelastic Scattering, Oxford (2011)
 - E. Leader, Spin in Particle Physics, Cambridge (2001)
- 2 Reviews on Parton Distribution Functions
 - K. Kovarik and P.M. Nadolsky, Rev.Mod.Phys. 92 (2020) 045003
 - ▶ J.J. Ethier and E.R. Nocera, Ann.Rev.Nucl.Part.Sci. 70 (2020) 43
 - ▶ J. Gao, L. Harland-Lang and J. Rojo, Phys.Rept. 742 (2018) 1
 - S. Forte and G. Watt, Ann.Rev.Nucl.Part.Sci. 63 (2013) 291
 - ▶ P. Jimenez-Delgado, W. Melnitchouk and J. F. Owens, J. Phys. G40 (2013) 093102
 - E.C. Aschenauer, R.S. Thorne, R. Yoshida (rev.), Structure Functions, PDG, ch. 8
- Specific topics not addressed above
 - more journal references as we proceed through these lectures

DISCLAIMER

These lectures will focus on collinear leading-twist Parton Distribution Functions

Transverse-momentum-dependent distributions will not be covered here

Deep-Inelastic Scattering and Collinear Physics Lecture 1: What is Deep-Inelastic Scattering and what are Parton Distributions?

Outline

1.1 DIS as a laboratory of QCD the unpolarised and polarised DIS cross section factorisation, evolution properties of splitting functions, theoretical constraints

- 1.2 Why Parton Distribution Functions? the LHC and the quest of precision understanding the origin of the proton spin
- 1.3 How can we determine PDFs? how to formulate the problem and how to solve it
- 1.4 Which data constrain which PDFs and how? overview of experimental data (unpolarised): from HERA to the LHC overview of experimental data (polarised): from EMC to the EIC which constraints different scattering processes put on PDFs?

I will focus on the phenomenological determination of PDFs I will not talk about Lattice QCD nor of models of nucleon structure

Emanuele R. Nocera (UNITO)

DIS and Collinear Physics

$1.1 \ {\rm DIS}$ as a laboratory of QCD

Hadronic physics, or the quest for the nucleon structure

Nucleons make up all nuclei, and hence most of the visible matter in the Universe They are bound states with internal structure and dynamics

Deep-Inelastic Scattering $\ell(k) N(P) \rightarrow \ell'(k') X(P_X)$ $\ell(k)$ $\ell'(k')$ $\gamma, Z, W^{\pm}(q)$ $\equiv_{X(P_X)}$ $N(P) \ge$ k(k'): lepton momentum P: proton momentum W: invariant mass of the final state M: proton mass q: gauge boson momentum p parton momentum DEEP $(Q^2 \gg M^2)$ INELASTIC $(W^2 \gg M^2)$ scale: $Q^2 = -a^2$ lepton-proton c.m.e. squared: $s = (k + P)^2$ scaling variable (hadronic): $x = x_B = \frac{Q^2}{2P \cdot q}$ lepton's energy loss: $\nu = \frac{q \cdot P}{M} = E - E'$ scaling variable (partonic): $z = \frac{Q^2}{2ma}$ inelasticity: $y = \frac{q \cdot P}{k \cdot P} = \frac{\nu}{F}$

where	who	what	when		
	SLAC	NC DIS (unp.)	$\mu \to p, d$	80s-90s	
SLAC	NuTeV	CC DIS (unp.)	$\nu(\bar{\nu}) \rightarrow Fe$	late 90s	
	E142,E143,E154,E155	NC DIS (pol.)	$\mu \to p, d$	80s-90s	
CERN	BCDMS	NC DIS (unp.)	$\mu \to p, d$	late 80s	
	NMC	NC DIS (unp.)	$\mu \to p, d$	late 90s	
	CHORUS	CC DIS (unp.)	$\nu(\bar{\nu}) \rightarrow Pb$	late 90s/early 2000s	
	EMC, SMC, COMPASS	NC DIS (pol.)	$\mu \to p, d$	late 80s to late 2010s	
DESY	H1, ZEUS	NC,CC DIS (unp.)	$e^{\pm}, \mu \to p$	late 90s/early 2010s	
JLab	Hall-A	NC DIS (unp., pol.)	$e \to p, d$	late 90s — today	
EIC		NC,CC DIS (unp.pol.)	$e^{\pm} \rightarrow p, d, A$	2030s(?)	

DESY DIS and Collinear Physics

DIS cross section: leptonic tensor

The DIS cross sections can be written as

$$\frac{d^2\sigma}{dxdy} = K \sum_{s_{\ell'}} \sum_X \int \Pi_X |\mathcal{M}(\ell N \to \ell' X)|^2 = \frac{2\pi y \alpha^2}{Q^4} \sum_j \eta_j L_j^{\mu\nu} W_{\mu\nu}^j$$

neutral-current (NC) DIS: $j = \gamma, Z$ charged-current (CC) DIS: $j = W^+, W^-$

The corresponding leptonic tensors are (neglecting lepton masses)

$$\begin{split} L^{\gamma}_{\mu\nu} &= 2(k_{\mu}k'_{\nu} + k'_{\mu}k_{\nu} - (k \cdot k')g_{\mu\nu} - i\lambda\epsilon_{\mu\nu\alpha\beta}k^{\alpha}k'^{\beta}) \\ L^{Z}_{\mu\nu} &= (g^{e}_{V} + e\lambda g^{e}_{A})^{2}L_{\mu\nu\gamma} \\ L^{\gamma Z}_{\mu\nu} &= (g^{e}_{V} + e\lambda g^{e}_{A})L^{\gamma}_{\mu\nu} \\ L^{W}_{\mu\nu} &= (1 + e\lambda)^{2}L^{\gamma}_{\mu\nu} \end{split}$$

 $e=\pm 1:$ charge of the incoming lepton $\lambda=\pm 1$ helicity of the incoming lepton $g_V^e=-1/2+2\sin^2\theta_W \qquad g_A^e=-1/2$

The ratios of the corresponding propagators and coupling to the photon ones are

$$\eta_{\gamma} = 1 \quad \eta_Z = \eta_{\gamma Z}^2 \quad \eta_{\gamma Z} = \frac{G_F M_Z^2}{2\sqrt{2}\pi\alpha} \frac{Q^2}{Q^2 + M_Z^2} \quad \eta_W = \frac{1}{2} \left(\frac{G_F M_W^2}{4\pi\alpha} \frac{Q^2}{Q^2 + M_W^2}\right)^2$$

DIS cross section: hadronic tensor

The hadronic tensor describes the interaction of the appropriate currents

$$W_{\mu\nu} = \frac{1}{4\pi} \int d^4 z e^{iq \cdot z} \left\langle P, S | [J^{\dagger}_{\mu}(z), J_{\nu}(0)] | P, S \right\rangle$$

 J_{α} : hadronic contribution to the current S: nucleon-spin 4-vector The hadronic tensor is written on the basis of independent four-momenta (combinations) with coefficients F_k (w/o spin) and q_k (w/ spin)

$$\begin{split} W_{\mu\nu} &= \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) F_1(x,Q^2) + \frac{\hat{P}_{\mu}\hat{P}_{\nu}}{P \cdot q} F_2(x,Q^2) - i\epsilon_{\mu\nu\alpha\beta} \frac{q^{\alpha}P^{\beta}}{2P \cdot q} F_3(x,Q^2) \\ &+ i\epsilon_{\mu\nu\alpha\beta} \frac{q^{\alpha}}{P \cdot q} \left[S^{\beta}g_1(x,Q^2) + \left(S^{\beta} - \frac{S \cdot q}{P \cdot q} P^{\beta} \right) g_2(x,Q^2) \right] \\ &+ \frac{1}{P \cdot q} \left[\frac{1}{2} \left(\hat{P}_{\mu}\hat{S}_{\nu} + \hat{S}_{\mu}\hat{P}_{\nu} \right) - \frac{S \cdot q}{P \cdot q} \hat{P}_{\mu}\hat{P}_{\nu} \right] g_3(x,Q^2) \\ &+ \frac{S \cdot q}{P \cdot q} \left[\frac{\hat{P}_{\mu}\hat{P}_{\nu}}{P \cdot q} g_4(x,Q^2) + \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) g_5(x,Q^2) \right] \\ &\text{ with } \hat{P}_{\mu} = P_{\mu} - \frac{P \cdot q}{q^2} q_{\mu} \qquad \hat{S}_{\mu} = S_{\mu} - \frac{S \cdot q}{q^2} q_{\mu} \end{split}$$

Emanuele R. Nocera (UNITO)

DIS cross section: unpolarised case

$$\begin{split} \frac{d^2\sigma^i}{dxdy} &= \frac{4\pi\alpha^2}{xyQ^2}\eta_i \left[\left(1 - y - \frac{x^2y^2M^2}{Q^2} \right) F_2^i + y^2 x F_1^i \mp (y - y^2/2) x F_3^i \right] \qquad i = \text{NC, CC} \\ & \underbrace{\text{NC DIS } (e^{\pm}N \to e^{\pm}X)}_{\text{sign of } F_3: - (+) \text{ for } e^+ (e^-) \text{ incoming}}_{\eta^{\text{NC}} = 1} \qquad \underbrace{\frac{\text{CC DIS } (e^{\pm}(\nu, \bar{\nu})N \to \nu, \bar{\nu}(e^{\pm})}_{\eta^{\text{CC}} = (1 \pm \lambda)^2 \eta_W} (\text{ for } e^{\pm})}_{\eta^{\text{CC}} = 4\eta_W} (\text{ for } \nu, \bar{\nu}) \\ & F_{1,2}^{\text{NC}} = F_{1,2}^{\gamma}_{-(g_V^e \pm \lambda g_A^e) \eta_{\gamma Z} F_{1,2}^{\gamma Z}}_{\eta_Z^e + ((g_V^e)^2 + (g_A^e)^2 \pm 2\lambda g_V^e g_A^e) \eta_Z F_{1,2}^{Z}} \\ & + \left((g_V^e)^2 + (g_A^e)^2 \pm 2\lambda g_V^e g_A^e \right) \eta_Z F_{1,2}^{Z}}_{\gamma_Z} \\ & xF_3^{\text{NC}} = -(g_A^e \pm \lambda g_V^e) \eta_{\gamma Z} x F_3^{\gamma Z}}_{\eta_Z x F_3^{\gamma_Z}} \\ & + \left[2g_V^e g_A^e \pm \lambda \left((g_V^e)^2 + (g_A^e)^2 \right) \right] \eta_Z x F_3^{Z}} \\ & \text{Neglecting terms proportional to } M^2/Q^2 \end{split}$$

$$\frac{d^2 \sigma^i}{dx dy} = \frac{2\pi \alpha^2}{x y Q^2} \eta_i \left[Y_+ F_2^i \mp Y_- x F_3^i - y^2 F_L^i \right] \qquad Y_\pm = 1 \pm (1-y)^2 \qquad F_L^i = F_2^i - 2x F_1^i$$

DIS cross section: longitudinally polarised case

$$\Delta \sigma = \sigma(\lambda_N = -1, \lambda_\ell) - \sigma(\lambda_N = 1, \lambda_\ell)$$

$$\begin{aligned} \frac{d^2 \Delta \sigma^i}{dx dy} &= \frac{8\pi \alpha^2}{xyQ^2} \eta^i \left\{ -\lambda_\ell y \left(2 - y - 2x^2 y^2 \frac{M^2}{Q^2} \right) x g_1^i \right. \\ &+ \lambda_\ell 4x^3 y^2 \frac{M^2}{Q^2} g_2^i + 2x^2 y \frac{M^2}{Q^2} \left(1 - y - x^2 y^2 \frac{M^2}{Q^2} \right) g_3^i \\ &- \left(1 + 2x^2 y \frac{M^2}{Q^2} \right) \left[\left(1 - y - x^2 y^2 \frac{M^2}{Q^2} \right) g_4^i + xy^2 g_5^i \right] \right\} \qquad i = \text{NC, CC} \end{aligned}$$

Neglecting terms proportional to M^2/Q^2

$$\frac{d^2 \Delta \sigma^i}{dx dy} = \frac{4\pi \alpha^2}{xyQ^2} \eta_i \left[-Y_+ g_4^i \mp Y_- 2xg_1^i + y^2 g_L^i \right] \qquad Y_\pm = 1 \pm (1-y)^2 \qquad g_L^i = g_4^i - 2xg_5^i$$

which can be obtained from the unpolarised cross section

 $\frac{d^2\sigma^i}{dxdy} = \frac{2\pi\alpha^2}{xyQ^2}\eta_i \left[Y_+F_2^i \mp Y_-xF_3^i - y^2F_L^i\right] \qquad Y_{\pm} = 1 \pm (1-y)^2 \qquad F_L^i = F_2^i - 2xF_1^i$ from $F_1 \rightarrow -g_5 \qquad F_2 \rightarrow -g_4 \qquad F_3 \rightarrow 2g_1$ Emanuele R. Nocera (UNITO) DIS and Collinear Physics 23 June 2025 13/45

Structure functions in the naive parton model

Regard the DIS cross section as the incoherent sum of point-like interactions between the lepton and a free, massless, parton

$$\frac{d^2\sigma}{dxdy} = K \sum e_q^2 f_{q/p}(x) \frac{d\hat{\sigma}}{dy} \qquad \frac{d^2 \Delta \sigma}{dxdy} = \Delta K \sum e_q^2 \Delta f_{q/p}(x) \frac{d\hat{\sigma}}{dy}$$

with the unpolarised (polarised) parton distribution functions $f_{q/p}$ ($\Delta f_{q/p}$)

$$f_{q/p}(x) = f_{q/p}^{\uparrow}(x) + f_{q/p}^{\downarrow}(x) \qquad \Delta f_{q/p}(x) = f_{q/p}^{\uparrow}(x) - f_{/p}^{\downarrow}(x)$$

In the Bjorken limit $Q^2,\nu\rightarrow\infty$ structure functions scale, and moreover $F_L^i=g_L^i=0$

$$\begin{split} \left[F_2^{\gamma}, F_2^{\gamma Z}, F_2^{Z} \right] &= x \sum_q \left[e_q^2, 2e_q g_V^q, (g_V^q)^2 + (g_A^q)^2 \right] (q + \bar{q}) \\ \left[F_3^{\gamma}, F_3^{\gamma Z}, F_3^{Z} \right] &= \sum_q \left[0, 2e_q g_A^q, 2g_V^q g_A^q \right] (q - \bar{q}) \\ \left[F_2^{W^-}, F_3^{W^-} \right] &= \left[2x(u + \bar{d} + \bar{s} + c \dots), 2(u - \bar{d} - \bar{s} + c \dots) \right] \\ \left[g_1^{\gamma}, g_1^{\gamma Z}, g_1^{Z} \right] &= \frac{1}{2} \sum_q \left[e_q^2, 2e_q g_V^q, (g_V^q)^2 + (g_A^q)^2 \right] (\Delta q + \Delta \bar{q}) \\ \left[g_5^{\gamma}, g_5^{\gamma Z}, g_5^{Z} \right] &= \sum_q \left[0, e_q g_A^q, g_V^q g_A^q \right] (\Delta q - \Delta \bar{q}) \\ \left[g_1^{W^-}, g_5^{W^-} \right] &= \left[\Delta u + \Delta \bar{d} + \Delta \bar{s} + \Delta c \dots, -\Delta u + \Delta \bar{d} + \Delta \bar{s} - \Delta c \dots \right] \end{split}$$

Emanuele R. Nocera (UNITO)

Field-theoretic definition of PDFs

PDFs allow for a field-theoretic definition as matrix elements of bilocal operators

collinear transition of a massles proton hinto a massless parton iwith fractional momentum xlocal OPE \implies lattice formulation

See e.g. Prog.Part.Nucl.Phys. 121 (2021) 103908

$$\begin{split} q(x) &= \frac{1}{4\pi} \int dy^{-} e^{-iy^{-}xP^{+}} \langle P, S | \bar{\psi}(0, y^{-}, \mathbf{0}_{\perp}) \gamma^{+} \psi(0) | P, S \rangle \\ \Delta q(x) &= \frac{1}{4\pi} \int dy^{-} e^{-iy^{-}xP^{+}} \langle P, S | \bar{\psi}(0, y^{-}, \mathbf{0}_{\perp}) \gamma^{+} \gamma^{5} \psi(0) | P, S \rangle \\ \Delta g(x) &= \frac{1}{4\pi xP^{+}} \int dy^{-} e^{-iy^{-}xP^{+}} \langle P, S | G^{+\alpha}(0, y^{-}, \mathbf{0}_{\perp}) \tilde{G}^{+}_{\alpha}(0) | P, S \rangle \end{split}$$

with light-cone coordinates and QCD field-strength tensor G ($A^+ = 0$ gauge)

$$\begin{split} y &= (y^+, y^-, \mathbf{y}_\perp) \,, \qquad y^+ = (y^0 + y^z)/\sqrt{2} \,, \qquad y^- = (y^0 - y^z)/\sqrt{2} \,, \qquad \mathbf{y}_\perp = (v^x, v^y) \\ G^{\alpha}_{\mu\nu} &= \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + f^{abc} A^b_\mu A^c_\nu \end{split}$$

Structure functions in QCD

three non-relativistic quarks

 $\xleftarrow{\text{QCD}}_{\text{factorization, evolution}}$

indefinite number of relativistic quarks and gluons

Increasing Q^2 , one should see that each quark is surrounded by a cloud of partons. The number of resolved partons that share the proton's momentum increases with Q^2 . If quarks were non-interacting, no further structure would be resolved increasing Q^2 .

Factorisation of Physical Observables

I Factorisation theorems apply to sufficiently inclusive scattering processes

short-distance interaction partonic hard interaction process-specific kernel

 $\xrightarrow{\text{factorisation scheme}}_{\text{scale }\mu}$

long-distance interaction nucleon structure universal PDFs

2 Physical observables can be written as convolutions of matrix elements and PDFs

$$F_{I}(x,\mu^{2}) = \sum_{i} \int_{x}^{1} \frac{dz}{z} C_{Ii}(z,\alpha_{s}(\mu^{2})) f_{i}\left(\frac{x}{z},\mu^{2}\right) \qquad \text{ONE HADRON}$$

$$\sigma(\tau,\mu^{2},\mathbf{k}) = \sum_{ij} \int_{\tau}^{1} \frac{dz}{z} \hat{\sigma}_{ij}\left(\frac{\tau}{z},\alpha_{s}(\mu^{2}),\mathbf{k}\right) \mathcal{L}_{ij}(z,\mu^{2}) \qquad \text{TWO HADRONS}$$

$$\mathcal{L}_{ij}(z,\mu^{2}) = (f_{i}^{h_{1}} \otimes f_{j}^{h_{2}})(z,\mu^{2})$$

$$f \otimes g = \int_{x}^{1} \frac{dz}{z} f\left(\frac{x}{z}\right) g(z)$$

③ The matrix elements C_{If} and $\hat{\sigma}_{ij}$ can be computed perturbatively

$$C_{Ii}(y,\alpha_s) = \sum_{k=0} a_s^k C_{Ii}^{(k)}(y) \qquad \hat{\sigma}_{ij}(y,\alpha_s) = \sum_{k=0} a_s^k \hat{\sigma}_{ij}^{(k)}(y) \qquad a_s = \alpha_s / (4\pi)$$

() Because of factorisation, all of these quantities depend on μ^2 ; usually $Q^2 = \mu^2$

Perturbative corrections

Figure by courtesy of L. Cieri

Protons may radiate gluons, that split into a quark-antiquark pair, that may interact with the vector boson; $F_L \neq 0$, $g_L \neq 0$

Quarks and antiquarks may radiate gluons that give rise to collinear logarithmic corrections, *e.g.* at leading-log

$$\alpha_s \ln \frac{Q^2}{m^2}$$

associated to a soft collinear singularity due to the masslessness of quarks. The factorisation theorem sets a separation between the hard and soft parts of the process; the (arbitrary) scale where this separation occurs is the factorisation scale μ

$$\alpha_s \ln \frac{Q^2}{m^2} = \alpha_s \ln \frac{Q^2}{\mu^2} + \alpha_s \ln \frac{\mu^2}{m^2}$$

One reasbsorbes the divergent term $\alpha_s \ln \frac{\mu^2}{m^2}$ into the PDFs, which scale logarithmically.

Breaking of the Bjorken scaling

UNPOLARISED

PDF evolution: DGLAP equations

() A set of $(2n_f + 1)$ integro-differential equations, n_f is the number of active partons

$$\frac{\partial}{\partial \ln \mu^2} f_i(x,\mu^2) = \sum_j^{n_f} \int_x^1 \frac{dz}{z} P_{ji}\left(z,\alpha_s(\mu^2)\right) f_j\left(\frac{x}{z},\mu^2\right)$$

Provide the second s

$$f_{\pm} = (f_q \pm f_{\bar{q}}) - (f_{q'} \pm f_{\bar{q}'}) \qquad f_v = \sum_i^{n_f} (f_q - f_{\bar{q}}) \qquad f_{\Sigma} = \sum_i^{n_f} (f_q + f_{\bar{q}})$$
$$\frac{\partial}{\partial \ln \mu^2} f_{\pm,v}(x,\mu^2) = P^{\pm,v}(x,\mu_F^2) \otimes f_{\pm,v}(x,\mu^2)$$
$$\frac{\partial}{\partial \ln \mu^2} \begin{pmatrix} f_{\Sigma}(x,\mu^2) \\ f_g(x,\mu^2) \end{pmatrix} = \begin{pmatrix} P_{qq} & 2n_f P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} f_{\Sigma}(x,\mu^2) \\ f_g(x,\mu^2) \end{pmatrix}$$

 \bigcirc The splitting functions P can be computed perturbatively

$$P_{ji}(z, \alpha_s) = \sum_{k=0} a_s^{k+1} P_{ji}^{(k)}(z), \qquad a_s = \alpha_s / (4\pi)$$

$$P_{qq}^{(0)} \longrightarrow P_{gq}^{(0)} \qquad P_{qg}^{(0)} \longrightarrow P_{qg}^{(0)} \qquad P_{gg}^{(0)} \longrightarrow P_{gg}^{(0)} \qquad P_{gg}^{(0)} \longrightarrow P_{gg}^{(0)} \qquad P_{gg}^{(0)} \longrightarrow P_{gg}^{(0)} \qquad P_{gg}^{(0)} \longrightarrow P_{gg}$$

Emanuele R. Nocera (UNITO)

Splitting Functions and Anomalous Dimensions Perform the Mellin transform $\gamma_{ji}(N, \alpha_s(\mu^2)) \equiv \int_0^1 dx x^{N-1} P_{ji}(x, \alpha_s(\mu^2))$

$$\begin{split} & \frac{\partial}{\partial \ln \mu^2} f_{\pm,v}(N,\mu^2) = \gamma_{\pm,v}(N,\mu_F^2) \cdot f_{\pm,v}(N,\mu^2) \\ & \frac{\partial}{\partial \ln \mu^2} \left(\begin{array}{c} f_{\Sigma}(N,\mu^2) \\ f_g(N,\mu^2) \end{array} \right) = \left(\begin{array}{c} \gamma_{qq} & 2n_f \gamma_{qg} \\ \gamma_{gq} & \gamma_{gg} \end{array} \right) \cdot \left(\begin{array}{c} \Sigma(N,\mu^2) \\ g(N,\mu^2) \end{array} \right) \end{split}$$

How many different anomalous dimensions are there?

LO: $\gamma_{qq} = \gamma_{\pm,v} \rightarrow 4$ independent splitting functions NLO: $\gamma_{qq} \neq \gamma_+ \neq \gamma_- \rightarrow 6$ independent splitting functions NNLO: $\gamma_- \neq \gamma_v \rightarrow 7$ independent splitting functions

Which PDF combinations evolve independently?

LO: f_g , f_{Σ} , and any $2n_f - 1$ linear combinations of f_q and $f_{\bar{q}}$ NLO: f_g , f_{Σ} , any $n_f - 1$ linear combinations of $f_q - f_{\bar{q}}$, and of $f_q + f_{\bar{q}}$ NNLO: as NLO, and $f_V = \sum_q^{n_f} (f_q - f_{\bar{q}})$

A common choice

$$\begin{split} f_g, \ f_{\Sigma} &= \sum_q^{n_f} (f_q + f_{\bar{q}}), \ f_V = \sum_q^{n_f} (f_q - f_{\bar{q}}) \\ \text{iterative NS combinations of } f_{q^+} &= f_q + f_{\bar{q}} \text{ and of } f_{q^-} = f_q - f_{\bar{q}} \\ T_3 &= f_{u^+} - f_{d^+} \qquad T_8 = f_{u^+} + f_{d^+} - 2f_{s^+} \qquad T_{15} = f_{u^+} + f_{d^+} + f_{s^+} - 3f_{c^+} \ \dots \\ V_3 &= f_{u^-} - f_{d^-} \qquad V_8 = f_{u^-} + f_{d^-} - 2f_{s^-} \qquad V_{15} = f_{u^-} + f_{d^-} + f_{s^-} - 3f_{c^-} \ \dots \end{split}$$

Anomalous dimensions: perturbative accuracy NLO (1977) NLO (1980)

[NPB 126 (1977) 298]

$$\begin{split} \gamma_{fg}^{(0)}(N) &= 0\\ \gamma_{lgq}^{(0)}(N) &= 2n_f \left(\mathbf{N}_- + 4\mathbf{N}_+ - 2\mathbf{N}_{+2} - 3\right)S_1\\ \gamma_{fgq}^{(0)}(N) &= 2C_F \left(2\mathbf{N}_{-2} - 4\mathbf{N}_- - \mathbf{N}_+ + 3\right)S_1\\ \gamma_{gg}^{(0)}(N) &= C_A \left(4(\mathbf{N}_{-2} - 2\mathbf{N}_- - 2\mathbf{N}_+ + \mathbf{N}_{+2} + 3)S_1 - \frac{11}{3}\right) + \frac{2}{3}n_f \end{split}$$

NPB 175 (1980) 27; PLB 97 (1980) 437

Numerical solution (LO, NLO , NNLO and aN³LO) of DGLAP implemented in open-source software: EKO [EPJ C82 (2022) 976] and APFEL++ [CPC 185 (2014) 1647]

Emanuele R. Nocera (UNITO)

DIS and Collinear Physics

23 June 2025

23 / 45

Anomalous dimensions: perturbative accuracy NNLO (2004)

NPB 691 (2004) 129

$$\begin{split} & \sqrt{g}(2)(0) = (\log - g_{10} + \frac{1}{100} (\log_{-1} - N_{1} + 4N_{10} - m) \left[\frac{1}{100} (S_{1-1} - \frac{1}{100} S_{1-1} - \frac{1}{100$$

$$\begin{split} + \frac{1}{3} \hat{s}_1 + (n-N_1) \Big[\hat{s}_1 - \hat{s}_1 + \frac{1}{3} \hat{s}_1 - \frac{1}{$$

$$\begin{split} & \frac{d_{12}^{2}(0)}{d_{12}^{2}} = 0.6G_{12}^{2} + g_{11}^{2} - g_{12}^{2} - g_{1$$

 $+2S_{2,-3}+\frac{83}{12}S_{2,1,1}+\frac{3}{2}S_{2,1,1,1}-3S_{2,1,2}-\frac{41}{4}S_{2,2}+S_{2,2,1}-\frac{5}{2}S_{2,3}-\frac{55}{48}S_{3}+3S_{3,-2}-\frac{143}{12}S_{3,1}$ $-2S_{3,1,1} + \frac{49}{4}S_4 + 4S_{4,1} - 2S_5 + (1 - N_+) \left[\frac{145}{2}S_1\zeta_3 - \frac{3571}{64}S_1 + 2S_{1,-3} - \frac{58}{3}S_{1,3} - \frac{25}{9}S_{1,1,1} - \frac{125}{9}S_{1,1,1} - \frac{125}{9}S_$ $+\frac{23}{2}S_{1,-2,1}+\frac{335}{216}S_{1,1}-\frac{31}{2}S_{1,1,-2}-\frac{11}{3}S_{1,1,1}-\frac{5}{3}S_{1,1,2}+\frac{245}{77}S_{1,2}+\frac{3}{7}S_{2,1,1,1}+8S_{4,1}-2S_{5,2,1,2}+\frac{3}{7}S_{2,2,1,1,2}+\frac{3}{7}S_{2,2,1,2}+\frac{3}{7}S_{2,2,2}+\frac{3}{7}S_{2,2,2}+\frac{3}{7}S_{2,2}+\frac{3}{7}S_{2,2}+\frac{3}{7}S_{2,2}+\frac{3}{7}S_{2,2}+\frac$ $+\frac{1}{2} S_{1,2,1}-\frac{83}{2} S_{1,-2}+27 S_2 \zeta_3-8 S_{2,-3}+\frac{3}{2} S_{2,-2}+8 S_{2,-2,1}-\frac{183}{4} S_4+8 S_{2,1,-2}-\frac{117}{4} S_{2,1,1}-\frac{117}{4} S_{2,1}-\frac{117}{4}$ $-3S_{2,1,2} + \frac{157}{4}S_{2,2} - 3S_{2,2,1} - \frac{9}{8}S_{2,3} - \frac{581}{14}S_3 - S_{3,-2} + \frac{237}{4}S_{3,1} - 8S_{3,1,1} + 8S_{3,2} + \frac{73}{4}S_{2,1}$ $-\frac{4319}{48}S_2\right) + 16C_An_f^2\left(\frac{1}{6}(N_- + 4N_+ - 2N_{+2} - 3)\left[\frac{175}{27}S_1 - 2S_{1,-3} + \frac{7}{3}S_{1,-2} - \frac{7}{9}S_{1,1} + \frac{4}{3}S_3\right]\right)$ $+\frac{7}{3}S_{1,1,1}-S_{1,1,1,1}+S_{1,1,2}-S_{1,2,1}-S_{1,3}+\frac{229}{18}S_2\Big]+\frac{1}{6}(N_{-}-1)\Big[S_{1,-2}-\frac{4}{3}S_{1,1}+S_{1,1,1}\Big]$ $-\frac{53}{162}(\mathbf{N}_{-2}-1)S_1 - (\mathbf{N}_{-}-\mathbf{N}_{+})\left[\frac{149}{648}S_1 + \frac{7}{4}S_2 - \frac{2}{9}S_3 - \frac{1}{3}S_4\right] - (1-\mathbf{N}_{+})\left[\frac{473}{648}S_1 - \frac{169}{36}S_2 - \frac{169}{36}S_2\right]$ $+\frac{1}{6}S_{2,1}-\frac{43}{18}S_{3}+\frac{5}{3}S_{4}\right)+16C_{A}^{2}n_{f}\left((N_{-}+4N_{+}-2N_{+2}-3)\left[\frac{3220}{27}S_{1}-\frac{3}{2}S_{1,-4}+\frac{277}{12}S_{1,-2}-\frac{3}{2}S_{1,-4}-\frac{277}{12}S_{1,-2}-\frac{3}{2}S_{1,-4}-\frac{3}{2}S_{1$ $-\frac{31}{2}S_{1}\zeta_{3}+\frac{61}{6}S_{1,-3}+2S_{1,-3,1}+3S_{1,-2,-2}-\frac{8}{3}S_{1,-2,1}+2S_{1,-2,1,1}-2S_{1,1,-2,1}+6S_{1,1,1,-2}-2S_{1,1,-2,1}+2S_{$ $-\frac{95}{54}S_{1,1}-3S_{1,1}\zeta_3+2S_{1,1,-3}+\frac{20}{3}S_{1,1,-2}+\frac{47}{8}S_{1,1,1}+\frac{4}{3}S_{1,1,1,1}+2S_{1,1,1,1,-}-S_{1,1,3}+\frac{37}{6}S_{1,3}$ $+ 4 S_{1,1,1,2} + \frac{21}{4} S_{1,1,2} + 2 S_{1,1,2,1} + \frac{69}{8} S_{1,2} - S_{1,2,-2} + \frac{23}{12} S_{1,2,1} - 3 S_{4,1} + 2 S_{2,3} - \frac{5}{2} S_{1,4} + 95 S_{2,3} - \frac{5}{2} S_{1,4} - \frac{5}{2} S_$ $-3S_{2}\zeta_{3}-S_{2,-3}+\frac{25}{2}S_{2,-2}+2S_{2,-2,1}-\frac{155}{72}S_{2,1}+\frac{53}{6}S_{2,1,1}+3S_{1,3,1}-\frac{5}{12}S_{2,2}+\frac{31}{12}S_{3,1}-3S_{4}$ $+\frac{2561}{72}S_{3}-2S_{1,2,2}\left[+(\mathbf{N_{-2}}-1)\left[4S_{1}\zeta_{3}-\frac{2351}{108}S_{1}-\frac{8}{3}S_{1,-3}-\frac{4}{3}S_{1,1,2}-\frac{52}{9}S_{1,-2}+\frac{4}{3}S_{1,-2,1}\right]\right]$ $+\frac{161}{36}S_{1,1}-\frac{4}{3}S_{1,1,-2}-\frac{10}{9}S_{1,1,1}+\frac{2}{3}S_{1,1,1,1}-\frac{3}{2}S_{1,2}+\frac{56}{27}S_{2}-\frac{20}{9}S_{2,1}-2S_{1,3}-\frac{2}{3}S_{2,1,1}]$ $-\left(\mathbf{N}_{-}-1\right) \boldsymbol{S}_{1,2,1}+\left(\mathbf{N}_{-}-\mathbf{N}_{+}\right) \left[22 \boldsymbol{S}_{1} \boldsymbol{\zeta}_{3}-\frac{1759}{24} \boldsymbol{S}_{1}-\frac{13}{6} \boldsymbol{S}_{1,-3}-\frac{799}{36} \boldsymbol{S}_{1,-2}-\frac{8}{3} \boldsymbol{S}_{1,-2,1}-\frac{21}{2} \boldsymbol{S}_{1,3}\right]$ $-\frac{37}{3}S_{1,1,-2}-\frac{425}{72}S_{1,1,1}-\frac{7}{12}S_{1,1,1,1}-\frac{35}{6}S_{1,1,2}-\frac{217}{74}S_{1,2}-\frac{1385}{18}S_2+\frac{593}{36}S_{1,1}-\frac{49}{6}S_{2,1,1}$ $+\frac{5}{2} S_{2,-3}-8 S_{2,-2}-\frac{209}{24} S_{2,1}+3 S_{2,1,-2}-S_{2,1,1,1}+2 S_{2,1,2}+\frac{17}{13} S_{2,2}-6 S_2 \zeta_3+\frac{13}{4} S_{2,3}+\frac{9}{4} S_{4,1}$ $-\frac{1363}{72}S_3+\frac{9}{2}S_{3,-2}+\frac{1}{6}S_{3,1}+3S_{3,1,1}+\frac{25}{6}S_4+4S_5\right]+(1-N_+)\Big[\frac{15}{4}S_{2,2}+\frac{1783}{24}S_1-41S_1\zeta_3+\frac{12}{3}S_2+\frac{12}{3}S_1-41S_1\zeta_3+\frac{12}{3}S_2+\frac{12}{3}S_1+\frac{12}{3}S_2+\frac{12}{3}S_1+\frac{12}{3}S_2+\frac{12}{3}S_2+\frac{12}{3}S_2+\frac{12}{3}S_1+\frac{12}{3}S_2+\frac$ $+\frac{4}{3}S_{1,-3}+\frac{995}{36}S_{1,-2}+\frac{16}{3}S_{1,-2,1}-\frac{2731}{77}S_{1,1}+\frac{62}{3}S_{1,1,-2}+\frac{319}{77}S_{1,1,1}-\frac{7}{12}S_{1,1,1,1}+\frac{49}{6}S_{1,1,2}$ $+\frac{287}{24}S_{1,2}+\frac{79}{4}S_{1,3}+\frac{73141}{216}S_2-248S_2'_{53}+\frac{17}{2}S_{2,-3}+\frac{93}{2}S_{2,-2}-\frac{1567}{72}S_{2,1}-\frac{34}{3}S_4-\frac{15}{4}S_{4,1}$ $+78 _{ 2, 1, -2}+\frac{167}{6} _{ 5_{ 2, 1, 1}-3} _{ 5_{ 2, 1, 1, 1}+6} _{ 5_{ 2, 1, 2}+\frac{53}{4}} _{ 5_{ 2, 3}+\frac{7385}{72}} _{ 5_{ 3}-\frac{7}{2}} _{ 5_{ 3, -2}+\frac{47}{4}} _{ 5_{ 3, 1}+5} _{ 5_{ 3, 1, 1}}$ $-19S_5$] + $16C_F n_f^2$ (N₋ + 4N₊ - 2N₊₂ - 3) $\left[\frac{2303}{324}S_1 + \frac{7}{54}S_{1,1} - \frac{7}{18}S_{1,1,1} - \frac{1}{6}S_{2,1,1} - S_4\right]$ $+\frac{4}{9} S_{1,2}+\frac{1}{6} S_{1,1,1,1}-\frac{1}{3} S_{1,3}+\frac{35}{18} S_2+\frac{7}{18} S_{2,1}-\frac{11}{9} S_3\Big]-\frac{1}{6} (\mathbf{N}_--1)\Big[S_{1,1,1}+S_{1,2}-S_{2,1}\Big]$ $-(N_{-}-N_{+})\left[\frac{59963}{2592}S_{1}-\frac{7}{18}S_{1,1}-\frac{251}{27}S_{2}+\frac{199}{24}S_{3}-\frac{25}{6}S_{4}+2S_{3}\right]+(1-N_{+})\left[\frac{163}{24}S_{2}+6S_{3}-S_{4}+S_{3}-S_{4}+S_{3}-S_{4}+S_{3}-S_{4}+S$ $+\frac{96277}{2807}S_1-\frac{17}{16}S_{1,1}-\frac{7}{24}S_3-\frac{19}{2}S_4\Big]+\frac{77}{81}(\mathbf{N}_{-2}-1)S_1\Big)+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big[4S_{2,1,-2}-1S_1\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big)$ $+\frac{1}{2} S_{2,2} \Big] + (\mathbf{N}_{-} + 4 \mathbf{N}_{+} - 2 \mathbf{N}_{+2} - 3) \Big[\frac{81}{23} S_{1} - S_{1,-4} + 5 S_{1,-3} - \frac{5}{2} S_{1,-2} + 2 S_{1,-2,-2} + 4 S_{1,1,-3} + 5 S_{1,-3} - \frac{5}{2} S_{1,-2} + 2 S_{1,-2,-2} + 4 S_{1,1,-3} + \frac{5}{2} S_{1,-3} + \frac{5}{2} S_{1,-3}$

aN³LO (2020 - ongoing)

$$\begin{split} &+\frac{3}{9}\frac{3}{8}y_{11}-6\xi_{11-2}+6\frac{3}{9}\xi_{121}+3\xi_{11,12}+2\xi_{11,11,11}-5\xi_{11,22}-\frac{5}{2}\xi_{12,2}+3\xi_{13,11}-5\xi_{11,2}-\frac{5}{8}\xi_{12,2}+3\xi_{13,11}-\xi_{$$

 $-\frac{2}{3}S_{1,-2,1}+\frac{251}{108}S_{1,1}-\frac{4}{3}S_{1,1,-2}-\frac{13}{4}S_{1,1,1}+\frac{5}{6}S_{1,1,1,1}-\frac{5}{6}S_{1,1,2}+\frac{10}{9}S_{1,2}-\frac{5}{6}S_{1,2,1}-\frac{151}{108}S_{2,2}$ $-\frac{1}{3}S_{2,-2} + \frac{10}{9}S_{2,1} - \frac{5}{6}S_{2,1,1} + \frac{1}{3}S_{2,2} \Big] + (\mathbf{N}_{-} - \mathbf{N}_{+}) \Big[\frac{331}{77}S_{1} - 4S_{2,-2} + \frac{28}{9}S_{1,-2} - \frac{11}{18}S_{1,1,1} + \frac{1}{3}S_{2,-2} \Big] + (\mathbf{N}_{-} - \mathbf{N}_{+}) \Big[\frac{331}{77}S_{1} - 4S_{2,-2} + \frac{28}{9}S_{1,-2} - \frac{11}{18}S_{1,1,1} + \frac{1}{3}S_{2,-2} \Big] + (\mathbf{N}_{-} - \mathbf{N}_{+}) \Big[\frac{331}{77}S_{1} - \frac{1}{18}S_{1,-2} - \frac{11}{18}S_{1,1,1} + \frac{1}{18}S_{1,-2} - \frac{11}{18}S_{1,-2} \Big] + (\mathbf{N}_{-} - \mathbf{N}_{+}) \Big[\frac{331}{77}S_{1} - \frac{1}{18}S_{1,-2} - \frac{11}{18}S_{1,-2} - \frac{11}{18}$ $+\frac{4}{3}S_{3,1}-\frac{2}{9}S_{2,1}+\frac{53}{54}S_{1,1}-\frac{733}{54}S_2+\frac{4}{3}S_{2,1,1}-\frac{22}{3}S_3\Big]+(1-\mathbf{N}_+)\Big[\frac{10}{3}S_{2,-2}+\frac{1}{12}S_{2,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac$ $\frac{3}{17}S_{1,-2} - \frac{137}{144}S_1 + \frac{5}{6}S_{1,2} + \frac{1}{4}S_{1,1,1} + \frac{565}{36}S_2 - S_{2,1,1} + \frac{35}{12}S_3 - \frac{2}{3}S_{3,1} \Big] - \frac{2}{9} (\mathbf{N}_{-} - \mathbf{N}_{+2}) \Big[S_3 - S_{2,1,1} + \frac{35}{12}S_3 - \frac{2}{3}S_{3,1} \Big] - \frac{2}{9} (\mathbf{N}_{-} - \mathbf{N}_{+2}) \Big[S_3 - S_{2,1,1} + \frac{35}{12}S_3 - \frac{2}{3}S_{3,1} \Big] - \frac{2}{9} (\mathbf{N}_{-} - \mathbf{N}_{+2}) \Big[S_3 - S_{2,1,1} + \frac{35}{12}S_3 - \frac{2}{3}S_{3,1} \Big] - \frac{2}{9} (\mathbf{N}_{-} - \mathbf{N}_{+2}) \Big[S_3 - S_{2,1,1} + \frac{35}{12}S_3 - \frac{2}{3}S_{3,1} \Big] - \frac{2}{9} (\mathbf{N}_{-} - \mathbf{N}_{+2}) \Big[S_3 - S_{3,1} + \frac{1}{9}S_{3,1} + \frac{1}{9}S_{3,2} + \frac{1}{9}S_{3,1} + \frac{1}{9}S_{3,2} + \frac{1}{9}S_{3,2}$ $-3S_{2,1} + \frac{131}{4}S_1 + S_{1,-2} - \frac{25}{6}S_{1,1} - S_{1,1,1} + \frac{125}{6}S_2 \Big] - \frac{2}{3}(N_- - 1)S_4 \Big) + 16C_A C_F^{-2} \Big((2N_{-2} - 2N_{-2}) - \frac{1}{3}(N_- - 1)S_4 \Big) + \frac{1}{3}(N_- - 1)S_$ $\begin{array}{c} 4\\ -4\mathbf{N}_{-}-\mathbf{N}_{+}+3)\left[\frac{163}{32}S_{1,-3}\frac{3}{2}S_{1,-4}-\frac{3}{2}S_{1,-1}+\frac{6503}{2}S_{1,-1}-5S_{1,-2,-2}-3S_{1,-2,-1}-4S_{1,1,1,1,1}\right]\\ +S_{1,-2}+2S_{1,-2,1,1}-9S_{1,1}\zeta_{3}-4S_{1,1,-3}+3S_{1,1,-2}+2S_{1,1,-2,1}+5S_{1,1,3}+6S_{1,1,1,-2}+S_{1,1,2,1}\right]$ $+ 3 S_{1,1,1,2} + \frac{35}{3} S_{1,1,1,1} + \frac{2}{9} S_{1,1,1} - \frac{1}{12} S_{1,1,2} - \frac{191}{24} S_{1,2} - 3 S_{1,2,-2} - \frac{41}{12} S_{1,2,1} + 4 S_{1,3} - 4 S_{2,1} - \frac{1}{12} S_{1,2,1} + \frac{1}{12} S_{1,2,1} - \frac{1}{12} S_$ $+ 2 S_{1,2,1,1} - \frac{5}{2} S_{1,4} - \frac{9}{2} S_{2,1,1} + 2 S_{2,1,1,1} + S_{2,1,2} + 3 S_{2,2} + S_{2,2,1} - 2 S_{2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[6 S_{2,1,1} - S_{2,1,2} + S_{2,2,2} + S_{2,2,1} - S_{2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[6 S_{2,1,1} - S_{2,1,2} + S_{2,2,2} + S_{2,2,1} - S_{2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[6 S_{2,1,1} - S_{2,1,2} + S_{2,2,2} + S_{2,2,1} - S_{2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[6 S_{2,1,1} - S_{2,1,2} + S_{2,2,2} + S_{2,2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,2} + S_{2,2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,2} + S_{2,2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,3} + S_{2,2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,3} + S_{2,2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,3} + S_{2,2,3} + S_{2,3,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,3} + S_{2,3,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,3} + S_{2,3,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,2} + S_{2,2,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,2,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,2,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,2,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,2,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} +$ $+\frac{173}{54}S_{1,1}-\frac{26}{9}S_{1,1,1}-\frac{2}{3}S_{1,1,1,1}-\frac{335}{54}S_2+\frac{7}{2}S_1-2S_{2,1,1}-\frac{28}{9}S_3+\frac{8}{3}S_4\Big]-6(\mathbf{N}_{-}-1)\Big[S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2$ $-2S_{2,1,-2}+3S_{2}\zeta_{3}\right]+(\mathbf{N}_{-}-\mathbf{N}_{+})\left[36S_{1}\zeta_{3}-\frac{9703}{288}S_{1}+12S_{1,-3}-36S_{1,-2}-\frac{2263}{216}S_{1,1}+4S_{3,2}-S_{1,1}+2S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{2,2}-S_{1,1}+S_{2,2}-S_{2,1}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S$ $-16 \mathcal{S}_{1,3}-24 \mathcal{S}_{1,1,-2}-\frac{101}{36} \mathcal{S}_{1,1,1}+\frac{5}{6} \mathcal{S}_{1,1,1,1}-\frac{23}{12} \mathcal{S}_{1,2}+2 \mathcal{S}_{1,2,1}+\frac{12605}{432} \mathcal{S}_{2}+36 \mathcal{S}_{2,-2}+\frac{79}{6} \mathcal{S}_{4}$ $+\frac{55}{18}S_{2,1}-\frac{10}{3}S_{2,1,1}-3S_{2,1,1,1}+\frac{17}{3}S_{2,2}-2S_{2,2,1}-\frac{119}{8}S_{3}-14S_{3,-2}+\frac{47}{3}S_{3,1}-7S_{3,1,1}+4S_{2,2}-2S_{3,2,1}-\frac{119}{8}S_{3,1}-18S_{3,2}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1$ $+10 \mathcal{S}_{2,3}\Big]+(1-\mathbf{N}_{+})\Big[\frac{2005}{64}\mathcal{S}_{1}-\frac{117}{2}\mathcal{S}_{1}\zeta_{3}-\frac{39}{2}\mathcal{S}_{1,-3}+\frac{315}{4}\mathcal{S}_{1,-2}-\mathcal{S}_{1,-2,1}+3\mathcal{S}_{1,1,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_$ $+\frac{2525}{144}S_{1,1}+40S_{1,1-2}-\frac{55}{12}S_{1,1,1}-3S_{1,1,2}+\frac{197}{24}S_{1,2}-\frac{11}{2}S_{1,2,1}+\frac{53}{2}S_{1,3}+\frac{13}{2}S_{3,1,1}-4S_{2,2}$ $-\frac{2831}{72}S_2-37S_{2,-2}+13S_{3,-2}+\frac{1}{2}S_{2,1,1}+\frac{3}{2}S_{2,1,1,1}-\frac{15}{2}S_{3,1}+3S_{2,2,1}-12S_{2,3}+\frac{2407}{48}S_3$ $+\frac{3}{2}S_{2,1}-6S_{3,2}-\frac{57}{2}S_4\Big]\Big)+16C_{\rm A}^{-2}C_{\rm F}\left((2\mathbf{N}_{-2}-4\mathbf{N}_{-}-\mathbf{N}_{+}+3)\left[\frac{138305}{2897}S_1-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S$

Anomalous dimensions: perturbative accuracy NNLO cont'd (2004)

[NPB 691 (2004) 129]

 $-\frac{11}{2}S_{1,-4}+\frac{49}{6}S_{1,-3}+S_{1,-2,-2}-10S_{1,1,-2,1}+\frac{109}{12}S_{1,-2}-\frac{3}{2}S_{1,-2,1}+2S_{1,-2,2}-\frac{3379}{216}S_{1,1}$ $+8S_{1,-3,1}+3S_{1,1}\zeta_{3}+12S_{1,1,-3}+\frac{19}{2}S_{1,1,-2}+2S_{1,1,3,1,1}+\frac{65}{24}S_{1,3,1}-6S_{1,1,3,-2}-\frac{43}{4}S_{1,3,1,1}$ $-4S_{1,1,2} + \frac{55}{12}S_{1,1,2} - 4S_{1,1,2,1} + 2S_{1,1,3} + \frac{71}{24}S_{1,2} + 5S_{1,2,-2} + \frac{55}{12}S_{1,2,1} - 4S_{1,2,1,1} + 6S_{1,2,2}$ $+\frac{11}{2}S_{1,3}+4S_{1,3,1}-\frac{3}{2}S_{1,4}-\frac{395}{54}S_2-7S_{2,-3}-\frac{11}{6}S_{2,-2}+4S_{2,-2,1}+2S_{2,1,-2}-2S_{2,1,1,1}$ $+\frac{17}{3}S_{2,1,1}+3S_{2,1,2}-\frac{1}{3}S_{2,2}+3S_{2,2,1}-3S_{2,3}+4S_{3,1,1}-4S_{3,2}]+(\mathbf{N}_{-}-1)\left[6S_{2}\xi_{3}-8S_{2,-2,1}\right]$ $+ (\mathbf{N}_{-} - \mathbf{N}_{+}) \left[\frac{57595}{1206} S_{1} - 12S_{1}\zeta_{3} - \frac{31}{6}S_{1,-3} - \frac{143}{6}S_{2,-2} + \frac{25}{3}S_{1,-2,1} - \frac{689}{54}S_{1,1} + \frac{50}{3}S_{1,1,-2} + \frac{50}{3}S$ $+\frac{11}{18} S_{1,1,1} - \frac{11}{6} S_{1,1,1,1} + \frac{229}{36} S_{1,2} + \frac{113}{12} S_{1,3} - \frac{2200}{27} S_2 - 3 S_{2,-3} - 12 S_{3,2} + 9 S_{1,-2} + \frac{31}{2} S_{2,1}$ $-18 S_{2,1,-2} + \frac{13}{6} S_{2,1,1} + 4 S_{2,1,1,1} - \frac{37}{3} S_{2,2} - \frac{25}{2} S_{2,3} - 31 S_3 - 9 S_{3,-2} - \frac{463}{12} S_{3,1} + 4 S_{3,1,1} + S_4$ $-\frac{13}{2}S_{4,1}-8S_{5}\Big]+(\mathbf{N_{-}}-\mathbf{N_{+2}})\Big[\frac{4}{3}S_{1,-2,1}-\frac{2105}{81}S_{1}-\frac{8}{3}S_{1,-3}-10S_{1,-2}-\frac{109}{27}S_{1,1}-\frac{4}{3}S_{1,1,-2}$ $+\frac{37}{9}S_{1,1,1}+\frac{2}{3}S_{1,1,1,1}-\frac{145}{18}S_{1,2}-\frac{4}{3}S_{1,3}-\frac{584}{27}S_{2}-4S_{2,-2}-\frac{104}{9}S_{2,1}+\frac{8}{3}S_{2,1,1}-\frac{14}{3}S_{2,2}$ $-\frac{77}{18}S_3-6S_{3,1}+\frac{14}{3}S_4\Big]+(1-N_+)\Big[\frac{39}{2}S_1\zeta_3-\frac{29843}{864}S_1+\frac{17}{2}S_{3,-2}+\frac{145}{6}S_{3,1}-\frac{29}{2}S_{1,-2,1}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S$ $-\frac{25}{2}S_{1,-2}-\frac{57}{2}S_{1,1,-2}-\frac{13}{12}S_{1,1,1}+\frac{5}{4}S_{1,1,1,1}+4S_{1,1,2}-\frac{97}{24}S_{1,2}+4S_{1,2,1}-\frac{41}{2}S_{1,3}+\frac{7417}{72}S_{2,3}$ $+\frac{1}{2} \delta_{2,-3}+\frac{92}{3} \delta_{2,-2}-\frac{53}{12} \delta_{2,1}+15 \delta_{2,1,-2}-\frac{9}{4} \delta_{2,1,1}-3 \delta_{2,1,1,1}+5 \delta_{2,2}+\frac{1}{4} \delta_{4,1}+38 \delta_{3}+8 \delta_{3,2}$ $+\frac{41}{4}S_{2,3}+\frac{9}{2}S_{1,-3}+\frac{92}{3}S_{1,1}-2S_{3,1,1}+\frac{25}{3}S_4+\frac{31}{2}S_5\Big]\Big)+16C_Fn_f^{-2}\Big(\frac{1}{6}(1-\mathbf{N}_+)\Big[\frac{5}{3}S_1-S_{1,1}\Big]$ $-\frac{1}{6}(2\mathbf{N}_{-2}-4\mathbf{N}_{-}-\mathbf{N}_{+}+3)\Big[\frac{1}{3}S_{1}+\frac{5}{3}S_{1,1}-S_{1,1,1}\Big]\Big)+16C_{F}^{2}n_{f}\Big((\mathbf{N}_{-}-\mathbf{N}_{+})\Big[\frac{2}{3}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371$ $-\frac{35}{9}S_{1,-2}-\frac{1}{9}S_{1,1}-\frac{1}{3}S_{1,1,1}+\frac{1057}{72}S_2+\frac{16}{3}S_{2,-2}-\frac{8}{9}S_{2,1}+\frac{1}{3}S_{2,1,1}-\frac{2}{3}S_{2,2}+\frac{181}{12}S_3-\frac{2}{3}S_{3,1}-\frac{1}{3}S_{3,1}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,1}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,1}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3$ $-\frac{1}{3}S_{4}+4S_{5}\Big]+(2\mathbf{N}_{-2}-4\mathbf{N}_{-}-\mathbf{N}_{+}+3)\Big[2S_{1}\zeta_{3}-\frac{1}{3}S_{1,2,1}-\frac{31}{18}S_{1,-2}+\frac{95}{54}S_{2}+\frac{1}{2}S_{1,3}+\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}{3}S_{1,2}-\frac{1}$ $-\frac{1625}{144}S_{1}-\frac{5}{6}S_{1,1,1,1}-\frac{2}{3}S_{1,1,2}-\frac{7}{108}S_{1,1}+\frac{83}{36}S_{1,1,1}+\frac{2}{3}S_{2,-2}\Big]-\frac{4}{9}(\mathbf{N}_{-}-\mathbf{N}_{+2})\Big[\frac{7}{2}S_{1}-\frac{11}{6}S_{2,-2}-\frac{1}{3}S_{1,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}$ $- \frac{144}{S_{1,-2} - S_3} + (1 - \mathbf{N}_+) \left[\frac{15137}{864} S_1 + \frac{49}{6} S_{1,-2} - \frac{107}{36} S_{1,1} + \frac{19}{12} S_{1,1,1} - \frac{5}{6} S_{1,2} - 10 S_2 - 4 S_{2,-2} \right]$ $-\frac{1}{2}S_{2,1,1}+S_{2,2}-\frac{155}{24}S_3+S_{3,1}+S_4-6S_5\Big]\Big)+16C_F{}^3\Big((2\mathbf{N_{-2}}-4\mathbf{N_{-}}-\mathbf{N_{+}}+3)\Big[6S_{1,-2,-2}-2(\mathbf{N_{-2}}-4\mathbf{N_{-}}-\mathbf{N_{+}}+3)\Big]$ $-\frac{47}{16}S_{1}-S_{1,-4}-\frac{7}{2}S_{1,-2}+6S_{1,-3}-\frac{47}{16}S_{1,1}+6S_{1,1}\zeta_{3}+4S_{1,1,-3}-6S_{1,1,-2}-3S_{1,1,2}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S$ $-\frac{23}{8} S_{1,1,1}-\frac{9}{2} S_{1,1,1,1}+2 S_{1,1,1,1}+S_{1,1,1,2}+3 S_{1,1,2,1}+\frac{7}{4} S_{1,2}+2 S_{1,2,-2}+2 S_{1,2,1,1}-2 S_{1,2,2}$ $-\frac{3}{2}S_{1,3}\Big]+2(\mathbf{N}_{-}-1)\Big[6S_{2}\zeta_{3}-4S_{2,1,-2}+8S_{3,-2}\Big]+(\mathbf{N}_{-}-\mathbf{N}_{+})\Big[\frac{287}{32}S_{1}-24S_{1}\zeta_{3}+S_{1,1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}$ $-12 S_{1,-3}+36 S_{1,-2}+\frac{111}{8} S_{1,1}+16 S_{1,1,-2}+\frac{1}{4} S_{1,1,1}+\frac{9}{2} S_{1,2}-2 S_{1,2,1}+9 S_{1,3}-4 S_{3,1}-5 S_{2,3}$ $+ 3 S_{3,1,1} - \frac{91}{16} S_2 + 8 S_{2,-3} - 30 S_{2,-2} - \frac{41}{4} S_{2,1} + S_{2,1,1} - S_{2,1,1,1} + 2 S_{2,2,1} - \frac{35}{8} S_3 - S_4 + 3 S_{4,1} - S_{4,1,1} - S_{4,1,1}$ $-2S_{5}\Big]+(1-\mathbf{N}_{+})\Big[395_{1}\zeta_{3}-\frac{749}{64}S_{1}+20S_{1,-3}-\frac{141}{2}S_{1,-2}-\frac{433}{16}S_{1,1}+6S_{1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,$ $- \ 30 \\ S_{1,1,-2} - S_{1,1,2} - \frac{19}{4} \\ S_{1,2} + \frac{3}{2} \\ S_{1,2,1} - \frac{57}{4} \\ S_{1,3} + 21 \\ S_{2} - 10 \\ S_{2,-3} + 35 \\ S_{2,-2} - \frac{9}{2} \\ S_{3,1,1} + \frac{37}{4} \\ S_{4,3} + \frac{37}{4} \\$ + $\frac{19}{4}S_{2,1}$ + $\frac{9}{4}S_{2,1,1}$ + $\frac{3}{2}S_{2,1,1,1}$ + $3S_{2,2}$ - $3S_{2,2,1}$ + $\frac{11}{2}S_{2,3}$ - $\frac{485}{16}S_3$ + $\frac{27}{4}S_{3,1}$ - $\frac{9}{2}S_{4,1}$]). (3.12)

 $\gamma_{38}^{(2)}(N) = 16C_AC_Pn_f \left(\frac{241}{288} + (N_{-2} - 2N_{-} - 2N_{+} + N_{+2} + 3)\right) \left[4S_1\zeta_3 - \frac{15331}{648}S_1 - \frac{44}{9}S_{1,-2} + \frac{15331}{648}S_1 - \frac{14}{9}S_{1,-2}\right]$ $-\frac{2}{3} S_{1,-3} + \frac{4}{3} S_{1,-2,1} - \frac{521}{100} S_{1,1} - \frac{16}{3} S_{1,1,-2} + \frac{1}{9} S_{1,1,1} - \frac{4}{3} S_{1,1,1,1} + \frac{4}{3} S_{1,1,2} - \frac{17}{10} S_{1,2} - \frac{8}{3} S_{1,3} - \frac{17}{3} S_{1,2} - \frac{17}{10} S_{1,2} - \frac{8}{3} S_{1,3} - \frac{17}{3} S_{1,2} - \frac{17}{3} S_{1,2}$ $+\frac{86}{27}S_2+\frac{4}{3}S_{2,-2}-\frac{2}{3}S_{2,1}+\frac{2}{3}S_{2,1,1}-\frac{4}{3}S_{2,2}\Big]+(\mathbf{N}_-+\mathbf{N}_+-2)\Big[17S_1\zeta_3+\frac{25}{3}S_{1,-3}-\frac{8}{3}S_{1,-2,1}-\frac{8}{3}S_{1,$ $-\frac{70}{3}S_{1,1,-2}+\frac{31}{36}S_{1,1,1}-\frac{7}{3}S_{1,1,1,1}+\frac{7}{3}S_{1,1,2}-\frac{55}{6}S_{1,3}]+(\mathbf{N}_{-}-\mathbf{N}_{+})\left[\frac{133}{18}S_{1,2}-\frac{221}{9}S_{1,-2}-\frac{133$ $-\frac{673}{54}S_{1,1}+\frac{4948}{81}S_1-\frac{49}{108}S_2-12S_2\zeta_3-4S_{2,-3}+17S_{2,-2}+\frac{119}{6}S_{2,1}+16S_{2,1,-2}+6S_{4,1}$ $-\frac{7}{6} S_{2,1,1} + 2 S_{2,1,1,1} - 2 S_{2,1,2} - S_{2,2} + 7 S_{2,3} + \frac{251}{12} S_3 - \frac{10}{3} S_{3,1} - S_{3,1,1} + 4 S_{3,2} - \frac{29}{6} S_4 + 8 S_5 \Big]$ $\begin{array}{l} -8(\mathbf{N}_{-}-1)S_{3,-2}+(\mathbf{N}_{-}-\mathbf{N}_{+2})\Big[\frac{127}{18}S_{3}-\frac{511}{12}S_{1}-6S_{1,-2}-\frac{97}{12}S_{1,1}-3S_{1,2}+2S_{3,1}-\frac{103}{27}S_{2}\\ -\frac{8}{3}S_{2,-2}-\frac{16}{9}S_{2,1}-\frac{2}{3}S_{2,2}\Big]+(1-\mathbf{N}_{+})\Big[\frac{1807}{324}S_{1}+\frac{694}{9}S_{1,-2}+\frac{5511}{108}S_{1,-1}-\frac{52}{9}S_{1,2}-\frac{1667}{54}S_{2}\\ \end{array}$ $-\frac{68}{3}S_{2,-2}-\frac{53}{4}S_{2,1}-\frac{7}{3}S_{2,1,1}+\frac{19}{6}S_{2,2}+\frac{67}{12}S_{3}+\frac{9}{2}S_{3,1}+\frac{33}{2}S_{4}-20S_{3}\Big]+\frac{6923}{324}S_{1}-2S_{1}\zeta_{3}$ $+\frac{2}{3} S_{1,-3}+\frac{44}{9} S_{1,-2}-\frac{4}{3} S_{1,-2,1}+\frac{521}{108} S_{1,1}+\frac{16}{3} S_{1,1,-2}-\frac{1}{9} S_{1,1,1}+\frac{4}{3} S_{1,1,1}-\frac{4}{3} S_{1,1,2}+\frac{8}{3} S_{1,3}$ $+\frac{17}{18}S_{1,2}-\frac{86}{27}S_2-\frac{4}{3}S_{2,-2}+\frac{2}{3}S_{2,1}-\frac{2}{3}S_{2,1,1}+\frac{4}{3}S_{2,2}\right)+16C_An_f^{-2}\left(\frac{11}{72}(1-N_+)S_2-\frac{65}{162}S_1-\frac{11}{3}S_2-\frac{11}{16}S_1-\frac{11}{3}S_2-\frac{$ $+\frac{13}{64}S_{1,1} - \frac{29}{200} + (N_{-2} - 2N_{-} - 2N_{+} + N_{+2} + 3)\left[\frac{59}{143}S_{1} - \frac{13}{64}S_{1,1}\right] - \frac{1}{6}(N_{-} - N_{+})\left[S_{2} - \frac{13}{64}S_{1,1}\right] - \frac{1}{6}(N_{+} - N_{+})\left[S_{2} - \frac{1}{6}S_{1,1}\right] - \frac{1}{6}(N_{+} - N_{+})\left[S_{2} - \frac{1}{6}S_{1,1}\right] - \frac{1}{6}(N_{+} - N_{+})\left[S_{$ $-2S_{2,1}+S_3$ + $(N_-+N_+-2)\left[\frac{47}{648}S_1-\frac{19}{216}S_{1,1}\right]-\frac{13}{54}(N_--N_{+2})S_2$ + $16C_A^{-2}n_f\left(\frac{233}{288}\right)$ $+ (\mathbf{N_{-2}} - 2\mathbf{N_{-}} - 2\mathbf{N_{+}} + \mathbf{N_{+2}} + 3) \left[\frac{1204}{81} S_1 - 4S_1 \zeta_3 - \frac{2}{3} S_{1,-3} + \frac{19}{3} S_{1,-2} + 2S_{1,1,-2} + \frac{11}{3} S_{1,2} + \frac{11}$ $-\frac{2}{3}S_{1,-2,1}+\frac{205}{108}S_{1,1}-\frac{71}{27}S_2-\frac{2}{3}S_{2,-2}+\frac{11}{3}S_{2,1}\right]+(\mathbf{N}_-+\mathbf{N}_+-2)\Big[\frac{305}{18}S_{1,-2}-\frac{1405}{648}S_1$ $-85_{1}\zeta_{3} - \frac{31}{6}S_{1,-3} + \frac{4}{3}S_{1,-2,1} + \frac{2441}{216}S_{1,1} + 9S_{1,1,-2} + \frac{4}{9}S_{1,2} + \frac{25}{12}S_{1,3} + (\mathbf{N}_{-} - \mathbf{N}_{+}) \left[\frac{109}{108}S_{2} + \frac{109}{108}S_{2} + \frac{109}{108}S_$ $+6 S_2 \zeta_3+3 S_{2,-3}-\frac{59}{6} S_{2,-2}-\frac{71}{12} S_{2,1}-6 S_{2,1,-2}-\frac{2}{3} S_{2,2}-\frac{3}{2} S_{2,3}-\frac{64}{9} S_3+5 S_{3,-2}+\frac{5}{12} S_{3,1}$ $-2 S_4 - \frac{3}{2} S_{4,1} \Big] + (\mathbf{N}_- - \mathbf{N}_{+4}) \Big[\frac{2}{3} S_{2,-2} - \frac{2243}{108} S_2 + \frac{31}{9} S_3 - \frac{2}{3} S_{3,1} \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_{3,1} \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_3 - \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big] + (1$ $+\frac{25}{3} S_{2,-2} - \frac{8}{9} S_{2,1} - \frac{473}{26} S_3 - 4 S_{3,-2} - \frac{25}{6} S_{3,1} + \frac{31}{6} S_4 \Big] - \frac{10}{9} S_{-3} - \frac{1}{3} S_{1,3} - \frac{5443}{234} S_1 + 2 S_1 \zeta_3$ $+\frac{2}{3}S_{1,-3}-\frac{37}{9}S_{1,-2}+\frac{2}{3}S_{1,-2,1}-\frac{205}{108}S_{1,1}-2S_{1,1,-2}-\frac{13}{9}S_{1,2}+\frac{2}{3}S_{-2,-2}+\frac{151}{54}S_2+\frac{2}{3}S_{2,-2}$ $-\frac{13}{9}S_{2,1}-\frac{10}{9}S_{3}-\frac{1}{3}S_{3,1}+16C_{A}^{-3}\left((N_{-2}-2N_{-}-2N_{+}+N_{+2}+3)\left[\frac{73091}{648}S_{1}-16S_{1,-4}-2N_{-}+N_{+2}+3\right]\right)$ $+\frac{88}{3}S_{1,-3}+16S_{1,-3,1}+\frac{85}{6}S_{1,-2}+4S_{1,-2,-2}-11S_{1,-2,1}+4S_{1,-2,2}-\frac{413}{109}S_{1,1}+24S_{1,1,-3}$ $+ 11 \mathcal{S}_{1,1,-2} - 16 \mathcal{S}_{1,1,-2,1} + 8 \mathcal{S}_{1,1,3} - \frac{67}{9} \mathcal{S}_{1,2} + 8 \mathcal{S}_{1,2,-2} + 8 \mathcal{S}_{1,2,2} + \frac{55}{3} \mathcal{S}_{1,3} + 8 \mathcal{S}_{1,3,1} - 8 \mathcal{S}_{1,4}$ $-\frac{395}{27}S_2-14S_{2,-3}-\frac{11}{3}S_{2,-2}+8S_{2,-2,1}-\frac{67}{9}S_{2,1}+4S_{2,1,-2}+8S_{2,1,2}+\frac{22}{3}S_{2,2}+8S_{2,2,1}$ $-10S_{2,3}+8S_{3,1,1}-8S_{3,2}\Big]+(\mathbf{N}_{-}+\mathbf{N}_{+}-2)\Big[14S_{1,-2,1}-\frac{713}{224}S_{1}-\frac{26}{3}S_{1,-3}-\frac{61}{9}S_{1,-2}$ $-\frac{80}{27}S_{1,1}+14S_{1,1,-2}-\frac{109}{18}S_{1,2}+4S_{1,3}]+(\mathbf{N_{-}-N_{+}})\Big[\frac{473}{216}S_{2}-12S_{2,-3}+5S_{2,-2}-2S_{2,1}$ $-8 S_{2,1-2} + \frac{23}{3} S_{2,2} - 10 S_{2,3} + \frac{665}{36} S_3 - 20 S_{3,-2} + \frac{34}{3} S_{3,1} - 16 S_{3,2} - 21 S_4 - 26 S_{4,1}$ $+(N_{-}-N_{+2})\left[8S_{2,-3}-\frac{9533}{100}S_{2}-\frac{77}{3}S_{2,-2}-8S_{2,-2,1}-8S_{2,1,-2}-\frac{44}{3}S_{2,2}-\frac{1517}{10}S_{3}-8S_{5}-8S_{5,-2$

aN³LO (2020 - ongoing)

 $+8 5 _{3,-2}-\frac{121}{3} 5 _{3,1}+4 5 _{3,2}+44 5 _{4}+16 5 _{4,1}\Big]+(1-N_{+})\Big[\frac{8533}{108} 5 _{2}+\frac{103}{3} 5 _{2,-2}+\frac{1579}{18} 5 _{3,-2}-\frac{103}{18} 5 _{3,-2}+\frac{103}{18} 5 _$ $-8 5 _{2,-3}+8 5 _{2,-2,1}+\frac{109}{9} 5 _{2,1}+8 5 _{2,1,-2}+\frac{28}{3} 5 _{2,2}-4 5 _{3,2}+8 5 _{3,-2}+\frac{71}{3} 5 _{3,1}-16 5 _{4,1}+36 5 _{5,2}-10 5 _{4,1}+20 5 _{5,2}-10 5$ $-\frac{98}{3}S_4\Big]-\frac{79}{32}+4S_{-3}-8S_{-4,1}+\frac{67}{9}S_{-3}-4S_{-3,-2}-2S_{-3,2}-4S_{-2,-3}-\frac{67}{9}S_{1,2}+\frac{413}{108}S_{1,1}$ $-\frac{11}{3}S_{-2,-2}+4S_{-2,-2,1}+4S_{-2,1,-2}-\frac{16619}{167}S_1-\frac{88}{3}S_{1,-3}-\frac{523}{18}S_{1,-2}+11S_{1,-2,1}-\frac{22}{3}S_{2,2}-\frac{12}{3}S_{2,$ $-11S_{1,1,-2}-\frac{33}{2}S_{1,3}+\frac{781}{54}S_2-4S_{2,-3}+\frac{11}{3}S_{2,-2}+4S_{2,-2,1}-\frac{67}{9}S_{2,1}+4S_{2,1,-2}+\frac{11}{6}S_{3,1}$ $+\frac{67}{6}S_{3}-4S_{3,-2}-2S_{3,2}-8S_{4,1}+4S_{5}+16C_{F}n_{f}^{-2}\left((\mathbf{N}_{-2}-2\mathbf{N}_{-}-2\mathbf{N}_{+}+\mathbf{N}_{+2}+3)\left[\frac{4}{6}S_{1,2}-2\mathbf{N}_{-}-2\mathbf{N}_{+}+\mathbf{N}_{+2}+3\right]\right)$ $-\frac{77}{81}S_1 + \frac{16}{27}S_{1,1} - \frac{2}{9}S_{1,1,1} + \frac{7}{9}(N_- + N_+ - 2)\left[S_{1,2} - \frac{1}{2}S_{1,1,1}\right] - \frac{11}{144} + \frac{2}{9}S_{1,1,1} - \frac{16}{27}S_{1,1}$ $+\frac{77}{81}S_{1}-\frac{4}{9}S_{1,2}+\frac{1}{3}(\mathbf{N}_{-}-\mathbf{N}_{+})\left|\frac{211}{27}S_{1}-\frac{139}{18}S_{1,1}+\frac{11}{3}S_{2}+S_{2,1}+S_{2,1,1}-2S_{2,2}-2S_{3,1}+S_{4,2}-S_{4,2}+S_{4,2}+S_{4,3}+S_{4,$ $+\frac{5}{2}S_{3}\Big]-(\mathbf{N}_{-}-\mathbf{N}_{+2})\Big[2S_{1}-S_{1,1}+\frac{11}{27}S_{2}+\frac{2}{9}S_{2,1}-\frac{4}{9}S_{3}\Big]+(1-\mathbf{N}_{+})\Big[\frac{64}{81}S_{1}+\frac{58}{27}S_{1,1}+\frac{1}{3}S_{3}$ $-\frac{10}{3}S_{2}+\frac{1}{3}S_{2,1}\Big]\Big)+16C_{F}^{2}n_{f}\Big(\frac{4}{3}(\mathbf{N}_{-2}-2\mathbf{N}_{-}-2\mathbf{N}_{+}+\mathbf{N}_{+2}+3)\Big[\frac{5}{4}S_{1,2}+\frac{1}{2}S_{1,3}-S_{1,1,1}-\mathbf{N}_{1,1,2}-\mathbf{$ $-S_{1,-3}+2S_{1,1,-2}+\frac{31}{16}S_{1,1}+S_{1,1,1,1}-\frac{11}{16}S_1-S_{1,1,2}\Big]+(\mathbf{N}_-+\mathbf{N}_+-2)\Big[\frac{25}{6}S_{1,3}-9S_1\zeta_3$ $-\frac{16}{3}S_{1,-3}+\frac{67}{3}S_{1,-2}-\frac{23}{12}S_{1,1,1}+\frac{7}{3}S_{1,1,1,1}-\frac{7}{3}S_{1,1,2}+\frac{32}{3}S_{1,1,-2}\Big]+(\mathbf{N}_{-}-\mathbf{N}_{+})\Big[2S_{4,1}-2S_{5}-\frac{16}{3}S_{1,1,2}+\frac{32}{3}S_{1,1,2}+\frac{32}{3}S_{1,1,2}-\frac{16}{3}S_{1,2}+\frac{$ $-\frac{773}{24}S_1 - \frac{8}{3}S_{1,1} + \frac{163}{8}S_2 + 6S_2\zeta_3 + 4S_{2,-3} - \frac{32}{3}S_{2,-2} - \frac{8}{3}S_{2,1} - 8S_{2,1,-2} + \frac{5}{3}S_{2,1,1} + 2S_{2,1,2}$ $-2S_{2,1,1,1} - \frac{11}{3}S_{2,2} - 3S_{2,3} - \frac{23}{2}S_3 - 4S_{3,1} + S_{3,1,1} + \frac{13}{6}S_4 + \frac{17}{2}S_{1,2} + (N_- - N_{+2}) \left[\frac{85}{13}S_{1,1} - \frac{13}{12}S_{1,2}\right]$ $+\frac{163}{12}S_1-3S_{1,2}-\frac{9}{2}S_2+\frac{8}{3}S_{2,-2}-\frac{4}{3}S_{2,1}+\frac{4}{3}S_{2,1,1}-\frac{4}{3}S_{2,2}+\frac{14}{3}S_3-\frac{2}{3}S_4\Big]+(1-N_+)\Big[4S_4$ $-\frac{191}{12}S_{1,1}-8S_{1,2}+\frac{20}{3}S_2+8S_{2,-2}+\frac{11}{4}S_{2,1}+S_{2,1,1}-3S_{2,2}-\frac{215}{12}S_3-S_{3,1}+\frac{71}{3}S_1\Big]$ $+8(\mathbf{N}_{-}-1)\mathcal{S}_{3,-2}-\frac{1}{14}+\frac{11}{12}\mathcal{S}_{1}+\frac{4}{2}\mathcal{S}_{1,-3}-\frac{31}{12}\mathcal{S}_{1,1}-\frac{8}{2}\mathcal{S}_{1,1,-2}+\frac{4}{2}\mathcal{S}_{1,1,1}-\frac{4}{2}\mathcal{S}_{1,1,1,1}+\frac{4}{2}\mathcal{S}_{1,1,2}$ $-\frac{5}{2}S_{1,2}-\frac{2}{2}S_{1,3}$.

Anomalous Dimensions: Scale Dependence at LO

As Q^2 increases, PDFs decrease at large x and increase at small x due to radiation Gluon sector singular at N = 1, therefore the gluon grows fater at small x $\gamma_{qq}(1) = 0$ follows from baryon number conservation (beyond LO, $\gamma_{qq}(1) = \gamma_{q\bar{q}}(1)$) $\gamma_{qq}(2) + \gamma_{qg}(2) = \gamma_{gq}(2) + \gamma_{gg}(2) = 0$ follows from momentum conservation

Theoretical constraints

Momentum sum rule (momentum conservation)

$$\int_{0}^{1} dx x \left[\sum_{q=1}^{n_{f}} \left(f_{q}(x,Q^{2}) + f_{\bar{q}}(x,Q^{2}) \right) + f_{g}(x,Q^{2}) \right] = 1$$

Valence sum rules (baryon number conservation)

$$\begin{split} \int_{0}^{1} dx \left[f_{u}(x,Q^{2}) - f_{\bar{u}}(x,Q^{2}) \right] &= 2 \\ \int_{0}^{1} dx \left[f_{d}(x,Q^{2}) - f_{\bar{d}}(x,Q^{2}) \right] &= 1 \\ \int_{0}^{1} dx \left[f_{q}(x,Q^{2}) - f_{\bar{q}}(x,Q^{2}) \right] &= 0 \qquad q = s,c,b,t \end{split}$$

Isospin symmetry of the strong interaction

$$f^p_u = f^n_d \qquad f^p_{\bar{u}} = f^n_{\bar{d}}$$

Positivity of cross sections [PRD 105 (2022) 076010; EPJ C84 (2024) 335]

 \rightarrow PDFs should be positive-definite at LO

- \rightarrow beyond LO, PDFs ought not be positive, however they are positive for Q^2 large
- Integrability of non-singlet PDFs
 - \rightarrow follows from operator product expansion

Unpolarised PDFs: Qualitative features

The small-x growth of the gluon PDF follows from singularity of γ_{gg} at N = 1The similar small-x rise of all PDFs follows from singlet-gluon mixing PDF depletion at large x and Q^2 follows from sign change of anomalous dimensions Valence does not evolve multiplicatively because $\gamma_- \neq \gamma_v$ Valence does not vanish at all scales

DIS and Collinear Physics

What about the polarised case?

Coefficient functions

$$\Delta C_{If}(y,\alpha_s) = \sum_{k=0} a_s^k \Delta C_{If}^{(k)}(y)$$

 $\left\{ \begin{array}{l} \text{DIS (up to NNLO)} & [\text{NPB 417 (1994) 61}] \\ \text{SIDIS (up to NNLO)} & [\text{arXiv:2404.08597; arXiv:2404.09959}] \\ pp (up to (N)NLO) & \left\{ \begin{array}{l} [\text{PRD 70 (2004) 034010}] \\ [\text{PLB 817 (2021) 136333}] \\ [\text{PRD 67 (2003) 054004, ibidem 054005}] \end{array} \right. \right.$

Splitting functions

$$\Delta P_{ji}(z,\alpha_s) = \sum_{k=0} a_s^{k+1} \Delta P_{ji}^{(k)}(z)$$

ſ	LO	NP B126 (1977) 298
ł	NLO	[ZP C70 (1996) 637, PR D54 (1996) 2023]
l	NNLO	NP B889 (2014) 351

$$\begin{split} P_{\text{NS},qq}^{(0)} &= P_{\text{S},qq}^{(0)} = 2C_F \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2} \delta(1-x) \right] \\ P_{qg}^{(0)} &= 2T_R \left[x^2 + (1-x)^2 \right] \\ P_{gq}^{(0)} &= 2C_F \left[\frac{1+(1-x)^2}{x} \right] \\ P_{gg}^{(0)} &= 4C_A \left[\frac{x}{(1-x)_+} + \frac{1-x}{x} + x(1-x) \right] \\ &+ \delta(1-x) \frac{11C_A - 4n_f T_R}{3} \end{split}$$

$$\begin{split} \Delta P_{\rm NS,qq}^{(0)} &= \Delta P_{\rm S,qq}^{(0)} = P_{\rm NS,qq}^{(0)} \\ \Delta P_{qg}^{(0)} &= 2T_R(2-x) \\ \Delta P_{gq}^{(0)} &= C_F(2-x) \\ \Delta P_{gg}^{(0)} &= 2C_A \left[\frac{1}{(1-x)_+} + 1 - 2x \right] \\ &+ \delta(1-x) \frac{11C_A - 4n_f T_R}{6} \end{split}$$

Emanuele R. Nocera (UNITO)

23 June 2025

Theoretical constraints

Spin sum rule (Jaffe and Manohar [NPB 337 (1990) 509])

$$\int_{0}^{1} dx \left[\sum_{q=1}^{n_{f}} \left(\Delta f_{q}(x,Q^{2}) + \Delta f_{\bar{q}}(x,Q^{2}) \right) + \Delta f_{g}(x,Q^{2}) \right] + \mathcal{L}_{q}(Q) + \mathcal{L}_{g}(Q) = \frac{1}{2}$$

2 β decays of the octet baryon, assuming SU(2) and SU(3) symmetry

$$\int_0^1 dx \Delta T_3(x, Q^2) = a_3 = 1.2756 \pm 0.0013 \qquad \int_0^1 dx \Delta T_8(x, Q^2) = a_8 = 0.585 \pm 0.025$$

Isospin symmetry of the strong interaction

$$\Delta f_u^p = \Delta f_d^n \qquad \Delta f_{\bar{u}}^p = \Delta f_{\bar{d}}^n$$

Isolation Positivity of cross sections → at LO, polarised PDFs are bound by unpolarised PDFs

 $|\Delta f(x,Q^2)| < f(x,Q^2) \qquad \text{which follows from} \qquad |g_1(x,Q^2)| < F_1(x,Q^2)$

 \rightarrow beyond LO, other relations hold, but are of limited effect [NP B534 (1998) 277]

Olarised PDFs ought to be integrable (nucleon axial matrix elements are finite

 $\langle P, S | \bar{\Psi}_i \gamma^{\mu} \Psi_i | P, S \rangle \longrightarrow$ finite for each parton i

Polarised PDFs: Qualitative features

Polarised PDFs can be negative, as they are defined as spin differences The small-x behaviour of polarised PDFs is suppressed by parton evolution The valence peak moves towards large x as Q increases, as for unpolarised PDFs PDF depletion at large x and Q^2 follows from sign change of anomalous dimensions Valence does not evolve multiplicatively because $\gamma_{-} \neq \gamma_{v}$

Valence does not vanish at all scales

1.2 Why Parton Distribution Functions?

First Collisions of LHC Run III

Image credit: ATLAS collaboration

33 / 45

A Laboratory for Quantum Chromodynamics

LHC, QCD and unpolarised PDFs

The LHC is a Proton Collider – Any interaction contains a strong interaction

Quantum Chromodynamics (QCD) is the main actor

Within QCD, Parton Distribution Functions (PDFs) play a leading role

Plot by courtesy of G. Salam

LHC, QCD and unpolarised PDFs

The LHC is a Proton Collider – Any interaction contains a strong interaction Quantum Chromodynamics (QCD) is the main actor Within QCD, Parton Distribution Functions (PDFs) play a leading role

Plot by courtesy of G. Salam

35 / 45

Physics at the LHC as Precision Physics

Plot from ATLAS Collaboration web page

PDFs as a Tool: Making Predictions with PDFs

PDF uncertainty is often the dominant source of uncertainty in LHC cross sections

Higgs boson characterisation

Determination of SM parameters, such as the mass of the \boldsymbol{W} boson

Searches for beyond SM physics at large invariant mass of the final state

Emanuele R. Nocera (UNITO)

DIS and Collinear Physics

23 June 2025

And polarised PDFs?

How is the spin of the proton distributed across the spin of partons?

Emanuele R. Nocera (UNITO)

DIS and Collinear Physics

38 / 45

1.3 How can we determine PDFs?

PDF determination in statistical language

Inverse problem

Given a set of data D, determine p(f|D) in the space of functions $f:[0,1] \rightarrow \mathbb{R}$.

The expectation value and uncertainty of each physical observable O that depends on a PDF set [f] are functional integrals of the PDFs

$$\begin{split} \langle \mathcal{O}[f] \rangle &= \int \mathcal{D}f \, p(f|D) \, \mathcal{O}[f] & \text{expectation value} \\ \sigma_{\mathcal{O}}[f] &= \left[\int \mathcal{D}f \, p(f|D) \, \left(\mathcal{O}[f] - \langle \mathcal{O}[f] \rangle \right)^2 \right]^{1/2} & \text{uncertainty} \end{split}$$

THE PROBLEM IS ILL-DEFINED

We want to determine infinite-dimensional objects, the PDFs, from a finite set of data

Solution: parametric regression

Approximate p(f|D) with its projection in the space of parameters $p(\theta|D, H)$ Determine $p(\theta|D, H) \propto p(D|\theta, H)p(\theta|H)$ as MAP $\theta^* = \arg \max_{\theta} p(\theta|D, H)$

Emanuele R. Nocera (UNITO)

DIS and Collinear Physics

Emanuele R. Nocera (UNITO)

The ingredients of PDF determination

Each of these ingredients is a source of uncertainty in the PDF determination Each of these ingredients require to make choices which lead to different PDF sets

Emanuele R. Nocera (UNITO)

DIS and Collinear Physics

	NNPDF4.0	MSHT20	CT18	HERAPDF2.0	CJ22	ABMP16			
Fixed-target DIS	Ø	Ø	Ń	\boxtimes	Ø	Ø			
JLAB	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\checkmark	\boxtimes			
HERA I+II	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
HERA jets	\checkmark	\boxtimes	\boxtimes	\checkmark	\boxtimes	\boxtimes			
Fixed target DY	\checkmark	\checkmark	\checkmark	\boxtimes	\checkmark	\checkmark			
Tevatron W , Z	\checkmark	\checkmark	\checkmark	\boxtimes	\checkmark	\checkmark			
LHC vector boson	\checkmark	\checkmark	\checkmark	\boxtimes	\checkmark	\checkmark			
LHC $W + c \ Z + c$	\checkmark	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			
Tevatron jets	\checkmark	\checkmark	\checkmark	\boxtimes	\checkmark	\boxtimes			
LHC jets	\checkmark	\checkmark	\checkmark	\boxtimes	\boxtimes	\boxtimes			
LHC top	\square	\checkmark	\boxtimes	\boxtimes	\boxtimes	\checkmark			
LHC single t	\checkmark	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			
LHC prompt γ	\checkmark	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			
statistical treatment	Monte Carlo	Hessian $\Delta\chi^2$ dynamical	Hessian $\Delta\chi^2$ dynamical	Hessian $\Delta \chi^2 = 1$	Hessian $\Delta \chi^2 = 1.645$	Hessian $\Delta \chi^2 = 1$			
parametrisation	Neural Network	Chebyschev pol.	Bernstein pol.	polynomial	polynomial	polynomial			
HQ scheme	FONLL	TR'	ACOT- χ	TR'	ACOT- χ	FFN			
accuracy	aN^3LO	aN^3LO	NNLO	NNLO	NLO	NNLO			
latest update	EPJ C82 (2022) 428	EPJ C81 (2021) 341	PRD 103 (2021) 014013	EPJ C82 (2022) 243	PRD 107 (2023) 113005	PRD 96 (2017) 014011			
All PDF sets are available as (x, Q^2) interpolation grids through the LHAPDF library									

Overview of current unpolarised PDF determinations

Emanuele R. Nocera (UNITO)

DIS and Collinear Physics

23 June 2025

43 / 45

1.4 Summary of Lecture 1

Summary of Lecture 1

- $\textcircled{0} Deep Inelastic Scattering has been, is, and will be a crucial laboratory of QCD \\ \longrightarrow hadronic structure encoded in unpolarised and polarised PDFs$
 - \longrightarrow PDFs are related to physical observales via factorisation and evolution
 - \longrightarrow (critically different) qualitative PDF features are driven by this theoretical framework
- PDFs are a limiting factor for precision and discovery
 - \longrightarrow unpolarised PDFs: SM and BSM physics at the LHC
 - \longrightarrow polarised PDFs: contribution of partons' spin to the proton spin
- PDFs are determined from experimental data by means of parametric regression → need to define data, theory, and methodology
- Oifferent physical observables constrain different PDF combinations
 - \longrightarrow fixed-target NC DIS: u and d
 - \longrightarrow fixed-target CC DIS: s and \bar{s}
 - \rightarrow HERA NC and CC DIS: $u, \bar{u}, d, \bar{d}, g$ (scaling violations and tagged DIS)
 - \longrightarrow fixed-target DY: u and d at large x
 - \longrightarrow collider DY: u, \bar{u} , d, \bar{d} , s
 - \longrightarrow collider DY+c: s (W) and c (Z)
 - $\longrightarrow Zp_T$, $t\bar{t}$, jets: g
 - \longrightarrow only a small fraction of the above is available for polarised PDFs

Lecture 2: Data, theoretical, and methodological accuracy in PDF determination