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Abstract

The subject of this thesis is the phenomenological determination of Transverse Mo-
mentum Distributions (TMDs), which describe the structure of hadrons (like protons
and neutrons) in 3D momentum space. They are crucial for understanding the dy-
namical properties arising from their elementary constituents, quarks and gluons. We
present a statistical analysis of two fitting frameworks for determining unpolarized
TMDs, referred to as PV19 and MAPTMD22. These frameworks utilize parametric
regression to infer TMDs through fits to experimental data from Semi-Inclusive Deep
Inelastic Scattering (SIDIS, ℓ p→ ℓ hX) and Drell-Yan (p p→ ℓ− ℓ+X) cross sections.
The robustness of these methodologies is evaluated via closure testing, which assesses
three critical aspects: the flexibility of the framework in capturing the true functional
form of the TMDs, the contribution of uncertainties induced by the framework to the
total uncertainty, and the statistical faithfulness of the TMD uncertainty estimates.
This work contributes to the broader quest for precision in high energy physics, by
developing tools to improve the reliability of the predicted TMDs and their associated
uncertainties.
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To find something out,
it is better to perform some careful experiments
than to carry on deep philosophical arguments.

Richard P. Feynman, The Feynman Lectures on Physics
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Chapter 1

Introduction

The focus of this thesis is on Transverse Momentum Distributions (TMDs) and their
determination through experimental data. TMDs provide a detailed picture of the in-
ternal structure of hadrons—such as protons and neutrons—by describing how quarks
and gluons move within them in a 3D momentum space [1]. Specifically, we will con-
sider two types of TMDs: the unpolarized Transverse-Momentum Dependent Parton
Distribution Functions, referred to as TMD PDFs, and the unpolarized TMD Frag-
mentation Functions (FFs). The TMD PDFs describe the distribution of quarks and
gluons inside hadrons in 3D momentum space, while the TMD FFs represent the dy-
namical transition from a colored partonic state to a colorless hadronic state during the
hadronization process. The accurate and precise determination of TMDs is crucial for
enhancing our understanding of the dynamics of hadronic structure and for studying
the phenomena of confinement and hadronization. Accurate TMDs can improve the
precision of theoretical predictions in high-energy physics, which is essential for testing
the Standard Model and for searching for potential new physics beyond it.

The phenomenological determination of TMDs relies on factorization theorems,
which are a class of theorems that ensure, under specific conditions, that the cross
sections of certain high-energy physics processes can be divided into perturbative and
non-perturbative contributions. The perturbative part of the hadronic processes, re-
ferred to as the "hard process," can be calculated order by order in perturbative Quan-
tum Chromodynamics (pQCD). The non-perturbative contribution, also known as the
"soft process," cannot be predicted using perturbation theory but can be determined
through fits to experimental data. We use experimental measurements from Semi-
Inclusive Deep Inelastic Scattering (SIDIS, ℓ p→ ℓ hX) and Drell-Yan (p p→ ℓ− ℓ+X)
cross sections to infer the functional forms of the TMDs via parametric regression tech-
niques. Factorization theorems have been proven for both Drell-Yan and SIDIS cross
sections [2].

In this work, we perform a statistical analysis of two fitting frameworks constructed
for determining TMDs from experimental data. The resulting TMDs predicted by these
two frameworks, which we refer to as the PV19 and MAPTMD22 frameworks, can be
found in Refs [3, 4], respectively. Both PV19 and MAPTMD22 were developed by
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CHAPTER 1. INTRODUCTION

the MAP (Multi-dimensional Analyses of Partonic Distributions) collaboration and
are available for use within the Nanga Parbat suite, which is publicly accessible at
https://github.com/MapCollaboration/NangaParbat.

The principal limitation of the current fitting methodologies are the following:

1. The inability to assess whether the fitted TMDs are close to the real TMDs
we are searching for. This assessment cannot be made by comparing the real
cross sections with the predictions calculated using the TMDs inferred from the
dataset, as cross sections depend non-trivially on TMDs.

2. The methodology used to infer TMDs from experimental data introduces a com-
ponent of uncertainty to the predicted TMDs that is not related to the experimen-
tal uncertainty. We cannot quantify how much of the total TMD uncertainties
arises from the fitting framework used to predict those TMDs.

3. We do not know whether the methodology is capable of reproducing faithful
uncertainty estimates and whether it is optimized in terms of the bias-variance
tradeoff.

The goal of this thesis is to test the robustness of the PV19 and MAPTMD22
methodologies, specifically addressing the three points mentioned above, through clo-
sure testing. Closure testing involves generating pseudo-datasets using known a priori
TMD functional forms and performing fits on such pseudo-data with the fitting frame-
works we aim to test [5, 6]. This procedure allows us to test three crucial aspects of a
fitting framework, that are discussed in the paragraphs below.

First, it permits to directly compare the TMDs used to generate the pseudo-
datasets, referred to as the real TMDs, with those obtained from fitting the pseudo-
data, the fitted TMDs, thus assessing the methodology’s ability to capture the under-
lying real law that we are searching.

Closure tests also permit a qualitative evaluation of the contributions of uncertain-
ties introduced by the fitting frameworks to the total uncertainty. This is achieved by
using the fitting framework to fit datasets with different levels of statistical fluctua-
tions and comparing the uncertainties obtained from fits on such differently fluctuated
datasets. The levels of fluctuations are Level 0 (no statistical fluctuations), Level 1
(one Monte Carlo replica of the Level 0 dataset), and Level 2 (a large number of Monte
Carlo replicas of the Level 1 dataset). By controlling the levels of fluctuation in the data
points, we can introduce and remove experimental uncertainty (Level 2) and compare
TMD uncertainties with and without the contribution from experimental uncertainty.

Finally, we determine whether the frameworks are optimized and produce faithful
uncertainty estimates. In a multi-closure test, we utilize the tested fitting framework
to execute a large number of fits, where each fit corresponds to running the framework
on a substantial number of Level 2 datasets generated by fluctuating a single Level 1
dataset. This approach enables us to compute the bias and variance of each fit and to
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CHAPTER 1. INTRODUCTION

count the fraction of real points (artificially generated) that lie within the one-sigma
band of the predicted points from a fit. The averages of bias and variance across the fits
are employed to assess the optimization of the bias-variance tradeoff, while counting
the real points that fall within the error bars of the predicted ones is used to evaluate
the faithfulness of the uncertainties.

In the following, we present an outline of the chapters of this thesis and their
content.

• In Chapter 2, we discuss the physics of TMDs. We start with the simplistic
parton model, which considers one-dimensional Parton Distribution Functions
(the collinear PDFs) without QCD corrections, to explain the basic assumptions
that remain valid for factorization theorems and TMDs. We then define Trans-
verse Momentum Distributions (TMDs) and illustrate how they can be used to
describe SIDIS and Drell-Yan cross sections through factorization, including a
discussion of their divergences and the evolution equations arising from their
renormalization.

• In Chapter 3, we focus on the structure of the MAPTMD22 and PV19 fitting
frameworks and how they utilize parametric regression to solve the inverse prob-
lem, which is the problem of finding an input u (the TMD functional forms) for
a known model G (the factorized SIDIS and Drell-Yan cross sections), given a set
of results D = G(u) (the experimental dataset).

• In Chapter 4, we explore closure testing. We present the general idea, explaining
the levels of fluctuations (Level 0, Level 1, and Level 2) and how they can be
employed to test the frameworks’ flexibility and characterize the final TMD uncer-
tainty. We then delve into multi-closure tests, defining two statistical estimators
(the bias-variance ratio, Rbv, and the quantile estimator, ξnσ)that provide a quan-
titative assessment of the bias-variance tradeoff optimization and the faithfulness
of the TMD uncertainties. Finally, we outline the practical implementation of
closure testing in the fitting frameworks we aim to evaluate.

• In Chapter 5, we present the results obtained from performing closure tests on the
MAPTMD22 and PV19 frameworks. The results include, for both methodologies,
the choice of the minimizer, the assessment of the frameworks’ flexibility, the
qualitative estimation of the contributions of uncertainties to the total TMD
uncertainties, and the quantitative evaluation of the robustness of the frameworks
in terms of faithful uncertainty estimates and the bias-variance tradeoff.

• In Chapter 6, we present our conclusions regarding the results obtained from
this analysis. We discuss potential directions for improving TMD determination
from experimental data based on the closure test results and explore how the
computational framework developed in this work can be utilized to validate and
optimize future fitting methodologies.

In summary, this thesis aims to improve the determination of Transverse Momen-
tum Distributions (TMDs) by investigating the robustness of the fitting methodologies
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CHAPTER 1. INTRODUCTION

PV19 and MAPTMD22 through closure testing. This work contributes to the broader
quest for precision in high-energy physics by developing tools that improve the relia-
bility of the predicted TMDs and their associated uncertainty estimates.
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Chapter 2

From Parton Model to TMDs

In this chapter, we will explore the basic assumptions of the parton model and construct
the definition of transverse-momentum-dependent parton distribution functions (TMD
PDFs), which are the physical quantities we aim to infer from experimental data.

2.1 QCD Lagrangian and Asymptotic Freedom
Hadrons, such as protons, are are composed of partons, quarks and gluons, which are
in a confined state at low energy scale, where for low energy we mean below 1 GeV.
The interactions between quarks and gluons are described by quantum chromodynam-
ics (QCD) [7], a Yang-Mills theory that promotes global SU(3) invariance to a local
invariance (i.e. the QCD Lagrangian is invariant under local color transformation).
The QCD Lagrangian is presented in equation (2.1), including only one quark of mass
m and excluding ghost fields for simplicity [8],

L = −1

4
F a
µνF

aµν + ψ̄i(i /D
k
j −mδkj )ψk , (2.1)

where a = 1, 2, ..., 8 is the color index; ψ, ψ̄ represent the fermion fields (quarks). The
gauge-fields Aa

µ (gluons) are enclosed in the gauge-field strength tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (2.2)

and in the covariant derivative Dµ in

/D = γµDµ = γµ(∂µ − igAa
µT

a) . (2.3)

Expending all terms of the Lagrangian we obtain the strong interaction terms:

L = L0 + gAa
µψ̄γ

µT aψ + gfabc(∂µA
a
ν)A

bµAcν − g2f eabf ecdAa
µA

b
νA

cµAdν . (2.4)

It is interesting to note that the terms in equation (2.4) represent different types of
interaction. The first term is the non-interacting contribution, the second term repre-
sent the interaction between two leptonic fields and a gluon, and the third and fourth
terms represent the interactions between three and four gluon fields, respectively. All
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CHAPTER 2. FROM PARTON MODEL TO TMDS

these terms are weighted by powers of the gauge coupling g.

From the QCD Lagrangian, we can deduce the Feynman rules for calculating am-
plitudes of elementary processes involving quarks and gluons in terms of the strong
coupling, αs = g2

4π
. If αs were a small constant, we would have some dominant pro-

cesses (those with a small number of vertices) and some negligible higher order contri-
butions, similar to the case of quantum electrodynamics (QED) where the amplitudes
of processes get smaller with an increasing number of vertices in the corresponding
Feynman diagram. Unfortunately, the strong coupling is small only at high energy
scales, preventing us from developing a fully perturbative approach. In particular, the
dependence of αs from the energy scale (µ) comes from the renormalization group (RG)
equation for the strong coupling [9]:

µ2dαs

dµ2
= β(αs) = −(b0α

2
s + b1α

3
s + b2α

4
s + ...) (2.5)

If one considers only the one-loop β-function coefficient b0 = (33−2nf )/(12π), with nf

being the number of quark flavors, an analytical solution exist for the strong coupling,

αs(µ) =
1

b0 ln(
µ2

Λ2 )
, (2.6)

where Λ ∼ 200 MeV is an integration constant that represent a pole in the analytical
solution, that means the strong coupling diverges rapidly for energies below 1 GeV. This
phenomenon is known as asymptotic freedom. In figure 2.1 is shown the dependence
of the strong coupling from the energy scale µ computed at five-loops and compared
with experimental results. At high energy (short distance interactions) the strong cou-
pling becomes very small. As the particles get closer to each other their interaction
decreases, but as the distance increases (or, equivalently, the energy decreases), the
strong coupling αs increases.

If we know the value of the strong coupling at a certain energy scale µ, we can use
equation (2.5) to compute the value of αs for a process occurring at another energy
Q≫ 1 GeV, obtaining:

αs(Q) = αs(µ)
1

1 +
b0αs(µ) ln(

Q
µ
)

2π

(2.7)

Asymptotic freedom is crucial for describing hadronic interactions, because it ensures
that we can use a perturbative approach to compute the amplitude of short range
processes order by order in perturbation theory. However, for a complete description
of hadronic interactions, we cannot consider only short distance interactions. We need
to introduce some non-perturbative functions to describe the part of the process that
cannot be predicted due to non-perturbative effects. This approach was first introduced
in the parton model, which will be discussed in the next paragraph.
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CHAPTER 2. FROM PARTON MODEL TO TMDS

αs(mZ
2) = 0.1180 ± 0.0009

August 2023
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Figure 2.1: Energy dependence of the strong coupling αs(µ), image from Ref. [9].

2.2 The Parton Model
Historically, the parton model was introduced before the theory of QCD to explain the
results of the SLAC-MIT experiment [10], in which electrons and protons were scat-
tered at energies up to 20 GeV. This scattering experiment led to the confirmation that
the proton is not an elementary particle; instead, it is composed of point-like particles
of spin 1

2
, which were named partons by Feynman in 1968. Partons were then identified

with the quarks of QCD, and the term "partons" is now used to describe both quarks
and gluons.

According to the parton model, introduced by Bjorken and Feynman, when an
electron interacts with a proton at high energy, the interaction occurs between the
electron and one of the proton’s fundamental constituents, which carries a fraction ξ of
the total longitudinal momentum of the proton. After the parton-electron interaction,
the struck quark interacts with the other partons on a much larger time scale, and the
proton breaks up.

To explain the basic assumptions of the parton model, consider a process of electron-
proton Deep Inelastic Scattering (DIS, e(k) p(P ) → e(k′)X), in which a high-energy
electron scatters off a proton target (Figure 2.2(a)). We can make some heuristic
assumptions for this process:

1. The proton is composed of a collection of point-like particles (partons).

2. The partons all move in the same direction, which is longitudinal to the moving
direction of the proton. This is, of course, an approximation; we neglect the
transverse components because, in the center of mass reference system, the proton
is moving at high speed along only one axis.

7



CHAPTER 2. FROM PARTON MODEL TO TMDS

(a) Deep Inelastic Scattering e(k) p(P ) → e(k′)X

(b) Spatial part of DIS

Figure 2.2: In DIS, a high-energy electron interacts with partons inside a proton,
causing the proton to break up. Only the final-state electron is measured.

3. Each parton carries a fraction ξ of the longitudinal momentum of the proton P .
The longitudinal momentum of the parton will be p = ξP .

4. The partons are free particles (they do not interact with each other). The in-
teraction occurs between the electron e and one single parton qi, which reads
e(k) qi(p) → e(k′) qi(p

′).

The last assumption is crucial and is justified by QCD and asymptotic freedom.

8



CHAPTER 2. FROM PARTON MODEL TO TMDS

When we consider a high-energy interaction, we are in an energy region in which the
strong coupling becomes weak, and the electron-parton interaction dominates (i. e.
the parton interacts with the electron and does not interact with the other partons in
the proton). A more intuitive argument can be given to justify the assumption that
quarks are free particles [11, 1]: we consider the time scale of the interaction binding
two quarks to be τ1 ∼ 1fm

c
and the time scale of the quark-electron interaction at

high energy Q to be τ2 ∼ 1
Qc

. In the center of mass frame, the time τ1 dilates and
becomes τ ′1 = τ1(1 − v2

c2
) ≫ τ2 (in the assumption of Q ≫ 1 GeV). As an example,

if we take an event at Q2 = 104 GeV2 we get τ ′1 ∼ 100fm
c

and τ2 ∼ 0.01fm
c

. It is
therefore a reasonable approximation, in the time scale of the parton-electron inter-
action, to treat the quarks as "frozen" states with a longitudinal momentum of p = ξP .

Using these assumptions, one can reconstruct the elementary cross section,

σ̂(e(k) qi(p) → e(k′) qi(p
′)) , (2.8)

order by order in perturbative QCD. For example, the tree-level elementary cross sec-
tion will be the same as the cross section for the leptonic process e(k)µ(p) → e(k′)µ(p′),
with the only difference being that the considered quark qi has a different charge than
the muon µ.

Deep Inelastic Scattering Kinematics

Before introducing DIS kinematic, it is useful to change coordinate system and work
in the light-front coordinates.

If we define the position four-vector yµ in space-time coordinate as yµ = (y0, y1, y2, y3) =
(y0, yi), being y0 the time component and yi the spatial components of the vector, we
can define the same vector in light-front coordinates as

yµ = (y+, y−, yT ) =

(
y0 + y3√

2
,
y0 − y3√

2
, y1, y2

)
. (2.9)

In DIS, y3 is defined as the direction of motion of the target, and (y1, y2) are the
transverse directions, which remain unchanged in light-front coordinates: yT = (y1, y2).
Figure 2.3 shows a plot of DIS in standard space-time coordinates compared to light-
front coordinates. Notably in light-front coordinates the y+ and y− axes are parallel
to the light cone. More in general, we can define the light-cone basis vector as

n± =
1√
2
(1, 0, 0,±1) (2.10)

in which the basis vector nµ
± can be determined using some physical quantities, as we

will see in section 2.4. In this basis, the components n+ and n− define a plane, and
the transverse components nT = (0, 1, 1, 0) are transverse to the plane identified by n+

and n−.

9



CHAPTER 2. FROM PARTON MODEL TO TMDS

(a) DIS in space-time coordinates

(b) DIS in light-front coordinates

Figure 2.3: In light-front coordinates, the axes Y + and Y − are parallel to the light
cone. In these plots, the particles are approximated to be massless.

To define the kinematics of the process in figure 2.2(a) using light-front coordinates,
consider the electron-proton collision

e(k) p(P ) → e(k′)X , (2.11)

in which X represents a hadronic final state that is not measured. We redefine ξ as
the fraction of momentum carried by the parton in the plus direction, ξ = p+

P+ , and we
can define two Lorentz-invariant quantities: Q2 = −t = (−q)2 and P · q, where P is

10



CHAPTER 2. FROM PARTON MODEL TO TMDS

the momentum of the initial-state proton, and q = (k− k′) is the space-like exchanged
momentum. Two useful combinations of these quantities are

x =
Q2

2P · q
(2.12)

y =
q · P
k · P

. (2.13)

Here, x is the Bjorken variable and, at leading order, represents the fraction of the plus
component of momentum carried by the struck parton: ξ = p+

P+ = x + O(Λ
2

Q2 ). The
variable y represents the fraction of energy lost by the electron during the interaction,
E−E′

E
. Both variables lie between 0 and 1 and can be expressed in terms of the measur-

able momenta k, k′, and P . We now have all the ingredients to construct the hadronic
cross section for deep inelastic scattering.

DIS Cross Section and Parton Distribution Functions

Using perturbative QCD, we are able to compute the elementary cross section

σ̂(e(k)qi(p) → e(k′)qi(p
′)) (2.14)

with high precision, but we cannot directly measure this short-range interaction. This
means that we do not know which parton the electron interacts with, nor do we know
the internal momentum distribution of the hadron. To address this problem, we in-
troduce the parton distribution functions (PDFs), fi(x). These functions represent the
probability that the i-th parton carries a fraction x of the plus momentum component.
Equation (2.15) shows how the total cross section depends on the partonic cross section
and the PDFs.

dσ

dt
(e(k) p(P ) → e(k′)X) =

∑
i

∫
dxfi(x)

dσ̂

dt
(e(k) qi(p) → e(k′) qi(p

′)) (2.15)

The PDF introduced in equation (2.15) is the link between the total cross section
(what we measure) and the partonic cross section (what we can predict in perturba-
tion theory). This is the simplest possible PDF and depends only on the fraction of
momentum x; for this reason, it is named the collinear PDF1. These functions have a
physical interpretation as the number density of partons that are in a momentum state
p+ = xP+, so they can also be referred to as parton densities[1].

PDFs represent the non-perturbative part of the process; they can only in part
be theoretically predicted, and depend on non-perturbative contributions that must
be inferred from experimental data. For illustration, at leading order, the differential
cross section in x and Q2 will be

1More general PDFs, which we will consider later, can be introduced by accounting for other
variables, such as the transverse components of the quark momentum kT .
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CHAPTER 2. FROM PARTON MODEL TO TMDS

dσDIS

dQ2dx
=
∑
i

fi(x)e
2
i

2πα2

Q4

[
1 +

(
1− Q2

xs

)2
]

, (2.16)

where ei is the charge of the quark with flavor i, α is the electromagnetic coupling, and
s is the Mandelstam variable (P + k)2. From a fit of DIS measurements, we cannot
separate the flavor dependence of the PDFs; we can only extract the combination∑

i e
2
i fi(x). However, some theoretical constraints can be applied to characterize the

flavor dependence:

• Flavor conservation in the strong interaction, using the valence quark numbers
for the proton we obtain: ∫ 1

0

dx [fu − fū] = 2∫ 1

0

dx [fd − fd̄] = 1∫ 1

0

dx [fs − fs̄] = 0 .

(2.17)

• Conservation of the total longitudinal momentum:∫ 1

0

x[fu + fū + fd + fd̄ + fs + fs̄ + fg] dx = 1 . (2.18)

We have included only the light quarks and gluon densities. Additional information on
parton densities can be obtained by considering other processes[8], such as for example
electron-neutron scattering (e n → eX), neutrino DIS (e.g., ν p → µ−X) and Drell-
Yan (p p → e+ e−X). To achieve a high-precision global fit of the PDFs, the parton
model alone is insufficient; higher-order corrections from perturbative QCD must be
taken into account.

Relation Between Static Quark Model and PDFs

Before discussing the QCD corrections, it is useful to examine the relationship between
PDFs and the static quark model 2. Figure 2.4, shows the functional form of the PDFs
at Q = 3.2 GeV derived by the NNPDF collaboration [12]. In the static quark model,
the proton is composed of three valence quarks: two up and one down. If the non-
interacting quarks approximation of the parton model were exact, one would expect
the PDFs fu(x) and fd(x) to be two delta functions peaked at x = 1/3, meaning the
total longitudinal momentum of the proton is evenly split among the three quarks. In
the dynamical picture of the proton captured by the PDFs, one can see a confirmation

2For "static quark model" we refer to the picture in which the hadrons are composed only by the
valence quarks. With "static" we mean that the quark number in the proton is not changing. In
literature, this picture is also referred to as the "naïve quark model"
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CHAPTER 2. FROM PARTON MODEL TO TMDS

Figure 2.4: PDF set for the proton extracted from a global dataset using NNPDF4.0

of the valence quark idea, where the up and down PDFs are peaked at x ≈ 1/3. How-
ever, the delta functions are smeared out due to quark interactions. We also observe
other parton densities that become significant at small x. These are gluon densities,
associated with the fact that the quarks are interacting by exchanging gluons, and sea
quark densities, due to the radiation of quark-antiquark pairs from valence quarks or
excited from the vacuum.

The picture of the proton structure provided by the PDFs is much more detailed,
rich, and precise than the static quark model. This is why the study of parton den-
sities is of immense interest and utility for a precise understanding of the dynamical
properties of hadrons and more in general for precision high-energy physics.

Collinear and TMD PDFs

Much work has been done in the accurate and precise determination of collinear PDFs
(e.g. see the collaborations CTEQ-TEA [13], NNPDF [12], MSHT [14], H1 and ZEUS
at HERA [15], and CJ (CTEQ-JLab) [16]). The current challenge is to go beyond the
1D momentum structure of the proton and to capture the transverse-momentum3 par-
tonic distributions. This can be done introducing a new class of parton densities: the
transverse-momentum-dependent (TMD) PDFs (also referred to as TMDs, i.e. Trans-
verse Momentum Densities). TMDs have an explicit dependence on the transverse
momentum components of the quark (kT ) in the light cone basis,

fi(x, k
2
T ) , (2.19)

3for now on, we will refer to the transverse momentum of the quark in light cone coordinates as kT
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Figure 2.5: The handbag diagram represent the hadronic part of the interaction, that
is the scattering between a virtual photon and a single constituent of the hadron.

and characterize the 3D momentum structure of the proton. If one considers the bare
(not renormalized) quantities, there is an integral relation between collinear ant TMD
PDFs [1]:

fi(x) =

∫
fi(x, k

2
T ) dk

2
T . (2.20)

However, the relationship between the two is not straightforward when considering
the renormalized quantities. The reason is that, when QCD perturbative corrections
are introduced, divergencies arise and the PDFs acquire a dependence on auxiliary
parameters. In the case of collinear PDFs there is a UV divergence that introduces
a dependence on the energy scale µ (i. e. fi(x) → fi(x;µ)). For TMDs, a different
divergence occurs (discussed in section 2.3), leading the parton densities to depend on
the rapidity scale ζ (i. e. fi(x, k2T ) → fi(x, k

2
T ;µ, ζ)). In the next section, we explore

the operator definition of TMDs, their divergences, and their dependence on auxiliary
parameters [1, 17, 18].

2.3 Operator definition of TMDs
The definition of physical observables in terms of parton densities relies on factoriza-
tion theorems [19, 2], which ensure that we can separate the perturbative and non-
perturbative parts in the theoretical prediction for the hadronic cross section of certain
processes.

To implement factorization theorems, we need a correct and working definition of
TMDs that includes field theory. If one assumes that the dominant part of the process

14
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has the form of the handbag diagram (figure 2.5), where the interacting quark has
limited transverse momentum and virtuality [1], a simple definition of the partonic
density in 3D momentum space is

fi(x, kT ) =
1

(2π)32x ⟨p|p⟩
⟨p| a†iai(xp+, kT , λ) |p⟩ (2.21)

where ai(k+, kT , λ), a†i (k+, kT , λ) are the creation and annihilation operators of a parton
with flavor i and helicity λ in light-front coordinates. In light-front coordinates, one can
express the parton density of equation (2.21) in terms of a quark correlation function:

fi(x, kT ) =

∫
dy−d2yT
16π3

e−ip+y−+ikT yT ⟨p| ψ̄i(0, y
−, yT )γ

+ψi(0) |p⟩ , (2.22)

where the fields combination ψ̄ψ is related to the creation/annihilation operators a†a
through second quantization, and the γ+ matrix is used to project the state on the
unpolarized parton density fi(x, kT ). For a review which includes other classes of parton
densities, that we do not consider in this thesis, see Refs. [20, 21].

Divergences of TMD PDFs

Equations (2.21) and (2.22) have the correct structure; however, they are not gauge
invariant. To give a working definition of transverse momentum densities, we can work
in a fixed gauge, specifically the light-cone gauge, where we define A+ = 0. In this
gauge, a divergence arises: the light-cone gauge divergence, which is associated with
the 1/k+ singularities of the gluon propagator and has a physical interpretation as the
region where the gluon is moving infinitely fast in the direction of the quark jet (the
region in which the gluon rapidity goes to minus infinity). Collins and Soper have
shown that the light-cone gauge divergence disappears in integrated parton densities
(collinear PDFs). However, the integrated PDFs suffer from a UV divergence, associ-
ated with the divergence of the integral over kT at large transverse momentum.

Different approaches have been proposed to cancel the light-cone gauge divergency
from TMDs. We will use the definition in [1], which involves inserting non-light-like
Wilson lines in the quark correlation function. Equation (2.22) then becomes dependent
from both renormalization scale µ and rapidity scale ζ = p2cosh2(∆y). The auxiliary
parameter ζ arises from a cutoff on gluon rapidity, ∆y represents the difference in
rapidity between the target hadron and the gluon rapidity cutoff. The renormalized
TMDs are defined as follows:

fi(x, kT ;µ, ζ) =

∫
dy−d2yT
16π3

e−ip+y−+ikT yT P̃i(y
−, yT ;µ, ζ) (2.23)

P̃i(y
−, yT ;µ, ζ) = ⟨p| ψ̄i(0, y

−, yT )Wy(u)
†Iu;y,0γ

+W0(u)ψi(0) |p⟩R (2.24)

Wy(u) = P

[
−ig(0)

∫ ∞

0

dλuµA(0)
µ (y + λu)

]
(2.25)
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This definition of TMDs is gauge-invariant due to the inclusion of Wilson lines. The
line in Wy(u) extends from the position yµ to infinity in the direction uµ. The line
Iu;y,0 connects Wy(u) and W0(u) at infinity.

TMDs defined in equation (2.23) are applicable in factorization theorems and can
can be used to factorize the processes that we want to study. Since this definition
depends on two auxiliary parameters, µ and ζ, it may appear to conflict with the
independence of TMDs from the kinematic region in which we consider them. This
independence is restored through the use of evolution equations for TMDs, developed
by Collins, Soper, and Sterman, which allow for the reconstruction of parton densities
at any scale (µ, ζ) given the TMDs at an initial scale (µ0, ζ0), this is not a strict
independence by the kinematic region, but the dependence is known exactly, and the
information about TMDs in a single kinematic point is, in principle, sufficient to recon-
struct the TMDs at any other point. These evolution equations differ from the DGLAP
equations, which describe the energy dependence of the collinear PDFs. This is one of
the reasons why the correspondence between integrated (collinear) and non-integrated
(TMD) PDFs is not straightforward.

The evolution equations for TMDs stem from the factorization of the processes we
wish to study. Since the fitting frameworks that will be tested in the next chapters are
based on Drell-Yan and Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross sections,
the next section presents the factorization and evolution of these two processes in terms
of TMDs, following the definitions used in the two analyzed frameworks: PV19 [3] and
MAPTMD22 [4].

2.4 SIDIS and Drell-Yan Factorization
Three processes can be described in terms of Transverse Momentum Dependent Par-
ton Distribution Functions (TMDs): Semi-Inclusive Deep Inelastic Scattering (SIDIS),
Drell-Yan, and lepton-antilepton annihilation with two measured hadrons in the final
state (ℓ+ ℓ− → h1 h2X). Since experimental data for the last process are not available
yet, the MAPTMD22 and PV19 frameworks work only with SIDIS and Drell-Yan data,
and we will comment on the factorization formulas for the first two processes only. The
proofs of the factorization theorems for SIDIS and Drell-Yan can be found in [2].

Semi Inclusive Deep Inelastic scattering (SIDIS)

In SIDIS, a high-energy electron e−(l) scatters off a proton p(P ). The difference from
DIS is that in SIDIS we measure the final state electron e−(l′) and a final state hadron
h(Ph).

e−(l) + p(P ) → e−(l′) + h(Ph) +X , (2.26)

where l, P , and Ph denote the four momenta of the electron, the proton and the final
state hadron, respectively. In this work, we consider only electron-proton SIDIS, but
in general, SIDIS refers to the collision between a lepton and a hadron. The process
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Figure 2.6: Initial and final particles involved in SIDIS in 3D space

is semi-inclusive because only the events with the hadron h(Ph) in the final state are
considered. The 3D spatial plot4 of SIDIS is represented in figure 2.6.

The kinematic variables of SIDIS are similar to those of DIS, as defined in sec-
tion 2.2,

x =
Q2

2P · q
y =

P · q
P · l

. (2.27)

The four-momentum of the exchanged photon is q = (l − l′), with (Q2 = −q2). In
SIDIS, we also measure a final state hadron, which allows us to define a new variable,

z =
P · Ph

P · q
. (2.28)

The variables x and z have a similar physical interpretation in light-front coordinates,
being x = k+

P+
the fraction of momentum of the proton in the n+ axis that is carried by

the struck parton, and z = P−
h

k−
the fraction of the quark momentum along the n− axis

that is transferred to the measured hadron. We can define two other useful quantities,
qT and PhT , in two different frames as shown in figure 2.7.

First, consider the frame where P and q form a light-cone basis (Breit frame). In
this frame, we define PhT as the hadron transverse momentum, perpendicular to the
plan identified by the momenta of the photon (q) and of the proton (P ). Then, we

4An interactive 3D plot of SIDIS can be obtained by running the script DIS_Kinematic.py con-
tained in the GitHub repository https://github.com/kamillaurent/thesis_laurent

17

https://github.com/kamillaurent/thesis_laurent


CHAPTER 2. FROM PARTON MODEL TO TMDS

Figure 2.7: Transverse momenta in the hadronic part of SIDIS, image from [4]

define qT as the photon transverse momentum in the frame where P and Ph form a
light-cone basis. The relation between them is

qµT = −P
µ
hT

z
− 2x

|qT |2

Q2
P µ . (2.29)

In the limit of large photon invariant mass, M2, M2
h , qT , P 2

hT ≪ Q2, which we will use
henceforth, equation (2.29) reduces to:

qµT = −P
µ
hT

z
(2.30)

In figure 2.7, the parton has transverse momentum k⊥ with respect to the photon
direction; k⊥ remains unchanged after the interaction. The final quark with total mo-
mentum p = k + q fragments into a hadron with momentum Ph, of which we measure
the component PhT .

In Ref. [4], the limit of low qT (qT ≪ Q) is considered. Notably, in SIDIS qT is not
the transverse momentum with respect to the scattering axis, but with respect to the
final state hadron axis. In this limit, the differential SIDIS cross section is defined as
follows:

dσSIDIS

dxdzd|qT |dQ
=

8π2α2z2|qT |
xQ3

[
1 +

(
1− Q2

xs

)2
]
FUU,T (x, z, |qT |, Q)+ suppressed factors,

(2.31)
where FUU,T (x, z, |qT |, Q) is the unpolarized SIDIS structure function. It describes the
interaction of an unpolarized electron with an unpolarized target through a transversely
polarized photon. The structure function depends on the unpolarized TMDs:
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FUU,T (x, z, |qT |, Q) = xHSIDIS(Q, µ)
∑
a

e2a

∫
d2k⊥

∫
d2P⊥

z2

fa
1 (x, k

2
⊥;µ, ζ)D

a→h
1 (z, P 2

⊥;µ, ζ)δ
(2)(k⊥ + P⊥/z + qT ) . (2.32)

Equation (2.32) follows from the SIDIS factorization. HSIDIS(Q, µ) represents the
hard part of the process and encapsulates all the information related to the short-
range interactions, which can be computed perturbatively order by order in QCD. The
sum over a includes all active quarks and antiquarks. The variable k⊥ denotes the
transverse momentum of the struck parton relative to the proton’s axis, while P⊥ de-
notes the transverse momentum of the hadron relative to the axis of the fragmenting
quark. The function fa

1 (x, k
2
⊥;µ, ζ) is the unpolarized transverse momentum-dependent

(TMD) parton distribution function (PDF) for the parton a within the proton. The
TMD evolution equations, along with the explicit dependence on the µ and ζ scales,
will be discussed later. Additionally, the SIDIS structure function depends on another
type of TMD that has not been defined previously: the unpolarized TMD fragmenta-
tion function (FF) Da→h

1 (z, P 2
⊥;µ, ζ). This function describes the dynamical transition

between a colored state (the struck parton a) and a colorless hadron h(Ph). Similar to
the TMD PDFs, the TMD FF is a transverse-momentum density and depends on both
ζ and µ renormalization scales. The condition δ(2)(k⊥+P⊥/z+qT ) ensures momentum
conservation in the transverse plane.

It is convenient to express the structure function in terms of the Fourier transforms
of the two TMDs involved in the process,

D̂a→h
1 (z, b2T ;µ, ζ) =

∫
d2P⊥

z2
e−ibT ·P⊥/zDa→h

1 (z, P 2
⊥;µ, ζ) (2.33)

f̂a
1 (x, b

2
T ;µ, ζ) =

∫
d2k⊥e

−ibT ·k⊥fa
1 (x, k

2
⊥;µ, ζ) . (2.34)

The structure function in bT space can then be written as

FUU,T (x, z, |bT |, Q) =
x

2π
HSIDIS(Q, µ)

∑
a

e2a∫ ∞

0

d|bT ||bT |J0(|bT ||qT |)f̂a
1 (x, b

2
T ;µ, ζ)D̂

a→h
1 (z, b2T ;µ, ζ) , (2.35)

where J0(|bT ||qT |) is the Bessel function of the first kind, which can be expressed
in integral form as J0(x) = 1

2π

∫ 2π

0
dθ eix cos θ. The formula used in the MAPTMD22

fitting framework for the SIDIS cross section can be obtained by inserting the structure
function from equation (2.35) into the cross section defined in equation (2.31). This
formula is not used in the PV19 framework, as SIDIS data are not included in that
case.
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Figure 2.8: Initial and final particles involved in Drell-Yan in 3D space

Drell-Yan

Drell-Yan data are included in both the MAPTMD22 and PV19 frameworks. While
the formalism used for factorizing the cross section is the same in both cases, the
parametrization of the non-perturbative part of the TMDs differs, which will be dis-
cussed in the next chapter.

In the Drell-Yan process, two protons5 p1(PA) and p2(PB) scatter at a high center-
of-mass energy

√
s =

√
(PA + PB)2:

p1(PA) + p2(PA) → γ∗/Z(q) +X → ℓ−(l) + ℓ+(l′) +X . (2.36)

According to factorization theorems, the short-range interaction occurs between two
partons, a quark a and an antiquark ā, which annihilate to produce a neutral vector
boson (either a photon or a Z boson) with a large invariant mass Q =

√
q2, where q is

the four-momentum of the exchanged particle. The boson subsequently decays into a
lepton-antilepton pair; in this case, we consider a final state consisting of an electron
e−(l) and a positron e+(l′). Conservation of four-momentum applies in the decay, so
q2 = (l + l′)2.

5More generally, the definition of Drell-Yan includes any two hadrons in the initial state. Here, we
specifically consider the hadrons to be protons, as we are considering the TMDs of protons.
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Figure 2.9: Diagrammatic description of the Drell-Yan short-range interaction

Figure 2.10: Relevant Drell-Yan momenta

A 3D plot of the Drell-Yan process, illustrating the initial and final particles in-
volved, is shown in figure 2.8. The short range interaction is shown in figure 2.9, and
the relevant momenta of the hadronic part in the Drell-Yan process are shown in figure
2.10.

We define the rapidity of the vector boson (which is equivalent to the rapidity of
the lepton pair) as

y =
1

2
ln

(
q0 + qz
q0 − qz

)
, (2.37)

where qz is the momentum component along the collision axis z. The transverse mo-
mentum of the vector boson is given by:

q2T = q2x + q2y. (2.38)

Similar to the SIDIS process, we consider the limit of low transverse momentum (qT ≪
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Q), but here, the transverse momentum is defined relative to the collision axis z.
Additionally, we assume M ≪ Q, where M is the mass of the incoming hadrons. In
this limit, the Drell-Yan cross section takes the form:

dσDY

d|qT |dydQ
=

16π2α2|qT |
9Q3

P F 1
UU(xA, xB, |qT |, Q) + suppressed factors, (2.39)

where α is the electromagnetic coupling, and P is the phase space factor that accounts
for cuts in the leptonic kinematics. The structure function F 1

UU(xA, xB, |qT |, Q) can be
expressed as the convolution of two TMD PDFs:

F 1
UU(xA, xB, |qT |, Q) = xA xB HDY (Q, µ)

∑
a,ā

Ca/ā(Q
2)∫

d2k⊥A d
2k⊥B f

a
1 (xA, k

2
⊥A;µ, ζA) f

ā
1 (xB, k

2
⊥B;µ, ζB)δ

(2)(k⊥A
+ k⊥B

− qT ), (2.40)

where HDY (Q, µ) represents the perturbative part of the process, which is computed
order by order in the strong coupling αs. The sum runs over all active quarks and
antiquarks (a, ā), and Caā(Q

2) are the electroweak charges at the scale Q. The convo-
lution of the two TMDs, fa

1 and f ā
1 , describes the quark-antiquark annihilation. In the

above approximation, the longitudinal momentum fractions carried by the quarks are:

xA = Q
ey√
s

(2.41)

xB = Q
e−y

√
s
. (2.42)

We can define the structure function using the Fourier transform of the TMD (from
equation (2.33)b) as

F 1
UU(xA, xB, |bT |, Q) =

xA xB
2π

HDY (Q, µ)
∑
a,ā

Ca/ā(Q
2)∫ ∞

0

d|bT | |bT | J0(|bT ||qT |) f̂a
1 (xA, b

2
T ;µ, ζA)f̂

ā
1 (xB, b

2
T ;µ, ζB). (2.43)

By inserting the structure function from equation (2.43) iinto the definition of the
Drell-Yan differential cross section given in equation (2.39), we obtain the expression
used in both fitting frameworks for the Drell-Yan cross section.

2.5 TMD Evolution Equations
Up to this point, we have explored the definitions of Transverse Momentum Dependent
(TMD) Parton Distribution Functions (PDFs) and Fragmentation Functions (FFs), and
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how these parton densities relate to the cross sections of the processes in our dataset
(i.e., Drell-Yan and Semi-Inclusive Deep Inelastic Scattering (SIDIS)). To perform a
global fit that includes data across different kinematic regions, we need to define the
evolution equations for the TMDs.

The dependence of the Fourier transforms of the TMDs, f̂a
1 and D̂a→h

1 , on the scales
µ and ζ is governed by two equations [2, 3]:

∂ ln f̂a
1

∂ lnµ
= γ(µ, ζ) (2.44)

∂ ln f̂a
1

∂ ln
√
ζ
= K(µ), (2.45)

where γ and K are the anomalous dimensions associated with the renormalization
group (RG) evolution in µ and the Collins-Soper evolution in

√
ζ, respectively. In

equations (2.44), we have included only the TMD PDFs, but the same dependence on
the auxiliary parameters applies to the TMD FFs. Furthermore, the rapidity anomalous
dimension K obeys the RG equation

∂ lnK

∂ lnµ
= −γK(αs(µ)), (2.46)

where γK is the cusp anomalous dimension. Since

∂2 ln f̂a
1

∂ ln
√
ζ∂ lnµ

=
∂K(µ)

∂ lnµ
, (2.47)

we obtain the equation:
∂γ

∂ ln
√
ζ
= −γK(αs(µ)) (2.48)

which has the solution:

γ(µ, ζ) = γF (αS(µ))− γK(αS(µ)) ln

√
ζ

µ
. (2.49)

In equation (2.49) we used the condition ζ = µ2, derived from the condition
ζA ζB = Q4. The cross sections for SIDIS and Drell-Yan depend only on the com-
bination ζA ζB, allowing us to choose different values for ζA and ζB. The natural choice
is to set ζA = ζB = Q2 for the rapidity scale and µ = Q for the energy scale, leading
to ζ = µ2. We also set γF (αs(µ)) ≡ γ(µ, µ2).

By solving the RG equations for fa
1 and K, we determine the evolution of the

TMDs, as given in equation (2.50); i.e., we can relate the TMD at some final scale (µf ,
ζf ) to the TMD at an initial scale (µi, ζi) using

f̂a
1 (x, b

2
T ;µf , ζf ) = f̂a

1 (x, b
2
T ;µi, ζi) exp

[∫ µf

µi

dµ

µ
γ(µ, ζf )

](
ζf
ζi

)K
2
(|bT |,µi)

. (2.50)
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In the limit where |bT | → 0, we can match the unpolarized TMDs with the unpolarized
collinear PDFs and FFs. In particular, we can express the TMD as a convolution of the
collinear PDF and a matching coefficient function C over the fraction of longitudinal
momentum x′,

f̂a
1 (x, b

2
T ;µi, ζi) =

∑
b

∫ 1

x

dx′

x′
Cab(x′, b2T ;µi, ζi)f

b
1(
x

x′
;µi) ≡ [C ⊗ f1](x, b

2
T ;µi, ζi), (2.51)

where the matching coefficients C are calculated as perturbative expansions in αs.
The terms γ and K in equation (2.50) can also be expanded in powers of αs, making
it convenient to explicitly separate the perturbative parts from the non-perturbative
content in the TMDs.

TMD Perturbative and Non-Perturbative Content

Equation (2.50) describes the dependence of the TMDs on the renormalization and
rapidity scales.To define the TMDs properly, we must fix the initial and final scales,
(µi, ζi) and (µf , ζf ), so that each perturbative term in the evolution equation can be
computed accordingly. Choosing the scale µb ∼ 1

bT
and ζ = Q2 leads to a logarithmic

behavior, ln
(

Q
µb

)
in the perturbative terms of the TMDs [22]. To set the initial scale,

we observe that, for any fixed value of bT , there exists a scale µb at which the rapidity
anomalous dimension K and the matching coefficient C can be expressed as a pure
perturbative expansion in αs, without the logarithmic dependence. This scale reads

µb(bT ) = 2
e−γE

bT
(2.52)

where γE is the Euler-Mascheroni constant. We choose µb as the initial scale for the
evolution equation, setting µi =

√
ζi = µb.

For the final scale, we use the energy scale of the process, setting µf =
√
ζf = Q.

Once the initial and final scales for the evolution are set, we can compute the different
perturbative parts of the TMDs order by order in the strong coupling constant αs. The
perturbative expansions of the matching function Cab, and of the anomalous dimen-
sions K, γK , and γF , are reported in ref [3].

When computing the perturbative part of the TMDs, as bT increases, the scale µb

decreases (as seen in equation (2.52)), eventually reaching the Landau pole at ΛQCD. As
µb approaches ΛQCD, αs(µb) becomes larger and larger, making it impossible to perform
a perturbative expansion of C and K. To avoid this problem, we set a maximum value
for bT beyond which the perturbative expansions of K and C are no longer valid:

bT,max = 2e−γE ≈ 1.123 GeV−1 , (2.53)

note that this is the choice made in MAPTMD22 and PV19, but other choices are
available. To ensure that µb does not exceed the energy scale of the process Q, we also
set a minimum value:

24



CHAPTER 2. FROM PARTON MODEL TO TMDS

Figure 2.11: Functional form of b∗ at Q = 3.2 GeV

bT,min =
2e−γE

Q
. (2.54)

In order to avoid the large and small bT regions, we then replace the parameter bT in
equation (2.50) with a new parameter b∗(bT ) (figure 2.11), which is constrained between
bT,min and bT,max by construction:

b∗(bT ) = bT,max

1− e
−
(

bT
bT,max

)4

1− e
−
(

bT
bT,min

)4


1
4

. (2.55)

Figure 2.11 shows the asymptotic behavior of b∗, which approaches bT,max as bT → ∞
and bT,min as bT → 0.

Using b∗ instead of bT , we obtain a TMD Fourier transform f̂a
1 (x, b∗;µf , ζf ) that is

confined in the perturbative region of bT . We can then rewrite the TMD in terms of
this perturbative-TMD, obtaining:

f̂a
1 (x, b

2
T ;µf , ζf ) =

[
f̂a
1 (x, b

2
T ;µf , ζf )

f̂a
1 (x, b∗;µf , ζf )

]
f̂a
1 (x, b∗;µf , ζf ) ≡ f1NP (x, b

2
T ; ζf )f̂

a
1 (x, b∗;µf , ζf ) .

(2.56)
In this way, we isolate the non-perturbative component f1NP , which dominates at large
values of bT and can be determined through fits to experimental data. By inserting
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equation (2.56) into equation (2.51), we obtain the non-perturbative corrections to the
TMD,

f̂a
1 (x, b

2
T ;µf , ζf ) = [C ⊗ f1](x, b∗;µb∗ , µ

2
b∗) exp

[∫ µf

µb∗

dµ

µ
γ(µ, ζf )

]
(
ζf
µ2
b∗

)K
2
(b∗,µb∗ )

f1NP (x, b
2
T ; ζf , Q0) . (2.57)

In equation (2.57), the Collins-Soper kernel K is also modified to account for non-
perturbative corrections:

K(|bT |, µbT ) = K(b∗, µb∗) + gK(b
2
T ) . (2.58)

The functional forms of the corrections f1NP and gK(b2T ) are arbitrary and will be dis-
cussed in the next chapter. A similar reasoning applies to the Fragmentation Function
Da→h

1 , where a non-perturbative correction Da→h
1NP (z, b

2
T ; ζf , Q0) can be introduced.

The goal of the fitting frameworks that we will analyze is to capture the non-
perturbative parts of the TMD PDFs and FFs. In the next chapter, we will discuss
how f1NP (x, b

2
T ; ζf , Q0) and Da→h

1NP (z, b
2
T ; ζf , Q0) are parameterized, and examine the

structures of the MAPTMD22 and PV19 frameworks and how they are used to infer
TMDs from experimental data.
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Chapter 3

TMD Extraction from Experimental
Data

This chapter discusses the methodology used by the frameworks MAPTMD22 and
PV19 to extract the non-perturbative part of the TMDs from experimental measure-
ments of Drell-Yan and SIDIS cross sections. We will begin by defining inverse problems
in general and then explaining how the extraction of TMDs from experimental data
relates to these problems.

3.1 The Inverse Problem
Determining TMDs from experimental data is an example of an inverse problem: the
challenge of finding the input to a given model based on a set of observations [5]. In our
case, the model is the factorized cross section1, the observations are the experimental
measurements, and the inputs are the non-perturbative TMDs. Let’s now define the
inverse problem.

Suppose we have a known function G that takes an unknown input u ∈ X and
produces a measurable output r ∈ R, such that

r = G(u) . (3.1)

Here, G is a forward map, X is the space of inputs and R is the space of results:

G : X → R . (3.2)

In a practical case, we have a finite set of data points y ∈ RNdata sampled from r, with
added experimental noise η:

y = G(u) + η (3.3)

We assume η is Gaussian-distributed noise that causes the measured data points y
to fluctuate around the true (but unknown) values G(u). Here, G(u) differs from

1In literature one can find the "model" defined as the parametrization we use to describe the
non-perturbative TMDs. In this work we follow Ref. [5], where the parametrization is defined as the
"input".
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G(u) = r ∈ R, mapping the continuous model input u into a finite set of experimental
values y0 = G(u) ∈ RNdata . To find the underlying input u, we construct a parametriza-
tion that can capture the functional form of u using a finite set of parameters, composed
by a number Nmodel of parameters. In this context, u ∈ RNmodel .

To summarize, in a practical scenario, we have three key components:

• A dataset D ∈ RNdata , which can be represented as a point in a real space of
dimension Ndata. The dataset is measured and thus subject to experimental
uncertainty.

• An input u, which is parametrized using a set of Nmodel parameters. Once
parametrized, each possible input can be identified with a point in the space
RNmodel .

• A known model G : RNmodel → RNdata that maps the input u to the dataset D.

The inverse problem can be solved finding the best possible input, given the model,
the dataset, and the parametrization. The best input, denoted as u∗, is the one that
maximizes the likelihood of obtaining the dataset D = {yi}, given the model G(u).
Since the maximum likelihood corresponds to the minimum χ2 between the experi-
mental data D and the predictions G(u), we use an optimization algorithm to find the
minimum χ2 in the parameter space. The algorithm searches for the point in RNmodel

that minimizes χ2, identifying the set of parameters for the input u, that define the
best model u∗:

u∗ = argmin
u∈X

χ2[G(u),D] . (3.4)

We will now explore the three components (data, model, and input) in the two fit-
ting frameworks under consideration, MAPTMD22 and PV19. The main differences
between these frameworks lie in the datasets and in the parametrization of the non-
perturbative part of the TMDs.

3.2 Experimental Datasets
The datasets included in the two frameworks for determining the TMDs differ in the
number of data points (with MAPTMD22 having a significantly larger dataset) and
the processes analyzed. MAPTMD22 uses both Drell-Yan and SIDIS experiments,
with a total of 2032 data points (485 for Drell-Yan and 1547 for SIDIS); PV19, on the
other hand, includes only Drell-Yan measurements, with a total of 353 data points.
Tables 3.1, 3.2, and 3.3 show the experimental measurements included in PV19 and
MAPTMD22. The dataset used in PV19 is a subset of the MAPTMD22 dataset.
Specifically, the MAPTMD22 dataset includes the entire PV19 dataset and adds Drell-
Yan data from the experiments E772, PHENIX, and ATLAS 13 TeV, along with SIDIS
data from the HERMES and COMPASS experiments.

The kinematic region covered by the MAPTMD22 dataset in the (x,Q2) space is
shown in figure 3.1.
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Experiment Ndat Observable
√
s [GeV] Q [GeV] y or xF Lepton cuts Ref.

E605 50 Ed3σ/d3q 38.8 7 - 18 xF = 0.1 - [23]

E288 200 GeV 30 Ed3σ/d3q 19.4 4 - 9 y = 0.40 - [24]

E288 300 GeV 39 Ed3σ/d3q 23.8 4 - 12 y = 0.21 - [24]

E288 400 GeV 61 Ed3σ/d3q 27.4 5 - 14 y = 0.03 - [24]

STAR 510 7 dσ/dqT 510 73 - 114 |y| < 1
pTℓ > 25 GeV

|ηℓ| < 1
-

CDF Run I 25 dσ/dqT 1800 66 - 116 Inclusive - [25]

CDF Run II 26 dσ/dqT 1960 66 - 116 Inclusive - [26]

D0 Run I 12 dσ/dqT 1800 75 - 105 Inclusive - [27]

D0 Run II 5 (1/σ)dσ/dqT 1960 70 - 110 Inclusive - [28]

D0 Run II (µ) 3 (1/σ)dσ/dqT 1960 65 - 115 |y| < 1.7
pTℓ > 15 GeV
|ηℓ| < 1.7

[29]

LHCb 7 TeV 7 dσ/dqT 7000 60 - 120 2 < y < 4.5
pTℓ > 20 GeV
2 < ηℓ < 4.5

[30]

LHCb 8 TeV 7 dσ/dqT 8000 60 - 120 2 < y < 4.5
pTℓ > 20 GeV
2 < ηℓ < 4.5

[31]

LHCb 13 TeV 7 dσ/dqT 13000 60 - 120 2 < y < 4.5
pTℓ > 20 GeV
2 < ηℓ < 4.5

[32]

CMS 7 TeV 4 (1/σ)dσ/dqT 7000 60 - 120 |y| < 2.1
pTℓ > 20 GeV
|ηℓ| < 2.1

[33]

CMS 8 TeV 4 (1/σ)dσ/dqT 8000 60 - 120 |y| < 2.1
pTℓ > 15 GeV
|ηℓ| < 2.1

[34]

ATLAS 7 TeV
6
6
6

(1/σ)dσ/dqT 7000 66 - 116
|y| < 1

1 < |y| < 2
2 < |y| < 2.4

pTℓ > 20 GeV
|ηℓ| < 2.4

[35]

ATLAS 8 TeV
on-peak

6
6
6
6
6
6

(1/σ)dσ/dqT 8000 66 - 116

|y| < 0.4
0.4 < |y| < 0.8
0.8 < |y| < 1.2
1.2 < |y| < 1.6
1.6 < |y| < 2
2 < |y| < 2.4

pTℓ > 20 GeV
|ηℓ| < 2.4

[36]

ATLAS 8 TeV
off-peak

4
8 (1/σ)dσ/dqT 8000 46 - 66

116 - 150 |y| < 2.4
pTℓ > 20 GeV
|ηℓ| < 2.4

[36]

Total 353 - - - - - -

Table 3.1: Drell-Yan measurements included in PV19, table from [3]
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Experiment Ndat Observable
√
s [GeV] Q [GeV] y or xF Lepton cuts Ref.

E605 50 Ed3σ/d3q 38.8 7 - 18 xF = 0.1 - [23]

E772 53 Ed3σ/d3q 38.8 5 - 15 0.1 < xF < 0.3 - [37]

E288 200 GeV 30 Ed3σ/d3q 19.4 4 - 9 y = 0.40 - [24]

E288 300 GeV 39 Ed3σ/d3q 23.8 4 - 12 y = 0.21 - [24]

E288 400 GeV 61 Ed3σ/d3q 27.4 5 - 14 y = 0.03 - [24]

STAR 510 7 dσ/d|qT | 510 73 - 114 |y| < 1
pTℓ > 25 GeV

|ηℓ| < 1
-

PHENIX200 2 dσ/d|qT | 200 4.8 - 8.2 1.2 < y < 2.2 - [38]

CDF Run I 25 dσ/d|qT | 1800 66 - 116 Inclusive - [25]

CDF Run II 26 dσ/d|qT | 1960 66 - 116 Inclusive - [26]

D0 Run I 12 dσ/d|qT | 1800 75 - 105 Inclusive - [27]

D0 Run II 5 (1/σ)dσ/d|qT | 1960 70 - 110 Inclusive - [28]

D0 Run II (µ) 3 (1/σ)dσ/d|qT | 1960 65 - 115 |y| < 1.7
pTℓ > 15 GeV
|ηℓ| < 1.7

[29]

LHCb 7 TeV 7 dσ/d|qT | 7000 60 - 120 2 < y < 4.5
pTℓ > 20 GeV
2 < ηℓ < 4.5

[30]

LHCb 8 TeV 7 dσ/d|qT | 8000 60 - 120 2 < y < 4.5
pTℓ > 20 GeV
2 < ηℓ < 4.5

[31]

LHCb 13 TeV 7 dσ/d|qT | 13000 60 - 120 2 < y < 4.5
pTℓ > 20 GeV
2 < ηℓ < 4.5

[32]

CMS 7 TeV 4 (1/σ)dσ/d|qT | 7000 60 - 120 |y| < 2.1
pTℓ > 20 GeV
|ηℓ| < 2.1

[33]

CMS 8 TeV 4 (1/σ)dσ/d|qT | 8000 60 - 120 |y| < 2.1
pTℓ > 15 GeV
|ηℓ| < 2.1

[34]

CMS 13 TeV 70 dσ/d|qT | 13000 76 - 106

|y| < 0.4
0.4 < |y| < 0.8
0.8 < |y| < 1.2
1.2 < |y| < 1.6
1.6 < |y| < 2.4

pTℓ > 25 GeV
|ηℓ| < 2.4

[39]

ATLAS 7 TeV
6
6
6

(1/σ)dσ/d|qT | 7000 66 - 116
|y| < 1

1 < |y| < 2
2 < |y| < 2.4

pTℓ > 20 GeV
|ηℓ| < 2.4

[35]

ATLAS 8 TeV
on-peak

6
6
6
6
6
6

(1/σ)dσ/d|qT | 8000 66 - 116

|y| < 0.4
0.4 < |y| < 0.8
0.8 < |y| < 1.2
1.2 < |y| < 1.6
1.6 < |y| < 2
2 < |y| < 2.4

pTℓ > 20 GeV
|ηℓ| < 2.4

[36]

ATLAS 8 TeV
off-peak

4
8 (1/σ)dσ/d|qT | 8000 46 - 66

116 - 150 |y| < 2.4
pTℓ > 20 GeV
|ηℓ| < 2.4

[36]

ATLAS 13 TeV 6 (1/σ)dσ/d|qT | 13000 66 - 116 |y| < 2.5
pTℓ > 27 GeV
|ηℓ| < 2.5

[40]

Total 484

Table 3.2: Drell-Yan measurements included in MAPTMD22, table from [4] 30
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Experiment Ndat Observable Channels Q [GeV] x z Phase space cuts Ref.

HERMES 344 M(x, z, |PhT |, Q)

p → π+

p → π−

p → K+

p → K−

d → π+

d → π−

d → K+

d → K−

1 -
√
15

0.023 < x < 0.6
(6 bins)

0.1 < z < 1.1
(8 bins)

W 2 > 10 GeV2

0.1 < y < 0.85
[41]

COMPASS 1203 M(x, z, P 2
hT , Q)

d → h+

d → h−
1 - 9

(5 bins)
0.003 < x < 0.4

(8 bins)
0.2 < z < 0.8

(4 bins)
W 2 > 25 GeV2

0.1 < y < 0.9
[42]

Total 1547

Table 3.3: SIDIS measurements included in MAPTMD22, table from [4]

Figure 3.1: Kinematic coverage in (x,Q2) space of the dataset used in MAPTMD22,
image from [4]

When examining tables 3.1, 3.2, and 3.3, it is noticeable that the physical observ-
ables measured are not identical for each experiment, nor do they directly correspond
to the cross sections for Drell-Yan and SIDIS as defined in equations (2.31) and (2.39).
The data preprocessing required to effectively utilize these datasets is discussed in
Refs. [3, 4]. Kinematic cuts have been applied to the Drell-Yan datasets to ensure the
condition qT ≪ Q is met: in both frameworks, only data points satisfying the condition
qT < 0.2Q are considered. For the SIDIS dataset included in MAPTMD22, a cut on
the virtuality Q is applied, imposing Q > 1.4 GeV to satisfy the condition Q≫ ΛQCD.
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Additionally, a restriction of 0.2 < z < 0.7 is imposed to restrict the measurements
on SIDIS in the current fragmentation region, along with a cut on |PhT |, which is de-
pendent on the values of Q and z, and comes from the implementation of the qT ≪ Q
condition. The choice made in Ref. [4] was:

|PhT | < min[min[0.2Q, 0.5 z Q] + 0.3GeV, z Q] .

The number of data points reported in the tables above accounts only for those points
that survived the kinematic cuts. According to the definition of the inverse problem,
we thus have a dataset for PV19, DPV 19 ∈ R353, and a dataset for MAPTMD22,
DMAP22 ∈ R2032.

3.3 PV19 and MAPTMD22 Models
In both frameworks, the model G is represented by the factorized cross sections intro-
duced in equations (2.31) and (2.39), using the structure functions in bT space described
by equations (2.35) and (2.43). Since the experiments cover different values of Q (as
shown in figure 3.1), the model must include evolution equations for the TMDs: we
use the standard evolution equations (see section 2.5).

Here, we briefly discuss the models used in PV19, GPV 19, and MAPTMD22, GMAP22.
Notably, the definition of the Drell-Yan cross section is identical in both frameworks,
meaning that the MAPTMD22 model, GMAP22, contains the PV19 model (the part of
the model used for Drell-Yan data is the same) and adds new information for SIDIS
data. We can conveniently divide the MAPTMD22 model into two sub-models:

GMAP22 =

{
GMAP22, SIDIS for SIDIS data
GMAP22, DY for Drell-Yan data,

(3.5)

and identify
GMAP22, DY = GPV 19. (3.6)

For the practical solution of the inverse problem, we need to explicitly compute each
perturbative contribution to the factorized cross sections up to a specific order. Despite
having the same definition for the Drell-Yan cross section, the models GMAP22, DY and
GPV19 could differ if different orders were used in the perturbative approximation of the
Drell-Yan cross section in the two frameworks. However, this is not the case here, as
both frameworks use calculations of the same accuracy for each ingredient in the Drell-
Yan cross section. Table 3.4 shows the truncation orders in the perturbative expansion
of the ingredients of the factorized SIDIS and Drell-Yan cross sections. The accuracy of
the model depends on the truncation order of each ingredient. In the PV19 framework,
the model GPV19 reaches full N3LL (next-to-next-to-next-to-leading) accuracy. For the
MAPTMD22 framework, the same accuracy is reached for the Drell-Yan cross section,
but the full N3LL accuracy for SIDIS was not achieved due to the absence of extractions
of the collinear FF up to NNLO.

The accuracy of both models, GMAP22 and GPV19, is shown in the fourth row of
table 3.4. Since MAPTMD22 includes the PV19 dataset and model, its accuracy level
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GMAP22, DY (= GPV19) GMAP22, SIDIS H and C K and γF γK PDF and αs evolution FF evolution

NLL NLL 0 1 2 LO LO
N2LL N2LL 1 2 3 NLO NLO
N3LL N3LL− 2 3 4 NNLO NLO
N3LL N3LL 2 3 4 NNLO NNLO

Table 3.4: Levels of accuracy in the models, depending on the truncation orders in
the perturbative content of the factorized cross sections. The accuracy reached by
GMAP22, DY and GPV19 is N3LL; the accuracy of GMAP22, SIDIS is N3LL−

is referred to as N3LL−, indicating that it is fully N3LL for the Drell-Yan part but
N3LL− for the SIDIS part.

Up to this point, we have introduced the datasets and the models used in the two
frameworks. We mentioned that the model connecting the Drell-Yan cross section
with experimental data is the same in both frameworks. What differs between the
frameworks is the input parametrization, which we will now discuss.

3.4 Input Parametrization
The input u to the model is the part we aim to infer from experimental data by
solving the inverse problem. In our frameworks, the input is represented by the non-
perturbative TMDs entering in the factorized cross sections. However, we cannot di-
rectly identify the input with the non-perturbative TMD PDF (f1NP (x, b

2
T ; ζf , Q0)) and

FF (Da→h
1NP (z, b

2
T ; ζf , Q0)), because the factorized cross sections do not depend straight-

forwardly on these non-perturbative TMDs. Specifically, the Drell-Yan cross section
depends on two TMD PDFs (equation (2.39)),and the SIDIS cross section depends on
a TMD PDF and a TMD FF (equation (2.31)).

The procedure to define the input to the models GMAP22 and GPV19 involves two
steps:

• Construct a parametrization that captures the functional form of the non-perturbative
TMDs, f1NP (x, b

2
T ; ζf , Q0) and Da→h

1NP (z, b
2
T ; ζf , Q0).

• Identify the inputs to the models with the set of parameters used to parametrize
all the non-perturbative TMDs in the models. In PV19, the parametrization
involves 9 free parameters, while MAPTMD22 involves a total of 21 free param-
eters.

We can then define two inputs, one for each framework:

uMAP22 ∈ R21 (3.7)
uPV19 ∈ R9 . (3.8)

Before discussing the explicit MAPTMD22 and PV19 parameterizations, let’s clarify
two aspects of the non-perturbative TMDs. First, the separation between the perturba-
tive and non-perturbative parts of the TMDs is arbitrary and depends on the choice of
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b∗; only the combination in equation (2.57) is meaningful. That is, the separation of the
input from the model depends on arbitrary choices, while the combination of the two,
G(u), has physical meaning. Secondly, since we cannot predict the non-perturbative
components using perturbation theory, the parametrization of the non-perturbative
TMDs is arbitrary, and different choices for the parametrization could lead to equiva-
lent results in determining the functional form of the TMDs. The physical constraint
used to characterize TMDs is that the non-perturbative contributions must approach
one as bT approaches zero, that means

f1NP , D1NP → 1 +O
(

1

Qp

)
for bT → 0 . (3.9)

Table 3.5 summarizes the parameters defining the two inputs, uMAP22 and uPV19, with
the functional forms of the inputs described in the following sections.

MAPTMD22 Input Parametrization

In the MAPTMD22 framework, both unpolarized TMD PDFs and FFs are parametrized,
using a total of 21 free parameters. One parameter is used for the non-perturbative
part of the Collins-Soper kernel,

gK(b
2
T ) = −g22

b2T
2

, (3.10)

this defines a common factor, SNP, which enters into the parametrization of both non-
perturbative TMD PDFs and FFs:

SNP(ζ, bT ) = exp

[
−g22

b2T
4
log
( ζ
Q2

0

)]
=

[
ζ

Q2
0

]gK(b2T )/2

. (3.11)

Eleven parameters are associated with the non-perturbative TMD PDF (assumed
to be flavor-independent):

fNP(x, ζ, bT ) = SNP(ζ, bT )

g1(x)e
−g1(x)

b2T
4 + λ2g21B(x)

(
1− g1B(x)

b2T
4

)
e−g1B(x)

b2T
4 + λ22g1C(x)e

−g1C(x)
b2T
4

g1(x) + λ2g21B(x) + λ22g1C(x)
(3.12)

The functions g1(x), g1B(x), and g1C(x) describe the dependence of the widths of the
distribution on x:

g1,1B,1C(x) = N1,1B,1C
xσ1,2,3(1− x)α

2
1,2,3

x̂σ1,2,3(1− x̂)α
2
1,2,3

. (3.13)

The functional form of the non-perturbative TMD FF (also flavor-independent) is
described by nine free parameters:

DNP(z, ζ, bT ) = SNP(ζ, bT )

g3(z)e
−g3(z)

b2T
4z2 + λF

z2
g23B(z)

(
1− g3B(z)

b2T
4z2

)
e−g3B(z)

b2T
4z2

g3(z) +
λF

z2
g23B(z)

(3.14)
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Framework Input Name Parametrized Functions Parameters Total Parameters

MAPTMD22 uMAP22

SNP g2
21

fNP

α1, α2, α3

σ1, σ2, σ3, λ2
N1, N1B, N1C , λ

DNP

N3, N3B, β1
β2, δ1, δ2
γ1, γ2, λF

PV19 uPV 19 fNP

g2, N1, α
σ, λ, N1B

αB, σB, g2B
9

Table 3.5: Inputs parametrization of the MAPTMD22 and PV19 frameworks.

where g3(z) and g3B(z) describe the dependence of the width of the FF distribution on
z:

g3,3B(z) = N3,3B

(zβ1,2 + δ21,2)(1− z)γ
2
1,2

(ẑβ1,2 + δ21,2)(1− ẑ)γ
2
1,2

. (3.15)

In this parametrization, Q2
0 = 1;GeV2, x̂ = 0.1, and ẑ = 0.5 are fixed.

PV19 Input Parametrization

In PV19, only the non-perturbative TMD PDF is parametrized. In this case, f1NP is
also assumed to be flavor-independent and is parametrized using nine free parameters:

fNP(x, ζ, bT ) =

(
1− λ

1 + g1(x)b2T/4
+ λe−g1B(x)b2T /4

)
exp

[
−g2 log

(
ζ

Q2
0

)
b2T/4− g2B log

(
ζ

Q2
0

)
b4T/4

]
, (3.16)

with g1(x) and g1B(x) functions defined as:

g1(x) =
N1

xσ
exp

[
−
ln2
(
x
α

)
2σ2

]
(3.17)

g1B(x) =
N1B

xσB
exp

− ln2
(

x
αB

)
2σ2

B

 . (3.18)

Here, the initial energy scale is set to be Q2
0 = 1 GeV2. The second line in equa-

tion (3.16), corresponds to the SNP contribution defined for equations (3.12) and (3.14),
we do not separated the two terms in the non-perturbative TMD PDF defined in the
PV19 framework, following the definition in Ref. [3].
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3.5 The Fitting Methodology
We have now defined all the inverse problem ingredients (dataset, model, and input)
for the two frameworks. The goal of the analyzed procedures is to find the set of
parameters (input) u∗ that best fits the experimental data D, given the model G. This
task can be done using an optimization algorithm, such as the gradient descent, the
Levenberg-Marquardt, and the MIGRAD algorithms [43, 44]. The utilized optimization
algorithm in the framework depend on the adopted minimizer, in the MAPTMD22 and
PV19 frameworks the choices are Minuit [45] and Ceres [44].

Optimization Process

To explain the workflow of the optimization algorithm, consider the PV19 fitting frame-
work (the optimization process in MAPTMD22 will be the same). The algorithm starts
by considering a random input u(0)PV 19 ∈ R9 (i.e., it starts from a random point in the
parameter space). Using this random set of parameters, together with the model GPV 19,
represented by the Drell-Yan factorized cross section computed at N3LL accuracy, the
predictions G(u(0)) are computed (from now on, we will drop the label PV 19 from u

(0)
PV 19

for conciseness). This produces a predicted dataset D(0)
pred = G(u(0)) ∈ RNdata , with

Ndata = 353 being the number of data points considered in the PV19 analysis. The
predicted dataset D(0)

pred is then compared to the real dataset D using the χ2[D(0)
pred,D]

as a figure of merit. Equation (3.19) represents the χ2 between a predicted dataset
D(n)

pred = G(u(n)) and the real dataset D,

χ2[D(n)
pred,D] =

Ndata∑
i,j

(D(n)
i −Di)C

−1
ij (D(n)

j −Dj) , (3.19)

where D(n)
pred is the dataset predicted in the (n+1)-th step of the optimization algorithm;

D(n)
i and Di are the i-th points in the predicted and real datasets, respectively, and Cij

is the Ndata ×Ndata covariance matrix of the real dataset.
The structure of the covariance matrix and its relationship with the experimental

errors of the dataset is discussed in section 4.7.
Once the χ2 for the first set of parameters, u(0), is computed, the optimization

algorithm explores the χ2 around the point u(0) and takes a step in the parameter
space in the direction in which the χ2 function decreases most rapidly [43], arriving
at a new point in the parameter space, u(1). The same process is then repeated, and
a new point u(2) with a smaller χ2 is found, and so on. If the optimization algorithm
works properly, at each step the χ2 decreases2,

χ2[D(n+1)
pred ,D] < χ2[D(n)

pred,D] , (3.20)

meaning the algorithm finds a better set of parameters at each step. This process
continues until a stopping criterion is reached. The stopping criterion used in the

2This is not necessarily true for each step, but if we take a large number of steps, we can affirm
that the mean behavior is a decreasing χ2 in the parameter space.
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TMD
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QCD
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algorithm

no

yes
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Figure 3.2: Flowchart of the optimization process in the analyzed fitting frameworks.
In this chart, the model G is represented by the label "QCD theory", the input u(n)
is represented by the "TMD parametrization", and the predicted dataset G(u(n)) is
represented by "theoretical predictions".

MAP frameworks is
χ2[D(n+1)

pred ,D]− χ2[D(n)
pred,D]

χ2[D(n+1)
pred ,D]

< 10−5 . (3.21)

When the criterion in equation (3.21) is reached, the algorithm stops, and we iden-
tify the set of parameters u(n+1) as the solution to the inverse problem u∗,

u(n+1) = u∗ = argmin
u∈RNdata

χ2[G(u),D] . (3.22)

The flowchart of the optimization process is shown in figure 3.2.
When a solution u∗ to the inverse problem is found, we cannot be sure that this is

the correct solution. Two problems could arise:

• The algorithm stops at a local minimum of the χ2, missing the global minimum.

• The algorithm overfits the data, meaning it fits the statistical noise η of the data.

Due to these problems, a small variation in the dataset or in the starting point
u(0) can lead to a large variation in the solution. To overcome this issue and quantify
the uncertainty in the solution to the inverse problem, the fitting frameworks use the
bootstrap method.
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Bootstrap Approach to Inverse Problem

The bootstrap approach involves resampling the dataset D multiple times, obtaining
a set of Monte Carlo replicas of the dataset, and repeating the workflow described
in figure 3.2 for each replica D(k) (equation (3.25)), starting from a different point in
the parameter space each time. The original experimental dataset is composed of a
set of Ndata points. Each point yi is shifted from the point in the real distribution,
y0i = G(ureal), by an experimental noise ηi. Here, the notation yi = Di refers to a single
data point, and ureal is the real, unknown input. The single point reads

yi = y0i + ηi . (3.23)

It is important to note that we do not know the point y0i and the fluctuation ηi; we
only know their combination yi. The full experimental dataset is

D = y0 + η , (3.24)

where y0 ∈ RNdata is the vector containing all the non-fluctuated points, and η ∈ RNdata

is the vector containing all the unknown fluctuations.

Starting from the experimental dataset D, we construct a number Nrep of Monte
Carlo replicas, adding another layer of fluctuation, ϵ. The k-th replica will have the
form:

D(k) = y0 + η + ϵ(k) . (3.25)

The replicas are produced using the Cholesky decomposition of the covariance matrix.
This method is discussed in detail in section 4.8.

Having a set of Nrep replicas, we can solve the inverse problem for each replica. The
solution to the k-th replica will be:

u(k)∗ = argmin
u(k)∈RNmodel

χ2[G(u(k)),D(k)] . (3.26)

We thus obtain a set of Nrep solutions u
(k)
∗ . To determine the value of the non-

perturbative TMDs in a kinematic point (x, bT , ζ), we average over all the TMDs
obtained by inserting the sets of parameters u(k)∗ in the parametrization used in the
framework (referred to as fNP (u

(k)
∗ ) and DNP (u

(k)
∗ )) in that kinematic point:

fNP,∗(x, bT , ζ) =
1

Nrep + 1

Nrep∑
k=0

fNP (u
(k)
∗ ) (3.27)

DNP,∗(x, bT , ζ) =
1

Nrep + 1

Nrep∑
k=0

DNP (u
(k)
∗ ) , (3.28)

where we consider u(0)∗ the solution to the real (non-fluctuated) dataset. We omitted the
dependence of the fitted TMDs on x, bT , and ζ for conciseness. This method removes
the dependence of the final solutions fNP,∗ and DNP,∗ from the data fluctuation and
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from the starting point in the parameter space, providing an uncertainty quantification
for the final solution. In particular, to quantify the TMDs total uncertainty, we use
each predicted set of parameters u(k)∗ to reconstruct a number Nrep of non-perturbative
TMDs (fNP (u

(k)
∗ )), with k = {1...Nrep}), we then compute the standard deviation of

the set {fNP (u
(k)
∗ )},

σ(x, bT , ζ) =

√
⟨(f (k)

NP,∗ − ⟨fNP,∗⟩)2⟩ =

√√√√ 1

Nrep

Nrep∑
k=0

(f
(k)
NP,∗ − ⟨fNP,∗⟩)2 . (3.29)

We assume the TMDs to be Gaussian distributed around the central value fNP,∗(x, bT , ζ);
the same reasoning applies to the uncertainty determination of the TMD FF,DNP,∗(x, bT , ζ).
In chapter 5, we will refer to fNP,∗ and DNP,∗ as the predicted TMDs, and the labels
will be changed to fNP,pred and DNP,pred for consistency with the plots labels.

Weaknesses of the Fitting Frameworks

Despite providing a solution to the inverse problem (equations (3.27), (3.28)) and
a quantitative estimation of the uncertainty of this solution (equation (3.29)), there
remain some unanswered questions regarding the frameworks we are considering. In
particular, there are three questions that the current methodologies are not able to
address:

1. We cannot be sure that the methodologies can reproduce the real input (ureal)
that we are searching for, nor can we quantify how far the predicted TMD fNP,∗ is
from the real solution fNP (ureal) (in our context, the real solution is represented
by the actual functional form of the TMDs constructed with the real input ureal).

2. We cannot estimate the contribution of interpolation/extrapolation, functional,
and experimental uncertainties3 to the total uncertainty.

3. We don’t know if the uncertainties declared by the methodologies is faithful to
the real uncertainties of the TMDs.

The main goal of this thesis is to answer these questions for the MAPTMD22 and PV19
methodologies by implementing the procedure of closure testing in the frameworks,
which we will discuss in the next chapter.

3These three types of uncertainty are discussed in the next chapter.
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Chapter 4

Closure Testing

In this chapter, we discuss the theory of closure testing and the implementation of this
feature within the MAP fitting frameworks. The results obtained for the two analyzed
frameworks, MAPTMD22 and PV19, will be presented in the next chapter.

4.1 Closure Tests
As discussed in section 3.5, when the optimization algorithm searches for the best input
parameters, it compares the real dataset D with the predicted dataset Dpred generated
using a set of parameters u and a theoretical model G: Dpred = G(u). Unfortunately,
since Dpred does not trivially depend on the optimal input u∗ (i.e., the model G is
complex), knowing how close the predictions Dpred are to the real values D is not
enough to determine how close the predicted input u∗ is to the true input ureal. In
other words, comparing the real dataset with the predicted one does not tell us how
close the predicted functional form of the TMDs are to the real TMDs.

Closure testing is a statistical method that allows us to directly compare u∗ with
ureal, providing a measure of how well the methodology reproduces the true underlying
law that we are trying to uncover [5, 6].

To perform closure testing, we choose an input to act as the real input to the
model1. For instance, we can set the predicted parameters from MAPTMD22 as the
real input, u∗,MAP22 = ureal, but the choice of ureal is arbitrary and in principle does not
need to be similar to a functional form inferred from experimental data. Using this
chosen input ureal, we generate a set of pseudo-data,

DL0 = G(ureal) , (4.1)

where the notation L0 indicates "Level 0", meaning that the dataset DL0 is distributed
without any statistical noise. An example of L0 data is shown in figure 4.1, where
the data points of a measured physical observable, the cross section d σ

d |qT | , are perfectly

1This is not the actual underlying law, which is unknown, but rather an artificial "real" law
represented by a chosen set of parameters.
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Figure 4.1: L0 data for a physical observable d σ
d |qT | . The points are perfectly distributed

on the theoretical functional form of the observable.

aligned with the theoretical functional form of the observable, which was predicted
using ureal.

Unlike an experimental dataset (see equation (3.25)), where data points are subject
to fluctuations and we do not know the non-fluctuated values (due to the unknown
underlying law), the L0 dataset is noise-free. We can then add controlled fluctuations
to the L0 pseudo-data. By introducing Gaussian-distributed fluctuations η, we obtain
the so called Level 1 (L1) dataset,

DL1 = G(ureal) + η = DL0 + η , (4.2)

which simulates a real experimental dataset in which each data is fluctuated around a
central point. The key difference between a real dataset and the L1 dataset is that in
the L1 dataset, the fluctuation is controlled, meaning we know both the central values
(that correspond to the non-fluctuated dataset, DL0) and the size of the fluctuations.
To define these fluctuations, η, consider the point i in the dataset DL0, denoted as yL0,i,
which has an associated error σi. For simplicity, we consider σi as a single uncorrelated
uncertainty; the complete structure of the uncertainties associated to each data-point
will be discussed in section 4.8. The fluctuation of the i-th point in the L1 dataset is
a random number drawn from a normal distribution centered at zero with a standard
deviation of σi,

ηi = N (0, σi) . (4.3)

In equation (4.2), η represents the vector containing all the fluctuations ηi. Figure 4.2
illustrates the L1 dataset for the physical observable d σ

d |qT | . The L1 data points (shown
in yellow) are generated by adding Gaussian fluctuations to the corresponding L0 points
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Figure 4.2: L1 data for a physical observable d σ
d |qT | (in yellow). The white points

represent the L0 data, the yellow points are the fluctuated data.

(shown in white).

A third layer of Gaussian fluctuations, ϵ, can be added to generate the Level 2
(L2) dataset. Similar to η, ϵ is defined as the vector of fluctuations ϵi = N (0, σi). To
perform an L2 closure test, a large number Nrep of L2 fluctuations are generated. The
k-the L2 dataset is constructed by adding the fluctuation ϵ(k) to the L1 dataset,

D(k)
L2 = G(ureal) + η + ϵ(k) = DL1 + ϵ(k) . (4.4)

The L2 fluctuations are analogous to those added to a real dataset during resampling
with Monte Carlo replicas, as done in the bootstrap approach to inverse problems,
which is used in the MAPTMD22 and PV19 frameworks. The L2 dataset thus consists
of an ensemble of Nrep fluctuated datasets:

DL2 = {D(k)
L2 } . (4.5)

Following the previous example, the L2 dataset (figure 4.3) for the cross section d σ
d |qT |

is obtained by generating Nrep Monte Carlo replicas of the L1 dataset, yielding a
Gaussian-distributed set of L2 data points around each original L1 point. Table 4.1
summarizes the fluctuation levels used in closure testing. The errors associated with
the L0, L1, and L2 pseudo-data are the same experimental errors of the real values in
the original dataset D.

Once the datasets DL0, DL1, and DL2 are generated, the final step of the closure
test is to apply the fitting framework under evaluation to these artificially generated
datasets. These three datasets allow us to operate in a controlled environment, where
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Figure 4.3: L2 data for d σ
d |qT | . The L2 dataset is composed of Nrep Monte Carlo replicas

of each L1 data-point.

Level Dataset Structure Corresponding to

Level 0 (L0) G(ureal) dataset without experimental error

Level 1 (L1) G(ureal) + η real dataset with noise

Level 2 (L2) G(ureal) + η + ϵ Monte Carlo replica of a real dataset

Table 4.1: Levels of data fluctuations in closure testing

both the perfectly distributed central points, derived from the known input ureal, and
the fluctuations applied to them are fully understood. This setup enables us to carefully
examine the robustness of the fitting framework by comparing the fits to the L0, L1,
and L2 pseudo-data with the known input used to generate those data.

For each testing level, we generate a large number of replicas of the dataset and fit
them, starting from various points in the parameter space. From the fit of the k-th
replica, we obtain the predicted input uk∗, which represents the set of parameters used
to reconstruct the functional form of the non-perturbative TMDs. The fitted TMDs
are calculated by averaging over the replicas. For instance, the fitted TMD PDF is
computed as

⟨f1NP,∗⟩ =
1

Nrep

Nrep∑
k=1

fk
1NP,∗ , (4.6)

where fk
1NP,∗ is the predicted TMD PDF from the fit of the k-th replica. The variance

of f1NP,∗ is given by
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σ2 = ⟨(f (k)
1NP,∗ − ⟨f1NP,∗⟩)2⟩ =

1

Nrep

Nrep∑
k=1

(f
(k)
1NP,∗ − ⟨f1NP,∗⟩)2 . (4.7)

In equations (4.6) and (4.7), we omitted the dependences on (x, bT , ζ) for conciseness.

Fitting data with different levels of fluctuation (L0, L1, and L2) provides insights
into the flexibility of the methodology and the extent of the uncertainties that it in-
troduces. In the following, we will delve into the details of the information that can be
extracted from each fluctuation level.

4.2 Level 0 Test
A Level 0 closure test involves using the fitting framework to fit the L0 dataset, DL0,
A complete Level 0 closure test consists of repeating the fit on DL0, multiple times,
each time starting the optimization algorithm from a different point in the parameter
space. The Level 0 test allows us to evaluate two key aspects of the framework: the
flexibility of the methodology and the interpolation/extrapolation uncertainty.

Flexibility of the Methodology

When fitting a non-fluctuated dataset, there exists a perfect solution, i.e. a functional
form that exactly interpolates each data point in the dataset, given by G(ureal). If the
methodology applied to the DL0 dataset is capable of finding this perfect solution, the
functional form of the predicted and real input will match,

u∗ = ureal . (4.8)

In this case, the dataset predicted by the methodology,

Dpred = G(u∗) , (4.9)

will coincide with the L0 dataset, DL0 = G(ureal), resulting in

Dpred = DL0 . (4.10)

Consequently, the χ2 between the two datasets (see equation (3.19)) will be zero,

χ2[Dpred,DL0] = 0 . (4.11)

The methodology will pass the L0 closure test if the final χ2[Dpred,DL0] is sufficiently
close to zero. In this analysis, the criterion for success in the L0 test is

χ2[Dpred,DL0] < 10−10 . (4.12)

The L0 test evaluates the flexibility of the methodology. If the methodology is
sufficiently flexible, it can reproduce the functional form of the input parametrization
used to generate the pseudo-data, ureal. Importantly, we compare the functional forms
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of the inputs ureal and u∗, not the parameter values, since the goal of a parametrization
is to capture the functional form of the input. In fact, the same form can be represented
by different parameter sets. Furthermore, it is not necessary for ureal and u∗ to share the
same parametrization. We can test a methodology using a parametrization different
from the one used to generate the pseudo-data. For instance, if we use the PV19
framework to fit data generated using the input u∗,MAP22, and the PV19 methodology is
sufficiently flexible, the functional form predicted with u∗,PV19 will match the functional
form used to generate the data, u∗,MAP22 ensuring the success of the closure test.

Interpolation-Extrapolation Uncertainty

Even though the points in the L0 dataset are perfectly distributed and the χ2 of the
perfect solution is zero, there remains an inherent uncertainty due to the finite na-
ture of the dataset: the interpolation/extrapolation uncertainty. An infinite number of
functional forms can capture the data distribution equally well, interpolating exactly
through all data points and yielding χ2[Dpred,DL0] = 0. This is because the functional
form is not constrained in the intervals between the data points and in regions where
no experimental measurements exist. If the L0 closure test succeeds, meaning the
methodology finds a solution where χ2[Dpred,DL0] < 10−10, and the test is repeated
Ninit times2, using the same dataset and starting each fit from a different point in the
parameter space, we obtain a set of Ninit functional forms that meet the condition
χ2[Dpred,DL0] < 10−10. This set of solutions, {u∗}, can exhibit variation in regions
where no experimental data are available. The functional spread between data points
represents the interpolation uncertainty, while the spread in kinematic regions not cov-
ered by the dataset corresponds to the extrapolation uncertainty. Figure 4.4 illustrates
the functional spread in regions where no experimental information is available.

Thus, a Level 0 closure test can be used to quantify the interpolation/extrapolation
uncertainty, σint, introduced in the TMDs by the fitting framework, which we define as
the standard deviation of the TMDs predicted across the L0 fits (σL0):

σL0(x, bT , ζ) =

√
⟨(f (k),L0

NP,∗ − ⟨fL0
NP,∗⟩)2⟩ , (4.13)

where ⟨fL0
NP,∗⟩ is the mean value of the non-perturbative TMD at (x, bT , ζ), and f

(k)
NP,∗

is the predicted non-perturbative TMD by the fit on the k-th L0 replica. The Level 0
standard deviation corresponds the interpolation/extrapolation uncertainty,

σL0 = σint . (4.14)

Computing σL0 is only possible with a controlled dataset, as the true underlying values
are unknown in a real dataset. By introducing fluctuations into the L0 dataset, we can
further study other contributions to the total uncertainty.

2For the number of replicas of the L0 test, Ninit, the label "init" stays for "initialization"; the
replicas in a L0/L1 test are conceptually different by those in a L2 test, because in the L0 and
L1 tests we do not fluctuate the replicas, instead we use Ninit times the same dataset, where the
initialization of the optimization process changes each time.
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Figure 4.4: Interpolation/extrapolation uncertainty. This uncertainty is associated
with the variability of the functional form in the intervals between data points, as well
as in kinematic regions not covered by the dataset.

4.3 Level 1 Test
To conduct a Level 1 test, we use the fitting framework to fit the fluctuated dataset DL1

(equation (4.2)). Similar to the L0 test, the fit is repeated a number Ninit of times, each
starting from a different point in the parameter space. Since each L1 data fluctuation
is artificially generated following a Gaussian distribution with the standard deviation
of each data point, the mean χ2 between the L0 and L1 datasets approaches 1 as the
number of data points increases. For a large number of data points, we have

⟨χ2[DL1,DL0]⟩ =
1

Ndata
χ2[DL1,DL0] ≈ 1 . (4.15)

Thus, for the L1 dataset, the optimal functional form is not one that perfectly inter-
polates all data points, but one that generates a predicted dataset Dpred satisfying

⟨χ2[Dpred,DL1]⟩ =
1

Ndata
χ2[Dpred,DL1] ≈ 1 . (4.16)

The L1 closure test is considered successful if the χ2 distribution, over a large number
Ninit of tests on the same dataset DL1 starting from different points in the parameter
space, is compatible with 1.

The uncertainty we examine in the L1 test, associated with the choice of functional
form, is called functional uncertainty. In this case, there can be an infinite quantity
of distributions G(u∗) that approximate the fluctuated L1 dataset equally well. The
functional spread of the set of predicted distributions {fNP (u∗)} from a large number of
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Figure 4.5: Functional uncertainty. This uncertainty is associated to the fluctuations
of the dataset and is given by the spread of a large number of predictions. All the
predicted functional forms approximate equivalently well the L1 data distribution.

tests represents the combined interpolation/extrapolation and functional uncertainties
of the TMDs. The Level 1 uncertainty, σ1, defined as

σL1(x, bT , ζ) =

√
⟨(f (k),L1

NP,∗ − ⟨fL1
NP,∗⟩)2⟩ , (4.17)

is the combination of the interpolation/extrapolation and functional uncertainty,

σL1 = σL0 + σfunc , (4.18)

where σfunc is the functional uncertainty. Figure 4.5 shows the functional spread ob-
tained in a Level 1 closure test.

In the L1 test, we are using the same dataset for each of the Ninit fits, without
generating Nrep Monte Carlo replicas of the L1 dataset. As a result, the experimental
error is not propagated into the error of the predicted input fNP,∗ (equation (3.27)). To
explore how experimental error affects the predictions, we move to the Level 2 closure
test.

4.4 Level 2 Test
The Level 2 test provides a quantitative estimate of the total uncertainty in the pre-
dicted TMDs. By comparing the uncertainties from the L1 and L2 tests, one can assess
how the experimental uncertainty propagates into the predicted TMDs. The L2 test
is performed using a dataset consisting of a large number Nrep of Monte Carlo replicas
of the L1 dataset (equation (4.4)). Each replica is fitted using the framework under
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Figure 4.6: The spread of the set of predictions {u∗} in a L2 test. This represent the
total uncertainty.

analysis, with the optimization starting from a different point in the parameter space.
In a L2 test, we both fluctuate the dataset Nrep and start the optimization process in
Ninit different points; in principle, Nrep and Ninit could differ, but in practice we always
set Ninit = Nrep, such that each fit on a different Monte Carlo replica also starts from a
different point in the parameter space. In this case, the spread in the set of predicted
distributions {fNP (u∗)} is larger and we expect it to estimate the total uncertainty,
given by the combination of interpolation/extrapolation, functional, and experimental
uncertainty,

σL2 = σL1 + σexp , (4.19)

where σL2 is the Level 2 standard deviation and σexp is the experimental uncertainty.
The L2 standard deviation is defined as

σL2(x, bT , ζ) =

√
⟨(f (k),L2

NP,∗ − ⟨fL2
NP,∗⟩)2⟩ . (4.20)

The functional spread resulting from the L2 fit is illustrated in figure 4.6.
Table 4.2 summarizes the layers of uncertainty introduced at each testing level. In

each level of testing, the starting point of the optimization algorithm changes for each
replica, but only in the Level 2 test are Monte Carlo fluctuations applied to generate
different replicas.

To summarize, the L0 closure test allows us to assess the flexibility of a method-
ology, while the combination of L0, L1, and L2 tests helps estimate the contributions
of interpolation/extrapolation, functional, and experimental uncertainties to the total
uncertainty of the predicted TMDs by examining the spread of the predicted TMDs
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Level Monte Carlo Fluctuations Uncetainty

Level 0 (L0) no interpolation/extrapolation (int/ext)

Level 1 (L1) no int/ext + functional

Level 2 (L2) yes int/ext + functional + experimental

Table 4.2: Uncertainty layers introduced by each level of fluctuation.

{fNP (u∗)} at each level of testing.

If the uncertainties predicted by the methodology are reliable, we expect the real
functional form ureal (used to generate the pseudo-data) to lie within the one-sigma total
error band of the fitted functional forms u∗ with a probability of around 68% [6]. The
faithfulness of these uncertainties, along with the bias and variance of the predictions,
is evaluated using the so-called multi closure test.

4.5 Multi Closure Tests
In the previous sections, we explained how Level 0, Level 1, and Level 2 closure tests al-
low us to decompose the total TMD uncertainty into contributions from experimental,
functional, and interpolation/extrapolation uncertainties. Here, we introduce multi
closure tests to estimate the bias and variance of the fitted TMDs, along with two
quantitative estimators of the framework’s robustness: the bias-variance ratio (Rbv)
and the quantile estimator (ξnσ).

A multi closure test involves performing a large number of fits Nfit, where each fit
consists of an ensemble of Nrep Monte Carlo replicas (L2 fluctuations) of a Level 1
pseudo-dataset. In this process, we start by selecting a "real" input ureal to generate
the L0 dataset. We then create Nfit Monte Carlo replicas of the L0 dataset, producing
a set of Nfit L1 datasets. For each L1 dataset, we generate Nrep Monte Carlo replicas,
yielding a set of Level 2 fluctuated datasets.

Model Error

Consider a single fit consisting of Nrep replicas of an L1 dataset DL1. The model error
E (k) for a single replica is defined as the χ2 between the model predictions G(u(k)∗ ) and
the distribution of the L1 data points DL1,

E (k) =
1

Ndat
(G(u(k)∗ )−DL1)

T C−1
L1 (G(u

(k)
∗ )−DL1) , (4.21)

where (G(u(k)∗ ) − DL1) is the vector of distances between predictions and their corre-
sponding data points, and CL1 is the covariance matrix of the L1 dataset, equivalent
to the covariance matrix C of the real dataset D.

We compute the model error of the fit by averaging over all the replicas,
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Efit = E{u∗}[E (k)] =
1

Nrep

Nrep∑
k=1

E (k) . (4.22)

Equation (4.22) can be used to evaluate the error of a fit on real experimental data
by replacing DL1 with D, as both datasets exhibit the same level of fluctuation (L1).
However, using the L1 pseudo-data enables further decomposition of equation (4.22).
Since we know the L0 values DL0 = G(ureal) from which the L1 dataset is derived, we
can express

(G(u(k)∗ )−DL1) = (G(u(k)∗ )−DL0) + (DL0 −DL1) , (4.23)

resulting in the model error of the fit as

Efit =
1

Ndat

{
E{u∗}[(G(u(k)∗ )−DL0)

T C−1 (G(u(k)∗ )−DL0)]+

+ E{u∗}[(DL0 −DL1)
T C−1 (DL0 −DL1)]+

+2E{u∗}[(G(u(k)∗ )−DL0)
T C−1 (DL0 −DL1)]

}
. (4.24)

The second term of this equation represents the shift between the L0 and L1 datasets,
which remains constant across replicas. The third term is a cross term, which vanishes
when averaged across a large number of replicas. The first term in equation (4.25),
E{u∗}[(G(u

(k)
∗ )−DL0)

T C−1 (G(u(k)∗ )−DL0)], can be further decomposed by introducing
a vector representing the average of model predictions across replicas, E{u∗}[G(u

(k)
∗ )],

leading to

E{u∗}[(G(u(k)∗ )−DL0)
T C−1 (G(u(k)∗ )−DL0)] =

= E{u∗}
[
(G(u(k)∗ )− E{u∗}[G(u(k)∗ )])T C−1 (G(u(k)∗ )− E{u∗}[G(u(k)∗ )])

]
+

+
(
(E{u∗}[G(u(k)∗ )]−DL0)

T C−1 (E{u∗}[G(u(k)∗ )]−DL1)
)

, (4.25)

where we omitted the cross term, which goes to zero when averaging across the replicas.
The average across replicas is taken only for the first term in equation (4.25), because
the second term is the same for all replicas.

We can finally identify the variance and the bias of a single fit (corresponding to
a single L1 dataset) with the first and second term of equation (4.25), respectively.
Notably, the model error Efit, along with the bias and variance of a single fit, are
stochastic values, meaning we cannot use them as quantitative estimators for the ro-
bustness of a fitting framework. To define a robust estimator, we take a large number
of fits (corresponding to a large number of L1 fluctuations) and we average the model
error, obtaining

EDL1
[Efit] = EDL1

[bias] + EDL1
[variance] + EDL1

[noise], (4.26)

where we defined the average across the fits as
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EDL1
[Efit] =

1

Nfit

Nfit∑
i=1

E i-th fit . (4.27)

In equation (4.26), the "noise" term corresponds to the second term of equation (4.25).
Since this term is given by the statistical fluctuations of the data and is not dependent
by the framework, it will not be used in the construction of the bias-variance ratio
estimator, which we define in the next section.

Bias-Variance Ratio Estimator

We can use the bias and variance averaged over a large number of fits to estimate
the robustness of a model. Here, we include the input u in what we refer to as a
model, as model complexity increases with the complexity of the input parametrization.
In particular, both bias and variance depend on model complexity, as illustrated in
figure 4.7. If the model is not sufficiently complex to capture the distribution of the
dataset, we encounter a problem of underfitting. In this case, the predictions u(k)∗ will
be close to each other (low variance), but the ensemble of predictions {u(k)∗ } will be far
from the true underlying distribution ureal that we are trying to approximate3 (high
bias). This scenario is represented on the left side of figure 4.7. Conversely, if the
model is too complex for the data distribution, we face an overfitting problem, where
the parametrization is flexible enough to fit the noise in the dataset. This results in
predictions u(k)∗ that depend on the fluctuations of the dataset and are far from each
other (high variance), but the ensemble of predictions, {u(k)∗ }, is centered in the real
law ureal that we are searching. This situation is depicted on the right side of the figure.
The optimal case is the one represented in the center of figure 4.7, where we are in a
minimum of the model error (equation (4.26)), the variance and bias of the fit have the
same value, and the distribution of the predictions is narrow and centered in the real
law that we are searching.

Following Ref [5], we construct the bias-variance ratio estimator:

Rvb =

√
EDL1

[bias]
EDL1

[variance]
, (4.28)

where we take the square root of both quantities because bias and variance are mean
squared metrics. In an optimized methodology, the values of variance and bias are
compatible; thus, the analyzed models will pass the multi closure test if they satisfy
the condition

Rvb ≈ 1, (4.29)

where with "≈ 1" indicates that 1 lies within the error bar σR of the bias-variance
ratio, which is defined by propagating the errors of the mean bias and variance, σb,m
and σv,m:

3or, equivalently, the data predictions of each replica will be close to each other but far from the
data point of the fitted dataset
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Figure 4.7: The behavior of bias and variance depending on the model complexity and
the distribution of the predictions of a data point depending on the values of bias and
variance. Image from Ref. [46]

σR =

√√√√(1

2

√
EDL1

[bias]EDL1
[variance]σb,m

)2

+

(
1

2

√
EDL1

[bias]
EDL1

[variance]3
σv,m

)2

, (4.30)

where

σv,m =
σv√
Nfit

(4.31)

σb,m =
σb√
Nfit

, (4.32)

in which σv and σb represent the standard deviations of the variance and bias distri-
butions, respectively, across the fits.

Quantile Estimator

A second quantitative estimator can be computed through a multi closure test, the
quantile estimator [5]. As discussed in section 4.4, the uncertainties on the TMDs
reproduced by the analyzed fitting framework are reliable if the true TMD functional
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form lies within the one-sigma band of the TMDs predicted by the framework in ap-
proximately 68% of the fits. In a multi-closure test, we generate a large number of
fits and know the functional forms of the TMDs used to produce the datasets. This
allows us to count how often the true functional form falls within the error band of
the predicted functional form. Following Ref [5], we perform this count in data space
rather than input space, meaning we count how many points of the L0 dataset fall
within the error bars of the predicted dataset for each fit. This count is implemented
using an indicator function,

I[−nσi,nσi]

(
E{u∗}[G(u(k)∗ )]ℓi −DL0,i

)
, (4.33)

where DL0,i is the i-th non-fluctuated data point, G(u(k)∗ )]ℓi is mean value of the i-th
point over the replicas of the ℓ-th fit, and σi is the standard deviation associated to
the value E{u∗}[G(u

(k)
∗ )]ℓi . The indicator function is defined to be one if the argument

is within the range [−nσi, nσi], where n ∈ N, and zero otherwise,

I[−nσi,nσi](x) =

{
1 if x ∈ [−nσi, nσi]
0 if x /∈ [−nσi, nσi] .

(4.34)

The quantile estimator ξnσ counts the proportion of L0 data points that lie within the
n-sigma band of the predicted dataset,

ξnσ =
1

Ndat

Ndat∑
i=1

1

Nfit

Nfit∑
ℓ=1

I[−nσi,nσi]

(
E{u∗}[G(u(k)∗ )]ℓi −DL0,i

)
. (4.35)

Our methodology faithfully reproduces the TMD uncertainties if, after computing the
quantile estimator for a large number of fits, we find

ξ1σ ≈ 0.683 (4.36)
ξ2σ ≈ 0.954 (4.37)
ξ3σ ≈ 0.997. (4.38)

4.6 L0 Pseudo-Data Generation
In this section, we discuss the generation of the pseudo-datasets used to test the
MAPTMD22 and PV19 fitting frameworks. We generated three sets of L0 pseudo-
data using three different inputs, ureal. Additionally, we fluctuated two of these three
pseudo-datasets, obtaining two sets of L1 and L2 fluctuated datasets, generated using
two distinct inputs.

Input Parametrizations

To generate the L0 pseudo-data, we chose the input ureal to act as the "real" underlying
law. We selected three sets of non-perturbative TMDs as the real law:
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Input Name TMD PDF TMD FF Input Dimension

ureal
MAP22 MAPTMD22 MAPTMD22 R21

ureal
PV19 PV19 / R9

ureal
MIX24 PV19 MAPTMD22 R19

Table 4.3: Input parametrizations used to generate three different set of L0 pseudo-
data.

1. MAP22: The set of parameters obtained by fitting experimental data using
the MAPTMD22 framework. Using these parameters with the MAPTMD22
parametrization described in equations (3.12) and (3.14), we obtain the functional
form of the non-perturbative TMD PDF and FF, assumed to be the true TMDs
we are searching. This input parametrization is referred to as ureal

MAP22. The
parameter values used to generate the pseudo-data are listed in the first column
of table 4.4.

2. PV19: The set of parameters obtained by fitting experimental data using the
PV19 framework. Using these parameters with the PV19 parametrization (equa-
tion (3.16)), we derive the non-perturbative TMD PDF, assumed to be the real
input. This input parametrization is called ureal

PV19. The parameter values used to
generate the pseudo-data are listed in the second column of table 4.4.

3. MIX24: A mixed set of parameters, combining the TMD PDF parametrization
from PV19 (equation (3.16)), with the TMD FF from MAPTMD22 (equation
(3.14)). This set combines the TMD PDF parameters from PV19 with the TMD
FF parameters from MAPTMD22. This input parametrization is referred to as
ureal

MIX24. The parameter values used to generate the pseudo-data are shown in the
third column of table 4.4.

Note that the values of the parameters shown in table 4.4 derive from fits on real
data performed with the respective parameterizations, causing the parameters used
in MIX24 to have different numerical values with respect to those used in PV19 and
MAPTMD22.

Datasets Level 0

Table 4.4 shows the TMD PDF and FF parametrizations used as the real input to
generate the three L0 pseudo-datasets. Using the inputs ureal

MAP22 and ureal
MIX24 we can

reproduce the full dataset, including both Drell-Yan and SIDIS cross sections. With
the input ureal

PV19, only the data derived from Drell-Yan processes are reproduced, as the
TMD FF is not included in this input.

The three L0 datasets generated using these inputs are denoted as DMAP22
L0 , DPV19

L0 ,
and DMIX24

L0 . The MAPTMD22 model, GMAP22, is used to generate the first and third
datasets,
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non perturbative TMD ureal
MAP22 ureal

PV19 ureal
MIX24

SNP g2 = 0.248624 g2 = 0.070105

α1 = 1.153911
α2 = 4.274540 g2 = 0.037923
α3 = 4.375137 N1 = 0.518814 N1 = −0.045526
σ1 = 0.519140 α = 0.203142 α = 1.365441
σ2 = 0.413861 σ = 0.373272 σ = 0.576503

f1NP σ3 = 12.625959 λ = 0.579733 λ = 4.2780005
λ = 1.742679 N1B = 0.039554 N1B = 0.955875
λ2 = 0.020872 αB = 0.067697 αB = 3.351724
N1 = 0.318114 σB = 0.363078 σB = 0.632127
N1B = 0.129140 g2B = 0.011222 g2B = 0.017748
N1C = 0.015973

N3 = 0.004335 N3 = 0.004041
N3B = 0.217415 N3B = 0.241838
β1 = 10.845024 β1 = 11.391522
β2 = 4.267465 β2 = 4.599514

D1NP δ1 = 0.007126 δ1 = 0.008340
δ2 = 0.161130 δ2 = 0.159940
γ1 = 1.532915 γ1 = 1.506459
γ2 = −0.002678 γ2 = −0.009876
λF = 0.062387 λF = 0.075544

Table 4.4: Values of the parameters used as input to generate the pseudodata.

DMAP22
L0 = GMAP22(u

real
MAP22) (4.39)

DMIX24
L0 = GMAP22(u

real
MIX24) , (4.40)

while the second dataset is generated using the PV19 model GMAP22 (which is equivalent
to the Drell-Yan part of the MAPTMD22 model),

DPV19
L0 = GPV19(u

real
PV19). (4.41)

The artificially generated datasets consist of the same experimental points included
in the original MAP fitting frameworks, as discussed in section 3.2. The pseudo-data
contained in DPV19

L0 are listed in table 3.1, those in DMAP22
L0 can be found in tables 3.2

and 3.3, and the experimental points included in DMIX24
L0 are shown in tables 3.1 and

3.3. Table 4.5 summarizes the models and inputs used to generate the three L0 pseudo-
datasets.

Since the three datasets are treated equivalently when generating the corresponding
L1 and L2 datasets, we will simplify the notation by referring to the L0 datasets
generically as DL0, Specific labels will be restored where needed for clarity.
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Dataset Model Input Dimension

DMAP22
L0 GMAP22 ureal

MAP22 R2031

DMIX24
L0 GMAP22 ureal

MIX24 R1900

DPV19
L0 GPV19 ureal

PV19 R353

Table 4.5: Models and inputs used to generate the three L0 pseudo-datasets DMAP22
L0 ,

DPV19
L0 , and DMIX24

L0 .

4.7 Data Uncertainties
When generating a Level 0 dataset, we must select the uncertainties associated with the
non-fluctuated points. Although these points have no intrinsic error, we assign them
uncertainties identical to those in the original experimental dataset, D. This approach
ensures that the covariance matrix and correlations in the original data are preserved in
the pseudo-datasets. The same uncertainties are applied when constructing the L1 and
L2 datasets, meaning that the covariance matrix remains consistent across all levels,

CL0 = CL1 = CL2 = C , (4.42)

where C is the covariance matrix of the original dataset, and the equality holds for
each of the three datasets discussed in the previous section.

Uncertainty Structure and Covariance Matrix

Understanding the structure of the uncertainties and how the covariance matrix is
constructed is essential, as this information will be used to generate the Level 1 and
Level 2 fluctuations. Each point in the experimental dataset, Di (where i is the index
of the data-point) has a total of Nunc,i + Nadd,i + Nmult,i associated uncertainties (see
table 4.6). These uncertainties are divided as follows:

• Nunc,i uncorrelated uncertainties: these uncertainties are independent of the
uncertainties of other data points, Dj ̸=i. The k-th uncorrelated uncertainty of
the i-th point is denoted as σunc,k

i , with k = 1...Nunc,i.

• Nadd,i correlated additive uncertainties: these are correlated across different
data points, Dj ̸=i. The ℓ-th additive uncertainty of the i-th point is represented
as σadd,ℓ

i , with ℓ = 1...Nadd,i.

• Nmult,i correlated multiplicative uncertainties: these are correlated across
different data points. The m-th multiplicative uncertainty of the i-th point is
denoted as σmult,m

i , with m = 1...Nmult,i.

Uncorrelated uncertainties are expressed as absolute values, while both additive and
multiplicative uncertainties are expressed as relative values. To compute the absolute
uncertainty from a relative value, we multiply by the data point value, Di,
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Uncertainty Type Expression Name Index

Uncorrelated Absolute σunc,k
i k = 1...Nunc,i

Correlated, Additive Relative σadd,ℓ
i ℓ = 1...Nadd,i

Correlated, Multiplicative Relative σmult,m
i m = 1...Nmult,i

Table 4.6: Uncertainties associated to the i-th data point of the experimental dataset
D, these uncertainties are transferred to the i-th point of the L0, L1 and L2 pseudo-
datasets.

σabs
i = σrel

i Di . (4.43)

The dataset’s covariance matrix is anNdat×Ndat matrix, built from the uncertainties
described in table 4.6 and the central values Di. The diagonal Cii of the matrix is given
by

Cii = (σunc
i )2 +

Nadd,i∑
ℓ=1

(
σadd,ℓ
i Di

)2
+

Nmult,i∑
m=1

(
σmult,m
i Di

)2
, (4.44)

where σunc
i =

√∑Nunc
k=1 (σ

unc,k
i )2 is the total uncorrelated uncertainty for the i-th data

point. The off diagonal elements, Cij with i ̸= j, are constructed using only the
correlated uncertainties, as follows:

Cij =

Nadd,i∑
ℓ=1

(
σadd,ℓ
i σadd,ℓ

j DiDj

)
+

Nmult,i∑
m=1

(
σmult,m
i σmult,m

j DiDj

)
. (4.45)

The MAPTMD22 and PV19 frameworks use the Cholesky decomposition of the co-
variance matrix to fluctuate the experimental dataset D and produce Monte Carlo
replicas. We will apply the same method to fluctuate the L0 datasets and generate the
L1 pseudo-data.

4.8 Data Fluctuation
We conduct Level 1 and Level 2 closure tests only on the datasets generated with
ureal

PV19 and ureal
MAP22. Therefore, the dataset DMIX24

L0 will not be fluctuated. To obtain
a L1 dataset DL1 (i.e. a Monte Carlo replica of a L0 dataset), we start from the
non-fluctuated dataset DL0 and add a fluctuation to each point, considering the data
uncertainties outlined in table 4.6. In Ref [6], the i-th point of the L1 dataset, DL1,i,
is calculated using the formula

DL1,i =

Nmult,i∏
m=1

√(
1 + rmult

m σmult,m
i

)
DL0,i

1 +
runc
i σunc

i

DL0,i

+

Nadd,i∑
ℓ=1

radd
ℓ σadd,ℓ

i

 , (4.46)
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where the correlated uncertainties are considered relative. The values rmult
m , runc

i , and
radd
ℓ are random weights drawn from a normal distribution N (0, 1). The weights as-

sociated to the additive and multiplicative uncertainties do not have the label i, since
this are correlated uncertainties and cause the same shift on each point of the dataset.
Equation (4.46) was used in earlier versions of the MAP fitting frameworks to generate
Monte Carlo replicas of experimental datasets. It’s included here to illustrate how
fluctuations depend on different types of uncertainties. However, in this analysis, we
employ a different method for fluctuating the L0 dataset. Using the covariance matrix
C, we apply the Cholesky decomposition technique, in which C is decomposed into the
product of a lower triangular matrix L and its transpose LT ,

C = LLT , (4.47)

which can be performed since the covariance matrix is symmetrical and squared for
construction. We then use the lower triangular matrix, L, to generate a fluctuation
vector η ∈ RNdat

η = rL , (4.48)

where r ∈ RNdat is a vector composed of normally distributed random weights ri =
N (0, 1). The L1 dataset is obtained by adding the fluctuation vector to the L0 dataset,

DL1 = DL0 + η . (4.49)

The same method is then used to fluctuate the L1 dataset, obtaining the k-th replica
with a Level 2 fluctuation is

D(k)
L2 = DL1 + ϵ(k) , (4.50)

where ϵ(k) ∈ RNdat is the vector of fluctuations generated starting from the vector of
random values p(k) ∈ RNdat . Each normally distributed random vector p(k) is generated
with a different seed and leads to a different Monte Carlo replica of the L1 dataset.
Fluctuating a dataset using the decomposed covariance matrix is mathematically equiv-
alent to the method described by equation (4.46).

4.9 Numerical Setup of the Tests
In the previous section, we explained how the L0, L1, and L2 datasets are generated.
We begin by generating three L0 datasets: DMAP22

L0 , DPV19
L0 , and DMIX24

L0 . We then fluc-
tuate the first two to create the L1 datasets, DMAP22

L1 and DPV19
L1 . Finally, we fluctuate

these L1 datasets to produce Nrep Monte Carlo replicas (L2 datasets), resulting in
DMAP22

L2 and DPV19
L2 . In this section, we will describe the setup of the closure tests on

the MAPTMD22 and PV19 fitting frameworks.

L0 Tests Setup

We performed tests on both the MAPTMD22 and PV19 frameworks using L0 pseudo-
data generated from the three input parameterizations ureal

MAP22, ureal
MIX24, and ureal

PV19. In
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Test Name Fitting Framework Fitted Dataset Minimizer Nrep

MAP22oMAP22L0 MAPTMD22 DMAP22
L0 Ceres 250

MAP22oMAP22Ceres
L0 MAPTMD22 DMAP22

L0 Ceres 100

MAP22oMAP22Minuit
L0 MAPTMD22 DMAP22

L0 Minuit 100

PV19oPV19Ceres
L0 PV19 DPV19

L0 Ceres 100

PV19oPV19L0 PV19 DPV19
L0 Ceres 250

PV19oPV19Minuit
L0 PV19 DPV19

L0 Minuit 100

MAP22oPV19L0 MAPTMD22 DPV19
L0 Ceres 250

PV19oMAP22L0 PV19 DMAP22
L0 Ceres 250

MAP22oMIX24L0 MAPTMD22 DMIX24
L0 Ceres 250

PV19oMIX24L0 PV19 DMIX24
L0 Ceres 250

Table 4.7: Table including all the performed L0 closure tests.

total, we conducted six L0 tests, naming each test with a label that indicates the fit-
ting framework first (MAP22 or PV19) followed by the input parametrization (MAP22,
PV19, or MIX24). For example, the label "MAP22oPV19L0" (where "o" stands for
"over") refers to a Level 0 test executed using the MAPTMD22 fitting framework over
the dataset generated with the PV19 parametrization of the non-perturbative TMDs.
Each Level 0 test consists of Nrep = 250 identical replicas4 of the dataset DL0, but the
optimization algorithm starts from a different point in the parameter space for each
replica.

The purpose of Level 0 tests is to evaluate the flexibility of the frameworks. Addi-
tionally, we conducted two tests where the input and fitting parameterizations remained
the same (MAP22oMAP22L0 and PV19oPV19L0) but varied the minimizer (the algo-
rithm used to find the minimum χ2 in parameter space) to assess the effect of different
optimization algorithms on the frameworks. The two tested minimizers were Ceres [44]
and Minuit [45], and we used the same initializations for the two. The tests conducted
for the Ceres-Minuit comparison involved only 100 initializations. A list including all
the tests we made with the L0 datasets is shown in table 4.7.

Uncertainty Characterization

For uncertainty characterization, we focused on testing the two frameworks, MAPTMD22
and PV19, with datasets generated from their respective parameterizations, DMAP22

and DPV19. As this phase of the closure test aims to quantify the uncertainties
rather than the flexibility of the frameworks, we did not perform cross-tests (i.e.

4Here, we refer to the number of identical replica as Nrep instead of Ninit, because the two values
coincide in the tests we conducted.
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Test Name Fitting Framework Fitted Dataset Nrep

MAP22oMAP22L0 MAPTMD22 DMAP22
L0 250

MAP22oMAP22L1 MAPTMD22 DMAP22
L1 250

MAP22oMAP22L2 MAPTMD22 DMAP22
L2 250

PV19oPV19L0 PV19 DPV19
L0 250

PV19oPV19L1 PV19 DPV19
L1 250

PV19oPV19L2 PV19 DPV19
L2 250

Table 4.8: Table including all the performed L0, L1, and L2 closure tests for the
uncertainty characterization of MAPTMD22 and PV19.

Test Name Fitting Framework Fitted Dataset Nfit Nrep

MAP22oMAP22multi MAPTMD22 DMAP22
L2 50 100

PV19oPV19multi PV19 DPV19
L2 50 100

Table 4.9: Table including the performed multi closure tests. We performed each
test on a total of 5000 L2 dataset (100 L2 fluctuations starting from 50 different L1
datasets).

MAP22oPV19 and PV19oMAP22). We evaluated the relative experimental, func-
tional, and interpolation/extrapolation uncertainties by comparing the TMD func-
tional spreads obtained from L0, L1, and L2 tests. For the L0 and L1 tests, we used
Nrep = 250 identical replicas of the L0 and L1 datasets, respectively. For the L2 tests,
we performed the closure tests using Nrep = 250 replicas of the L1 dataset. In these
tests, performing an L2 closure is equivalent to performing a fit with the L1 pseudo-
dataset instead of the real experimental dataset. Table 4.8 lists the numerical setup
for the uncertainty characterization tests, where Ceres was used as the minimizer for
all tests.

Multi Closure Tests Setup

For the multi closure tests, we only used datasets where the same parametrization was
applied for both the generation and fitting of the pseudo-datasets. The closure estima-
tors defined in equations (4.28) and (4.35) were calculated for both PV19oPV19 and
MAP22oMAP22, using a total of Nfit = 50 fits. Each fit was performed with Nrep = 100
Monte Carlo replicas of the L1 dataset, for a total of 5000 L2 datasets. The number
of fits corresponds to the number of distinct L1 datasets, while the number of replicas
represents the number of L2 fluctuations generated for each L1 dataset. Table 4.9 lists
the setup of the multi closure tests.

In this chapter, we have outlined the setup for various closure tests, i.e. L0, L1,
L2, and multi closure tests, across the MAPTMD22 and PV19 frameworks. In the
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next chapter, we will present and analyze the results of these closure tests for both
frameworks.
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Results

In this chapter, we present the results of various closure tests performed on the MAPTMD22
and PV19 fitting procedures. As discussed in Chapter 4, closure testing involves dif-
ferent levels, each designed to test various features of a fitting framework:

1. framework’s flexibility (Level 0): this is tested by comparing the TMD func-
tional forms predicted by the methodology with those used to generate the Level
0 pseudo-dataset;

2. uncertainty levels: the contributions of interpolation/extrapolation, functional,
and experimental uncertainties to the total TMD uncertainties produced by a fit-
ting procedure are assessed by comparing the results of the fits on the Level 0,
Level 1, and Level 2 datasets;

3. faithfulness of total TMD uncertainties: this is tested calculating the quan-
tile estimator (equation (4.35)) through a multi closure test;

4. framework complexity tradeoff : the bias-variance ratio estimator (equa-
tion (4.28)) is calculated through a multi-closure test to assess the tradeoff in
framework complexity.

We will begin by presenting the results of the Level 0 closure tests (pseudo-data without
fluctuations).

5.1 Choice of the Minimizer
Using the Level 0 datasets DMAP22

L0 and DPV19
L0 , we first tested the minimizers employed

by the two frameworks: Ceres [44] and Minuit [45]. For this test, we performed 100 fits
using the MAPTMD22 framework on the pseudo-data generated by the MAPTMD22
parametrization (see table 4.7), the test is named MAP22oMAP22L0. We also con-
ducted 100 fits using the PV19 framework on the Level 0 pseudo-data generated from
the PV19 parametrization, this test is labeled PV19oPV19L0. For each of these 100
fits, we initiated the minimization from a different starting point in the parameter
space, the same 100 points were initialized for Ceres and Minuit. We conducted these
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Table 5.1: Ceres-Minuit comparison.

Test Minimiser χ2

MAP22oMAP22L0 Ceres O(10−14)
MAP22oMAP22L0 Minuit O(10−4)

PV19oPV19L0 Ceres O(10−13)
PV19oPV19L0 Minuit O(10−5)

MAP22oPV19L0 Ceres O(10−1)
MAP22oPV19L0 Minuit not convergent

tests with both Ceres and Minuit to determine whether the minimizer could consis-
tently find the correct minimum from a random starting point, or if the identified
minimum was dependent on the initial conditions. In both tests we used the final
χ2 as a metric for the accuracy of the fit. In the MAP22oMAP22L0 test, we obtain
a very good result when we use Ceres as a minimizer: in the majority of the cases
the minimizer stops at χ2 ∼ O(10−14), with only around 10% of the cases failing to
reach this level of accuracy. In contrast, when using Minuit as the minimizer, the best
results yielded χ2 ∼ O(10−4). We observed similar results when testing both mini-
mizers with PV19oPV19L0. Additionally, we conducted a test using the MAPTMD22
parametrization on a dataset generated from PV19 (MAP22oPV19L0), again employing
both Ceres and Minuit. The results of the Ceres-Minuit comparison are presented in
table 5.1. From these results, it is clear that Ceres outperforms Minuit. Consequently,
we will proceed with the closure tests using only Ceres as the framework’s minimizer.

5.2 L0 Results
As shown in table 5.1, the closure test of the MAPTMD22 parametrization on a dataset
generated by the same parametrization results in a χ2 ∼ O(10−14). Similarly, the
PV19oPV19L0 test yields χ2 ∼ O(10−13). We repeated these tests using 250 replicas of
the L0 datasets. Using Ceres, both MAP22oMAP22L0 and PV19oPV19L0 satisfy the
condition defined in equation (4.12). In particular, by computing the mean χ2 across
the 250 replicas, we obtain:

⟨χ2[DMAP22
pred ,DMAP22

L0 ]⟩ ∼ O(10−14) (5.1)

⟨χ2[DPV19
pred ,DPV19

L0 ]⟩ ∼ O(10−13) . (5.2)

In both cases, the two frameworks successfully reproduce the perfect solution that ex-
actly follows the distribution of the L0 data points, and we conclude that the L0 test
closes for the two frameworks.

Since both tests involve a certain parametrization (MAPTMD22 or PV19) captur-
ing its own input, we are in a situation where we are assuming that our parametrization
exactly matches the real parametrization of the TMDs, requiring only the free param-
eters to be fixed. This initial result demonstrates that, under the assumption that our

63



CHAPTER 5. RESULTS

parametrization is identical to the real law’s parametrization, both fitting procedures
are well constructed and capable of reconstructing the real set of parameters, ureal,
with high precision.

However, a more likely scenario is that we do not know the exact parameterizations
of the real TMD PDFs and FFs. Suppose the parameterizations used in our frameworks
are approximations of the real law; they may share a similar functional form but are not
identical. In this case, can the MAPTMD22 and PV19 fitting methodologies still iden-
tify a functional form that matches sufficiently well the real TMDs? This situation is
simulated using the cross-tests MAP22oPV19L0, MAP22oMIX24L0, PV19oMAP22L0,
and PV19oMIX24L0, where the input ureal used to generate the pseudo-data differs
from the input used to fit the pseudo-data. In the next section, we will present the
results of the cross L0 tests.

MAP22oPV19L0 Test Results

In this case, we have a dataset generated using the PV19 parameterization (equa-
tion (3.16)), denoted as DPV19

L0 . We fit this dataset using the MAPTMD22 framework,
which employs the TMD PDF parametrization described in equation (3.12). Since the
dataset DPV19

L0 does not contain SIDIS data, the TMD FF parametrized in MAPTMD22
will not be included in the model. Consequently, we expect the minimizer to produce
a random set of parameters for the non-perturbative TMD FF, which we will not con-
sider in this test. In this scenario, our parametrization is slightly more complex than
that used to generate the pseudo-data.

We conducted 250 fits of the L0 dataset, starting from different points in the pa-
rameter space each time. From this fitting procedure, we obtained 220 convergent fits,
with a mean χ2 of

⟨χ2[DMAP22
pred ,DPV19

L0 ]⟩ ± σχ2 = 0.152± 0.093 . (5.3)

We conclude that this test does not close, as the condition χ2 < 10−10 is not met. How-
ever, when plotting the real and predicted TMD functional forms fNP (x, bT , ζ)—the
first generated with the input uPV19

real and the second with the predicted input uMAP22
∗ —we

observe two classes of predicted functions. Figure 5.1(a) shows, in red, the TMD PDF
used to generate the fitted dataset, and in blue, the Nrep TMD PDFs predicted by the
L0 fits. To quantify the similarity between the i-th prediction, which we denote as
fpred
NP,i, and the real functional form f real

NP , we define the Mean Squared Distance (MSD)
estimator. The MSD estimator (equation (5.4)) measures the mean squared distance
between fpred

NP,i and f real
NP over a large number of points in bT ,

MSD =
1

Npoints

Npoints∑
p=1

(f real
NP − fpred

NP,i)
2
p , (5.4)

where the real and predicted fNP (x, bT , ζ) are plotted at x = 0.1, µ = Q =
√
ζ = 10

GeV, and for bT ∈ [0, 10]. The number of points used to generate the distributions
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within this bT interval is denoted as Npoints, with Npoints = 100 in this case. We
can utilize the Mean Squared Distance (MSD) as a metric to assess how closely the
predicted TMD aligns with the real TMD we are targeting. We implement a condition
to differentiate the two classes of functional forms that can be observed in figure 5.1(a).
Specifically, we establish the condition:

MSD ≤ 0.0015 . (5.5)

Only 109 fits satisfy this condition. The functional forms that meet equation (5.5) are
illustrated in figure 5.1(b).

We also plotted the fitted TMD PDF functional forms at Q = 2 GeV, to assess
whether the result is dependent on the region of Q. We obtained a very similar result
compared to the case of Q = 10 GeV, with the fitted functional forms splitting in two
classes, as shown in figure 5.2, with around 50% of the replicas satisfying the condition
MSD ≤ 0.0015. The minimizer is still not able to identify the best non-perturbative
TMD in all the cases.

We conclude that in the MAP22oPV19L0 test, the optimization algorithm identifies
a minimum that is dependent on the initial conditions in the parameter space. Two
distinct minima emerge: one corresponds to the real distribution, while the other re-
sults in an inaccurate prediction of the TMD PDF. The minimizer employed (Ceres)
successfully finds the correct minimum in approximately half of the cases. This leads
to a mean χ2 of 0.146, representing an average over a set of acceptable results (with χ2

around 0.05) and a set of incorrect results (with χ2 around 0.25). As shown in figure
5.3, the χ2 distribution clearly divides into two classes. If we focus only on the best fits
(the acceptable results) and neglect the replicas that converge but yield a χ2 > 0.07,
the outcome of the closure test improves. However, even among the best fits, the χ2

for MAP22oPV19L0 does not satisfy the condition defined in equation (4.12), leading
us to conclude that the test does not close.

This result indicates that, under the assumption that the input parametrization
used for the fit differs from the real parametrization, the MAPTMD22 framework
lacks the flexibility necessary to accurately interpolate all the L0 data points and find
the perfect solution, which corresponds to the χ2 = 0 solution.

PV19oMAP22L0 Test Results

We now make the opposite test. In this test, referred to as PV19oMAP22L0, we perform
250 fits using the PV19 parametrization over a dataset generated from the MAPTMD22
parametrization, denoted as DMAP22

L0 . For each fit, we initiate the optimization from a
different starting point in the parameter space. Similar to the previous test, we only
consider Drell-Yan experiments, as the PV19 parametrization does not account for the
TMD fragmentation functions (FFs) relevant for SIDIS data. Therefore, the dataset is
limited to the points contained in the experimental dataset DPV19, but generated using
the input uMAP22

real . We exclude Drell-Yan data not included in Ref. [3] to replicate the
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(a) Complete set of predicted non-perturbative TMD PDFs at x = 0.1
and Q = 10 GeV.

(b) Set of non-perturbative TMD PDFs at x = 0.1 and Q = 10 GeV
which satisfy MSD < 0.0015.

Figure 5.1: Real and predicted fNP (x = 0.1, bT , ζ = 100 GeV2) in MAP22oPV19L0.

conditions utilized in the PV19 framework.
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Figure 5.2: Real and predicted fNP (x = 0.1, bT , ζ = 4 GeV2) in MAP22oPV19L0.

Figure 5.3: χ2 distribution in MAP22oPV19L0.

The results from this test are better than those from MAP22oPV19L0. The min-
imizer converged to the same minimum in 100% of the replicas, yielding a mean χ2

of
⟨χ2[DPV19

pred ,DMAP22
L0 ]⟩ ± σχ2 = 0.017± 0.0001 , (5.6)

which is an order of magnitude smaller than the mean χ2 obtained in the previous test.
The χ2 distribution shown in figure 5.4 and the standard deviation from equation (5.6)
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Figure 5.4: χ2 distribution in the PV19oMAP22L0 test.

indicate that, in this case, the minimizer reliably identifies the correct minimum, inde-
pendent of the starting point in the parameter space.

Additionally, we assess how closely the i−th predicted functional form, fpred
NP,i(x, bT , ζ),

aligns with the real non-perturbative function,f real
NP (x, bT , ζ), through the MSD estima-

tor (eq 5.4). We find that the previous condition MSD ≤ 0.0015 is satisfied in 100%
of the fits. To further refine our analysis, we reduce the MSD limit by a factor of 10,
leading to a new criterion:

MSD ≤ 0.00015 . (5.7)

Remarkably, this stricter criterion is also met in 100% of the replicas for the PV19oMAP22L0
test. The distribution of the predicted TMD PDFs at x = 0.1 and Q = 10 GeV is
illustrated in blue in figure 5.5. We observe that all predictions follow a similar func-
tional form but do not perfectly capture the real functional form used to generate the
pseudo-data (which is the red curve). A similar result is obtained plotting the real and
predicted functional forms at Q = 2 GeV.

In conclusion, the results indicate that within the PV19 framework, the minimizer
successfully identifies the global minimum of χ2 in the parameter space, independent of
the starting conditions for the optimization process. However, the PV19 parametriza-
tion proves insufficiently flexible to accurately represent the real TMD functional form,
assuming that the parametrization of the real TMD PDF is different from the PV19
parametrization.

Comparing the MAPTMD22 and PV19 frameworks, we conclude that PV19 is
more accurate in capturing the true functional form of the non-perturbative TMD
PDF, despite its simpler parametrization. We identified two possible causes that may
lead to incorrect predictions of the TMD PDF functional forms in the cross tests:
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Figure 5.5: Real and predicted fNP (x = 0.1, bT , ζ = 100 GeV2) in the PV19oMAP22L0
test.

• Interplay between the minimizer and the parametrization: when Ceres,
the minimizer used in both frameworks, searches for the minimum χ2, the inter-
action between the parametrization and the optimization process is crucial for
finding the correct minimum. In the PV19 framework, this interplay works well,
allowing the procedure to find the global minimum in 100% of the fits. How-
ever, in the MAPTMD22 framework, the optimization algorithm implemented in
Ceres struggles to distinguish between a local minimum and the global minimum
of the χ2, finding the parameter set that minimizes χ2 in only half of the cases.
In other words, the task of the minimizer is to find the best possible input u∗ to
reconstruct the dataset D given the model G, but whether the best input is found
in 100% of the fits depends on the interaction between the optimization process
and the parametrization. The minimizer’s efficiency depends on the parametriza-
tion it is applied to, and this limitation prevents it from exploring all possible
solutions for the MAPTMD22 parametrization, missing the best solution in some
cases.

• Parametrization flexibility: the second issue, which is common to both frame-
works, is that the best possible input u∗, which describes the data distribution
D = G(u∗), is not sufficient to capture the true functional form. This reflects a
limitation in the parametrization, which lacks the necessary flexibility to accu-
rately describe the real functional form we are trying to capture. As a result, the
best approximation of the real input does not coincide with the actual input, as
it should in an L0 test.

Another reason why the MAPTMD22 parametrization performs worse in describing
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the PV19 dataset, compared to the reverse case, could be that we have not included the
SIDIS dataset in the MAP22oPV19L0 test. The MAPTMD22 framework is designed to
perform a global fit on both Drell-Yan and SIDIS cross sections. Its non-perturbative
TMD PDF parametrization has been constructed and optimized not only to fit Drell-
Yan data, but also to work in relation with the TMD FF to properly fit the SIDIS
part of the dataset. In our test, however, we simplified the information by removing
the SIDIS portion. During the optimization process, the minimizer deals with 21 free
parameters, of which only 10 are relevant for constructing the TMD PDF, while the
remaining 11, used for constructing the TMD FF, are irrelevant when fitting a Drell-
Yan dataset. The minimizer might perform better in finding the global minimum if we
include the SIDIS part of the dataset in our test. To test this hypothesis, we generated
the MIX24 pseudo-dataset and performed the MAP22oMIX24L0 test.

MAP22oMIX24L0 Test Results

The DMIX24
L0 dataset is an extension of the DPV19

L0 dataset, generated using the non-
perturbative TMD PDF from PV19 and the non-perturbative TMD FF from MAPTMD22.
However, the numerical set of parameters used as input is different from the ones we
used to generate the DPV19

L0 and DMAP22
L0 datasets (see table 4.4). As in the previous

test, we fitted 250 identical replicas, each starting from different points in the parame-
ter space. The fit successfully converged in 217 replicas, resulting in a mean χ2 across
the replicas of

⟨χ2[DMAP22
pred ,DMIX24

L0 ]⟩ ± σχ2 = 0.155± 0.005 . (5.8)

Comparing the standard deviations of the mean χ2 obtained from the MAP22oMIX24L0
and MAP22oPV19L0 tests (equations (5.8) and (5.3)), we observe that the minimizer
performs better when the complete dataset, including the SIDIS points, is considered.
However, the χ2 distribution, shown in figure 5.6, remains broad and split into two
categories, with no significant improvement in the mean χ2, which stays at a similar
level in the two tests.

Figure 5.7 illustrates the split into two classes of predicted functional forms for
the non-perturbative TMD PDFs. We conclude that adding the SIDIS portion of the
dataset does not resolve the two issues observed in the MAP22oPV19L0 test: the pre-
dicted set of parameters still depends on the initial starting point of the optimization
process, and the MAP22 parametrization of the TMD PDF remains insufficiently flex-
ible to accurately capture the assumed real TMD functional form.

PV19oMIX24L0 Test Results

Since the Drell-Yan part of the DMIX24
L0 dataset is generated using a different functional

form compared to the DPV19
L0 dataset (i.e., the parametrization is the same, but the

parameter values are different, see table 4.4), we test whether the PV19 parametriza-
tion can capture this new functional form. This test is entirely analogous to the
PV19oPV19L0 test, where the dataset is generated with a new set of parameters. We
could also name the dataset for this test D′PV19

L0 . We performed the test on 250 identical
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Figure 5.6: χ2 distribution in the MAP22oMIX24L0 test.

Figure 5.7: Real and predicted fNP (x = 0.1, bT , ζ = 100 GeV2) in the MAP22oMIX24L0
test.

replicas, achieving convergence in 100% of the fits, with a mean χ2 of:

⟨χ2[DPV19
pred ,DMIX24

L0 ]⟩ ∼ O(10−7) , (5.9)

which demonstrates that the PV19 parametrization is flexible enough to capture the
TMD PDF functional form in 100% of the fits. Although the χ2 does not meet the
closure condition, the result approaches the expected χ2 of zero, which aligns with the
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Test Mean χ2 Best MSD Closure

MAP22oMAP22L0 O(10−14) / yes
PV19oPV19L0 O(10−13) / yes

MAP22oPV19L0 0.152 < 0.0015 no
PV19oMAP22L0 0.017 < 0.00015 no
MAP22oMIX24L0 0.155 < 0.004 no
PV19oMIX24L0 O(10−7) / no

Table 5.2: Results of the tests performed on the L0 datasets.

outcome expected from an L0 closure test.

Table 5.2 summarizes the results obtained from the tests on the Level 0 datasets.
We now proceed with the Level 1 and Level 2 tests only for the combinations where
the L0 test successfully closes, i.e., MAP22oMAP22 and PV19oPV19.

5.3 Uncertainty Characterization of MAPTMD22 and
PV19

In this section, we present the results of the uncertainty characterization for the
MAPTMD22 and PV19 frameworks. As discussed in section 4.4, the total TMD uncer-
tainty—calculated as the standard deviation of the predicted non-perturbative TMDs
across the L2 replicas (equation (3.29))—is composed of three sources of uncertainty:

• the interpolation/extrapolation uncertainty σint, which corresponds to the stan-
dard deviation of the TMDs predicted by the L0 replicas:

σL0 = σint ; (5.10)

• the functional uncertainty σfunc, which constitutes, together with the interpola-
tion/extrapolation uncertainty, the standard deviation of the TMDs predicted by
the L1 replicas:

σL1 = σint + σfunc ; (5.11)

• the experimental uncertainty σexp, which contributes only to the standard devi-
ation of the TMDs predicted by the L2 replicas:

σL2 = σint + σfunc + σexp . (5.12)

Since the uncertainties described above depend on the set of variables variables
(x, bT , ζ) for the TMD PDFs uncertainties, and (z, bT , ζ) for the TMD FFs, we do not
report them as specific numbers. Instead, we plot the TMDs over the range bT ∈
[0, 10] GeV−1, along with their L0, L1, and L2 uncertainties, for fixed values of µ =
Q =

√
ζ, x and z. We then provide some qualitative interpretations of these results.
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non-perturbative function Q x, z Figure

fNP (x, bT , ζ) 10 GeV
0.1
0.01
0.001

figure 5.8
figure 5.9
figure 5.10

DNP (z, bT , ζ) 10 GeV 0.3
0.6

figure 5.11
figure 5.12

fNP (x, bT , ζ) 2 GeV
0.1
0.01
0.001

figure 5.13
figure 5.14
figure 5.15

DNP (z, bT , ζ) 2 GeV 0.3
0.6

figure 5.16
figure 5.17

Table 5.3: Plots of the uncertainties of the TMD PDFs and FFs predicted by
MAPTMD22 in different kinematic regions.

MAP22oMAP22 Uncertainties

For the MAP22oMAP22 test, we plot the L0, L1, and L2 uncertainties of the non-
perturbative TMDs at Q = 10 GeV and Q = 2 GeV. For both values of Q, we plotted
the TMD PDF uncertainties at x = 0.1, x = 0.01, and x = 0.001, and the TMD
FF uncertainties at z = 0.3 and z = 0.6. These kinematic points match those used
in Ref. [4] to display the complete TMDs (including the perturbative contributions)
obtained by the MAPTMD22 fitting framework with their uncertainties, where the
TMD PDFs are represented as functions of |kT | and the TMD FFs in function of |P⊥|.
The plots presented in this work represent the non-perturbative part of the TMD
PDFs (fNP,pred) and FFs (DNP,pred) as functions of bT . These are computed using
equations (3.27) and (3.28)1, and can be compared with the functional forms of the
TMDs used to generate the pseudo-data, fNP,real and DNP,real. Table 5.3 summarizes
the kinematic points used for the plots and provides references to the figures where the
corresponding plots can be found.

For each pair of figures listed in table 5.3, the first figure shows the functional form
of the non-perturbative TMD and its L0, L1, and L2 one-sigma spreads. The bands in
the second figure represent the standard deviations of the following ratios:

RL0 =
fL0
NP,pred(x, bT ; ζ)

fNP,real(x, bT ; ζ)
− 1 (5.13)

RL1 =
fL1
NP,pred(x, bT ; ζ)

fNP,real(x, bT ; ζ)
− 1 (5.14)

RL2 =
fL2
NP,pred(x, bT ; ζ)

fNP,real(x, bT ; ζ)
− 1 , (5.15)

1Here, we refer to fNP,∗ and DNP,∗ as the predicted TMDs, using the labels fNP,pred and DNP,pred
for consistency with the plots labels.
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where fLi
NP,pred is the predicted functional form of the TMD PDF (or FF) from a Level

i closure test, and fNP,real is the functional form used to generate the pseudo-data. We
subtract 1 from each ratio to center the quantity around zero. Plotting the one-sigma
bands of the ratios provides a clearer visualization of the L0, L1, and L2 uncertainties,
offering a representation of the intervals in bT where the real TMDs lie within the
one-sigma bands of the predicted TMDs. Specifically, in the bT regions where the line
RLi = 0 lies within the standard deviation band of RLi, the real TMD lies within the
standard deviation bar of the predicted TMD from a fit on Level i pseudo-data.

In this analysis, we only plot the non-perturbative component of the TMDs, as
these are the components inferred from experimental data. The L0, L1, and L2 un-
certainty levels of the non-perturbative TMDs at a given kinematic point maintain
their proportionality when considering the complete TMDs. We also observe that the
non-perturbative TMD uncertainties decrease in the Q-region where the data are more
precise, i.e., at Q = 10 GeV. In figure 3.1 are depicted the kinematic regions covered
by our dataset. The LHC data are the more precise, and lie at a scale of Q = 100
GeV; thus, we expect the non-perturbative TMD PDF at 100 GeV to have a low total
uncertainty. The plot of the TMD PDF at 100 GeV (figure 5.18) confirms that the
uncertainty decreases in the kinematic regions where the data are more precise.

Another qualitative insight into the uncertainty levels can be obtained by plotting
the contributions of the L0 and L1 uncertainties to the total (L2) uncertainty:

σ̂L0(x, bT ; ζ) =
σL0(x, bT ; ζ)

σL2(x, bT ; ζ)
(5.16)

σ̂L1(x, bT ; ζ) =
σL1(x, bT ; ζ)

σL2(x, bT ; ζ)
(5.17)

total uncertainty =
σL2(x, bT ; ζ)

σL2(x, bT ; ζ)
= 1 . (5.18)

From the plots of σ̂L0 and σ̂L1 as functions of bT at at fixed Q, x, and z (where we use
the same values for these three variables as in the previous plots, listed in table 5.4),
we observe that the dominant contributions to the total uncertainty are the L1 and L2
uncertainties. The L0 uncertainty exceeds 10% of the total uncertainty in rare cases,
meaning that if we want to improve the predictivity of the model, we need to lower
the experimental and functional uncertainties. This can be achieved by increasing the
precision of the experimental data. Simply increasing the number of data points for
each experiment would not significantly improve the model’s predictivity, as the inter-
polation/extrapolation error of the model already is a subdominant component.

In the figures listed in table 5.3, we observe that, in various kinematic regions,
the real TMDs are not included within the one-sigma band of the predicted TMDs
at L1, σL1. This suggests that the L1 error bar might be underestimated (we will
quantify the uncertainty reliability in the next section with the multi-closure test on
MAP22oMAP22). This underestimation could lead to an underfitting issue. We can
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.8: Plots at Q = 10 GeV, x = 0.1
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.9: Plots at Q = 10 GeV, x = 0.01
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.10: Plots at Q = 10 GeV, x = 0.001
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(a) Real and predicted non-perturbative TMD FFs

(b) Uncertainty components of the non-perturbative TMD FF

Figure 5.11: Plots at Q = 10 GeV, z = 0.3
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(a) Real and predicted non-perturbative TMD FFs

(b) Uncertainty components of the non-perturbative TMD FF

Figure 5.12: Plots at Q = 10 GeV, z = 0.6
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.13: Plots at Q = 2 GeV, x = 0.1
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.14: Plots at Q = 2 GeV, x = 0.01
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.15: Plots at Q = 2 GeV, x = 0.001
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(a) Real and predicted non-perturbative TMD FFs

(b) Uncertainty components of the non-perturbative TMD FF

Figure 5.16: Plots at Q = 2 GeV, z = 0.3
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(a) Real and predicted non-perturbative TMD FFs

(b) Uncertainty components of the non-perturbative TMD FF

Figure 5.17: Plots at Q = 10 GeV, z = 0.6
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Figure 5.18: Real and predicted fNP (x = 0.1, bT , ζ = 104 GeV2) in MAPTMD22. This
is the Q-region of the LHC data, the fact that the total uncertainty is small compared
to the other plots confirms that the uncertainty decreases in the kinematic regions
where the data are more precise.

non-perturbative function Q x, z Figure

fNP (x, bT , ζ) 10 GeV
0.1
0.01
0.001

figure 5.19

DNP (z, bT , ζ) 10 GeV 0.3
0.6

figure 5.20

fNP (x, bT , ζ) 2 GeV
0.1
0.01
0.001

figure 5.21

DNP (z, bT , ζ) 2 GeV 0.3
0.6

figure 5.22

Table 5.4: Plots of the uncertainty ratios σ̂L0 and σ̂L1 of the TMD PDFs and FFs
predicted by MAPTMD22 in different kinematic regions.

assess whether this is problematic by examining the Level 1 χ2. Ideally, the χ2 between
the L1 predictions and the L1 pseudo-dataset, χ2[Dpred,DL1], should be close to 1 (see
section 4.3). From the MAP22oMAP22L1 test, we obtain a mean χ2 of

⟨χ2[Dpred,DL1]⟩ ± σχ2 = 1.0055± 0.0159 , (5.19)

leading us to conclude that the mean displacement between the L1 dataset, DL1, and
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(a) (b)

(c)

Figure 5.19: Uncertainty ratios σ̂L0 and σ̂L1 for the non-perturbative TMD PDF at
Q = 10 GeV

(a) (b)

Figure 5.20: Uncertainty ratios σ̂L0 and σ̂L1 for the non-perturbative TMD FF at
Q = 10 GeV
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(a) (b)

(c)

Figure 5.21: Uncertainty ratios σ̂L0 and σ̂L1 for the non-perturbative TMD PDF at
Q = 2 GeV

the predicted dataset Dpred, measured in units of the standard deviation, is 1. An aver-
age χ2 of 1 suggests that the discrepancies between the dataset and the predictions are,
on average, consistent with the expected uncertainties. However, this is a qualitative
discussion about the properties of the considered framework, and the mean Level 1 χ2

of a single fit could be subject to fluctuations around the ideal value of 1. A more
quantitative estimation of potential underfitting will be addressed in the multi-closure
test.

We now proceed to report the uncertainty components of the predicted non-perturbative
TMDs using the PV19 framework.

PV19oPV19 Uncertainties

In the PV19oPV19 test, we reproduced the plots of the predicted TMD PDF (fNP,pred)
as a function of bT for fixed x and Q. The obtained plots are listed in table 5.5, which
summarizes the kinematic points (x, Q) used and the corresponding figures where the
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(a) (b)

Figure 5.22: Uncertainty ratios σ̂L0 and σ̂L1 for the non-perturbative TMD FF at Q = 2
GeV

plots can be found.

Following the same methodology used in the MAP22oMAP22 test, we also plotted
the uncertainty ratios σ̂L0 and σ̂L1 (equations (5.16), (5.17)). As before, these plots
help us visualize how much of the total uncertainty (σL2) comes from the interpola-
tion/extrapolation uncertainty (σL0) and the functional uncertainty (σL1). The results
are summarized in table 5.6, which lists the plots of the ratios for different values of
x and Q. From these plots we can observe that the interpolation/extrapolation and
functional uncertainties are subdominant in the PV19 framework, meaning that adding
more data points would not significantly improve the model’s predictivity. Instead, the
focus should be on improving the precision of the experimental data, as this would
directly reduce the total uncertainty and enhance the predictive power of the PV19
framework. Note that in MAPTMD22 the functional component of the uncertainty
was not negligible. The subdominant contribution of the L1 uncertainty could be a
symptom of insufficient flexibility of the PV19 parametrization, which produces very
similar functional forms across the L1 replicas, leading to a negligible spread of the L1
results.

In fact, the σL1 band is much narrower in PV19 than in MAPTMD22. From the
plots listed in table 5.5, we notice that, in most cases, the L1 standard deviation does
not encompass the functional form used to generate the pseudo-data.This is another
indicator of possible underestimation of the uncertainties. However, we will explore
this issue more in detail in the multi closure tests section.

The tests on the uncertainty characterization presented in this section provide
a qualitative representation of the contribution of interpolation/extrapolation, func-
tional, and experimental uncertainties to the total TMD uncertainty declared by the
MAPTMD22 and PV19 fitting frameworks. In the next section, we test whether the
declared TMD uncertainties are reliable through multi closure tests.
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.23: Plots at Q = 10 GeV, x = 0.1
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.24: Plots at Q = 10 GeV, x = 0.01
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.25: Plots at Q = 10 GeV, x = 0.001
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.26: Plots at Q = 2 GeV, x = 0.1
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.27: Plots at Q = 2 GeV, x = 0.01
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(a) Real and predicted non-perturbative TMD PDFs

(b) Uncertainty components of the non-perturbative TMD PDF

Figure 5.28: Plots at Q = 2 GeV, x = 0.001

94



CHAPTER 5. RESULTS

non-perturbative function Q x Figure

fNP (x, bT , ζ) 10 GeV
0.1
0.01
0.001

figure 5.23
figure 5.24
figure 5.25

fNP (x, bT , ζ) 2 GeV
0.1
0.01
0.001

figure 5.26
figure 5.27
figure 5.28

Table 5.5: Plots of the uncertainties of the TMD PDFs predicted by PV19 in different
kinematic regions.

non-perturbative function Q x Figure

fNP (x, bT , ζ) 10 GeV
0.1
0.01
0.001

figure 5.29

fNP (x, bT , ζ) 2 GeV
0.1
0.01
0.001

figure 5.30

Table 5.6: Plots of the uncertainty ratios σ̂L0 and σ̂L1 of the TMD PDFs predicted by
PV19 in different kinematic regions.

5.4 Bias-Variance Tradeoff and Uncertainty Faithful-
ness

Through a multi-closure test, we can assess the uncertainty faithfulness of a methodol-
ogy and determine whether the methodology is optimized in terms of the bias-variance
tradeoff (see section 4.5). We introduced two quantitative estimators:

• the bias-variance ratio, Rbv (equation (4.28)), which is compatible with 1 if the
bias-variance tradeoff of the model is optimized, (i.e. if the average model error
across the fits EDL1

[Efit] is at the minimum (see figure 4.7);

• the quantile estimator, ξ1σ (equation 4.35), which is compatible with 0.683 if the
uncertainties predicted by the model are faithful to the real TMD uncertainties.

For both MAPTMD22 and PV19, we performed fits on a total of 5000 replicas
(50 fits, each composed of 100 replicas) to compute the two values Rbv and ξ1σ. A
framework is optimized and has faithful uncertainties if we obtain:

Rbv ≈ 1 (5.20)
ξ1σ ≈ 0.683 . (5.21)
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(a) (b)

(c)

Figure 5.29: Uncertainty ratios σ̂L0 and σ̂L1 for the non-perturbative TMD PDF at
Q = 10 GeV

Multi Closure Test of MAPTMD22

From the test on the MAPTMD22 framework, we obtained:

Rbv ± σRbv
= 0.978± 0.045 (5.22)

ξ1σ ± σξ1σ = 0.688± 0.010 . (5.23)

We thus conclude that the MAPTMD22 framework is optimized and declares reliable
uncertainties. This result is compatible with the observations we made for the χ2

obtained by a Level 1 test on MAP22 (see equation (5.19)).

Multi Closure Test of PV19

From the test on the PV19 framework, we obtained:
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(a) (b)

(c)

Figure 5.30: Uncertainty ratios σ̂L0 and σ̂L1 for the non-perturbative TMD PDF at
Q = 2 GeV

Rbv ± σRbv
= 1.577± 0.068 (5.24)

ξ1σ ± σξ1σ = 0.486± 0.012 . (5.25)

We thus conclude that the PV19 framework is not optimized and does not declare faith-
ful uncertainties. This result supports our hypothesis of underfitting, which leads to
uncertainty underestimation. In fact, a bias-variance ratio estimator greater than one
indicates that the bias of the predictions is high compared to the variance, leading to
underfitting (see figure 4.7). This result is confirmed by the quantile estimator. Since
ξ1σ is lower than 0.683, we can conclude that the uncertainties of the TMDs declared
by the PV19 framework are underestimated, meaning that what is declared to be a
68.3% confidence level is, in reality, a 48.6% confidence level, because the real TMD
functional form, used to generate the pseudo-data, falls within the declared one-sigma
band only in 48.6% of the cases.
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In the next section, we will draw conclusions based on the results obtained from
the analyses discussed above.
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Conclusions

In this work, we analyzed, through closure testing, two fitting frameworks for ex-
tracting non-perturbative Transverse Momentum Densities (TMDs) from experimen-
tal measurements of SIDIS and Drell-Yan cross sections, MAPTMD22 [4] and PV19 [3].

The results of the tests are presented in chapter 5. Here, we summarize the findings
and draw conclusions about what they imply for determining TMDs from fits to exper-
imental data. We also explore how the tools developed for conducting closure tests on
MAPTMD22 and PV19 can be applied to validate and optimize other existing fitting
frameworks as well as future methodologies.

6.1 Closure Test Results
The conclusions drawn from closure testing include insights into the flexibility of the
frameworks, the contributions of interpolation/extrapolation, functional, and experi-
mental TMD uncertainties to the overall uncertainty, and the ability of the frameworks
to accurately reproduce the TMD uncertainties.

Conclusions on the Frameworks’ Flexibility

In the Level 0 test, we observed that both the PV19 and MAPTMD22 frameworks are
sufficiently flexible when it comes to reproducing the TMD functional forms generated
using their respective parameterizations, i.e. when the same functional form is used to
generate and fit a Level 0 pseudo-dataset. However, both parameterizations show lim-
ited flexibility when tasked with reproducing a TMD functional form generated using
a different parameterization than the one used for fitting. Notably, the PV19 param-
eterization better captures the TMD functional form constructed with MAPTMD22
than MAPTMD22 does for the TMD constructed using PV19. Based on the L0 test,
it appears that the parameterization of the TMD PDF in PV19 (equation 3.16) is
more flexible than that of MAPTMD22 (equation 3.12). However, the conclusions dif-
fer when we consider the results of the multi-closure test, which will be discussed below.

This result indicates that both frameworks are reliable only under the assumption
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that the true TMD functional forms we aim to extract closely resemble those that can
be constructed with our parameterizations. The issue with this assumption is that pa-
rameterizations with a low number of parameters, like those used in MAPTMD22 and
PV19, can only reproduce a limited range of functional forms. Moreover, we have lim-
ited physical constraints on the non-perturbative TMD functional forms. That means,
we do not know which functional form the true TMD should follow, which raises the
risk that the true TMD functional form may lie outside the class of functional forms
that can be reproduced using our parameterization. This issue is not exclusive to the
MAPTMD22 and PV19 frameworks but is a general challenge faced by traditional fit-
ting techniques for extracting TMDs from experimental data.

One possible solution to this problem is to represent the TMD functional forms
using a large number of parameters via neural networks. This approach has already
been successfully applied to determine the non-perturbative part of collinear PDFs by
the NNPDF collaboration [12], effectively addressing the flexibility issue, since a neural
network is able to explore a much larger region in the space of the TMDs functional
forms than a traditional parametrization. The neural networks approach to the prob-
lem of extracting TMDs from experimental data has not been attempted yet.

Conclusions on the Uncertainty Contributions

Passing to the L1 and L2 tests, we operated under the assumption that the real non-
perturbative TMD functional form lies within the space of forms that our parameter-
izations can capture. We indeed used the same parameterizations to both generate
and fit the datasets, specifically testing MAP22oMAP22 and PV19oPV19. When an-
alyzing the uncertainty contributions, we found that in MAPTMD22, the dominant
sources of uncertainty are the functional and experimental uncertainties, while the in-
terpolation/extrapolation uncertainty is suppressed. In the PV19 framework, both the
functional and interpolation/extrapolation uncertainties are suppressed, with almost
all the uncertainty coming from the experimental data. The conclusion which we can
draw for both frameworks is that improving the predictivity of the methodologies re-
quires more precise data. Increasing the number of data points would not significantly
reduce the total uncertainty, as the interpolation/extrapolation contribution—coming
from regions where no data points are available—is already subdominant in both frame-
works.

Conclusions on the Multi Closure Tests

The multi-closure test allowed us to determine whether the frameworks are optimized
in terms of the bias-variance tradeoff and whether the declared uncertainties faithfully
represent the true TMD uncertainties. For the MAPTMD22 framework, the results
from the multi closure test were satisfactory (equations (5.22), (5.23)), indicating that
the model is well-optimized and reports accurate uncertainties.
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In contrast, the PV19 framework showed signs of underfitting when we calculated
the ξ1σ and Rbv estimators (equations (5.24), (5.25)), which prove we have high bias
compared to the variance of the predicted TMDs. The underfitting issue in PV19 leads
to a biased declaration of the TMD uncertainties, which are underestimated. A con-
fidence level declared to be 68% is, in reality, a 48% confidence level. Consequently,
the TMD uncertainties reported by the model need to be rescaled to reflect a more
accurate confidence level. The underfitting problem in PV19 may appear contradic-
tory, given that the PV19oMAP22L0 test performed better than the MAP22oPV19L0
test (see table 5.2). This result suggested that the PV19 parameterization was more
flexible than the MAPTMD22 one. However, the underfitting issue points to a lack of
flexibility in the PV19 parameterization. To resolve this apparent paradox, we propose
that the MAPTMD22 TMD PDF functional form used to generate the dataset for the
MAP22oPV19L0 test is closer to the space of forms that the PV19 parameterization can
capture. On the other hand, the PV19 TMD PDF used to generate the dataset for the
MAP22oPV19L0 test may be farther from the space of forms that the MAPTMD22 pa-
rameterization can reproduce. Thus, while PV19 performed better than MAPTMD22
in a cross-test, this does not necessarily indicate that PV19 is generally more flexible.
However, this assumption has yet to be tested. It would be interesting to explore
the size of the functional space that both the PV19 and MAPTMD22 parameteriza-
tions can capture, as this would provide a more definitive comparison of their flexibility.

6.2 Future Applications of This Work
The implementation and execution of closure testing on the PV19 and MAPTMD22
methodologies do not conclude with these two specific tests. A significant result of
this work is the potential to apply closure testing to future fitting methodologies and
enhance them based on these statistical tests. Closure testing is a crucial tool for
validating and assessing the robustness of a framework and should be considered an
integral part of the methodology. In chapter 3, we discussed how the frameworks de-
veloped by the MAP Collaboration (including PV19 and MAPTMD22) address the
extraction of TMDs from experimental data, the process is summarized in figure 3.2.
The implementation of closure testing in a fitting framework involves adding a step to
the process: the "validation-optimization" step. This step means testing the methodol-
ogy on a pseudo-dataset generated from a known input and fine-tuning the framework
until it can accurately reproduce both the underlying true law (the input used to gen-
erate the L0 dataset), and the associated TMD uncertainties. Only after optimizing
the methodology based on closure test results should it be used to fit real datasets.

Thanks to this work, the validation-optimization step has been partially integrated
into the Nanga Parbat1 suite. Specifically, the processes for generating Level 0, Level
1, and Level 2 pseudo-data can be reused to test other frameworks. When a new

1Nanga Parbat is the software developed by the MAP Collaboration, designed to run fits for TMD
determination using various fitting frameworks, including different parameterizations and optimization
algorithms.
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framework with its own parameterization is used within Nanga Parbat to fit real data,
it produces data points predicted by the TMDs constructed from that parameteriza-
tion. These correspond to the Level 0 (non-fluctuated) data points. The process of
constructing the Level 0 dataset from these predictions is straightforward and can be
executed using the same code, regardless of the specific parameterization. Similarly,
the code for data fluctuation, which generates the Level 1 and Level 2 datasets, is also
framework-independent, i.e. does not depend on the parametrization used to generate
the dataset. This means it can be applied to produce new pseudo-datasets for test-
ing future frameworks. Additionally, the estimators calculated through a multi-closure
test, ξ1σ and Rbv, are defined in the data-space rather than in the space of TMDs
(see section 4.5). This allows us to compute ξ1σ and Rbv independently of the frame-
work being tested and reuse the same code developed for testing the MAPTMD22
and PV19 frameworks on future methodologies. The parts of this work which are not
directly transferable to other frameworks are the parametrization-dependent compo-
nents. These include the uncertainty characterization (section 5.3) and the calculation
of the Mean Squared Distance estimator (equation 5.4), both of which require specific
TMD functional forms as input.

Integrating closure testing into future frameworks will ensure that the methodolo-
gies used to extract non-perturbative TMDs from experimental data are both validated
and optimized, leading to more reliable determinations of TMDs. The reliability of the
predicted TMDs is crucial to further develop our knowledge of non-perturbative QCD,
test our current understanding of the standard model and search for new physics be-
yond it.
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