Collinear PDFs for M_W determination

 $\mathsf{GDR}\ \mathsf{QCD}\ \mathsf{workshop}\ \mathsf{on}\ W\ \mathsf{mass}$

Emanuele R. Nocera Università degli Studi di Torino and INFN, Torino

30 June 2025

PDFs and recent M_W determinations

Adapted from arXiv:2412.13872

PDF uncertainty non-negligible on the final M_W uncertainty e.g. on the CMS result $\delta_{tot} = 9.9$ MeV and $\delta_{PDF} = 4.4$ MeV

Emanuele R. Nocera (UNITO)

Making predictions with PDFs CT18 4000 • MSHT20 NNPDF3.1 3900 ABMP16 ATLASpdf21 3800F ♦ PDF4LHC15 σ_{W^-} [pb] ✿ PDF4LHC21 NNPDF4.0 37003600 3500LHC 14 TeV, 2σ 4600 500048005200 σ_{W^+} [pb]

Acta Phys.Polon.B 53 (2022) 12

Predictions obtained with different PDF sets display significantly different uncertainties Where do these come from (data, theory, methodology)?

Emanuele R. Nocera (UNITO)	Collinear PDFs for M_W	30 June 2025	3 / 30

1. Data

Available cross setions and their kinematic coverage

Increasing relevance of LHC data in PDF determination

Emanuele R. Nocera (UNITO)

Quark flavour separation

Perturbative charm alters the flavour decomposition and deteriorates the fit

 $\chi^2_{
m fitted\,charm} = 1.17
ightarrow \chi^2_{
m pert.\,charm} = 1.19$ mainly due to a worsening

of the LHC W, Z and top pair data sets

fitting charm reduces the dependence from m_c

[EPJ C76 (2016) 647; C77 (2017) 663; C82 (2022) 428]

30 June 2025

Quark flavour separation

100

The PDF4LHC21 benchmark [JPG 49 (2022) 080501]

Same reduced data set

Same heavy quark mass values: $m_c = 1.4 \text{ GeV}$; $m_b = 4.75 \text{ GeV}$; $\alpha_s(M_Z) = 0.118$

Same strong coupling value: $\alpha_s(M_Z) = 0.118$

No strangeness asymmetry at input scale: $(s - \bar{s})(Q_0) = 0$

Charm perturbatively generated

Positive-definite quark distributions

No deuteron or nuclear corrections to analyse νN cross sections

Fixed branching ratio for charm hadrons to muons; NNLO corrections for dimuon data

Emanuele R. Nocera (UNITO)

The PDF4LHC21 benchmark [JPG 49 (2022) 080501]

Very good agreement within uncertainties; similar size of uncertainties in the data region Remaining differences reflect methodological choices

Emanuele R. Nocera (UNITO)

How well do different PDF sets generalise on unseen data?

Example: the CMS W rapidity measurement [PRD 102 (2020) 092012] The covariance matrix include exp, PDF, MHOU, and α_s uncertainties [arXiv:2501.10359]

2. Theory

QED corrections in PDF determination: LuxQED photon

LUXQED [PRL 117 (2016) 242002]

View the $ep \rightarrow e + X$ process as an electron scattering off the photon field of the proton

Consider a BSM process, e.g. production of a heavy supersymmetric lepton L in ep collision, write the cross section in terms of structure functions and of f_{γ} , and equate the two to obtain f_{γ}

$$\begin{split} \sigma &= c_0 \sum_a \int_x^1 \frac{dz}{z} \, \hat{\sigma}_a(z,\mu^2) \frac{M^2}{zs} f_{a/p} \left(\frac{M^2}{zs}, \mu^2 \right) & x f_{\gamma/p}(x,\mu^2) = \\ \sigma &= \frac{c_0}{2\pi} \int_x^{1-\frac{2\pi m_p}{2}} \frac{dz}{z} \int_{Q_{\min}^2}^{Q_{\max}^2} \frac{dQ^2}{Q^2} \alpha_{ph}^2(-Q^2) \left[\left(2-2z+z^2 & \frac{1}{2\pi\alpha(\mu^2)} \int_x^1 \frac{dz}{z} \left\{ \int_x^{\frac{\mu^2}{1-z}} \frac{dQ^2}{Q^2} \alpha^2(Q^2) + \frac{2x^2 m_p^2}{Q^2} + \frac{z^2 Q^2}{Q^2} - \frac{2x^2 Q^2 m_p^2}{M^4} \right\} F_2(x/z,Q^2) & \left[\left(z p_{\gamma q}(z) + \frac{2x^2 m_p^2}{Q^2} \right) F_2(x/z,Q^2) - z^2 F_L\left(\frac{x}{z},Q^2\right) \right] \\ &+ \left(-z^2 - \frac{z^2 Q^2}{2M^2} + \frac{z^2 Q^4}{2M^4} \right) F_L(x/z,Q^2) \right] & - \alpha^2(\mu^2) z^2 F_2\left(\frac{x}{z},\mu^2\right) \end{split}$$

Iterate a QCD fit including f_{γ} in DGLAP and in the momentum sum rule

QED corrections in PDF determination: LuxQED photon

General agreement in $\mathcal{L}_{\gamma\gamma}$ and $\mathcal{L}_{\gamma g}$; differences in $\mathcal{L}_{q\bar{q}}$ independent of photon PDF

Emanuele R. Nocera (UNITO)

Photon PDF: impact on W^{\pm} differential cross sections

PDF4LHC benchmark and combination ongoing

Emanuele R. Nocera (UNITO)

N³LO QCD corrections in PDF determination

NNLO is the precision frontier for PDF determination

N3LO is the precision frontier for partonic cross sections

Mismatch between perturbative order of partonic cross sections and accuracy of PDFs is becoming a significant source of uncertainty

$$\hat{\sigma} = \alpha_s^p \hat{\sigma}_0 + \alpha_s^{p+1} \hat{\sigma}_1 + \alpha_s^{p+2} \hat{\sigma}_2 + \mathcal{O}(\alpha_s^{p+3}) \qquad \delta(\text{PDF} - \text{TH}) = \frac{1}{2} \left| \frac{\sigma_{\text{NNLO-PDFs}}^{(2)} - \sigma_{\text{NLO-PDFs}}^{(2)}}{\sigma_{\text{NNLO-PDFs}}^{(2)}} \right|$$

[JHEP 11 (2020) 143]

N³LO QCD corrections in PDF determination

Splitting Functions

- Singlet $(P_{qq}, P_{gg}, P_{gq}, P_{qg})$
- large- n_f limit [NPB 915 (2017) 335; arXiv:2308.07958]
- small-x limit [JHEP 06 (2018) 145]
- large-x limit [NPB 832 (2010) 152; JHEP 04 (2020) 018; JHEP 09 (2022) 155]
- -5 (10) lowest Mellin moments [PLB 825 (2022) 136853; ibid. 842 (2023) 137944; ibid. 846 (2023) 138215]
- Non-singlet ($P_{NS,v}$, $P_{NS,+}$, $P_{NS,-}$)
- large- n_f limit [NPB 915 (2017) 335; arXiv:2308.07958]
- small-x limit [JHEP 08 (2022) 135]
- large-x limit [JHEP 10 (2017) 041]
- 8 lowest Mellin moments [JHEP 06 (2018) 073]

DIS structure functions (F_L , F_2 , F_3)

- DIS NC (massless) [NPB 492 (1997) 338; PLB 606 (2005) 123; NPB 724 (2005) 3]
- DIS CC (massless) [Nucl.Phys.B 813 (2009) 220]
- massive from parametrisation combining known limits and damping functions [NPB 864 (2012) 399]

PDF matching conditions

- all known except for $a_{H,a}^3$ [NPB 820 (2009) 417; NPB 886 (2014) 733; JHEP 12 (2022) 134]

Coefficient functions for other processes

- DY (inclusive) [JHEP11 (2020) 143]; DY (y differential) [PRL 128 (2022) 052001]

Theory uncertainties in PDF determination

Assuming that theory uncertainties are (a) Gaussian and (b) independent from experimental uncertainties, modify the figure of merit to account for theory errors

$$\chi^2 = \sum_{i,j}^{N_{\text{dat}}} (D_i - T_i) (\text{cov}_{\text{exp}} + \text{cov}_{\text{th}})_{ij}^{-1} (D_j - T_j); \ (\text{cov}_{\text{th}})_{ij} = \frac{1}{N} \sum_k^N \Delta_i^{(k)} \Delta_j^{(k)}; \ \Delta_i^{(k)} \equiv T_i^{(k)} - T_i$$

Problem reduced to estimate the th. cov. matrix, e.g. in terms of nuisance parameters

$$\Delta_i^{(k)} = T_i(\mu_R, \mu_F) - T_i(\mu_{R,0}, \mu_{F,0});$$
 vary scales in $\frac{1}{2} \le \frac{\mu_F}{\mu_{F,0}}, \frac{\mu_R}{\mu_{R,0}} \le 2$

Theory uncertainties in PDF determination

Assuming that theory uncertainties are (a) Gaussian and (b) independent from experimental uncertainties, modify the figure of merit to account for theory errors

$$\chi^{2} = \sum_{i,j}^{N_{\text{dat}}} (D_{i} - T_{i}) (\operatorname{cov}_{\exp} + \operatorname{cov}_{\operatorname{th}})_{ij}^{-1} (D_{j} - T_{j}); \ (\operatorname{cov}_{\operatorname{th}})_{ij} = \frac{1}{N} \sum_{k}^{N} \Delta_{i}^{(k)} \Delta_{j}^{(k)}; \ \Delta_{i}^{(k)} \equiv T_{i}^{(k)} - T_{i}$$

Problem reduced to estimate the th. cov. matrix, e.g. in terms of nuisance parameters

$$\Delta_i^{(k)} = T_i(\mu_R, \mu_F) - T_i(\mu_{R,0}, \mu_{F,0}); \text{ vary scales in } \frac{1}{2} \le \frac{\mu_F}{\mu_{F,0}}, \frac{\mu_R}{\mu_{R,0}} \le 2$$

Theory uncertainties in PDF determination

Assuming that theory uncertainties are (a) Gaussian and (b) independent from experimental uncertainties, modify the figure of merit to account for theory errors

$$\chi^{2} = \sum_{i,j}^{N_{\text{dat}}} (D_{i} - T_{i}) (\operatorname{cov}_{\exp} + \operatorname{cov}_{\operatorname{th}})_{ij}^{-1} (D_{j} - T_{j}); \ (\operatorname{cov}_{\operatorname{th}})_{ij} = \frac{1}{N} \sum_{k}^{N} \Delta_{i}^{(k)} \Delta_{j}^{(k)}; \ \Delta_{i}^{(k)} \equiv T_{i}^{(k)} - T_{i}$$

Problem reduced to estimate the th. cov. matrix, e.g. in terms of nuisance parameters

Impact of aN³LO corections on partonic luminositites

Trend observed for NNPDF4.0 [EPJ C84 (2024) 659] similar to MSHT20 [EPJ C83 (2023) 185]

Emanuele R. Nocera (UNITO)

aN³LO PDFs: MSHT20 vs NNPDF4.0

A 3% shift for $M_X \sim 100$ GeV, already at NNLO, partly sensitive to higher moments

aN³LO PDFs: impact on W^{\pm} total cross sections

Emanuele R. Nocera (UNITO)

Combining QED and QCD higher order corrections

QED corrections slightly reduce discrepancies between the MSHT20 and NNPDF4.0

Combining MSHT20 and NNPDF4.0 aN³LO QED PDFs

Statistical combination performed as in PDF4LHC21 [JPG 52 (2025) 065002]

Combining MSHT20 and NNPDF4.0 NNLO QED PDFs

Percent impact of aN³LO corrections; comparatively small impact of QED corrections

Emanuele R. Nocera (UNITO)

3. Methodology

Validate PDF uncertainties: closure tests

Fit PDFs to pseudodata generated assuming a known underlying law

NNPDF

bias difference of central prediction and truth variance uncertainty of replica predictions

If model complexity optimal, generalisation error minimum $(E[bias])^2 = variance$ 25 fits, 40 replicas each

<u>MSHT</u>

parameterisation flexible enough to give faithful description of global pseudodata

NNPDF *vs* MSHT comparison similar fit quality similar errors, with MSHT unit tolerance

Emanuele R. Nocera (UNITO)

25 / 30

Inconsistent closure tests

Generate pseudodata with statistical and systematic uncertainties

 $C = C^{\rm stat} + C^{\rm syst} \qquad C^{\rm syst}_{ij} = \sum_k \Delta^k_i \Delta^k_j \qquad \Delta^k_i \text{ is the k-th sys. unc. for the i-th point}$

Assume systematic uncertainties are underestimated and perform a fit with

 $\Delta^k_i \to \lambda \Delta^k_i \qquad \lambda = 1 \text{ consistency} \qquad \lambda = 0 \text{ extreme inconsistency}$

PREDICTED UNCERTAINTY ON GENERATED DATA

CONSISTENT

EXTREME INCONSISTENCY

arXiv:2503.17447

26 / 30

The ML model corrects for inconsistency except in extreme cases [arXiv:2503.17447]

Simultaneous determination of PDFs and SM parameters

Example: α_s and PDFs are correlated, hence looking at the χ^2 profile as a function of α_s with fixed PDFs results in a bias [EPJC80 (2020) 182]

Simultaneous fits of SM parameters and PDFs are costly

Correlated replica method [EPJ C78 (2018) 408]

Perform multiple fits of the same data replica, changing the value of α_s in each fit, thereby correlating PDFs and α_s

<u>Theory covariance method</u> [EPJ C81 (2021)830] Perform a single fit with a theory covariance matrix encoding a prior α_s distribution, and determine α_s from the Bayesian posterior

Closure test passed by both methodologies. Apply them to real data to get $\alpha_s(M_Z)$ $\alpha_s(M_Z) = 0.1194^{+0.0007}_{-0.0014}$ at aN³LO_{QCD} \otimes NLO_{QED} [arXiv:2506.13871]

Emanuele R. Nocera (UNITO)

4. Conclusions

Summary

A precise and accurate determination of PDFs is key to do precision phenomenology. LHC measurements are being instrumental to reduce PDF uncertainties to few percent. This is not enough.

The goal of achieving PDF determinations accurate to 1% opens up some challenges. Understand the interplay between data, theory, and methodology into PDF uncertainties.

Refine the theoretical accuracy of a PDF determination.

Represent theory uncertainties into PDF uncertainties.

Deploy a robust fitting methodology and good statistical tests of it.

Benchmark efforts may benefit from public releases of PDF codes and inputs.

Summary

A precise and accurate determination of PDFs is key to do precision phenomenology. LHC measurements are being instrumental to reduce PDF uncertainties to few percent. This is not enough.

The goal of achieving PDF determinations accurate to 1% opens up some challenges. Understand the interplay between data, theory, and methodology into PDF uncertainties.

Refine the theoretical accuracy of a PDF determination.

Represent theory uncertainties into PDF uncertainties.

Deploy a robust fitting methodology and good statistical tests of it.

Benchmark efforts may benefit from public releases of PDF codes and inputs.

Thank you